MicroFuge: A Middleware Approach to Providing
Performance Isolation in Cloud Storage Systems

Akshay Singh, Xu Cui, Benjamin Cassell, Bernard Wong and
Khuzaima Daudjee

UNIVERSITY OF

WATERLOO

July 3, 2014

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
1

Storage Resources in Cloud Datacenters

» Cloud computing allows sharing of resource at the cost of
reduced isolation.

» Storage systems are highly sensitive to performance
interference.

> Lack of performance isolation — Unpredictable latencies.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
2

A Cloud Scenario

v

In worst case, a particular HT TP request may require 35
database lookups.!

» Response time can add up quickly.

» Amazon reported 100ms of latency cost them 1% in sales.?

v

Google found an extra .5 seconds delay caused 20% drop in
search traffic.?

[1] Nathan Farrington and Alexey Andreyev, Facebook's Data Center
Network Architecture.

[2] Greg Lindem, Make Data Useful, http://www.scribd.com/doc/
4970486/Make-Data-Useful-by-Greg-Linden-Amazon-com.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
3

http://www.scribd.com/doc/4970486/Make-Data-Useful-by-Greg-Linden-Amazon-com
http://www.scribd.com/doc/4970486/Make-Data-Useful-by-Greg-Linden-Amazon-com

Performance Isolation

» Clients want to have performance guarantees in the shared
environment.

» Possible solutions to performance isolation.

» Dedicated resources.

» Meet clients’ response time requirements in the shared
environment.

> We represent response time requirements with request
deadlines.

» Meeting request deadlines — Performance isolation.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
4

MicroFuge

» A distributed caching and scheduling middleware that provides
performance isolation.

» Deadline Cache (DLC)

> Builds a performance model of the system.

> Uses multiple LRU queues for deadline-aware eviction.
» Deadline Scheduler (DLS)

» Performs intelligent replica selection.

» Implements feedback-driven deadline-aware scheduling.

» Optionally performs admission control.

» Middleware: supports different cloud storage systems.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
5

MicroFuge Overview |

MicroFuge

41'\ Deadline Cache
] (DLC)

V2
J

Deadline Scheduler
(DLS)

Clients) d

Cloud
Storage

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
6

MicroFuge Overview Il

MicroFuge

41'\ Deadline Cache
] (DLC)

M
V2
J

Deadline Scheduler
(DLS)

Clients > d

Cloud
Storage

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
7

MicroFuge Overview Il

MicroFuge

—1'\ Deadline Cache
———/ {DLC)

A > 3
\‘2— Deadline Scheduler
(DLS)
Clients > .
3 N
| Cloud
Ve a Storage
N

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
8

Deadline Cache (DLC) - Components

——————————————

i I‘ | — L
Cy | my | o | ‘Jm
ﬁ. 2 ms U
i Adaptive Divisors Eviction
C, -
G
§ 1 ‘ Multiple LRU
‘_ | I queue for
| L different
i G s} G2 Qn deadline ranges
Multiple LRU Queues
Clients

DeadLineCache

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
9

Deadline Cache (DLC) - Components

Adaptive Divisors Eviction

For each queue
there is a
corresponding
divisor

1

9z ’ Qn
Multiple LRU Queues

Multiple LRU
queue for
different
deadline ranges

DeadLlineCache

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

10

DLC - A Cache Eviction Example (1)

Client: cachePut
{key: Waterloo,

deadline: 56 ms
missed: true};

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
11

DLC - A Cache Eviction Example (2)

Legend
Queue 1 Queue 2 Queue #
(0-33] ms (33-66] ms Range
m1=3 m2=1 Divisor
Client: cachePut key_1 key_3 KEY
{key: Waterloo, 200 300 TIMESTAMP
deadline: 56 ms

missed: true}; key 2

400

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
12

DLC - A Cache

Eviction Example (3)

Legend
Queue 1 Queue 2 Queue #
(0-33] ms (33-66] ms Range
m1=3 m2=1 Divisor
Client: cachePut key_1 key_3 KEY
{key: Waterloo 200 300 TIMESTAMP
deadline: 56 ms
missed: true}; key 2
400

Medified Recency Value(MRV) =

Current_timestamp - Stored_timestamp

Queue-Specific Divisor

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

13

DLC - A Cache

Eviction Example (4)

Legend
Queue 1 Queue 2 Queue #
(0-33] ms (33-66] ms Range
m1=3 m2=1 Divisor
Client: cachePut " Py TIMESTAMP
{key: Waterloo, ‘
deadline: 56 ms (500-200)/3 (500-300)/1
missed: true}; key 2
400

Medified Recency Value(MRV) =

Current_timestamp - Stored_timestamp

Queue-Specific Divisor

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

14

DLC - A Cache Eviction Example (5)

Legend
Queue 1 Queue 2 Queue #
(0-33] ms (33-66] ms Range
m1=3 m2=1 Divisor
Client: cachePut key_1 key_3 KEY
{key: Waterloo 200 300 TIMESTAMP
deadline: 56 ms MRV = 100 MRV =200
missed: true}; key 2
400

Evict largest MRV

Medified Recency Value(MRV) =

Current_timestamp - Stored_timestamp
Queue-Specific Divisor

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
15

DLC - A Cache Eviction Example (6)

Legend
Queue 1 Queue 2 Queue #
(0-33] ms (33-66] ms Range
m1=3 m2=1 Divisor
Client: cachePut key_1 key_2 KEY
{key: Waterloo, 200 400 TIMESTAMP
deadline: 56 ms

missed: true};

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
16

DLC - A Cache Eviction Example (7)

Legend
Queue 1 Queue 2 Queue #
(0-33] ms (33-66] ms Range
m1=3 m2=1 Divisor
Client: cachePut key_1 key_2 KEY
{key: Waterloo 200 400 TIMESTAMP
deadline: 56 ms
missed: true}; Waterloo
500 .
Insert with current
T timestamp

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
17

DLC - A Cache Eviction Example (8)

Legend
Queue 1 Queue 2 Queue #
(0-33] ms (33-66] ms Range
m1=3 m2=1 Divisor
Client: cachePut key_1 key_2 KEY
{key: Waterloo 200 400 TIMESTAMP
deadline: 56 ms
missed: trLblS}: Waterloo
500

Adaptive Performance Modelling

Action is required because the deadline is missed.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

18

DLC - A Cache Eviction Example (9)

Legend
Queue 1 Queue 2 Queue #
(0-33] ms (33-66] ms Range
m1=3 m2 =1+1 Divisor
Client: cachePut key_1 key_2 KEY
{key: Waterloo 200 400 TIMESTAMP
deadline: 56 ms

missed: true}; Waterloo

500

Adaptive Performance Modelling Step 1
Increment

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
19

DLC - A Cache Eviction Example (10)

Legend
Queue 1 Queue 2 Queue #
(0-33] ms (33-66] ms Range
mi1=24 m2=1.6 Divisor
Client: cachePut key_1 key_2 KEY
{key: Waterloo 200 400 TIMESTAMP
deadline: 56 ms

missed: true}; Waterloo

500

Adaptive Performance Modelling Step 1
Normalize

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
20

DLC - Benefits

» Multiple LRU queues enable DLC to perform deadline-aware
evictions.

» Adaptive policy considers both the client request rate for each
deadline range and the underlying system's performance.

» DLC offers adaptive deadline-aware caching.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
21

Deadline Scheduler (DLS) High-level Architecture |

.

Deadline Scheduler

20 -0

Clients Distributed Data Store

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
22

Deadline Scheduler (DLS) High-level Architecture Il

Clients

poe

Replica
Selection

Deadline Scheduler

20 -0

Distributed Data Store

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
23

Deadline Scheduler (DLS) High-level Architecture Il

3

Replica Performance
Selection Modelling

Deadline Scheduler

C3 -
A H 8 8 8
C. |-
: d, d, d,
................ .
Clients Distributed Data Store

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
24

Deadline Scheduler (DLS) High-level Architecture IV

Pl 88

Replica Performance Admission
Selection Modelling Control

Deadline Scheduler

C3 -
A H 8 8 8
C. |-
: d, d, d,
................ .
Clients Distributed Data Store

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
25

DLS - An Example (1)

» The client wants to perform a value lookup for the key
Waterloo.

| Key: Waterloo DLC

Client

DLS

DataServer 1 DataServer 2

Waterloo Waterloo

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
26

DLS - An Example (2)

» The client begins by issuing a cache lookup to DLC.

Key: Waterloo - DLC
Gacne LOOKYR _ - =-=""

Client F-

DLS

DataServer 1 DataServer 2

Waterloo Waterloo

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
27

DLS - An Example (3)

> Issue two get ticket requests concurrently.

Key: Waterloo - DLC
Gcache l;ofk.u R __---m77

Client =

o mee e TTT=-- DLS

DataServer 1 DataServer 2

Waterloo Waterloo

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
28

DLS - An Example (4)

» |If the item is not in the cache, the client waits for DLS to
return the tickets.

Key: Waterloo - DLC
Gache MisS___——--~""

Client =

_____________ DLS

DataServer 1 DataServer 2

Waterloo Waterloo

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
29

DLS - An Example (5)

> Returned tickets contain extra information to help the client
to make an informed decision.

| Key: Waterloo DLC

Client —— o _ _ D
|- === - - D2taSenver - 1 frecsive ticket}

- DLS

DataServer 1 DataServer 2

Waterloo Waterloo

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
30

DLS - An Example (6)

» The client makes a call to the selected DLS and waits for its
turn to access the data server.

| Key: Waterloo DLC

Client

------------ DLS

DataServer 1 DataServer 2

Waterloo Waterloo

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
31

DLS - An Example (7)

» Snapshot of scheduler's pending queue.

Foo
120

Bara-""
50 -

Pending Requests Queue
(Ordering: Earliest Deadline First)

Reg-1 Reqg-2

Running Requests

_.-- Key

_ Deadline
"~ Timestamp

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

32

DLS - An Example (8)

» The new item is inserted according to earliest deadline first
ordering.

Foo Waterloo Bar
120 100 50

Pending Requests Queue
(Ordering: Earliest Deadline First)

Reg-1 Reqg-2

Running Requests

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
33

DLS - An Example (9)

> Let's assume one of the running requests just completed.

Foo Waterloo Bar
120 100 50

Pending Requests Queue
(Ordering: Earliest Deadline First)

Reg-1 Empty

Running Requests

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
34

DLS - An Example (10)

» If the request deadline can be met, it will take one of the
empty slots inside the running request pool.

Foo Waterloo Bar
120 100 50

Pending Requests Queue
(Ordering: Earliest Deadline First)

" Meet
Deadline
?

Yes

Reg-1 Empty

Running Requests

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
35

DLS - An Example (11)

> If request deadline cannot be met, DLS may increase the
request’s deadline and insert the request back into the queue.

Foo Waterloo Bar
120 100 50
Pending Requests Queue
(Ordering: Earliest Deadline First)
Increase the deadline No

Reg-1 Empty

Running Requests

" Meet

Deadline
?

Yes

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

36

DLS - An Example (12)

» The push-back can happen at most once to prevent starvation.

Foo Waterloo
120 100

Increase the deadline

No

Reg-1 Empty

Pending Requests Queue
(Ordering: Earliest Deadline First)

g Already B

Delayed
?

Yes

Bar
50
N) " Meet
<°—- Deadline
) ?
Yes

Running Requests

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

37

DLS - An Example (13)

» DLS informs the client that it can access the data server.

| Key: Waterloo

Client

DataServer 1

Waterloo

DLC

———_ DLS

DataServer 2

Waterloo

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
38

DLS - An Example (14)

» The client issues the read request to the data server.

| Key: Waterloo DLC

Client

DLS

DataServer 1 DataServer 2
Waterloo Waterloo

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
39

DLS - An Example (15)

> After receiving the response, the client reports the execution
time and concurrently inserts the data into the cache.

Key: Waterloo R DLC
CachePut __ . —--~

Client = . _
‘“., == ~—___ Repor Execution Time

DLS

DataServer 1 DataServer 2
Waterloo Waterloo

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
40

DLS - Benefits

» Deadline-aware load-balancing.
» A variant of earliest deadline first scheduling.

» Tunable admission control system.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
41

Experimental Setup - The Cluster
» Twenty-node test cluster on AWS. Each cluster node is an

m1l.medium EC2 instance.

Client-1 Client-2 Client-3 Client-4

(=)= (==

EC2 Internal Network

Scheduler

[Scheduler | [scheduler]
| Caching | | Caching |
LI T |
— — —
Server-2 Server-16

Server-1

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
42

Experimental Setup - Details

v

v

v

v

v

DataServer - Simple key-value store that uses leveldb.

We use a replication factor of 3.

Benchmarking System - Modified version of Yahoo! Cloud
Serving Benchmark (YCSB).

» Assign deadlines to each key.

Range Percentage
10-30ms 20%
30-100ms 30%
100-1000ms 50%

Data Set - 80 million records, 86.4 GB in size.
Cache - Total capacity of 19.2GB.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
43

Deadline-Aware Caching - DLC

100

401

Cache Hit Rate in %

20

— DLC

- - Memcached

— Overall Cache Hit Rate DLC

— - Overall Cache Hit Rate Memcached
I I I

W

P o

A% e e)
L X

15

20

25

30 475 65
Request Deadline in (ms)

83.5 100 325 550 775 1000

Figure : Cache hit rate for 192 concurrent clients with DLC and
Memcached.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

44

Deadline-Aware Caching - Full MicroFuge

100 T T T T T T T T T

N Y
“ ot . a
AN e, .'\-.l":"l'l (AT
0 v

a0t 1

Cache Hit Rate in %

— DLC + DLS

20H - - Memcached

— Overall Cache Hit Rate DLC + DLS

— - Overall Cache Hit Rate Memcached
I I I

010 15 20 25 30 475 65 835 100 325 550 775 1000
Request Deadline in (ms)

Figure : Cache hit rate for 192 concurrent clients with DLC + DLS and
Memcached.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
45

Deadline Miss Rate - DLC

50 T T T T T T i T T T
— DLC
. - - Memcached
401 I\ s — Overall Dealine Miss Rate DLC 5
- Overall Deadline Miss Rate Memcached

w
(=]

N
(=]

Deadline Miss Rate in %

=
o

010 15 20 25 30 475 65 835 100 325 550 775 1000
Request Deadline in (ms)

Figure : Deadline miss rate for 192 concurrent clients with DLC and
Memcached.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
46

Deadline Miss Rate - Full MicroFuge

50 T T T T T T T T T T
— DLC +DLS
. - - Memcached
40 "\ AN P — Overall Dealine Miss Rate DLC + DLS [
v Moy — - Overall Deadline Miss Rate Memcached

w
(=]

N
(=]

Deadline Miss Rate in %

=
o

AL
-]

010 15 20 25 30 475 65 835 100 325 550 775 1000
Request Deadline in (ms)

Figure : Deadline miss rate for 192 concurrent clients with DLC + DLS
and Memcached.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
47

Conclusion

» Predictable performance is necessary in multi-tenant
environments.

» MicroFuge tackles the performance isolation problem with its
deadline-aware caching and scheduling middleware.

» MicroFuge reduces deadline miss rate from 17.5% to 7.7% and
it can be as low as 4.7% if we turn on the admission control.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
48

Thank You.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
49

DLS - Admission Control

» Bound the fraction of requests that miss their deadlines.
> Requests are rejected in two situations.
» The request will be miss its own deadline.
» The new request will cause already accepted requests to miss
their deadlines.
> Provides a system parameter 5 as a knob to control the

percentage of deadline misses.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
50

Experimental Results - Deadline Miss with Admission
Control

50 T T T T I T
— DLC + DLS + AC

F — - Memcached
R 40F "\ N N » —— Overall Dealine Miss Rate DLC + DLS + AC[{
c P A — - Overall Deadline Miss Rate Memcached
g ~ ‘\ R
& 301 vy Yoy 1
0 N \ \
) RV
= vk
@20} M 1
I R LTS EE T T R et
= N
o W,
Q !
5.l M . |

9[0 15 20 25 30 475 65 83.5 100 325 550 775 1000
Reguest Deadline in (ms)

Figure : Deadline miss rate for 192 concurrent clients with DLC + DLS
+ AC and Memcached.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
51

Experimental Results - Tunable Admission Control

25

T T T T T T T 3

20

Overall Rejection -
Overall Deadline Miss
+ + Overall Sum of Rejection and Deadline Miss

15 +

Deadline Miss and Rejection Rates in

*
PR S el 2T
~

10 o>
, -

PR b
*
ke **

-
L b

65 70 75 80 85 90 95 99
System Parameter 3

Figure : Deadline miss vs. rejection rates with respect to various values
of system parameter 3 for 192 clients.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
52

MicroFuge at a Glance

» Middleware for popular key-value storage.

» A modified version of the CRUD operation interface.

/I READ interface
public String read(String key,|double deadline [boolean bestEffort);

/I A sample READ operation with a 15 milliseconds deadline
String myVal = read(“myKey”, true);

Figure : MicroFuge read operation interface.

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE
53

