# Neural Networks - Part 3

Wenhu Chen

Lecture 21

Slides modified from Lecture 6 of CMSC 35246 (Shbhendu & Risi; University of Chicago)

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 1 / 47



Batched Gradient Descent

Momentum

Adaptive Method

Adam Optimizer

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 2 / 47

- Stochastic Gradient Descent
- Momentum Method and the Nesterov Variant
- Adaptive Learning Methods (AdaGrad, RMSProp)
- Adaptive Moments (Adam)

Batched Gradient Descent

Momentum

Adaptive Method

Adam Optimizer

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 4 / 47

## Optimization

- We've seen back-propagation as a method for computing gradients.
- Let's see a family of first-order optimization methods.

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 5 / 47

# Gradient Descent

**Algorithm 1** Batch Gradient Descent at Iteration k

**Require:** Learning rate  $\epsilon_k$ 

**Require:** Initial Parameter  $\theta$ 

- 1: while stopping criteria not met do
- 2: Compute gradient estimate over N examples:

3: 
$$\hat{\mathbf{g}} \leftarrow +\frac{1}{N} \nabla_{\theta} \sum_{i} L(f(\mathbf{x}^{(i)}; \theta), \mathbf{y}^{(i)})$$

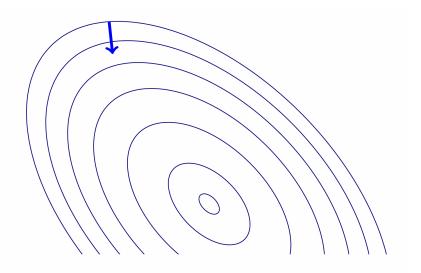
4: Apply Update: 
$$heta \leftarrow heta - \epsilon \hat{\mathbf{g}}$$

5: end while

- Positive: Gradient Estimates are stable
- Negative: Need to compute the gradients over the entire training for one update.

CS 486/686: Intro to AI

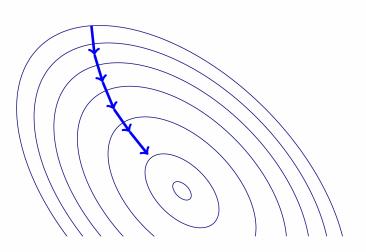
#### Gradient Descent



CS 486/686: Intro to AI

Lecturer: Wenhu Chen

#### Gradient Descent



CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 8 / 47

 Algorithm 2 Stochastic Gradient Descent at Iteration k

 Require: Learning rate  $\epsilon_k$  

 Require: Initial Parameter  $\theta$  

 1: while stopping criteria not met do

 2: Sample example  $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$  from training set

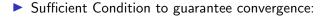
 3: Compute gradient estimate:

 4:  $\hat{\mathbf{g}} \leftarrow + \nabla_{\theta} L(f(\mathbf{x}^{(i)}; \theta), \mathbf{y}^{(i)})$  

 5: Apply Update:  $\theta \leftarrow \theta - \epsilon \hat{\mathbf{g}}$  

 6: end while

\[
 \epsilon\_k is the learning rate.
 \]



$$\sum_{k=1} \epsilon_k < \infty \& \sum_{k=1} \epsilon^2 < \infty$$

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

 $\blacktriangleright$  In practice the learning rate is decayed linearly till iteration au

$$\epsilon_k = (1 - \alpha)\epsilon_0 + \alpha\epsilon_\tau$$

with  $\alpha = \frac{k}{\tau}$ 

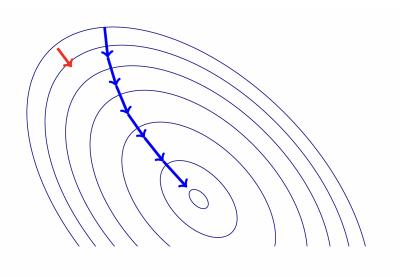
- $\blacktriangleright$   $\tau$  is usually set to the number of iterations needed for a large number of passes through the data
- $\epsilon_{\tau}$  should roughly be set to a small number.

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 10 / 47

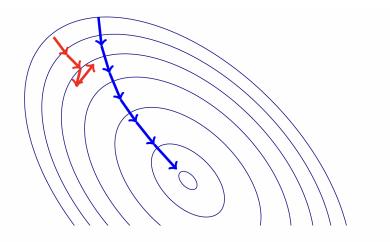
- Potential Problem: Gradient estimates can be very noisy
- Obvious Solution: Use large mini-batches
- Advantage: Computation time per update does not depend on the number of training examples N
- This allows convergence on extremely large datasets



CS 486/686: Intro to AI

Lecturer: Wenhu Chen

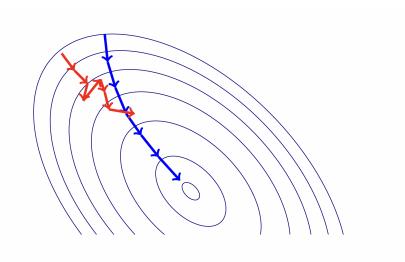
Slides: Alice Gao / Blake Vanberlo 12 / 47



CS 486/686: Intro to AI

Lecturer: Wenhu Chen

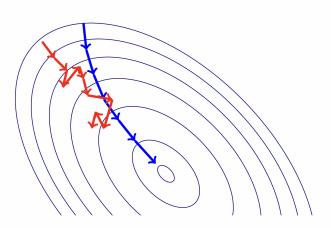
Slides: Alice Gao / Blake Vanberlo 13 / 47



CS 486/686: Intro to AI

Lecturer: Wenhu Chen

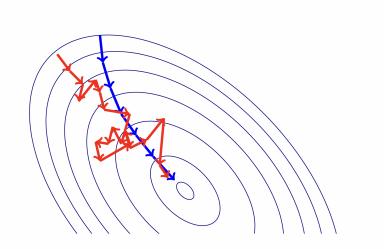
Slides: Alice Gao / Blake Vanberlo 14 / 47



CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 15 / 47



CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 16 / 47

### Batch Gradient Descent

Batch Gradient Descent:

$$\hat{g} \leftarrow +\frac{1}{N} \nabla_{\theta} \sum_{i} L(f(x^{(i)}; \theta), y^{(i)})$$
$$\theta \leftarrow \theta - \epsilon \hat{g}$$



$$\hat{g} \leftarrow \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$$
$$\theta \leftarrow \theta - \epsilon \hat{g}$$

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 17 / 47

Batched Gradient Descent

#### Momentum

Adaptive Method

Adam Optimizer

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 18 / 47

# What's wrong with SGD

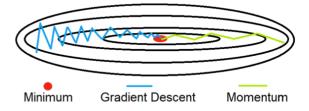
- Momentum is an extension of gradient descent optimization, which builds inertia in a search direction to overcome local minima and oscillation of noisy gradients. It's based on the same concept of momentum in physics.
- With gradient descent, a weight update at time t is given by the learning rate and gradient at that exact moment. It means that the previous steps are not considered in the next iteration.
- Two issues:
  - Unlike convex functions, a non-convex function can have many local minima, the gradient becomes so small to get stuck
  - Gradient descent can be noisy with many oscillations which results in a larger number of iterations needed to reach convergence

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

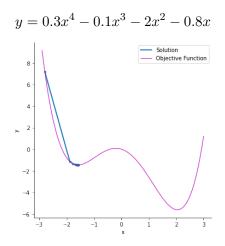
Slides: Alice Gao / Blake Vanberlo 19 / 47

- Momentum is able to solve both of these issues buy using an exponentially weighted average of the gradients to update the weights at each iteration.
- This method also prevents gradients of previous iterations to be weighted equally. With an exponentially weighted average, recent gradients are given more weight than previous ones.



#### Example

To demonstrate the use of momentum in the context of gradient descent, minimize the following function:



CS 486/686: Intro to AI

Lecturer: Wenhu Chen

$$g_i = \nabla_{\theta} f(\theta_{i-1}) = 1.2\theta_{i-1}^3 - 0.3\theta_{i-1}^2 - 4\theta_{i-1} - 0.8$$
$$\theta_i = \theta_{i-1} - \epsilon * g_i$$

| Iteration | $g_i$  | $	heta_i$ |
|-----------|--------|-----------|
| 1         | -18.2  | -1.885    |
| 2         | -2.36  | -1.76     |
| 3         | -1.2   | -1.70     |
| 4         | -0.78  | -1.66     |
|           |        |           |
| 99        | 0.0002 | -1.586    |

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 22 / 47

- How do we try and solve this problem?
- Introduce a new variable v, the velocity
- We think of v as the direction, and speed by which the parameters move as the learning dynamics progress
- The velocity is an exponentially decaying moving average of the negative gradients:

$$v_i = \alpha v_{i-1} - \epsilon \nabla_{\theta} f(\theta_{i-1})$$

•  $\alpha \in [0,1)$ , Update rule:  $\theta_i \leftarrow \theta_{i-1} + v_i$ 

CS 486/686: Intro to AI

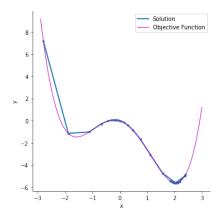
$$g_{i} = \nabla_{\theta} f_{i}(\theta_{i-1}) = 1.2\theta_{i-1}^{3} - 0.3\theta_{i-1}^{2} - 4\theta_{i-1} - 0.8$$
$$v_{i} = \alpha v_{i-1} - \epsilon g_{i}$$
$$\theta_{i} = \theta_{i-1} + v_{i}$$

| Iteration | $g_i$  | $v_i$  | $\theta_i$ |
|-----------|--------|--------|------------|
| 1         | -18.2  | 0      | -1.885     |
| 2         | -2.36  | -15.1  | -1.12      |
| 3         | 1.61   | -9.0   | -0.67      |
| 4         | 1.39   | -9.2   | -0.21      |
|           |        |        |            |
| 99        | 0.0002 | 0.0003 | 2.042      |
|           |        |        |            |

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Escaping the local minima with momentum, and then settling down to the global minima.



Lecturer: Wenhu Chen

Velocity Term:

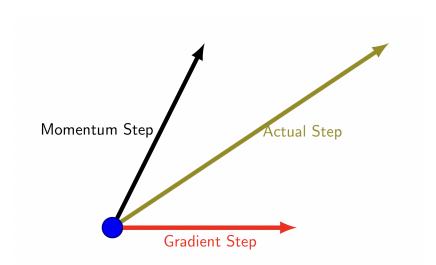
$$\boldsymbol{v} = \alpha \boldsymbol{v} - \epsilon \nabla_{\boldsymbol{\theta}} (L(f(x^{(I)}; \boldsymbol{\theta}), y^{(i)}))$$

Update Term:

$$heta_i = heta_{i-1} + oldsymbol{v}$$

- The velocity accumulates the previous gradients
- What is the role of α?
  - If α is larger than ε the current update is more affected by the previous gradients.
  - Usually values for  $\alpha$  are set high

CS 486/686: Intro to AI



CS 486/686: Intro to AI

Lecturer: Wenhu Chen

- In SGD, the step size was the norm of the gradient scaled by the learning rate, which is *ϵ*||*g*||.
- While using momentum, the step size will also depend on the norm of a sequence of gradients.
- The step size becomes:

$$\epsilon ||g_1|| + \alpha \epsilon ||g_2|| + \alpha^3 \epsilon ||g_3|| + \dots + \alpha^K \epsilon ||g_K||$$

- Therefore, the stepsize is roughly  $\epsilon \frac{||\hat{g}||}{1-\alpha}$
- If α = 0.9, multiply the maximum speed by 10 relative to the current gradient direction.

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 28 / 47

# SGD with Momentum

Algorithm 2 Stochastic Gradient Descent with Momentum **Require:** Learning rate  $\epsilon_k$ **Require:** Momentum Parameter  $\alpha$ **Require:** Initial Parameter  $\theta$ Require: Initial Velocity v 1: while stopping criteria not met do Sample example  $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$  from training set 2: 3: Compute gradient estimate: 4:  $\hat{\mathbf{g}} \leftarrow + \nabla_{\theta} L(f(\mathbf{x}^{(i)}; \theta), \mathbf{y}^{(i)})$ Compute the velocity update: 5: 6:  $\mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \hat{\mathbf{g}}$ Apply Update:  $\theta \leftarrow \theta + \mathbf{v}$ 7: 8: end while

CS 486/686: Intro to AI

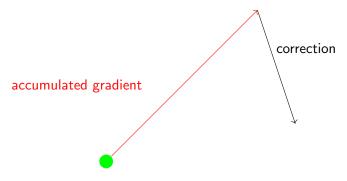
## Nesterov Momentum

- Another approach: First take a step in the direction of the accumulated gradient
- Then calculate the gradient and make a correction

accumulated gradient

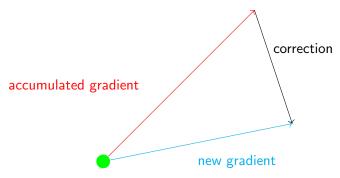
### Nesterov Momentum

- Another approach: First take a step in the direction of the accumulated gradient
- Then calculate the gradient and make a correction



#### Nesterov Momentum

- Another approach: First take a step in the direction of the accumulated gradient
- Then calculate the gradient and make a correction



CS 486/686: Intro to AI

Lecturer: Wenhu Chen

### Nestorv Momentum

Recall the velocity term in the Momentum method:

$$\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \nabla_{\boldsymbol{\theta}} (L(f(x^{(i)}; \boldsymbol{\theta}), y^{(i)}))$$

Nesterov Momentum:

$$\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \nabla_{\theta} (L(f(x^{(i)}; \theta + \alpha \boldsymbol{v}), y^{(i)}))$$

▶ Update: 
$$\theta \leftarrow \theta + v$$

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 31 / 47

# SGD with Nestorv Momentum

Algorithm 3 SGD with Nesterov Momentum **Require:** Learning rate  $\epsilon$ **Require:** Momentum Parameter  $\alpha$ **Require:** Initial Parameter  $\theta$ **Require:** Initial Velocity **v** 1: while stopping criteria not met do Sample example  $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$  from training set 2: Update parameters:  $\tilde{\theta} \leftarrow \theta + \alpha \mathbf{v}$ 3: Compute gradient estimate: 4·  $\hat{\mathbf{g}} \leftarrow + \nabla_{\tilde{\theta}} L(f(\mathbf{x}^{(i)}; \tilde{\theta}), \mathbf{y}^{(i)})$ 5: Compute the velocity update:  $\mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \hat{\mathbf{g}}$ 6· 7. Apply Update:  $\theta \leftarrow \theta + \mathbf{v}$ 8: end while

CS 486/686: Intro to AI

Batched Gradient Descent

Momentum

Adaptive Method

Adam Optimizer

CS 486/686: Intro to AI

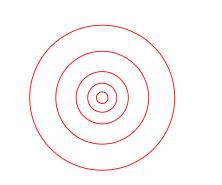
Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 33 / 47

### Motivation

- Till now we assign the same learning rate to all the features
- If the features vary in importance and frequency, why is this a good idea?
- It's probably not!

#### Motivation



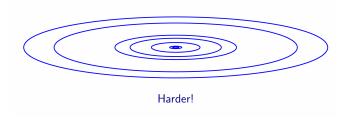
#### Nice (all features are equally important)

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 35 / 47

### Motivation



CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 36 / 47

#### Motivation

- Downscale a model parameter by the square root of the sum of squares of all its historical values
- Parameters that have larger partial derivatives of the loss learning rates for them rapidly declined
- The algorithm assigns higher learning rates to infrequent features, which ensures that the parameter updates rely less on frequency and more on relevance

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 37 / 47

# AdaGrad (Adaptative Gradient)

Algorithm 1 Adaptative Gradient

**Require:** Global Learning rate  $\epsilon$ , Initial Parameter  $\theta, \delta$ 

- 1: Initialize  $\boldsymbol{r}=0$
- 2: while stopping criteria not met do
- 3: Sample example  $(x^{(i)}, y^{(i)})$  from training set
- 4: Compute gradient estimate:  $\hat{g} \leftarrow + \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$
- 5: Accumulate:  $\boldsymbol{r} \leftarrow \boldsymbol{r} + \hat{g} \odot \hat{g}$
- 6: Compute update:  $\Delta \theta \leftarrow -\frac{\epsilon}{\delta + \sqrt{r}} \odot \hat{g}$
- 7: Apply Update:  $\theta \leftarrow \theta + \Delta \theta$

## RMSProp (Root Mean Square)

AdaGrad is good when the objective is convex

- AdaGrad might shrink the learning rate too aggressively, we want to keep the history in mind.
- We can adapt it to perform better in a non-convex setting by accumulating an exponentially decaying average of the gradient
- This is an idea that we use again and again in Neural Networks

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 39 / 47

# RMSProp (Root Mean Square)

Algorithm 2 Root Mean Square Propagation

**Require:** Global Learning rate  $\epsilon$ , Initial Parameter  $\rho, \theta, \delta$ 

- 1: Initialize r=0
- 2: while stopping criteria not met do
- 3: Sample example  $(x^{(i)}, y^{(i)})$  from training set
- 4: Compute gradient estimate:  $\hat{g} \leftarrow + \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$
- 5: Accumulate:  $\boldsymbol{r} \leftarrow \rho \boldsymbol{r} + (1-\rho) \hat{g} \odot \hat{g}$
- 6: Compute update:  $\Delta \theta \leftarrow -\frac{\epsilon}{\delta + \sqrt{r}} \odot \hat{g}$
- 7: Apply Update:  $\theta \leftarrow \theta + \Delta \theta$

# AdaDelta (Adative Delta)

- It is similar to RMSProp as an improvement over AdaGrad
- It completely removes the usage of hand-set learning rate
- Using the difference between current weight and the newly updated weight as the learning rate

# AdaDelta (Adative Delta)

Algorithm 3 Root Mean Square Propagation

**Require:** Initial Parameter  $\rho, \theta, \delta$ 

- 1: Initialize  $\boldsymbol{r}=0$ ,  $\boldsymbol{d}=0$
- 2: while stopping criteria not met do
- 3: Sample example  $(x^{(i)}, y^{(i)})$  from training set
- 4: Compute gradient estimate:  $\hat{g} \leftarrow +\nabla_{\theta} L(f(x^{(i)};\theta), y^{(i)})$
- 5: Accumulate:  $\boldsymbol{r} \leftarrow \rho \boldsymbol{r} + (1-\rho)\hat{g} \odot \hat{g}$
- 6: Accumulate:  $\boldsymbol{d} \leftarrow \rho \boldsymbol{d} + (1-\rho)[\Delta \theta]^2$
- 7: Compute update:  $\Delta \theta \leftarrow -\frac{\delta + \sqrt{d}}{\delta + \sqrt{r}} \odot \hat{g}$
- 8: Apply Update:  $\theta \leftarrow \theta + \Delta \theta$

CS 486/686: Intro to AI

Learning Goals

Batched Gradient Descent

Momentum

Adaptive Method

Adam Optimizer

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

Slides: Alice Gao / Blake Vanberlo 43 / 47

#### Adam

The inspiration of Adam optimizer:

- AdaGrad (Adaptive Gradient Algorithm) maintains a per-parameter learning rate that improves the performance on problems with sparse gradients
- RMSProp (Root Mean Square Propagation) also maintains per-parameter learning rates that are adapted based on the average of recent magnitudes of the gradients for the weight.
- Momentum Method can maintain a velocity term to keep track of the history gradients.

CS 486/686: Intro to AI

Lecturer: Wenhu Chen

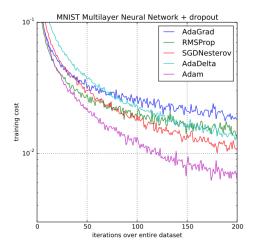
#### Adam: ADAptive Moments

**Algorithm 4** ADAptive Moments **Require:** Learning Rate  $\epsilon$ , Decay rates  $\rho_1, \rho_2, \theta, \delta$ 1: Initialize s = 0, r = 0, time step t = 02: while stopping criteria not met do Sample example  $(x^{(i)}, y^{(i)})$  from training set 3: Compute gradient estimate:  $\hat{q} \leftarrow + \nabla_{\theta} L(f(x^{(i)};\theta), y^{(i)})$ 4: 5:  $t \leftarrow t + 1$ 6: Update:  $\mathbf{s} \leftarrow \rho_1 \mathbf{s} + (1 - \rho_1)\hat{q}$ Update:  $\boldsymbol{r} \leftarrow \rho_2 \boldsymbol{r} + (1 - \rho_2) \hat{\boldsymbol{q}} \odot \hat{\boldsymbol{q}}$ 7: Correct Biases:  $\hat{s} \leftarrow \frac{s}{1-\rho_1^t}, \hat{r} \leftarrow \frac{r}{1-\rho_2^t}$ 8: Compute Update:  $\Delta heta = -\epsilon rac{\hat{s}}{\sqrt{\hat{r}} + \delta}$ 9: Apply Update:  $\theta \leftarrow \theta + \Delta \theta$ 10:

CS 486/686: Intro to AI

#### Performance

Adam optimizer is by far one of the most successful optimizers to achieve great performance. A standard benchmark to evaluate optimizer performance is MNIST:



CS 486/686: Intro to AI

Lecturer: Wenhu Chen

## Revisiting Learning Goals

- Stochastic Gradient Descent
- Momentum Method and the Nesterov Variant
- Adaptive Learning Methods (AdaGrad, RMSProp)
- Adaptive Moments (Adam)