Neural Networks - Part 3

Wenhu Chen

Lecture 21

Slides modified from Lecture 6 of CMSC 35246
(Shbhendu & Risi; University of Chicago)

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 1/47

Outline

Learning Goals

Batched Gradient Descent

Momentum

Adaptive Method

Adam Optimizer

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 2 /47

Learning Goals

» Stochastic Gradient Descent
» Momentum Method and the Nesterov Variant
» Adaptive Learning Methods (AdaGrad, RMSProp)

» Adaptive Moments (Adam)

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 3 /47

Batched Gradient Descent

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 4/ 47

Optimization

> We've seen back-propagation as a method for computing
gradients.

P Let's see a family of first-order optimization methods.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 5 /47

Gradient Descent

Algorithm 1 Batch Gradient Descent at Iteration k
Require: Learning rate ¢
Require: Initial Parameter 6
1: while stopping criteria not met do
2: Compute gradient estimate over N examples:
3 e +xVo X, L(F(xD;0),y®)
4: Apply Update: 0 < 0 — eg
5. end while

» Positive: Gradient Estimates are stable

> Negative: Need to compute the gradients over the entire
training for one update.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 6 /47

Gradient Descent

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 7 /47

Gradient Descent

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 8 /47

Stochastic Gradient Descent

Algorithm 2 Stochastic Gradient Descent at lteration k
Require: Learning rate ¢
Require: Initial Parameter 0

1: while stopping criteria not met do

2: Sample example (x(¥), y(®) from training set

3 Compute gradient estimate:

4 g +VoL(f(xD;0),y®)

5: Apply Update: 0 < 0 — cg

6: end while

P ¢ is the learning rate.

» Sufficient Condition to guarantee convergence:

Zek<oo& Z€2<OO

k=1 k=1

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 9 /47

Stochastic Gradient Descent

P In practice the learning rate is decayed linearly till iteration 7

er = (1 — a)ep + aer

with o = £
-

» 7 is usually set to the number of iterations needed for a large
number of passes through the data

» ¢, should roughly be set to a small number.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 10 / 47

Stochastic Gradient Descent

» Potential Problem: Gradient estimates can be very noisy
» Obvious Solution: Use large mini-batches

» Advantage: Computation time per update does not depend on
the number of training examples N

» This allows convergence on extremely large datasets

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 11/ 47

Stochastic Gradient Descent

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 12 / 47

Stochastic Gradient Descent

o

/4

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 13 / 47

Stochastic Gradient Descent

A

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 14 / 47

Stochastic Gradient Descent

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 15 / 47

Stochastic Gradient Descent

@
¥\ .
K

CS 486/686: Intro to Al Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo

16 / 47

Batch Gradient Descent

» Batch Gradient Descent:
1) .
b — +— E (@). i
0+—0—e€g

» SGD: ‘ ‘
g+ VoL(f(2D;0),yD)

0+ 60— cj

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 17 / 47

Momentum

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 18 / 47

What's wrong with SGD

» Momentum is an extension of gradient descent optimization,
which builds inertia in a search direction to overcome local
minima and oscillation of noisy gradients. It's based on the
same concept of momentum in physics.

> With gradient descent, a weight update at time ¢ is given by
the learning rate and gradient at that exact moment. It means
that the previous steps are not considered in the next iteration.

» Two issues:

» Unlike convex functions, a non-convex function can have many
local minima, the gradient becomes so small to get stuck

» Gradient descent can be noisy with many oscillations which
results in a larger number of iterations needed to reach
convergence

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 19 / 47

Momentum

» Momentum is able to solve both of these issues buy using an
exponentially weighted average of the gradients to update the
weights at each iteration.

» This method also prevents gradients of previous iterations to
be weighted equally. With an exponentially weighted average,
recent gradients are given more weight than previous ones.

< \ /@%‘v@f)
. —
Minimum Gradient Descent Momentum

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 20 / 47

Example
To demonstrate the use of momentum in the context of gradient

descent, minimize the following function:

y=0.32% — 0.12% — 22° — 0.8z

— Solution
—— Objective Function

-2
/

) /

—&
-3 -2 1 2 3

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo

21/ 47

Example cont.

g = ng(&i,l) = 1.29?_1 — 0.39?_1 — 401;1 —0.8

eizei_l—e*gi

Iteration gi 0;
1 -18.2 | -1.885
2 -2.36 | -1.76
3 -1.2 -1.70
4 -0.78 | -1.66
99 0.0002 | -1.586

CS 486/686: Intro to Al Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo

22 / 47

Example cont.

» How do we try and solve this problem?

v

Introduce a new variable v, the velocity

v

We think of v as the direction, and speed by which the
parameters move as the learning dynamics progress

» The velocity is an exponentially decaying moving average of
the negative gradients:

v; = avi—1 — eV f(0i-1)

» « €0,1), Update rule: 6; < 0,1 +v;

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 23 /47

Example cont.

gi = Vofi(0i1) =1.203 | —0.302 , — 46,1 — 0.8

V; = V31 — €3G

0; =0,_1+v;
Iteration gi v; 0;
1 -18.2 0 -1.885
2 -2.36 | -15.1 | -1.12
3 1.61 -9.0 -0.67
4 1.39 -9.2 -0.21
99 0.0002 | 0.0003 | 2.042

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 24 / 47

Example cont.

Escaping the local minima with momentum, and then settling
down to the global minima.

—— Solution
\ —— Objective Function

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 25 / 47

Momentum

> Velocity Term:

v =av — eVo(L(f(z\D;0),yD))

» Update Term:

91’ = 91’—1 +v
» The velocity accumulates the previous gradients
» What is the role of a?

» If «v is larger than e the current update is more affected by the
previous gradients.

» Usually values for « are set high

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 26 / 47

Momentum

Momentum Step

Gradient Step

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 27 / 47

Momentum

» In SGD, the step size was the norm of the gradient scaled by
the learning rate, which is €||g]|.

> While using momentum, the step size will also depend on the
norm of a sequence of gradients.

» The step size becomes:

ellgrl| + aellga|| + a®ellgsl| + -+ a’ellgx |

» Therefore, the stepsize is roughly 61‘|;||

» If o = 0.9, multiply the maximum speed by 10 relative to the
current gradient direction.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 28 / 47

SGD with Momentum

Algorithm 2 Stochastic Gradient Descent with Momentum
Require: Learning rate ¢
Require: Momentum Parameter o
Require: Initial Parameter 0
Require: Initial Velocity v
1: while stopping criteria not met do
Sample example (x(, y (@) from training set
3 Compute gradient estimate:
4 g+ +VoL(f(xD;0),yD)
5 Compute the velocity update:
6: V4 av —€eg
7
8

g

: Apply Update: 8 «+ 60+ v
. end while

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 29 / 47

Nesterov Momentum

» Another approach: First take a step in the direction of the
accumulated gradient

» Then calculate the gradient and make a correction

accumulated gradient

Nesterov Momentum

» Another approach: First take a step in the direction of the
accumulated gradient

» Then calculate the gradient and make a correction

correction

accumulated gradient

Nesterov Momentum

» Another approach: First take a step in the direction of the

accumulated gradient

» Then calculate the gradient and make a correction

correction

accumulated gradient

o new gradient

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo

30 / 47

Nestorv Momentum

» Recall the velocity term in the Momentum method:

V4 av — EVQ(L(f(x(i); 9)7y(i)))

» Nesterov Momentum:

v av — eVo(L(f(2D;0 + av),yV))

» Update: 6 <+ 0+ v

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 31 /47

SGD with Nestorv Momentum

Algorithm 3 SGD with Nesterov Momentum
Require: Learning rate €
Require: Momentum Parameter
Require: Initial Parameter 6
Require: Initial Velocity v
1: while stopping criteria not met do
2: Sample example (x(?,y(®)) from training set
3 Update parameters: 6 < 0 + av
4: Compute gradient estimate:
5. & +VaL(f(x1;0),yD)
6
7
8

Compute the velocity update: v < av — €g
: Apply Update: 6 + 60+ v
:_end while

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 32 /47

Adaptive Method

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 33 /47

Motivation

» Till now we assign the same learning rate to all the features

> If the features vary in importance and frequency, why is this a
good idea?

> It's probably not!

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 34 /47

Motivation

©

Nice (all features are equally important)

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 35 /47

Motivation

Harder!

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 36 /47

Motivation

» Downscale a model parameter by the square root of the sum
of squares of all its historical values

» Parameters that have larger partial derivatives of the loss -
learning rates for them rapidly declined

» The algorithm assigns higher learning rates to infrequent
features, which ensures that the parameter updates rely less
on frequency and more on relevance

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 37 /47

AdaGrad (Adaptative Gradient)

Algorithm 1 Adaptative Gradient
Require: Global Learning rate ¢, Initial Parameter 6,
1: Initialize r =0
2: while stopping criteria not met do
3: Sample example (z(*),4()) from training set
Compute gradient estimate: § < +VoL(f(z?;8),y®)
Accumulate: r <+ r+3® g
Compute update: Af « —5:\” ®g
Apply Update: 6 < 6 + A0

N g

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 38 / 47

RMSProp (Root Mean Square)

> AdaGrad is good when the objective is convex

» AdaGrad might shrink the learning rate too aggressively, we
want to keep the history in mind.

> We can adapt it to perform better in a non-convex setting by
accumulating an exponentially decaying average of the
gradient

P> This is an idea that we use again and again in Neural
Networks

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 39 /47

RMSProp (Root Mean Square)

Algorithm 2 Root Mean Square Propagation
Require: Global Learning rate ¢, Initial Parameter p, 6,9
1: Initialize r=0
2: while stopping criteria not met do
3: Sample example (z(*),4()) from training set
Compute gradient estimate: § < +VoL(f(z?;8),y®)
Accumulate: r < pr+ (1 —p)g© g
Compute update: Af « —5:\” ©g
Apply Update: 6 < 6 + A0

N g

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 40 / 47

AdaDelta (Adative Delta)

» It is similar to RMSProp as an improvement over AdaGrad
P It completely removes the usage of hand-set learning rate

» Using the difference between current weight and the newly
updated weight as the learning rate

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 41 / 47

AdaDelta (Adative Delta)

Algorithm 3 Root Mean Square Propagation

Require: Initial Parameter p, 0,9
1. Initialize r =0, d =0
2: while stopping criteria not met do

3:

® N o g ks

Sample example (z(?), y(*) from training set

Compute gradient estimate: § < +VoL(f(z?;0),y®)
Accumulate: r < pr+ (1 —p)g© g

Accumulate: d « pd + (1 — p)[A6)?

Compute update: Af « —giﬁ ®©g

Apply Update: 6 < 6 + A0

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 42 / 47

Adam Optimizer

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 43 / 47

Adam

The inspiration of Adam optimizer:

» AdaGrad (Adaptive Gradient Algorithm) maintains a
per-parameter learning rate that improves the performance on
problems with sparse gradients

» RMSProp (Root Mean Square Propagation) also maintains
per-parameter learning rates that are adapted based on the
average of recent magnitudes of the gradients for the weight.

» Momentum Method can maintain a velocity term to keep
track of the history gradients.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 44 / 47

Adam: ADAptive Moments

Algorithm 4 ADAptive Moments

Require: Learning Rate ¢, Decay rates p1, p2,0,0
1: Initialize s =0, r =0, time stept =0
2: while stopping criteria not met do

3:

10:

e 9N T Rs

Sample example (z(),4(?)) from training set

Compute gradient estimate: § < +VoL(f(z?;8),y®)

t—1t+1
Update: s < p1s+ (1 — p1)g
Update: 7 < por + (1 — p2)§ ® g

Correct Biases: § + —24+,7 « "+
1—p 1—p5

1

_ _ .3
Compute Update: Af = € Tirs
Apply Update: 6 <+ 6 + Af

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo

45 / 47

Performance

Adam optimizer is by far one of the most successful optimizers to
achieve great performance. A standard benchmark to evaluate
optimizer performance is MNIST:

1 MNIST Multilayer Neural Network + dropout

— AdaGrad

10

— RMSProp
— SGDNesterov
AdaDelta
Adam

training cost

i i
0 50 100 150 200

iterations over entire dataset

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 46 / 47

Revisiting Learning Goals

» Stochastic Gradient Descent
» Momentum Method and the Nesterov Variant
» Adaptive Learning Methods (AdaGrad, RMSProp)

» Adaptive Moments (Adam)

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 47 | 47

	Learning Goals
	Batched Gradient Descent
	Momentum
	Adaptive Method
	Adam Optimizer

