Lecture 16:
Query Processing &
Optimization

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcements

* Milestone 2 of group project
* Due on

* Assignment 3 is released on Learn

* Coverage: Lecture 13 — Lecture 20
* Due onJuly 22

* Grading of Assignment 2 will be released by this week
* See announcement on Piazza
* Appealing period is one week after the release

* Grading of midterm is still in progress

A query’s trip through the DBMS

SELECT name, uid
SQL %uery FROM Member, Group
WHERE Member.gid =
<Qu|ery> Group.gid;
<SFW2__ \/
<select-list> | <where-cond> Parse tree

/| <f9m-@>
<table> <table>

Member Group

Query parsing and validation

* Detect and reject errors

A query’s trip through the DBMS

SELECT name, uid
SO‘L uery FROM Member, Group
WHERE Member.gid =
<Qu|er)/> Group.gid;
_<2FWa
<select-list> |<where—cond> Parse tree
R i
" <table> <table> Validator
| | V 7;L-name, uid
Member Grou)
P LOglCCll p’an OI-Member.gideroup.gid
X
7\

Member Group

Query parsing and validation

Detect and reject errors

Detect and reject errors
* Nonexistent tables/views/columns?
* Insufficient access privileges?
* Type mismatches?
* AVG(name), name + pop, User UNION Member

Expand * and views

Information required for semantic checking is found in
(which contains all schema information)

A query’s trip through the DBMS

SELECT name, uid
SO‘L uery FROM Member, Group
<Query> WHERE Member.gid =
| Group.gid;
S2hWa_
<select-list> | <where-cond> Parse tree
/1 <fr/om-@> N\
" <table> <table> Validator T .
| | ¥ | name, uid
Member Group ’-Og"CC‘l(’ plan ?-/\/lember.gidzcroup.gid
- . X
, Optimizer 7\
PROJ EfT (name, gid) ‘ P ¥ Member Group
MERGE-JOIN (gid) Physical plan

7
SORTED) oo croupy I

SCAN (Member) Result

Physical plan

* A complex query may involve multiple tables and
various query execution algorithms

* E.g., table scan, basic & block nested-loop join, index
nested-loop join, sort-merge join

* A for a query tells the DBMS query
processor how to execute the query

* A tree of physical plan operators

* Each operator accepts a number of input tables/streams
and produces a single output table/stream

Examples of physical plans

SELECT Group.name
FROM User, Member, Group

WHERE User.name = 'Bart’
AND User.uid = Member.uid AND Member.gid = Group.gid;

PROJ EICT (Group.name) PROJECT (Group.name)
|
INDEX-N ESTED-L%)P-JOIN (gid) SORT-MERGE-JOIN (gid)
Index on Group(gid) /SCAN (Group)
INDEX-NESTED-LOOP-JOIN (uid) SORT-MERGE- JQ\I (uid)

N
Adex on Member(uid) FILTER (name = “Bart”) SCAN (Member)
INDEX-SCAN (name = “Bart”)
|

|
Index on User(name) SCAN (User)

* Many physical plans for a single query

Execution of physical plans

What is the algorithm for
each operator?

(focus of this lecture)

How are intermediate
results passed from child
to parent operators?

* Temporary files

http://www.dreamstime.com/royalty-free-stock-

* Compute the tree bottom-up image-basement-pipelines-grey-image25917236
* Children write intermediate results to temporary files
* Parents read temporary files
* |terators
* Do not materialize the intermediate result
* Children pipeline their results to parents

10

Outline for Today

e Scan
e Sort
e Hash

* Index

(Alice, abc)
Memory

Blocks transferred
between main
memory and disk

Member

(Alice, abc)
(Bart, boc)

(abc, Book club)
(gov, student

govement)

11

Notation and Assumption

e Relations: 7,

* Tuples: 7,

* Number of tuples: |R|,

 Number of disk blocks: ,

* Number of memory blocks available:

* Cost metric
* Number of I/O’s

* Memory requirement

* Not counting the cost of writing the result out
* Same for any algorithm

* Maybe not needed - results may be pipelined into
downstream operator

Scanning-based algorithms

0110101001 101010C01101001000
?OO?HO?O!OHO 101000101010
1010101 1C001010C0101010010X
)01101010011101011011101000
0}0700101911011701010001?0
10011010100111010110111010
\ﬂ)’OTOO)OIOT101110]010001
)NM@COHO‘OMHQ}
mc 1101011010100
101000101 O’bO’HO
C"\, 2101101010101
mmm 010010101

\J

C)...o

O~

—

01011
4, ’ -

e

l___) N L D

311
|

'.\.n 1 ‘\q‘," iH \‘;n
-~1-\%1~, \:- NG AN
JIU U H.,-}ﬁ/\?,\),\,‘
AN

’]’ \1 \ 1V

13

Table scan

Buffer output

* Scan table R and process the query

~_| Memory

° i input
Selection over R put L

* Projection of R without duplicate elimination

How about with

* |/O’s: B(R) duplicate elimination?
* Stop early if it is a lookup by key

* Memory requirement: M = 2 (blocks)
* 1forinput, 1 for buffer output
* Increase M does not improve 1/O

N Disk A

rir2 Ia

r3r4

N— -/

14

Tuple-based Nested-loop join

* For each block of R, and for each r in the block:
For each block of S, and for each s in the block:
Output rs if p evaluates to true overr and s

* Ris called the table; S is called the table
¢ |/O’s:

Blocks of R are moved Blocks of S are moved into

into memory only once memory times

* Memory requirement: (blocks)

Tuple-based nested-loop join

* 1 block stores 2 tuples, 3 blocks in memory

,r2 r1,r2 ,r2 r1,r2 r1,r2 r1,r2 Hr3,r4 3,r4 3,r4

51,52 1I'rs3,s4 » s5,s6 | | s1,2 || S3,54 |, S5,56 HS1’SZ 1I'rsg,,s4 N S5,S6

output output output output output output output output output
\

— —
r1,r2
R r3,r4
51,52
3,54
S S5,S6
_ Disk

Only compares (r1,s1), (r1,s2)

* Number of 1/Os: B(R) +|R|*B(S)=2+4*3=14

16

Block-based nested-loop join

 For each block of R:

For each block of S:
For each r in the R block:

For each s in the S block:
Output rs if p evaluates to true overr and s

¢ |/O’s:
Blocks of R are moved Blocks of S are moved into
into memory only once memory B(R) times

* Memory requirement: same as before

Block-based nested loop join

* 1 block stores 2 tuples, 3 blocks in memory

R — —

r1,r2
R

r3,r4
51,52
> 53,54
s5,56

Disk |

* Number of I/Os: B(R) + B(R)*B(S)=2+2%3=8

r,r2 r,r2 r,r2 |9 r3,r4 r3,r4 r3,r4

s1,52 || s3,s4 |,| s5,s6 |,| s1,52 || s3,54 [,| S5,56
% 7 B

output output output output output output

Compares (r1,s1), (r2,s1),
(r1,s2),(r2,s2)

18

More improvements

* Stop early if the key of the inner table is being
matched

* Make full use of available memory

* Suppose M memory blocks are available

* How to allocate memory blocks for outer and inner
tables?

* 1/O’s: or, roughly:

* Which table would you pick as the outer?

What about nested loop join?

* May be best if many tuples join
* Cross-product
* Non-equality joins that are not very selective

* Necessary for black-box predicates
* Example: WHERE user_defined_pred(R. A, S.B)

Outline

e Sort

e Hash

* Index

Sorting-based algorithms

http://en.wikipedia.org/wiki/Mail_sortertmediaviewer/File:Mail_sorting,1951.jpg

22

External merge sort

Remember (internal-memory) merge sort?
Problem: sort R, but R does not fit in memory

:read M blocks
of R at a time, them,]
and write out a

(M —1)]
level- O runs at a time,
and write out a

LCCd

(M — 1) level-1 runs at a time,
and write out a

produces one sorted run

el-1

Example of external merge-sort

* 3 memory blocks available \ -

e Each block holds one number i

R: [1]|7]4|5|2]8|9|6]3
* Input: 1, 7, 4,5, 2, 3, 9,6, 3
e Pass O: R: [1]4]7

Example of external merge-sort

* 3 memory blocks available \ -

e Each block holds one number Vi

R: |1|7]|4|5]|2| 8963
* Input: 1, 7, 4,5, 2, 3, 9,6, 3
 Pass O: R: |1]4]7]|2[5]8

Example of external merge-sort

* 3 memory blocks available \ -

* Each block holds one number Vi
R: |1]| 7| 4|5|2| 8 9|l6

* InPUt: 1,745, 2 8} 9 6) 3

* Pass 0 R: | 1]4]7][2]5] 8 [3]©

Example of external merge-sort

* 3 memory blocks available \ -

 Each block holds one number

* Input:1,7,4,5,2,8,9,6, 3 : | |

 Pass O:

e Pass 1; R: |1

Example of external merge-sort

* 3 memory blocks available \ -

 Each block holds one number

* Input:1,7,4,5,2,8,9,6, 3 : |
* Pass o: :

* Pass 1: R: |1]2

Example of external merge-sort

* 3 memory blocks available \ -

 Each block holds one number

cINpUt:1,7,4,5,2,8,9,63 |
 Pass O: :

e Pass 1: R: |1]2] 4

Example of external merge-sort

* 3 memory blocks available \ -

 Each block holds one number

° |ﬂPUt3 1,74, 5 2, 8) 9, 6) 3 : !

 Pass O:

 Pass 1: R: |1]2] 4|5

Example of external merge-sort

* 3 memory blocks available \ -

 Each block holds one number

° |nPUt3 1,7,4,5, 2, 8) 9, 6) 3 : | !

 Pass O:

 Pass 1: R: [1]2]4|5]|7]|8 |3]6

Example of external merge-sort

* 3 memory blocks available \ -

 Each block holds one number

° InPUt: 1) 7) 4) 5) 2) 8) 9) 6) 3

 Pass O:

! !
 Pass 1: R: [1]2]4|5]|7]|8 |3]6
e Pass 2:

Example of external merge-sort

* 3 memory blocks available \ -

 Each block holds one number

° InPUt: 1) 7) 4) 5) 2) 8) 9) 6) 3

R 83| 6
* Pass 0: N4 701205 f
 Pass 1: R: [1]2]4|5]|7]|8 |3]6
e Pass 2:

Example of external merge-sort

* 3 memory blocks available \ -

 Each block holds one number

R: | 1]7]4|5]|2]89]6]3
.lnPUt:1)7)4)5)2)8)9)6}3
* Pass 0: il Rl T
! !
 Pass 1: R: [1]2]4|5]|7]|8 |3]6
e Pass 2:
R: [1]2]3

Example of external merge-sort

* 3 memory blocks available \ -

 Each block holds one number

° InPUt: 1) 7) 4) 5) 2) 8) 9) 6) 3

R 83| 6
* Pass 0: A 7215193
! !
 Pass 1: R: [1]2]4|5]|7]|8 |3]6
e Pass 2:
R: [1]|2]3]|4

Example of external merge-sort

* 3 memory blocks available \ -

 Each block holds one number

R: | 1]7]4|5]|2]89]6]3
.lnPUt:1)7)4)5)2)8)9)6}3
* Pass 0: il R |l T
! !
 Pass 1: R: [1]2]4|5]|7]|8 |3]6
e Pass 2:
R: [1]2[3]4]5

Example of external merge-sort

* 3 memory blocks available \ -

 Each block holds one number

° InPUt: 1) 7) 4) 5) 2) 8) 9) 6) 3

R 8 6
* Pass 0: BRI EEE
| |
 Pass 1: R: [1]2]4|5]|7]|8 |3]6
* Pass 2:
R: [1]2]3[4]|5]|6

Example of external merge-sort

* 3 memory blocks available \ -

 Each block holds one number

° InPUt: 1) 7) 4) 5) 2) 8) 9) 6) 3

R 8l|3]6
* Pass 0: 47 zf >
 Pass 1: R: [1]2]4|5]|7]|8 |3]6
* Pass 2:

R: |1]2[3]|4|5|6|7

Example of external merge-sort

* 3 memory blocks available \ -

 Each block holds one number

° InPUt: 1) 7) 4) 5) 2) 8) 9) 6) 3

R 8l|3]6
* Pass o: 47 25l =
 Pass 1: R: [1]2]4|5]|7]|8 |3]6
* Pass 2:

R: [1]2[3|4]|5]|6]7]|38]9

Analysis

: read M blocks of R at a time, sort them, and

write out a level-0 run
e There are [—Bl(;)\ level-0 sorted runs /O costis 2 BR)
: merge (M — 1) level-(i — 1) runs at a time,
and write out a level-i run

#level—(i—1) I‘UDS} /O costis 2 - B(R)
M-1

produces one sorted run
* if we don’t count the output cost

e #level-i runs = [

1/O cost is B(R)

number of such passes

Performance of external merge-sort

* Number of passes: I/O’s

* Multiply by 2 - B(R): each pass reads the entire relation
once and writes it once

 Subtract B(R) for the final pass
 Roughly, this is

* Memory requirement: M (blocks)

Sort-Merge join (SMJ)

* Sort R and S by their join attributes
* 7, s « the first tuplesin sorted R and S

* Repeat until one of R and S is exhausted:
* Ifr.A > s.B,thens < nexttuplein§
* Elseifr.A < s.B, then r < next tupleinR
* Else
output all matching tuples

r, S < next tuplesin R and S respectively

- MmN T M FT 1N
nh Y v o oy
AU UG QO

— N MMOO
1 L [T |
bt

e = AN M < 1N
LN n n ». h \»n

— M M N OO
I L | O O VR VO |
TS SNSTSS

x ST L

Example of merge in SMJ

Performance of SMJ

User(uid) join with

Member(uid, gid)

* |/O’s: sorting cost + merge cost

* Many practical cases are O(B(R) + B(S5)) (e.g., join of
key and foreign key)

* Worst case is 0 (B(RLB(S))

* Degenerates to blocked-based nested loop join

* (Optional) In general, the cost is roughly
B(R) + B(S) + B(O-A aR) B(0p=4S)

a:lc4=qR|ZMB orRlaB aSS:l)MB
_ X Theoretlcally,
= 0<B(R)+B(S)+

* Memory requirement: // = 3 (blocks)
* Increase M improves I/O

: everything joins

44

Optimization of SMJ

* Idea: combine join with the (last) merge phase of
merge-sort

* Sort: produce sorted runs for R and S such that there are
fewer than M of them total

* Merge and join: merge the runs of R, merge the runs of §,
and merge-join the result streams as they are generated!

)

5

— Disk > Memory

Y Y Y
EEm
-
O,
)

/
Y

V
\

Sorted runs

Performance of Optimized SMJ

. The first pass
* If SMJ completes in two passes: for sorting and

e 1/0’s: 3 - (B(R) + B(S)) the second pass
: for merge-join
* Memory requirement
* We must have enough memory to accommodate one block

from each run: V/ > [B(R)W [B(S)}
* Roughly M > ./B(R) + B(S)

* If SMJ cannot complete in two passes:

* Repeatedly merge to
reduce number of runs
as necessary before
final merge and join

46

Other sort-based algorithms

* Union, difference, intersection
* More or less like SMJ

* Duplication elimination

* External merge sort
 Eliminate duplicates in sort and merge

* Grouping and aggregation

* External merge sort by group-by columns

* Trick: produce “partial” aggregate values in each run, and
combine them during merge

Example of Aggregation

Compute the sum of numbers for each color @ = e
using partial aggregate values

3)) 4) 1)) 5) 6) 27 2 > 12)) 11
>>{ 24,19, 27
7))) 767 67 37 472 > 12) 716
39,37, 49
71’)73) 77’8’3)67 716
>’{ 15, 16, 22
97470707)170)0)1 >97 ’6

Beside SUM, the same trick works for COUNT, MIN, MAX
but not COUNT(Distinct), Median etc.

What is next?

* Scan
* Table scan
* Selection, Duplicate-preserving projection
* Nested-loop join

e Sort

* External merge sort
* Duplicate elimination, Grouping and Aggregation
 SMJ, Union, Difference, Intersection

 Hash
* Index

49

