Neural Networks - Part 2

Wenhu Chen

Lecture 20

Outline

Learning Goals

Gradient Descent

The Backpropagation Algorithm

The Backpropagation Algorithm in Matrix

When to use Decision Trees and Neural Networks

Revisiting Learning Goals
Learning Goals

▶ Explain the steps of the gradient descent algorithm.
▶ Explain how we can modify gradient descent to speed up learning and ensure convergence.
▶ Describe the back-propagation algorithm including the forward and backward passes.
▶ Compute the gradient for a weight in a multi-layer feed-forward neural network.
▶ Describe situations in which it is appropriate to use a neural network or a decision tree.
Learning Goals

Gradient Descent

The Backpropagation Algorithm

The Backpropagation Algorithm in Matrix

When to use Decision Trees and Neural Networks

Revisiting Learning Goals
A 2-Layer Neural Network
A 2-Layer Neural Network

Assuming that we want the output of the 2-Layer neural network to be close to certain target value.

Let’s assume we are doing spam classification:

The input x_1 and x_2 are two features: the email length x_1 and whether the email is coming from a trusted organization x_2.

We have paired training data, $x_1, x_2, y = \{0, 1\}$.

Therefore, we can feed x_1 and x_2 to the neural network to obtain its output $a^{(2)}_1$ and $a^{(2)}_2$.
Neural Network Approximation

Let’s assume that \(a_1^{(2)} \) denotes how likely the email is a spam and \(a_2^{(2)} \) denotes how unlikely the email is a spam.

- If an input email is a spam, the desired output should be \([a_1^{(2)}, a_2^{(2)}] = [1, 0]\).
- If an input email is not a spam, the desired output should be \([a_1^{(2)}, a_2^{(2)}] = [0, 1]\).
- If an input email is indistinguishable, the desired output should be \([a_1^{(2)}, a_2^{(2)}] = [0.5, 0.5]\).
Measuring the Loss Function

Let's assume we want to measure the discrepancy between neural network output and the reference label. The discrepancy is also called loss function E. For example, we can have square difference loss as follows:

$$E = \sum_i (a_i^{(2)} - y_i)^2$$

We will be using E as the training signal to perform gradient descent.
Gradient Descent

“Walking downhill and always taking a step in the direction that goes down the most.”

▶ A local search algorithm to find the minimum of a function.

▶ Steps of the algorithm:
 ▶ Initialize weights randomly.
 ▶ Change each weight in proportion to the negative of the partial derivative of the error with respect to the weight.

\[
W := W - \eta \frac{\partial E}{\partial W}
\]

▶ \(\eta \) is the learning rate.

▶ Terminate after some number of steps, when the error is small, or when the changes get small.
Why update the weight proportional to the negative of the partial derivative?

- Suppose that we want to find the minimum of $y = x^2$.
 - Think of x as the weight and y as the error.
- Start with $x = x_0$.
- In what direction should we change the value of x?
Why update the weight proportional to the negative of the partial derivative?

▶ Suppose that we want to find the minimum of $y = x^2$.

→ Think of x as the weight and y as the error.

▶ Start with $x = x_0$.

▶ In what direction should we change the value of x?

→ If the gradient is positive, we want to decrease x_0. If the gradient is negative, we want to increase x_0.

We want to move in the direction of the negative of the gradient.
Why update the weight proportional to the negative of the partial derivative?

- By what amount should we change the value of x? What is the step size?

 → If the gradient is large, the curve is steep and we are likely far from the minimum. We can afford to take a larger step. If the gradient is small, the curve is flat and we are likely close to the minimum. We want to take a smaller step.

 Take a step proportional to the gradient.
How do we update the weights based on the data points?

- Gradient descent updates the weights after sweeping through all the examples.
- To speed up learning, update weights after each example.
 - **Incremental gradient descent** → update weights after each example.
 - **Stochastic gradient descent** → same as incremental version except each example is chosen randomly.

 → With cheaper steps, weights become more accurate more quickly, but not guaranteed to converge as individual examples can move the weights away from the minimum.
How do we update the weights based on the data points?

- Trade off learning speed and convergence.
 - **Batched gradient descent**
 - update weights after a batch of examples.
 - batch = all the examples \rightarrow gradient descent.
 - batch = one example \rightarrow incremental gradient descent.
Learning Goals

Gradient Descent

The Backpropagation Algorithm

The Backpropagation Algorithm in Matrix

When to use Decision Trees and Neural Networks

Revisiting Learning Goals
A 2-Layer Neural Network

Let \hat{y} be the output of a network (i.e. prediction).
For this network, $\hat{y} = z^{(2)}$
The Backpropagation Algorithm

- An efficient method of calculating the gradients in a multi-layer neural network.

- Given training examples \((\vec{x}_n, \vec{y}_n)\) and an error/loss function \(E(\hat{y}, y)\). Perform 2 passes.

 - **Forward pass:** compute the error \(E\) given the inputs and the weights.

 - **Backward pass:** compute the gradients \(\frac{\partial E}{\partial W_{j,k}^{(2)}}\) and \(\frac{\partial E}{\partial W_{i,j}^{(1)}}\).

 - Update each weight by the sum of the partial derivatives for all the training examples.
Forward Pass for a 2-layer Network

Calculate the values of $z_j^{(1)}$ and $z_k^{(2)}$ and E.

\[
\begin{align*}
a_j^{(1)} &= \sum_i x_i W_{i,j}^{(1)} \\
\quad z_j^{(1)} &= g(a_j^{(1)}) \\
a_k^{(2)} &= \sum_j z_j^{(1)} W_{j,k}^{(2)} \\
\quad z_k^{(2)} &= g(a_k^{(2)}) \\
E(\tilde{z}^{(2)}, y) &= (3)
\end{align*}
\]
Backward Pass for a 2-layer Network

Calculate the gradients for $W^{(1)}_{i,j}$ and $W^{(2)}_{j,k}$.

\[
\frac{\partial E}{\partial W^{(2)}_{j,k}} = \frac{\partial E}{\partial a^{(2)}_k} z^{(1)}_j = \delta^{(2)}_k z^{(1)}_j, \quad \delta^{(2)}_k = \frac{\partial E}{\partial z^{(2)}_k} g'(a^{(2)}_k) \tag{4}
\]

\[
\frac{\partial E}{\partial W^{(1)}_{i,j}} = \frac{\partial E}{\partial a^{(1)}_j} x_i = \delta^{(1)}_j x_i, \quad \delta^{(1)}_j = \left(\sum_k \delta^{(2)}_k W^{(2)}_{j,k} \right) g'(a^{(1)}_j) \tag{5}
\]
The recursive relationship

For unit j of layer ℓ, $\delta^{(\ell)}_j = \frac{\partial E}{\partial a^{(\ell)}_j}$.

\[
\delta^{(\ell)}_j = \begin{cases}
\frac{\partial E}{\partial z^{(\ell)}_j} \times g'(a^{(\ell)}_j), & \text{base case, } j \text{ is an output unit} \\
\left(\sum_k \delta^{(\ell+1)}_k W^{(\ell+1)}_{j,k} \right) \times g'(a^{(\ell)}_j), & \text{recursive case, } j \text{ is a hidden unit}
\end{cases}
\]

(6)

Base case:

\[
\begin{array}{c}
\text{Output layer} \\
\text{Hidden Layer} \\
\text{Next layer}
\end{array}
\]

Recursive case:
A concrete example of forward and backward pass

Calculate $W_{j,k}^{(2)}$ and $W_{i,j}^{(1)}$ given the information below.

- The error function is the sum of squares error.
 \[E = \sum_k (\hat{y}_k - y_k)^2 \]

- The activation function is the sigmoid function.
 \[g(x) = \frac{1}{1 + e^{-x}} \]
The derivative of $g(x)$

Sigmoid Function Derivative:

$$\frac{\partial g(x)}{\partial x} = \frac{1}{1 + e^{-x}} \frac{e^{-x}}{1 + e^{-x}} = g(x)(1 - g(x))$$

It means that during forward propagation, we can save the intermediate values of $g(x)$ to directly compute $\frac{\partial g(x)}{\partial x}$.
Learning Goals

Gradient Descent

The Backpropagation Algorithm

The Backpropagation Algorithm in Matrix

When to use Decision Trees and Neural Networks

Revisiting Learning Goals
The recursive relationship

For the i-th layer output $x^{(i)}$:

$$\frac{\partial g(x^{(i)})}{\partial x^{(i)}} = \left(\begin{array}{cccc} g(x_1^{(i)})(1 - g(x_1^{(i)})) & 0 & \cdots & 0 \\ 0 & g(x_2^{(i)})(1 - g(x_2^{(i)})) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & g(x_d^{(i)})(1 - g(x_d^{(i)})) \end{array} \right)$$

where j indexes the j-th element in the i-th vector $g(x_j^{(i)})$.

CS 486/686: Intro to AI
Lecturer: Wenhu Chen
Slides: Alice Gao / Blake Vanberlo
23 / 30
The recursive relationship

At i-th layer, assuming there are \(d \) neurons:

Through backward propagation, the derivative w.r.t to \(g(x_i) \) is denoted as \(\delta_i = \frac{\partial E}{\partial g(x^{(i)})} \in \mathbb{R}^d. \)

\[
\delta_{i-1} = \frac{\partial E}{\partial g(x^{i-1})} = \frac{\partial E}{\partial g(x^{(i)})} \cdot \frac{\partial g(x^{(i)})}{\partial x^{(i)}} \cdot \frac{\partial x^{(i)}}{\partial g(x^{(i-1)})}
\]

According to definition: \(\frac{\partial x^{(i)}}{\partial g(x^{(i-1)})} = W_i \in \mathbb{R}^{d \times d'}, \) where \(d' \) is the number of neurons in \(i - 1 \)-th layer.

Therefore, we can conclude:

\[
\delta_{i-1} = \delta_i \cdot \frac{\partial g(x^{(i)})}{\partial x^{(i)}} \cdot W_i
\]

where \(\delta_{i-1} \in \mathbb{R}^{d'} \)
The recursive relationship

Backward Propagation Algorithm:

- Initialize W_i for all the layers.
- Feedforward x into neural network and save intermediate values $g(x^{(1)}), g(x^{(2)}), \cdots$.
- Compute $\delta_n = \frac{\partial E}{\partial z}$.
- For $i = n \rightarrow 1$; do
 - $\delta_{i-1} = \delta_i \cdot \frac{\partial g(x^{(i)})}{\partial x^{(i)}} \cdot W_i$
 - Compute $\frac{\partial E}{\partial W_i} = \delta_i \cdot \frac{\partial g(x^{(i)})}{\partial x^{(i)}} \cdot g(x^{(i-1)})$
- Obtain all $\frac{\partial E}{\partial W_i}$ for gradient descent.
Learning Goals

Gradient Descent

The Backpropagation Algorithm

The Backpropagation Algorithm in Matrix

When to use Decision Trees and Neural Networks

Revisiting Learning Goals
When should we use Neural Network?

- High dimensional or real-valued inputs, noisy (sensor) data.
- Form of target function is unknown (no model).
- Not important for humans to explain the learned function.
When should we NOT use Neural Network?

- Difficult to determine the network structure (number of layers, number of neurons).
- Difficult to interpret weights, especially in multi-layered networks.
- Tendency to overfit in practice (poor predictions outside of the range of values it was trained on).
Decision Tree v.s. Neural Network

- Data types. → **NN:** images, audio, text. **DT:** tabular data.

- Size of data set. → **DT:** can work with very little data. **NN:** requires a lot of data. Easily overfit.

- Form of target function. → **NN:** Can model arbitrary functions. **DT:** nested if-then-else statement.

- The architecture. → **NN:** num of layers, num of neurons per layer, activation function, initial weights, learning rate. All are critical. **DT:** some params to prevent overfitting.

- Interpret the learned function. → **DT:** Easily interpretable. Can explain to other people (Finance). **NN:** black box. Difficult/impossible to interpret.

- Time available for training and classification. → **DT:** fast. **NN:** slow to train and test.
Decision Tree v.s. Neural Network

- Data types. → NN: images, audio, text. DT: tabular data.

- Size of data set. → DT: can work with very little data. NN: requires a lot of data. easily overfit.
Decision Tree v.s. Neural Network

- **Data types.** \rightarrow NN: images, audio, text. DT: tabular data.

- **Size of data set.** \rightarrow DT: can work with very little data. NN: requires a lot of data. easily overfit.

- **Form of target function.** \rightarrow NN: Can model arbitrary functions. DT: nested if-then-else statement.
Decision Tree v.s. Neural Network

- **Data types.** → NN: images, audio, text. DT: tabular data.

- **Size of data set.** → DT: can work with very little data. NN: requires a lot of data. easily overfit.

- **Form of target function.** → NN: Can model arbitrary functions. DT: nested if-then-else statement.

- **The architecture.** → NN: num of layers, num of neurons per layer, activation function, initial weights, learning rate. All are critical. DT: some params to prevent overfitting.
Decision Tree v.s. Neural Network

- **Data types.** → NN: images, audio, text. DT: tabular data.

- **Size of data set.** → DT: can work with very little data. NN: requires a lot of data. easily overfit.

- **Form of target function.** → NN: Can model arbitrary functions. DT: nested if-then-else statement.

- **The architecture.** → NN: num of layers, num of neurons per layer, activation function, initial weights, learning rate. All are critical. DT: some params to prevent overfitting.

- **Interpret the learned function.** → DT: Easily interpretable. Can explain to other people. (Finance). NN: black box. Difficult/impossible to interpret.
Decision Tree v.s. Neural Network

- **Data types.** → NN: images, audio, text. DT: tabular data.

- **Size of data set.** → DT: can work with very little data. NN: requires a lot of data. easily overfit.

- **Form of target function.** → NN: Can model arbitrary functions. DT: nested if-then-else statement.

- **The architecture.** → NN: num of layers, num of neurons per layer, activation function, initial weights, learning rate. All are critical. DT: some params to prevent overfitting.

- **Interpret the learned function.** → DT: Easily interpretable. Can explain to other people. (Finance). NN: black box. Difficult/impossible to interpret.

- **Time available for training and classification.** → DT: fast. NN: slow to train and test.
Revisiting Learning Goals

▶ Explain the steps of the gradient descent algorithm.
▶ Explain how we can modify gradient descent to speed up learning and ensure convergence.
▶ Describe the back-propagation algorithm including the forward and backward passes.
▶ Compute the gradient for a weight in a multi-layer feed-forward neural network.
▶ Describe situations in which it is appropriate to use a neural network or a decision tree.