
Lecture 16:
Query Processing &

Optimization
CS348 Spring 2025:

Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcements

• Milestone 2 of group project
• Due on next Tue, July 8

• Assignment 3 is released on Learn
• Coverage: Lecture 13 – Lecture 20
• Due on July 22

• Grading of Assignment 2 will be released by this week
• See announcement on Piazza
• Appealing period is one week after the release

• Grading of midterm is still in progress
2

A query’s trip through the DBMS

3

Parser

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =
 Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Query parsing and validation

• Parser: SQL → parse tree
• Detect and reject syntax errors

4

A query’s trip through the DBMS

5

Parser

Validator

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =
 Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×

Query parsing and validation

• Parser: SQL → parse tree
• Detect and reject syntax errors

• Validator: parse tree → logical plan
• Detect and reject semantic errors

• Nonexistent tables/views/columns?
• Insufficient access privileges?
• Type mismatches?

• AVG(name), name + pop, User UNION Member

• Expand * and views
• Information required for semantic checking is found in

system catalog (which contains all schema information)

6

A query’s trip through the DBMS

7

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =
 Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×

Physical plan

• A complex query may involve multiple tables and
various query execution algorithms
• E.g., table scan, basic & block nested-loop join, index

nested-loop join, sort-merge join

• A physical plan for a query tells the DBMS query
processor how to execute the query
• A tree of physical plan operators
• Each operator implements a query execution algorithm
• Each operator accepts a number of input tables/streams

and produces a single output table/stream

8

Examples of physical plans

• Many physical plans for a single query

9

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

PROJECT (Group.name)

SORT-MERGE-JOIN (gid)

SCAN (Group)
SORT-MERGE-JOIN (uid)

SCAN (Member)

SCAN (User)

FILTER (name = “Bart”)

SELECT Group.name
FROM User, Member, Group
WHERE User.name = 'Bart'
AND User.uid = Member.uid AND Member.gid = Group.gid;

Execution of physical plans

How are intermediate
results passed from child

to parent operators?

10

• Temporary files
• Compute the tree bottom-up
• Children write intermediate results to temporary files
• Parents read temporary files

• Iterators
• Do not materialize the intermediate result
• Children pipeline their results to parents

http://www.dreamstime.com/royalty-free-stock-
image-basement-pipelines-grey-image25917236

What is the algorithm for
each operator?

What is the algorithm for
each operator?

(focus of this lecture)

Outline for Today

• Scan

• Sort

• Hash

• Index

11

(abc, Book club)
(gov, student

govement)
…

(Alice, abc)
(Bart, boc)

…

MemberGroup

Blocks transferred
between main

memory and disk

Disk

Memory (Alice, abc)
(Bart, gov)

Notation and Assumption
• Relations: 𝑅, 𝑆
• Tuples: 𝑟, 𝑠
• Number of tuples: 𝑅 , 𝑆
• Number of disk blocks: 𝐵 𝑅 , 𝐵 𝑆
• Number of memory blocks available: 𝑀
• Cost metric
• Number of I/O’s (blocks transferred between memory

and disk)
• Memory requirement

• Not counting the cost of writing the result out
• Same for any algorithm
• Maybe not needed – results may be pipelined into

downstream operator
12

Scanning-based algorithms

13

Table scan

• Scan table R and process the query
• Selection over R
• Projection of R without duplicate elimination

• I/O’s: 𝐵 𝑅
• Stop early if it is a lookup by key

• Memory requirement: 𝑀 ≥ 2 (blocks)
• 1 for input, 1 for buffer output
• Increase 𝑀	does not improve I/O

14

Disk

r1 r2 R

Memory

r3 r4

….

r1 r2

r1 r2

Buffer output

input

How about with
duplicate elimination?

Tuple-based Nested-loop join

𝑅 ⋈! 𝑆
• For each block of 𝑅, and for each 𝑟 in the block:

 For each block of 𝑆, and for each 𝑠 in the block:
 Output 𝑟𝑠	if 𝑝 evaluates to true over 𝑟 and 𝑠

• 𝑅 is called the outer table; 𝑆 is called the inner table
• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ 𝐵 𝑆

• Memory requirement: 𝑀 ≥ 3 (blocks)
15

Blocks of 𝑅 are moved
into memory only once

Blocks of 𝑆 are moved into
memory 𝑅 times

Tuple-based nested-loop join

• 1 block stores 2 tuples, 3 blocks in memory

R

S

• Number of I/Os: B(R) + |R| * B(S) = 2 + 4 * 3 = 14
16

r1,r2

r3,r4

s1,s2

s3,s4

s5,s6

r1,r2

s1,s2

output

r1,r2

s3,s4

output

r1,r2

s5,s6

output

r1,r2

s1,s2

output

r1,r2

s3,s4

output

r1,r2

s5,s6

output

r3,r4

s1,s2

output

r3,r4

s3,s4

output

r3,r4

s5,s6

output

Only compares (r1,s1), (r1,s2)
Disk

Block-based nested-loop join

𝑅 ⋈! 𝑆
• For each block of 𝑅:

For each block of 𝑆:
 For each 𝑟 in the 𝑅 block:
 For each 𝑠 in the 𝑆 block:
 Output 𝑟𝑠	if 𝑝 evaluates to true over 𝑟 and 𝑠

• I/O’s: 𝐵 𝑅 + 𝐵 𝑅 ⋅ 𝐵 𝑆

• Memory requirement: same as before

17

Blocks of R are moved
into memory only once

Blocks of S are moved into
memory B(R) times

Block-based nested loop join

• 1 block stores 2 tuples, 3 blocks in memory

R

S

• Number of I/Os: B(R) + B(R)* B(S) = 2 + 2 * 3 = 8
18

r1,r2

r3,r4

s1,s2

s3,s4

s5,s6

r1,r2

s1,s2

output

r1,r2

s3,s4

output

r1,r2

s5,s6

output

r3,r4

s1,s2

output

r3,r4

s3,s4

output

r3,r4

s5,s6

output

Compares (r1,s1), (r2,s1),
(r1,s2),(r2,s2)

Disk

More improvements

• Stop early if the key of the inner table is being
matched

• Make full use of available memory
• Suppose 𝑀 memory blocks are available
• How to allocate memory blocks for outer and inner

tables?

• I/O’s: 𝐵 𝑅 + " #
$%&

⋅ 𝐵 𝑆 	or, roughly: 𝐵(𝑅) ⋅ 𝐵(𝑆)/𝑀
• Increase 𝑀 improves I/O!

• Which table would you pick as the outer?

19

What about nested loop join?

• May be best if many tuples join
• Cross-product
• Non-equality joins that are not very selective

• Necessary for black-box predicates
• Example: WHERE user_defined_pred(𝑅. 𝐴, 𝑆. 𝐵)

20

Outline

• Scan
• Table scan
• Selection, Duplicate-preserving projection
• Nested-loop join

• Sort

• Hash

• Index

21

Sorting-based algorithms

22http://en.wikipedia.org/wiki/Mail_sorter#mediaviewer/File:Mail_sorting,1951.jpg

External merge sort
Remember (internal-memory) merge sort?
Problem: sort 𝑅, but 𝑅 does not fit in memory
• Pass 0: read 𝑀 blocks

of 𝑅 at a time, sort them,
and write out a level-0 run

• Pass 1: merge 𝑀 − 1
level-0 runs at a time,
and write out a level-1 run

• Pass 2: merge 𝑀 − 1 level-1 runs at a time,
and write out a level-2 run

…
• Final pass produces one sorted run

23

Memory
𝑅

Level-0

…

…

… Level-1

Disk

24

R: 1 7 4 5 2 8 9 6 3

• 3 memory blocks available

• Each block holds one number
• Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

• Pass 0:

Example of external merge-sort

R 1 7 4 5 2 8 9 6 3

Disk

1 4 7R:

Arrows indicate the
blocks in memory

25

R: 1 7 4 5 2 8 9 6 3

• 3 memory blocks available

• Each block holds one number
• Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

• Pass 0:

Example of external merge-sort

R 1 7 4 5 2 8 9 6 3

Disk

1 4 7R:

Arrows indicate the
blocks in memory

2 5 8

26

R: 1 7 4 5 2 8 9 6 3

• 3 memory blocks available

• Each block holds one number
• Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

• Pass 0:

Example of external merge-sort

R 1 7 4 5 2 8 9 6 3

Disk

1 4 7 3 6 9R:

Arrows indicate the
blocks in memory

2 5 8

27

R: 1 7 4 5 2 8 9 6 3

• 3 memory blocks available

• Each block holds one number
• Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

• Pass 0:

• Pass 1:

Example of external merge-sort

R 1 7 4 5 2 8 9 6 3

Disk

1 4 7 2 5 8

1

R:

R:

3 6 9

Arrows indicate the
blocks in memory

28

R: 1 7 4 5 2 8 9 6 3

• 3 memory blocks available

• Each block holds one number
• Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

• Pass 0:

• Pass 1:

Example of external merge-sort

R 1 7 4 5 2 8 9 6 3

Disk

1 4 7 2 5 8

1

R:

R:

3 6 9

2

Arrows indicate the
blocks in memory

29

R: 1 7 4 5 2 8 9 6 3

• 3 memory blocks available

• Each block holds one number
• Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

• Pass 0:

• Pass 1:

Example of external merge-sort

R 1 7 4 5 2 8 9 6 3

Disk

1 4 7 2 5 8

1

R:

R:

3 6 9

2 4

Arrows indicate the
blocks in memory

30

R: 1 7 4 5 2 8 9 6 3

• 3 memory blocks available

• Each block holds one number
• Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

• Pass 0:

• Pass 1:

Example of external merge-sort

R 1 7 4 5 2 8 9 6 3

Disk

1 4 7 2 5 8

1

R:

R:

3 6 9

2 4 5

Arrows indicate the
blocks in memory

31

R: 1 7 4 5 2 8 9 6 3

• 3 memory blocks available

• Each block holds one number
• Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

• Pass 0:

• Pass 1:

Example of external merge-sort

R 1 7 4 5 2 8 9 6 3

Disk

1 4 7 2 5 8

1

R:

R:

3 6 9

2 4 5 7 8 3 6 9

Arrows indicate the
blocks in memory

32

R: 1 7 4 5 2 8 9 6 3

• 3 memory blocks available

• Each block holds one number
• Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

• Pass 0:

• Pass 1:
• Pass 2:

Example of external merge-sort

R 1 7 4 5 2 8 9 6 3

Disk

1 4 7 2 5 8

1

R:

R:

Arrows indicate the
blocks in memory

3 6 9

2 4 5 7 8 3 6 9

1R:

33

R: 1 7 4 5 2 8 9 6 3

• 3 memory blocks available

• Each block holds one number
• Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

• Pass 0:

• Pass 1:
• Pass 2:

Example of external merge-sort

R 1 7 4 5 2 8 9 6 3

Disk

1 4 7 2 5 8

1

R:

R:

Arrows indicate the
blocks in memory

3 6 9

2 4 5 7 8 3 6 9

1R: 2

34

R: 1 7 4 5 2 8 9 6 3

• 3 memory blocks available

• Each block holds one number
• Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

• Pass 0:

• Pass 1:
• Pass 2:

Example of external merge-sort

R 1 7 4 5 2 8 9 6 3

Disk

1 4 7 2 5 8

1

R:

R:

Arrows indicate the
blocks in memory

3 6 9

2 4 5 7 8 3 6 9

1R: 2 3

35

R: 1 7 4 5 2 8 9 6 3

• 3 memory blocks available

• Each block holds one number
• Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

• Pass 0:

• Pass 1:
• Pass 2:

Example of external merge-sort

R 1 7 4 5 2 8 9 6 3

Disk

1 4 7 2 5 8

1

R:

R:

Arrows indicate the
blocks in memory

3 6 9

2 4 5 7 8 3 6 9

1R: 2 3 4

36

R: 1 7 4 5 2 8 9 6 3

• 3 memory blocks available

• Each block holds one number
• Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

• Pass 0:

• Pass 1:
• Pass 2:

Example of external merge-sort

R 1 7 4 5 2 8 9 6 3

Disk

1 4 7 2 5 8

1

R:

R:

Arrows indicate the
blocks in memory

3 6 9

2 4 5 7 8 3 6 9

1R: 2 3 4 5

37

R: 1 7 4 5 2 8 9 6 3

• 3 memory blocks available

• Each block holds one number
• Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

• Pass 0:

• Pass 1:
• Pass 2:

Example of external merge-sort

R 1 7 4 5 2 8 9 6 3

Disk

1 4 7 2 5 8

1

R:

R:

Arrows indicate the
blocks in memory

3 6 9

2 4 5 7 8 3 6 9

1R: 2 3 4 5 6

38

R: 1 7 4 5 2 8 9 6 3

• 3 memory blocks available

• Each block holds one number
• Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

• Pass 0:

• Pass 1:
• Pass 2:

Example of external merge-sort

R 1 7 4 5 2 8 9 6 3

Disk

1 4 7 2 5 8

1

R:

R:

Arrows indicate the
blocks in memory

3 6 9

2 4 5 7 8 3 6 9

1R: 2 3 4 5 6 7

39

R: 1 7 4 5 2 8 9 6 3

• 3 memory blocks available

• Each block holds one number
• Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

• Pass 0:

• Pass 1:
• Pass 2:

Example of external merge-sort

R 1 7 4 5 2 8 9 6 3

Disk

1 4 7 2 5 8

1

R:

R:

Arrows indicate the
blocks in memory

3 6 9

2 4 5 7 8 3 6 9

1R: 2 3 4 5 6 7 8 9

Analysis

• Pass 0: read 𝑀 blocks of 𝑅 at a time, sort them, and
write out a level-0 run
• There are " #

$
 level-0 sorted runs

• Pass 𝑖: merge 𝑀 − 1 level- 𝑖 − 1 runs at a time,
and write out a level-𝑖 run
• # level-𝑖 runs = 	#	,-.-,% /%0 	1234

$%0

• Final pass produces one sorted run
• if we don’t count the output cost

• log$%&
' (
$

 number of such passes

40

I/O cost is 2 ⋅ 𝐵 𝑅

I/O cost is 2 ⋅ 𝐵 𝑅

I/O cost is 𝐵 𝑅

Performance of external merge-sort

• Number of passes: I/O’s
• Multiply by 2 ⋅ 𝐵 𝑅 : each pass reads the entire relation

once and writes it once
• Subtract 𝐵 𝑅 for the final pass
• Roughly, this is

2 ⋅ 𝐵 𝑅 ⋅ log$%0
𝐵 𝑅
𝑀

+ 1 − 𝐵 𝑅

= 𝑂 𝐵 𝑅 ×log$𝐵 𝑅

• Memory requirement: 𝑀 (blocks)

41

Sort-Merge join (SMJ)

𝑅 ⋈(.*+,.' 𝑆
• Sort 𝑅 and 𝑆 by their join attributes
• 𝑟, 𝑠 ← the first tuples in sorted 𝑅 and 𝑆
• Repeat until one of 𝑅 and 𝑆 is exhausted:
• If 𝑟. 𝐴 > 𝑠. 𝐵, then 𝑠 ← next tuple in 𝑆
• Else if 𝑟. 𝐴 < 𝑠. 𝐵, then 𝑟 ← next tuple in 𝑅
• Else

output all matching tuples (if not all tuples are residing
in memory, use block-based nested loop join)
𝑟, 𝑠 ← next tuples in 𝑅 and 𝑆 respectively

42

Example of merge in SMJ

𝑅: 𝑆: 𝑅 ⋈(.*+,.' 𝑆:
 𝑟&. 𝐴 = 1 𝑠&. 𝐵 = 1
 𝑟-. 𝐴 = 3 𝑠-. 𝐵 = 2
 𝑟.. 𝐴 = 3 𝑠.. 𝐵 = 3
 𝑟/. 𝐴 = 5 𝑠/. 𝐵 = 3
 𝑟0. 𝐴 = 7 𝑠0. 𝐵 = 8
 𝑟1. 𝐴 = 7
 𝑟2. 𝐴 = 8

43

𝑟&𝑠&
𝑟-𝑠.
𝑟-𝑠/
𝑟.𝑠.
𝑟.𝑠/
𝑟2𝑠0

Performance of SMJ

• I/O’s: sorting cost	+ merge cost
• Many practical cases are 𝑂(𝐵 𝑅 + 𝐵 𝑆) (e.g., join of

key and foreign key)

• Worst case is 𝑂 " # ⋅" 8
$: everything joins

• Degenerates to blocked-based nested loop join
• (Optional) In general, the cost is roughly

𝐵 𝑅 + 𝐵 𝑆 + 5
!: #!"#$ %&')* #$"#+ %&'

𝐵 𝜎,-!𝑅 ⋅ 𝐵 𝜎'-!𝑆
𝑀

= 	𝑂 𝐵 𝑅 + 𝐵 𝑆 + 𝐵 𝑅 ⋈ 𝑆
𝑀𝐵

• Memory requirement: 𝑀 ≥ 3 (blocks)
• Increase 𝑀	improves I/O

44

User(uid) join with
Member(uid, gid)

Theoretically,
this is optimal

Optimization of SMJ

• Idea: combine join with the (last) merge phase of
merge-sort
• Sort: produce sorted runs for 𝑅 and 𝑆 such that there are

fewer than 𝑀 of them total
• Merge and join: merge the runs of 𝑅, merge the runs of 𝑆,

and merge-join the result streams as they are generated!

45

Merge

MergeSo
rt

ed
 ru

ns 𝑅

𝑆

Disk Memory

Join

Performance of Optimized SMJ

• If SMJ completes in two passes:
• I/O’s: 3 ⋅ 𝐵 𝑅 + 𝐵 𝑆
• Memory requirement

• We must have enough memory to accommodate one block
from each run: 𝑀 > ' $

&
+ ' +

&
• Roughly 𝑀 > 𝐵 𝑅 + 𝐵 𝑆

• If SMJ cannot complete in two passes:
• Repeatedly merge to

reduce number of runs
as necessary before
final merge and join

46

The first pass
for sorting and

the second pass
for merge-join

Other sort-based algorithms

• Union, difference, intersection
• More or less like SMJ

• Duplication elimination
• External merge sort

• Eliminate duplicates in sort and merge

• Grouping and aggregation
• External merge sort by group-by columns

• Trick: produce “partial” aggregate values in each run, and
combine them during merge

47

Example of Aggregation

48

3, 2, 4, 1, 3, 5, 6, 2, 2

7, 5, 3, 6, 6, 6, 3, 4, 2

4, 1, 1, 1, 3, 5, 7, 8, 3

9, 4, 0, 0, 7, 1, 0, 0, 1

12, 5, 11

12, 14, 16

6, 11, 16

9, 7, 6

24, 19, 27

15, 18, 22

Compute the sum of numbers for each color
using partial aggregate values

39, 37, 49

Beside SUM, the same trick works for COUNT, MIN, MAX
but not COUNT(Distinct), Median etc.

3 memory blocks available
Each block holds 3 numbers

What is next?

• Scan
• Table scan
• Selection, Duplicate-preserving projection
• Nested-loop join

• Sort
• External merge sort
• Duplicate elimination, Grouping and Aggregation
• SMJ, Union, Difference, Intersection

• Hash
• Index

49

