Constraint Satisfaction Problems

Wenhu Chen

Lecture 4

Outline

Recap

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP

Backtracking Search

The Arc Consistency Definition

The AC-3 Arc Consistency Algorithm

Combining Backtracking and Arc Consistency
Intuition for Admissibility

Why do we need to have admissibility?

▶ If there exists a path to the goal node in the frontier with cost $C' \geq C^*$.

▶ According to admissibility,

$$C'(n) = cost(n) + h(n) < cost(n) + h^*(n).$$

▶ The segment of the optimal path’s f-value has to be lower or equal to C^*, not to mention C'.

▶ We have to explore that partial path before exploring the ‘fake’ goal node.

▶ Therefore, the first-time visit to the goal node is the least-cost visit to the goal node.
Intuition for Consistency

Why do we need to need consistency?

▶ If we transition from node \(n \) to \(m \), we have
\[
h(n) - h(m) \leq \text{cost}(n, m).
\]

▶ So \(f(n) = h(n) + \text{cost}(n) \leq h(m) + \text{cost}(n, m) + \text{cost}(n) = h(m) + \text{cost}(m) = f(m) \).

▶ Whenever we are taking a move from one node to another node, the \(f \) value will never decrease.

▶ The \(f \)-value of explored node throughout the search process will never decrease.

▶ Therefore, the first-time visit of any node is the least-cost visit of that node.
Relationship between Admissibility and Consistency

- **Consistency**: $h(n) - h(m) \leq \text{cost}(n, m)$.
- **Admissibility**: $h(n) \leq \text{cost}(n, g)$.
- $h(g)$ is always zero, so admissibility means $h(n) - h(g) \leq \text{cost}(n, g)$.
- Admissibility is just a special case of Consistency.
- Consistency is a stronger constraint than Admissibility.
Learning Goals

▶ Formulate a real-world problem as a constraint satisfaction problem.
▶ Trace the execution of the backtracking search algorithm.
▶ Verify whether a constraint is arc-consistent.
▶ Trace the execution of the AC-3 arc consistency algorithm.
▶ Trace the execution of the backtracking search algorithm with arc consistency.
Recap

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP
Graph Colouring Problem
Sudoku
4-Queens Problem
Recap

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP
Example 4.9. Suppose the delivery robot must carry out a number of delivery activities, a, b, c, d, and e. Suppose that each activity happens at any of times 1, 2, 3, or 4. Let A be the variable representing the time that activity a will occur, and similarly for the other activities. The variable domains, which represent possible times for each of the deliveries, are

\[
\text{dom} (A) = \{1, 2, 3, 4\}, \quad \text{dom} (B) = \{1, 2, 3, 4\}, \quad \text{dom} (C) = \{1, 2, 3, 4\},
\]
\[
\text{dom} (D) = \{1, 2, 3, 4\}, \quad \text{dom} (E) = \{1, 2, 3, 4\}.
\]

Suppose the following constraints must be satisfied:

\[
\{ \quad (B \neq 3), \quad (C \neq 2), \quad (A \neq B), \quad (B \neq C), \quad (C < D), \quad (A = D),
\]
\[
(E < A), \quad (E < B), \quad (E < C), \quad (E < D), \quad (B \neq D) \}
\]

It is instructive for you to try to find a model for this example; try to assign a value to each variable that satisfies these constraints.
Generate-and-Test Algorithm

Enumerate:

$$D = \{A = 1, B = 1, C = 1, D = 1, E = 1\}$$
$$D = \{A = 1, B = 1, C = 1, D = 1, E = 2\}$$
$$D = \{A = 1, B = 1, C = 1, D = 1, E = 3\}$$
...

We call goal(D) at each assignment to evaluate.
Generate-and-Test Algorithm

Enumerate:

\[D = \{ A = 1, B = 1, C = 1, D = 1, E = 1 \} \]
\[D = \{ A = 1, B = 1, C = 1, D = 1, E = 2 \} \]
\[D = \{ A = 1, B = 1, C = 1, D = 1, E = 3 \} \]
...

We call \text{goal}(D) at each assignment to evaluate.

- In this case there are \(|D| = 4^5 = 1024\) different assignments to be tested. This search algorithm cannot scale up.
Generate-and-Test Algorithm

Enumerate:

\[D = \{ A = 1, B = 1, C = 1, D = 1, E = 1 \} \]

\[D = \{ A = 1, B = 1, C = 1, D = 1, E = 2 \} \]

\[D = \{ A = 1, B = 1, C = 1, D = 1, E = 3 \} \]

...

We call \(\text{goal}(D) \) at each assignment to evaluate.

- In this case there are \(|D| = 4^5 = 1024 \) different assignments to be tested. This search algorithm cannot scale up.

- It is unnecessarily expensive! Some constraints can be verified with partial states being generated.
Internal Structure of States

- Search algorithms are unaware of the internal structure of states.
 - Generate successors of a state. Test whether a state is a goal.

- However, knowing a state’s internal structure can help.
 - 4-queens: Consider a state with 2 queens in the same row. A search algorithm only knows that this is not a goal and will keep searching. But in fact, this is a dead end and we should backtrack.

Let’s model the internal structure of states.
Defining a CSP

Each state contains

- A set X of variables: $\{X_1, X_2, ..., X_n\}$.
- A set D of domains: D_i is the domain for variable X_i, $\forall i$.
- A set C of constraints specifying allowable value combinations.

A solution is an assignment of values to all the variables that satisfy all the constraints.

→ More efficient than search because the constraints will help us eliminate large portions of the search space.
Example: 4-Queens Problem
4-Queens: State Definition in a CSP

Variables:

- x_0, x_1, x_2, x_3 where x_i is the row position of the queen in column i, where $i \in \{0, 1, 2, 3\}$.

Assume that exactly one queen is in each column.

Domains:

- $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i.

Constraints:

- No pair of queens are in the same row or diagonal.

For example, $(x_0 \neq x_1) \land (|x_0 - x_1| \neq |i - j|)$.
4-Queens: State Definition in a CSP

- Variables: x_0, x_1, x_2, x_3 where x_i is the row position of the queen in column i, where $i \in \{0, 1, 2, 3\}$.

Assume that exactly one queen is in each column.
4-Queens: State Definition in a CSP

- **Variables:** x_0, x_1, x_2, x_3 where x_i is the row position of the queen in column i, where $i \in \{0, 1, 2, 3\}$.

Assume that exactly one queen is in each column.

- **Domains:** $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i.

For example, $(x_0 \neq x_1) \land (|x_0 - x_1| \neq |0 - 1|)$.
4-Queens: State Definition in a CSP

- Variables: x_0, x_1, x_2, x_3 where x_i is the row position of the queen in column i, where $i \in \{0, 1, 2, 3\}$.

 Assume that exactly one queen is in each column.

- Domains: $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i.

- Constraints:

 No pair of queens are in the same row or diagonal.

 $\forall i (\forall j ((i \neq j) \rightarrow ((x_i \neq x_j) \land (|x_i - x_j| \neq |i - j|))))$

 For example, $((x_0 \neq x_1) \land (|x_0 - x_1| \neq 1))$
Q: Constraints for 4-Queens Problem

Q: Given the definitions of variables and their domains for the 4-queens problems, which constraints do we need to define?

(A) No two queens can be in the same row.
(B) No two queens can be in the same column.
(C) No two queens can be in the same diagonal.
(D) Two of (A), (B), and (C).
(E) All of (A), (B), and (C).
Q: Constraints for 4-Queens Problem

Given the definitions of variables and their domains for the 4-queens problems, which constraints do we need to define?

(A) No two queens can be in the same row.
(B) No two queens can be in the same column.
(C) No two queens can be in the same diagonal.
(D) Two of (A), (B), and (C).
(E) All of (A), (B), and (C).

→ Correct Answer: (D) Two of A, B, and C.
No need to specify column constraint. Already defined separate variables for each column. Implicitly saying that we put one queen in each column.
Defining Constraints

There are two ways of defining a constraint.

- **The list/table format:**
 Give a list/table of values of the variables that satisfy the constraints.

- **The function/formula format:**
 Give a function/formula, which returns/is true if the values of the variables satisfy the constraint.

→ In an implementation, the second format is a function, which returns true if the values satisfy the constraint.
Q: Defining Constraints as a Table

Q: Suppose that we use a 2-column table to encode the following constraint. In each row of the table, the two values of x_0 and x_2 satisfy the constraint.

The two queens in columns 0 and 2 are not in the same row or diagonal.

How many rows are there in this table?

(A) Less than 8
(B) 8
(C) 9
(D) 10
(E) More than 10

→ Correct Answer: 8
Q: Defining Constraints as a Table

Q: Suppose that we use a 2-column table to encode the following constraint. In each row of the table, the two values of x_0 and x_2 satisfy the constraint.

The two queens in columns 0 and 2 are not in the same row or diagonal.

How many rows are there in this table?

(A) Less than 8
(B) 8
(C) 9
(D) 10
(E) More than 10

→ Correct Answer: 8
Q: Defining Constraints as a Formula

Q: How should we encode the following constraint as a propositional formula?

The two queens in columns 0 and 2 are not in the same row or diagonal.

(A) \((x_0 \neq x_2)\)

(B) \(((x_0 \neq x_2) \land ((x_0 - x_2) \neq 1))\)

(C) \(((x_0 \neq x_2) \land ((x_0 - x_2) \neq 2))\)

(D) \(((x_0 \neq x_2) \land (|x_0 - x_2| \neq 1))\)

(E) \(((x_0 \neq x_2) \land (|x_0 - x_2| \neq 2))\)
Q: Defining Constraints as a Formula

Q: How should we encode the following constraint as a propositional formula?

The two queens in columns 0 and 2 are not in the same row or diagonal.

(A) \((x_0 \neq x_2)\)

(B) \(((x_0 \neq x_2) \land ((x_0 - x_2) \neq 1))\)

(C) \(((x_0 \neq x_2) \land ((x_0 - x_2) \neq 2))\)

(D) \(((x_0 \neq x_2) \land (|x_0 - x_2| \neq 1))\)

(E) \(((x_0 \neq x_2) \land (|x_0 - x_2| \neq 2))\)

→ Correct Answer: (E) \(((x_0 \neq x_2) \land (|x_0 - x_2| \neq 2))\)
Expressing Constraints

- As a propositional formula:

\[((x_0 \neq x_2) \land (|x_0 - x_2| \neq 2)) \]

- As a table of allowable combinations of values

<table>
<thead>
<tr>
<th>(x_0)</th>
<th>(x_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Recap

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP

Backtracking Search

The Arc Consistency Definition

The AC-3 Arc Consistency Algorithm

Combining Backtracking and Arc Consistency
4-Queens Incremental CSP Formulation

State: one queen per column in the leftmost k columns with no pair of queens attacking each other.

Variables: x_0, x_1, x_2, x_3 where x_i is the row position of the queen in column i, where $i \in \{0, 1, 2, 3\}$. Exactly one queen is in each column.

$\forall x_i$, x_i denotes that column i does not have a queen.

Domains: $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i.

Constraints: No pair of queens are in the same row or diagonal.

Initial state: the empty board, that is, null.

Goal state: 4 queens on the board. No pair of queens are attacking each other. For example, 2 0 3 1 is a goal state.

Successor function: add a queen to the leftmost empty column such that it is not attacked by any other existing queen. For example, 0 has two successors 0 2 and 0 3.
4-Queens Incremental CSP Formulation

- **State:** one queen per column in the leftmost \(k \) columns with no pair of queens attacking each other.

- **Variables:** \(x_0, x_1, x_2, x_3 \) where \(x_i \) is the row position of the queen in column \(i \), where \(i \in \{0, 1, 2, 3\} \). Exactly one queen is in each column. \(x_i = - \) denotes that column \(i \) does not have a queen.

- **Domains:** \(D_{x_i} = \{0, 1, 2, 3\} \) for all \(x_i \).

- **Constraints:** No pair of queens are in the same row or diagonal.
4-Queens Incremental CSP Formulation

- State: one queen per column in the leftmost k columns with no pair of queens attacking each other.
 - Variables: x_0, x_1, x_2, x_3 where x_i is the row position of the queen in column i, where $i \in \{0, 1, 2, 3\}$. Exactly one queen is in each column. $x_i = _-$ denotes that column i does not have a queen.
 - Domains: $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i.
 - Constraints: No pair of queens are in the same row or diagonal.
- Initial state: the empty board, that is, $-_-_-$.
4-Queens Incremental CSP Formulation

- State: one queen per column in the leftmost k columns with no pair of queens attacking each other.

- Variables: x_0, x_1, x_2, x_3 where x_i is the row position of the queen in column i, where $i \in \{0, 1, 2, 3\}$. Exactly one queen is in each column. $x_i = -$ denotes that column i does not have a queen.

- Domains: $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i.

- Constraints: No pair of queens are in the same row or diagonal.

- Initial state: the empty board, that is, $-$ $-$ $-$ $-$.

- Goal state: 4 queens on the board. No pair of queens are attacking each other. For example, 2 0 3 1 is a goal state.
4-Queens Incremental CSP Formulation

- **State:** one queen per column in the leftmost k columns with no pair of queens attacking each other.

 - **Variables:** x_0, x_1, x_2, x_3 where x_i is the row position of the queen in column i, where $i \in \{0, 1, 2, 3\}$. Exactly one queen is in each column. $x_i = -$ denotes that column i does not have a queen.

 - **Domains:** $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i.

 - **Constraints:** No pair of queens are in the same row or diagonal.

- **Initial state:** the empty board, that is, $- - - -$.

- **Goal state:** 4 queens on the board. No pair of queens are attacking each other. For example, 2 0 3 1 is a goal state.

- **Successor function:** add a queen to the leftmost empty column such that it is not attacked by any other existing queen. For example, 0 - - - has two successors 0 2 - - and 0 3 - -.
Backtracking Search

Algorithm 1 \textsc{Backtrack}(assignment, csp)

1: \textbf{if} assignment is complete \textbf{then} return assignment
Algorithm 2 BACKTRACK(assignment, csp)

1: if assignment is complete then return assignment
2: Let var be an unassigned variable
3: for every value in the domain of var do

Algorithm 3 BACKTRACK(assignment, csp)
1: if assignment is complete then return assignment
2: Let var be an unassigned variable
3: for every value in the domain of var do
4: if adding \{var = value\} satisfies every constraint then
Backtracking Search

Algorithm 4 BACKTRACK(assignment, csp)

1: if assignment is complete then return assignment
2: Let var be an unassigned variable
3: for every value in the domain of var do
4: if adding \{var = value\} satisfies every constraint then
5: add \{var = value\} to assignment
Backtracking Search

Algorithm 5 BACKTRACK(assignment, csp)

1. if assignment is complete then return assignment
2. Let var be an unassigned variable
3. for every value in the domain of var do
4. if adding \{var = value\} satisfies every constraint then
5. add \{var = value\} to assignment
6. result ← BACKTRACK(assignment, csp)
7. if result ≠ failure then return result
Backtracking Search

Algorithm 6 BACKTRACK(assignment, csp)

1: if assignment is complete then return assignment
2: Let var be an unassigned variable
3: for every value in the domain of var do
4: if adding \{var = value\} satisfies every constraint then
5: add \{var = value\} to assignment
6: result ← BACKTRACK(assignment, csp)
7: if result ≠ failure then return result
8: remove \{var = value\} from assignment if it was added
9: return failure
Solve 4-Queens using Backtracking Search

Step 0:
Solve 4-Queens using Backtracking Search

Step 1:

- - - - (1)

0 _ _ _
1 _ _ _
2 _ _ _
3 _ _ _
Solve 4-Queens using Backtracking Search

Step 2:

\[
\begin{array}{cccc}
& & & (1) \\
0 & _ & _ & 0 \\
& & & (2) \\
0 & 2 & _ & 0 & 3 & _ & \\
& & 1 & _ & 2 & _ & 3 & _ & \\
\end{array}
\]
Solve 4-Queens using Backtracking Search

Step 3:

- - - - (1)

0 - - (2) 1 - - 2 - - 3 - -

0 2 - - (3) 0 3 - -

\[
\begin{array}{cccc}
 x_0 & x_1 & x_2 & x_3 \\
 0 & Q & X & X & X \\
 1 & X & X & X & \\
 2 & X & Q & X & \\
 3 & X & X & X & X \\
\end{array}
\]
Solve 4-Queens using Backtracking Search

Step 4:

```
- - - - (1)

0 - - - (2)  1 - -  2 - -  3 - -

\( \_ 2 \_ (3) \)  \( 0 3 \_ (4) \)

\( 0 3 1 \_ \)
```

<table>
<thead>
<tr>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>Q</td>
<td>X</td>
</tr>
</tbody>
</table>
Solve 4-Queens using Backtracking Search

Step 5:

```
  _ _ _ _ (1)
 /       \
0 _ _ _ (2) 1 _ _  2 _ _  3 _ _
   \     /      \
   0 2 _ _ (3) 0 3 _ _ (4)
      \   /      \
      0 3 1 _ (5)
```

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Q</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>Q</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Solve 4-Queens using Backtracking Search

Step 6:

```
  _ _ _ _ (1)
   /    /
 0 _ _ _ (2) 1 _ _ _ (6) 2 _ _ _ 3 _ _ _

  /    \
0 2 _ _ (3) 0 3 _ _ (4) 1 3 _ _

  /    \    |
0 3 1 _ (5)
```

```
<table>
<thead>
<tr>
<th>x0</th>
<th>x1</th>
<th>x2</th>
<th>x3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Q</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
```
Solve 4-Queens using Backtracking Search

Step 7:

\[
\begin{array}{cccc}
0 & _ & _ & (2) \\
0 & 2 & _ & (3) \\
0 & 3 & _ & (4) \\
0 & 3 & 1 & (5) \\
_ & _ & _ & (1) \\
1 & _ & _ & (6) \\
1 & 3 & _ & (7) \\
1 & 3 & 0 & _ \\
\end{array}
\]
Solve 4-Queens using Backtracking Search

Step 8:

```
0  _  _  (1)

0  _  _  (2)  1  _  _  (6)  2  _  _  3  _  _

0 2  _  _  (3)  0 3  _  _  (4)  1 3  _  _  (7)

0 3 1  _  (5)  1 3 0  _  (8)

1 3 0 2
```
Solve 4-Queens using Backtracking Search

Step 9:

```
   - - - - (1)
   
   0 - - - (2)  1 - - - (6)  2 - - -  3 - - -
   
   0 2 - - (3)  0 3 - - (4)  1 3 - - (7)
   
   0 3 1 - (5)  1 3 0 - (8)
   
   1 3 0 2 (9)
```

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>Q</td>
</tr>
<tr>
<td>1</td>
<td>Q</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>Q</td>
<td>X</td>
</tr>
</tbody>
</table>
Recap

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP

Backtracking Search

The Arc Consistency Definition

The AC-3 Arc Consistency Algorithm

Combining Backtracking and Arc Consistency
The Idea of Arc Consistency

$x_0 = 0$ and $x_1 = 2$ do not lead to a solution. Why?

\[
\begin{array}{cccc}
0 & Q & X & X & X \\
1 & X & X & X & X \\
2 & X & Q & X & X \\
3 & X & X & X & X \\
\end{array}
\]
Handling Different Types of Constraints

- Consider binary constraints only.

- How should we handle unary constraints?
 - Remove invalid values from variable domain

- How should be handle constraints involving 3 or more variables?
 - Convert them to binary constraints
Notation for an Arc

- X and Y are two variables. $c(X, Y)$ is a binary constraint.

$$D_X \langle X, c(X, Y) \rangle \rightarrow \langle Y, c(X, Y) \rangle$$

- $\langle X, c(X, Y) \rangle$ denotes an arc. X is the primary variable and Y is the secondary variable.
Definition (Arc Consistency)

An arc \(\langle X, c(X, Y) \rangle \) is arc-consistent if and only if for every value \(v \in D_X \), there is a value \(w \in D_Y \) such that \((v, w) \) satisfies the constraint \(c(X, Y) \).
Q: Consider the constraint $X < Y$. Let $D_X = \{1, 2\}$ and $D_Y = \{1, 2\}$. Is the arc $\langle X, X < Y \rangle$ consistent?

(A) Yes.

(B) No.

(C) Maybe?

(D) I don’t know.
Q: Consider the constraint $X < Y$. Let $D_X = \{1, 2\}$ and $D_Y = \{1, 2\}$. Is the arc $\langle X, X < Y \rangle$ consistent?

(A) Yes.

(B) No.

(C) Maybe?

(D) I don’t know.

→ Correct answer is (B) No. We can remove 2 from D_X.
Recap

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP

Backtracking Search

The Arc Consistency Definition

The AC-3 Arc Consistency Algorithm

Combining Backtracking and Arc Consistency
Algorithm 7 The AC-3 Algorithm

1: put every arc in the set S.
2: \textbf{while} S is not empty \textbf{do}
3: select and remove $\langle X, c(X, Y) \rangle$ from S
4: remove every value in D_X that doesn’t have a value in D_Y
 that satisfies the constraint $c(X, Y)$
5: \textbf{if} D_X was reduced \textbf{then}
6: \hspace{1em} \textbf{if} D_X is empty \textbf{then} \textbf{return} false
7: \hspace{1em} for every $Z \neq Y$, add $\langle Z, c'(Z, X) \rangle$ to S
\textbf{return} true
Why do we need to add arcs back to S?

Q: After reducing a variable’s domain, we may need to add arcs back to S. Why?

A: Reducing a variable’s domain may cause a previously consistent arc to become inconsistent.

Example:

\[\langle X, Y = X \rangle\quad \langle Z, X < Z \rangle\]

\[
\begin{array}{ccc}
Y & \xrightarrow{Y = X} & X & \xrightarrow{X < Z} & Z \\
2 & & 1, 2 & & 2, 3
\end{array}
\]
Trace the AC-3 Algorithm on 4-Queens Problem

0, 1, 2, 3

|x₀ − x₁| ≠ 1
and x₀ ≠ x₁

x₁

|x₁ − x₂| ≠ 1
and x₁ ≠ x₂

x₂

|x₁ − x₃| ≠ 2
and x₁ ≠ x₃

x₃

|x₀ − x₂| ≠ 2
and x₀ ≠ x₂

x₀

|x₀ − x₃| ≠ 3
and x₀ ≠ x₃

|x₂ − x₃| ≠ 1
and x₂ ≠ x₃

0, 1, 2, 3

0 = x₀

CS 486/686: Intro to AI
Lecturer: Wenhu Chen
Slides: Alice Gao / Blake Vanberlo
Trace the AC-3 Algorithm on 4-Queens Problem

\[|x_0 - x_1| \neq 1 \quad \text{and} \quad x_0 \neq x_1 \]

\[|x_1 - x_2| \neq 1 \quad \text{and} \quad x_1 \neq x_2 \]

\[|x_1 - x_3| \neq 2 \quad \text{and} \quad x_1 \neq x_3 \]

\[|x_2 - x_3| \neq 1 \quad \text{and} \quad x_2 \neq x_3 \]

\[0 = x_0 \]

\[|x_0 - x_2| \neq 2 \quad \text{and} \quad x_0 \neq x_2 \]

\[|x_0 - x_3| \neq 3 \quad \text{and} \quad x_0 \neq x_3 \]

\[0, 1, 2, 3 \]

\[0, 1, 2, 3 \]
Trace the AC-3 Algorithm on 4-Queens Problem

\[
\begin{align*}
|x_0 - x_1| & \neq 1 \\
& \text{and } x_0 \neq x_1 \\
0 &= x_0
\end{align*}
\]

\[
\begin{align*}
|x_0 - x_2| & \neq 2 \\
& \text{and } x_0 \neq x_2
\end{align*}
\]

\[
\begin{align*}
|x_0 - x_3| & \neq 3 \\
& \text{and } x_0 \neq x_3
\end{align*}
\]

\[
\begin{align*}
|x_1 - x_2| & \neq 1 \\
& \text{and } x_1 \neq x_2
\end{align*}
\]

\[
\begin{align*}
|x_1 - x_3| & \neq 2 \\
& \text{and } x_1 \neq x_3
\end{align*}
\]

\[
\begin{align*}
|x_2 - x_3| & \neq 1 \\
& \text{and } x_2 \neq x_3
\end{align*}
\]

0, 1, 2, 3
Trace the AC-3 Algorithm on 4-Queens Problem

\[
\begin{align*}
|x_0 - x_1| & \neq 1 \\
\text{and } x_0 & \neq x_1
\end{align*}
\]

\[
\begin{align*}
|x_1 - x_2| & \neq 1 \\
\text{and } x_1 & \neq x_2
\end{align*}
\]

\[
\begin{align*}
|x_1 - x_3| & \neq 2 \\
\text{and } x_1 & \neq x_3
\end{align*}
\]

\[
\begin{align*}
|x_2 - x_3| & \neq 1 \\
\text{and } x_2 & \neq x_3
\end{align*}
\]

\[
\begin{align*}
|x_0 - x_2| & \neq 2 \\
\text{and } x_0 & \neq x_2
\end{align*}
\]

\[
\begin{align*}
|x_0 - x_3| & \neq 3 \\
\text{and } x_0 & \neq x_3
\end{align*}
\]

\[
\begin{align*}
0 & = x_0
\end{align*}
\]
Trace the AC-3 Algorithm on 4-Queens Problem

\[\begin{align*}
|x_0 - x_1| &\neq 1 \\
\text{and } x_0 &\neq x_1
\end{align*} \]

\[\begin{align*}
|x_1 - x_2| &\neq 1 \\
\text{and } x_1 &\neq x_2
\end{align*} \]

\[\begin{align*}
|x_1 - x_3| &\neq 2 \\
\text{and } x_1 &\neq x_3
\end{align*} \]

\[\begin{align*}
|x_2 - x_3| &\neq 1 \\
\text{and } x_2 &\neq x_3
\end{align*} \]

0, 1, 2, 3

0 =

0, 1, 2, 3
Trace the AC-3 Algorithm on 4-Queens Problem

\[|x_0 - x_1| \neq 1 \]
\[\text{and } x_0 \neq x_1 \]

\[|x_1 - x_2| \neq 1 \]
\[\text{and } x_1 \neq x_2 \]

\[|x_1 - x_3| \neq 2 \]
\[\text{and } x_1 \neq x_3 \]

\[|x_0 - x_2| \neq 2 \]
\[\text{and } x_0 \neq x_2 \]

\[|x_0 - x_3| \neq 3 \]
\[\text{and } x_0 \neq x_3 \]

\[|x_2 - x_3| \neq 1 \]
\[\text{and } x_2 \neq x_3 \]
Trace the AC-3 Algorithm on 4-Queens Problem

\[
\begin{align*}
|x_0 - x_1| &\neq 1 \\
\text{and } x_0 &\neq x_1
\end{align*}
\]

\[
\begin{align*}
|x_1 - x_2| &\neq 1 \\
\text{and } x_1 &\neq x_2
\end{align*}
\]

\[
\begin{align*}
|x_1 - x_3| &\neq 2 \\
\text{and } x_1 &\neq x_3
\end{align*}
\]

\[
\begin{align*}
|x_2 - x_3| &\neq 1 \\
\text{and } x_2 &\neq x_3
\end{align*}
\]

\[
\begin{align*}
|x_0 - x_2| &\neq 2 \\
\text{and } x_0 &\neq x_2
\end{align*}
\]

\[
\begin{align*}
|x_0 - x_3| &\neq 3 \\
\text{and } x_0 &\neq x_3
\end{align*}
\]

\[
\begin{align*}
0 &\neq x_0
\end{align*}
\]
Trace the AC-3 Algorithm on 4-Queens Problem

\[|x_0 - x_1| \neq 1 \quad \text{and} \quad x_0 \neq x_1 \]

\[|x_0 - x_2| \neq 2 \quad \text{and} \quad x_0 \neq x_2 \]

\[|x_0 - x_3| \neq 3 \quad \text{and} \quad x_0 \neq x_3 \]

\[x_0 = 0 \]

\[x_1 \]

\[|x_1 - x_2| \neq 1 \quad \text{and} \quad x_1 \neq x_2 \]

\[|x_1 - x_3| \neq 2 \quad \text{and} \quad x_1 \neq x_3 \]

\[x_2 \]

\[|x_2 - x_3| \neq 1 \quad \text{and} \quad x_2 \neq x_3 \]

\[x_3 \]

\[\emptyset, 1, 2, 3 \]
Trace the AC-3 Algorithm on 4-Queens Problem

0 = x_0

$|x_0 - x_1| \neq 1$
and $x_0 \neq x_1$

$|x_1 - x_2| \neq 1$
and $x_1 \neq x_2$

$|x_1 - x_3| \neq 2$
and $x_1 \neq x_3$

$|x_0 - x_2| \neq 2$
and $x_0 \neq x_2$

$|x_2 - x_3| \neq 1$
and $x_2 \neq x_3$

$|x_0 - x_3| \neq 3$
and $x_0 \neq x_3$

$\emptyset, 1, 2, 3$

$\emptyset, 1, 2, 3$
Trace the AC-3 Algorithm on 4-Queens Problem

\[
\begin{align*}
|x_0 - x_1| &\neq 1 \\
&\text{and } x_0 \neq x_1 \\
0 &= x_0 \\
|x_0 - x_2| &\neq 2 \\
&\text{and } x_0 \neq x_2 \\
|x_0 - x_3| &\neq 3 \\
&\text{and } x_0 \neq x_3 \\
|x_1 - x_2| &\neq 1 \\
&\text{and } x_1 \neq x_2 \\
|x_1 - x_3| &\neq 2 \\
&\text{and } x_1 \neq x_3 \\
|x_2 - x_3| &\neq 1 \\
&\text{and } x_2 \neq x_3 \\
\emptyset, 1, 2, 3 &
\end{align*}
\]
Trace the AC-3 Algorithm on 4-Queens Problem

\[|x_0 - x_1| \neq 1 \quad \text{and} \quad x_0 \neq x_1 \]

\[|x_1 - x_2| \neq 1 \quad \text{and} \quad x_1 \neq x_2 \]

\[|x_1 - x_3| \neq 2 \quad \text{and} \quad x_1 \neq x_3 \]

\[|x_2 - x_3| \neq 1 \quad \text{and} \quad x_2 \neq x_3 \]

\[|x_0 - x_2| \neq 2 \quad \text{and} \quad x_0 \neq x_2 \]

\[0 = x_0 \]

\[|x_0 - x_3| \neq 3 \quad \text{and} \quad x_0 \neq x_3 \]

\[\emptyset, 1, 2, 3 \]
Trace the AC-3 Algorithm on 4-Queens Problem

\[|x_0 - x_1| \neq 1 \quad \text{and} \quad x_0 \neq x_1 \]

\[0 = x_0 \]

\[|x_0 - x_2| \neq 2 \quad \text{and} \quad x_0 \neq x_2 \]

\[|x_0 - x_3| \neq 3 \quad \text{and} \quad x_0 \neq x_3 \]

\[|x_1 - x_2| \neq 1 \quad \text{and} \quad x_1 \neq x_2 \]

\[|x_1 - x_3| \neq 2 \quad \text{and} \quad x_1 \neq x_3 \]

\[\emptyset, 1, 2, 3 \]

\[|x_2 - x_3| \neq 1 \quad \text{and} \quad x_2 \neq x_3 \]

\[\emptyset, 1, 2, 3 \]
Properties of the AC-3 Algorithm

- Does the order of removing arcs matter?

 ▶ No.

Three possible outcomes of the arc consistency algorithm:

1. A domain is empty. No solution.
2. Every domain has 1 value left. Found the solution without search.
3. Every domain has at least 1 value left and some domain has multiple values left. Need search to find a solution.
Properties of the AC-3 Algorithm

▶ Does the order of removing arcs matter?
→ No.
Properties of the AC-3 Algorithm

▶ Does the order of removing arcs matter?
→ No.

▶ Three possible outcomes of the arc consistency algorithm:
Properties of the AC-3 Algorithm

- Does the order of removing arcs matter?
 - No.

- Three possible outcomes of the arc consistency algorithm:
 - A domain is empty. No solution.
 - Every domain has 1 value left. Found the solution without search.
 - Every domain has at least 1 value left and some domain has multiple values left. Need search to find a solution.
Properties of the AC-3 Algorithm

- Is AC-3 guaranteed to terminate?
 → Yes.
Properties of the AC-3 Algorithm

- Is AC-3 guaranteed to terminate?
 → Yes.

- What is the complexity of AC-3?

 Time complexity: $O(c^3d^3n)$, where n variables, c binary constraints, and the size of each domain is at most d. Each arc (X_k, X_i) can be added to the queue at most d times because we can delete at most d values from X_i. Checking consistency of each arc can be done in $O(d^2)$ time.
Properties of the AC-3 Algorithm

▶ Is AC-3 guaranteed to terminate?
→ Yes.

▶ What is the complexity of AC-3?
→ Time complexity: $O(cd^3)$.

n variables, c binary constraints, and the size of each domain is at most d. Each arc (X_k, X_i) can be added to the queue at most d times because we can delete at most d values from X_i. Checking consistency of each arc can be done in $O(d^2)$ time.
Recap

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP

Backtracking Search

The Arc Consistency Definition

The AC-3 Arc Consistency Algorithm

Combining Backtracking and Arc Consistency
Combining Backtracking and Arc Consistency

1. Perform backtracking search.
2. After each value assignment, perform arc consistency.
3. If a domain is empty, terminate and return no solution.
4. If a unique solution is found, return the solution.
5. Otherwise, continue with backtracking search on the unassigned variables.
Solving 4-Queens Problem with Backtracking and AC-3

\[_ _ _ _ (1) \]

\[\begin{array}{cccc}
0 & _ & _ & _ \\
1 & _ & _ & _ \\
2 & _ & _ & _ \\
3 & _ & _ & _ \\
\end{array} \]

\[
x_0 \ x_1 \ x_2 \ x_3
\]

\[
\begin{array}{cccc}
0 & Q & X & X & X \\
1 & X & X & & \\
2 & X & X & & \\
3 & X & & X & \\
\end{array}
\]
Solving 4-Queens Problem with Backtracking and AC-3

\[
\begin{array}{cccc}
0 & _ & _ & (1) \\
1 & _ & _ & _ \\
2 & _ & _ & _ \\
3 & _ & _ & _ \\
\end{array}
\]

\[
\begin{array}{cccc}
 x_0 & x_1 & x_2 & x_3 \\
0 & Q & X & X & X \\
1 & X & X & _ & _ \\
2 & X & Q & X & _ \\
3 & X & _ & X & _ \\
\end{array}
\]
Solving 4-Queens Problem with Backtracking and AC-3

\[x_0 \ x_1 \ x_2 \ x_3 \]

\[
\begin{array}{cccc}
0 & Q & X & X & X \\
1 & X & X & & \\
2 & X & X & X & \\
3 & X & & X & \\
\end{array}
\]
Solving 4-Queens Problem with Backtracking and AC-3

\[
\begin{array}{cccc}
 x_0 & x_1 & x_2 & x_3 \\
 0 & Q & X & X & X \\
 1 & X & X & - & \\
 2 & X & X & X & Q \\
 3 & X & - & X & \\
\end{array}
\]
Solving 4-Queens Problem with Backtracking and AC-3

0_ _ _ _ (1)

0 _ _ _ 1 _ _ _ 2 _ _ _ 3 _ _ _

<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solving 4-Queens Problem with Backtracking and AC-3

\[
\begin{array}{cccc}
_ & _ & _ & _ (1) \\
0 & _ & _ & 1 & _ & _ & 2 & _ & _ & 3 & _ & _ \\
x_0 & x_1 & x_2 & x_3 \\
\hline
0 & Q & X & X & X \\
1 & X & X & Q & - \\
2 & X & X & X & X \\
3 & X & & & X \\
\end{array}
\]
Solving 4-Queens Problem with Backtracking and AC-3

\[\begin{array}{cccc}
0 & _ & _ & (1) \\
0 & _ & _ & 1 & _ & _ & 2 & _ & _ & 3 & _ & _ \\
x_0 & x_1 & x_2 & x_3 \\
0 & Q & X & X & X \\
1 & X & X & X \\
2 & X & X & X & X \\
3 & X & X \\
\end{array} \]
Solving 4-Queens Problem with Backtracking and AC-3

\[
\begin{array}{cccc}
_ & _ & _ & (1) \\
0 & _ & _ & \\
1 & _ & _ & \\
2 & _ & _ & \\
3 & _ & _ & \\
\end{array}
\]

\[
\begin{array}{cccc}
x_0 & x_1 & x_2 & x_3 \\
0 & Q & X & X & X \\
1 & X & X & X \\
2 & X & X & X & X \\
3 & X & _ & Q & X \\
\end{array}
\]
Solving 4-Queens Problem with Backtracking and AC-3

\[
\begin{array}{cccc}
_ & _ & _ & (1) \\
0 & _ & _ & 1 & _ & _ & 2 & _ & _ & 3 & _ & _ \\
x_0 & x_1 & x_2 & x_3 \\
0 & Q & X & X & X \\
1 & X & X & X \\
2 & X & X & X & X \\
3 & X & X & X \\
\end{array}
\]

\(x_2\)’s domain is empty after AC-3 arc consistency algorithm, therefore, we can directly trace back.
Solving 4-Queens Problem with Backtracking and AC-3

- - - - (1)

0 _ _ _
1 _ _ _
2 _ _ _
3 _ _ _

- Remove the 0 _ _ _ branch.
- Traceback to the root, and then start searching with 1 _ _ _.
- We run AC-3 arc consistency algorithm, found an assignment with each domain containing one value!
- The only solution is found!