
1

MicroFuge: A Middleware Approach to Providing
Performance Isolation in Cloud Storage Systems

Akshay Singh, Xu Cui, Benjamin Cassell, Bernard Wong and
Khuzaima Daudjee

July 3, 2014



2

Storage Resources in Cloud Datacenters

I Cloud computing allows sharing of resource at the cost of
reduced isolation.

I Storage systems are highly sensitive to performance
interference.

I Lack of performance isolation → Unpredictable latencies.



3

A Cloud Scenario

I In worst case, a particular HTTP request may require 35
database lookups.1

I Response time can add up quickly.

I Amazon reported 100ms of latency cost them 1% in sales.2

I Google found an extra .5 seconds delay caused 20% drop in
search traffic.2

– [1] Nathan Farrington and Alexey Andreyev, Facebook’s Data Center
Network Architecture.

– [2] Greg Lindem, Make Data Useful, http://www.scribd.com/doc/
4970486/Make-Data-Useful-by-Greg-Linden-Amazon-com.

http://www.scribd.com/doc/4970486/Make-Data-Useful-by-Greg-Linden-Amazon-com
http://www.scribd.com/doc/4970486/Make-Data-Useful-by-Greg-Linden-Amazon-com


4

Performance Isolation

I Clients want to have performance guarantees in the shared
environment.

I Possible solutions to performance isolation.

I Dedicated resources.

I Meet clients’ response time requirements in the shared
environment.

I We represent response time requirements with request
deadlines.

I Meeting request deadlines → Performance isolation.



5

MicroFuge

I A distributed caching and scheduling middleware that provides
performance isolation.

I Deadline Cache (DLC)

I Builds a performance model of the system.

I Uses multiple LRU queues for deadline-aware eviction.

I Deadline Scheduler (DLS)

I Performs intelligent replica selection.

I Implements feedback-driven deadline-aware scheduling.

I Optionally performs admission control.

I Middleware: supports different cloud storage systems.



6

MicroFuge Overview I



7

MicroFuge Overview II



8

MicroFuge Overview III



9

Deadline Cache (DLC) - Components



10

Deadline Cache (DLC) - Components



11

DLC - A Cache Eviction Example (1)



12

DLC - A Cache Eviction Example (2)



13

DLC - A Cache Eviction Example (3)



14

DLC - A Cache Eviction Example (4)



15

DLC - A Cache Eviction Example (5)



16

DLC - A Cache Eviction Example (6)



17

DLC - A Cache Eviction Example (7)



18

DLC - A Cache Eviction Example (8)



19

DLC - A Cache Eviction Example (9)



20

DLC - A Cache Eviction Example (10)



21

DLC - Benefits

I Multiple LRU queues enable DLC to perform deadline-aware
evictions.

I Adaptive policy considers both the client request rate for each
deadline range and the underlying system’s performance.

I DLC offers adaptive deadline-aware caching.



22

Deadline Scheduler (DLS) High-level Architecture I



23

Deadline Scheduler (DLS) High-level Architecture II



24

Deadline Scheduler (DLS) High-level Architecture III



25

Deadline Scheduler (DLS) High-level Architecture IV



26

DLS - An Example (1)

I The client wants to perform a value lookup for the key
Waterloo.



27

DLS - An Example (2)

I The client begins by issuing a cache lookup to DLC.



28

DLS - An Example (3)

I Issue two get ticket requests concurrently.



29

DLS - An Example (4)

I If the item is not in the cache, the client waits for DLS to
return the tickets.



30

DLS - An Example (5)

I Returned tickets contain extra information to help the client
to make an informed decision.



31

DLS - An Example (6)

I The client makes a call to the selected DLS and waits for its
turn to access the data server.



32

DLS - An Example (7)
I Snapshot of scheduler’s pending queue.



33

DLS - An Example (8)
I The new item is inserted according to earliest deadline first

ordering.



34

DLS - An Example (9)
I Let’s assume one of the running requests just completed.



35

DLS - An Example (10)
I If the request deadline can be met, it will take one of the

empty slots inside the running request pool.



36

DLS - An Example (11)
I If request deadline cannot be met, DLS may increase the

request’s deadline and insert the request back into the queue.



37

DLS - An Example (12)
I The push-back can happen at most once to prevent starvation.



38

DLS - An Example (13)

I DLS informs the client that it can access the data server.



39

DLS - An Example (14)

I The client issues the read request to the data server.



40

DLS - An Example (15)

I After receiving the response, the client reports the execution
time and concurrently inserts the data into the cache.



41

DLS - Benefits

I Deadline-aware load-balancing.

I A variant of earliest deadline first scheduling.

I Tunable admission control system.



42

Experimental Setup - The Cluster
I Twenty-node test cluster on AWS. Each cluster node is an

m1.medium EC2 instance.



43

Experimental Setup - Details

I DataServer - Simple key-value store that uses leveldb.

I We use a replication factor of 3.
I Benchmarking System - Modified version of Yahoo! Cloud

Serving Benchmark (YCSB).
I Assign deadlines to each key.

Range Percentage
10-30ms 20%
30-100ms 30%
100-1000ms 50%

I Data Set - 80 million records, 86.4 GB in size.

I Cache - Total capacity of 19.2GB.



44

Deadline-Aware Caching - DLC

Figure : Cache hit rate for 192 concurrent clients with DLC and
Memcached.



45

Deadline-Aware Caching - Full MicroFuge

Figure : Cache hit rate for 192 concurrent clients with DLC + DLS and
Memcached.



46

Deadline Miss Rate - DLC

Figure : Deadline miss rate for 192 concurrent clients with DLC and
Memcached.



47

Deadline Miss Rate - Full MicroFuge

Figure : Deadline miss rate for 192 concurrent clients with DLC + DLS
and Memcached.



48

Conclusion

I Predictable performance is necessary in multi-tenant
environments.

I MicroFuge tackles the performance isolation problem with its
deadline-aware caching and scheduling middleware.

I MicroFuge reduces deadline miss rate from 17.5% to 7.7% and
it can be as low as 4.7% if we turn on the admission control.



49

Thank You.



50

DLS - Admission Control

I Bound the fraction of requests that miss their deadlines.
I Requests are rejected in two situations.

I The request will be miss its own deadline.
I The new request will cause already accepted requests to miss

their deadlines.

I Provides a system parameter β as a knob to control the
percentage of deadline misses.



51

Experimental Results - Deadline Miss with Admission
Control

Figure : Deadline miss rate for 192 concurrent clients with DLC + DLS
+ AC and Memcached.



52

Experimental Results - Tunable Admission Control

Figure : Deadline miss vs. rejection rates with respect to various values
of system parameter β for 192 clients.



53

MicroFuge at a Glance

I Middleware for popular key-value storage.

I A modified version of the CRUD operation interface.

Figure : MicroFuge read operation interface.


