Lecture 15:
Indexing

CS348 Spring 2025:
Introduction to Database Management

Guest Lecture: Chao Zhang
Sections: 001, 002, 003

Announcements

e Midterm exam tomorrow!
* Time: 4:30 PM - 6:00 PM
* Location: M3 1006 and STC 0040 (check your room)
* See the midterm-review lecture

* No class on next Tue, July 1 (Canada day)!

Outline

* Hashing

* How to use index

Static hashing

With record pointers
(shown below) or records

bucket o bucket i k, =—>
ki, >
Search hash bucket 1 kiy =—>
key function Bucket #
k h h(k) mod n

. — bucket i bucket i
bucket i
overflow overflow

What if a bucket is full?

bucket
n-1

Performance of static hashing

* Depends on the quality of the hash function
* Best (hopefully average) case: one I/O
* Worst case: all keys hashed into one bucket

* See Knuth vol. 3 for good hash functions
* Efficiency + uniformity (low collision)

* Rule of thumb: keep utilization at 50%-80%

w-How do we cope with growth?

Strawman solution

Rehash the whole table — using a new hash
function, or at least changing n in mod n to the new
number of buckets

* Entries in an old bucket may show up across many
different new buckets, causing lots of 1/Os

* Cost of (re)building a giant hash table on external
storage = sorting (later in this course)

= |s it possible to reduce data movement?

Extensible hashing

: have hash function h output a large number of
bits, but only use the lowest i bits, and dynamically
increase i as needed

h(k) [1]o]1]1]

* E.g., hy(k) = 1011, then hg(k) is either 01011 or 11011 =
contents in one old bucket can only go to two new buckets!

 Problem: ++i doubles the number of buckets!

: use a directory
* Only split overflowing buckets
* But double the directory size
* Many directory entries can point to the same bucket

Extensible hashing example — 1

Directory Buckets
(always the max _I)'J 100
of local depths)
100
0011 610

* Insert k with h(k) = 0101

* Bucket too full? (next slide)

* Allowing some overflow is also fine (and sometimes
necessary)

Extensible hashing example -2

Directory Buckets
L
2 10
2] 01
2]
00
—>

Upon split:

* ++local depth, redistribute contents, and ++global
depth (double the directory size) if necessary

Extensible hashing example -3

* Insert 1110

(no split necessary) Buckets

100
111

Directory _| 10

_I / 01
—I 00

Extensible hashing example — 4

* Insert 0000
(split, but no
directory doubling)

10
00

11

Directo
10

01

—IOO

Buckets

Extensible hashing example - 5

Buckets

* Insert 0001
(split +
directory doubling)

10
00

11

00

Extensible hashing — deletions

Just the reverse of insertions

* If the bucket becomes too empty:
* Merge with “sibling” (differing only on the leading bit)
* Adjust any pointer from the directory as needed
* ——local depth
* If possible, — — global depth and half the directory

* Invariant: global depth = max of all local depths

Summary of extensible hashing

Pros:

* Handles growing/shrinking indexes

* No full reorganization

Cons:

* One more level of indirection through the directory
* Directory size still doubles/halves

* There are cases when doubling may not be enough

j 1011000

0100000

Linear hashing

* No extra indirection through a directory
* Fix the splitting/growth order
* Use some extra math to figure out the right bucket

* Grow only when utilization
exceeds a given threshold

: # of primary buckets (not counting overflow blocks)
= [log, n]: # of hash bits in use (global depth)
= 85%

bucket 0 bucket 1
000 111
101

16

Linear hashing example -1

bucket 0 bucket 1
000 111 :
Inserting 0101 exceeds threshold — grow
101 010

— it’s
always the bucket n — 2110827l (0-based index)
* Often not the bucket you are inserting into!

* File grows linearly at the end (hence the name)

/ \
bucket 00 bucket 1 bucket 10

00 111 10
010

Linear hashing example -2

bucket 00 bucket 1 bucket 10
00 111 10
11 “ 010

Y

‘ 000 Inserting 0001 doesn’t exceed threshold
Overflow is needed

Inserting 1100 exceeds threshold — grow

/ \
bucket 00 bucket 01 bucket 10 bucket 11

00 01 10 11
11 00

17

18

Linear hashing example -3

bucket 00 bucket 01 bucket 10 bucket 11
00 01 10 11
11 00 11

Inserting 1110 exceeds threshold — grow

3 —
bucket 000 bucket 01 bucket 10 bucket 11 bucket 100

0 01 10 11 ‘ 1
00 11 ‘ \

Look up 1110
* Bucket 110 doesn’t exist, so go to bucket 10

Summary of linear hashing

Pros:
* Handles growing/shrinking indexes
* No full reorganization

* No extra level of indirection (beats extensible
hashing)

cons:

* Still has overflow chains, and may not split them
right away because buckets must be split in
sequence

| empty " empty " empty " full | empty || empty || empty

Hash indexes vs. B*-trees

* Hashing is faster on average, but the worst case
can be bad

* B*-tree’s worst-case performance guarantees rely
on fewer assumptions, and in practice these trees
are not very tall

* Hashing destroys order, but B*-trees provide
ordering and support range scans

=-\We will come back to sorting vs. hashing again in
query processing

Outline

* How to use index

Multi-attribute indices

* Index on several attributes of the same relation.
* CREATE INDEX Namelndex ON User(LastName,FirstName);

tuples (or tuple pointers) are organized first

by Lasthame. Tuples with a common lasthame
are then organized by Firstname.

* This index would be useful for these queries:
e select * from User where Lastname = ‘Smith’

* select * from User where Lastname = ‘Smith’ and
Firstname=‘John’

* This index would be not useful at all for this query:
* select * from User where Firstname=‘John’

22

Index-only plan

* For example:
* SELECT firstname, pop FROM User WHERE

)

* non-clustering index on ()

contains all the columns
needed to answer the query without having to
access the tuples in the base relation.
* Avoid one disk I/O per tuple
* The index is much smaller than the base relation

Physical design guidelines for indices

* Don’t index unless the performance increase
outweighs the update overhead

e Attributes mentioned in WHERE clauses are
candidates for index search keys

* Multi-attribute search keys should be considered
when a WHERE clause contains several conditions;
or it enables index-only plans

Physical design guidelines for indices

* Choose indexes that benefit as many queries as
possible

* Each relation can
; therefore choose it wisely
* Target important queries that would benefit the most
benefit the most from clustering

* A multi-attribute index that enables an index-only plan
does not benefit from being clustered

User (uid int, name string, age int, pop float)
Group (gid string, name string, date DATE)

Case Stu dy Member (uid int, gid string)

 Common queries

1. List the name, pop of users in a particular age range
List the uid, age, pop of users with a particular name
List the average pop of each age
List all the group info, ordered by their starting date

List the average pop of a particular group given the
group name

ViR W

* Pick a set of clustering/non-clustering indexes for
these set of queries (without worrying too much
about storage and update cost)

User (uid int, name string, age int, pop float) Y

Group (gid string, name string, date DATE)

Ca S e St U d y Member (uid int, gid string)

A non-clustering index
e Common queries on User(age) on User(name)
1. List the name, pop of users in a particular age range
List the uid, age, pop of users with a particular name
List the average pop of each age

List all the group info, ordered by their starting date

List the average pop of a particular group given the
group name

Vs W

8
User (uid int, name string, age int, pop float) ’

Group (gid string, name string, date DATE)

Ca S e St U d y Member (uid int, gid string)

. (e :. = A non-clustering index
e Common q dex-onlv bl on User(age) on User(name)
1. List the name, po users in a particular age range
List the uid, age, pop ¢ users with a particular name
List the average pop of each age

List all the group info, ordered by their starting date

List the average pop of a particular group given the
group name

VW

Ca S e St U d y Member (uid int, gid string)

 User(age. non A clustering index |A non-clustering index
« Common q dex-onlv bl- on User(age) on User(name)

1.

s w N

User (uid int, name string, age int, pop float) “

Group (gid string, name string, date DATE)

List the name, po users in a particular age range
List the uid, age, pop ¢ users with a particular name
List the average pop of each age

List all the group info, ordered by their starting date

List the average pop of a particular group given the
group name A clustering index

on Group(date)

User (uid int, name string, age int, pop float) °

d Group (gid string, name string, date DATE)
Ca S e St U y Member (uid int, gid string)
A 0 a O (le
0 Ar(306. DOD A clustering index JA non-clustering index
e Common q dex-onlv bl- on User(age) on User(name)

1. List the name, po users in a particular age range
List the uid, age, pop f users with a particular name
List the average pop of each age

List all the group info, ordered by their starting date

List the avera particular group given the

group name A clustering index
on Group(date)

VR W

(i) Search gid by a particular name
—> Clustering/non-clustering index on Group(name)?

(i) Search uid by a particular gid

- Clustering/non-clustering index on Member(gid)?
g/ g (gid) If many other queries need

(i) Search pop by a particular uid a clustering index on
—> Clustering/non-clustering index on User(uid)? Group(name), we may
reconsider!

User (uid int, name string, age int, pop float) .

d Group (gid string, name string, date DATE)
Ca S e St U y Member (uid int, gid string)
A 0 a O (le
0 Ar(306. DOD A clustering index JA non-clustering index
e Common q dex-onlv bl- on User(age) on User(name)

1. List the name, po users in a particular age range
List the uid, age, pop f users with a particular name
List the average pop of each age

List all the group info, ordered by their starting date

List the avera particular group given the

group name A clustering index
on Group(date)

VR W

(i) Search gid by a particular name

—> Non-clustering index on Group(name)

(i) Search uid by a particular gid
—> Clustering/non-clustering index on Member(gid)?

(i) Search pop by a particular uid Or clustering index on
—> Clustering/non-clustering index on User(uid)? Member(gid,uid)

User (uid int, name string, age int, pop float) .

d Group (gid string, name string, date DATE)
Ca S e St U y Member (uid int, gid string)
A 0 a O (le
0 Ar(306. DOD A clustering index JA non-clustering index
e Common q dex-onlv bl- on User(age) on User(name)

1. List the name, po users in a particular age range
List the uid, age, pop f users with a particular name
List the average pop of each age

List all the group info, ordered by their starting date

List the avera particular group given the

group name A clustering index
on Group(date)

VR W

(i) Search gid by a particular name Or non-clustering index on

- Non-clustering index on Group(name) User(uid, pop) = index-only
plan, if without worrying

about storage/update cost

(ii) Search uid by a particular gid
—> Clustering index on Member(gid)

(iii) Search pop by a particular uid
—> Clustering/non-clustering index on User(uid)?

Summary

* Types of indexes:
* Densev.s. sparse
* Clustering v.s. non-clustering
* Primary v.s. secondary

* Indexing structure
* ISAM
* B+-tree
* Hashing

* How to use index
* Use multi-attribute indices
* Index-only plan
* General guideline

What is next?

DBMS Internals:

