Uninformed Search

Wenhu Chen

Lecture 2

Readings: RN 3.1, 3.2, 3.3, 3.4.1, 3.4.3,3.4.4

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 1/84



Outline

Learning Goals

Applications of Search
Formulating a Search Problem
Generic Search Algorithm

Uninformed Search Algorithms
Depth-First Search
Breadth-First Search

Iterative-Deepening Search
Learning Goals

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 2/84



Learning goals

» Formulate a real-world problem as a search problem.

» Trace the execution of and implement uninformed search
algorithms (Breadth-first search, Depth-first search,
Iterative-deepening search).

» Given an uninformed search algorithm, explain its space
complexity, time complexity, and whether it has any
guarantees on the quality of the solution found.

» Given a scenario, explain whether and why it is appropriate to
use an uninformed algorithm.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 3/84



Applications of Search

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 4/84



Example: Robotics

— Letting Roomba vacuum the house.

Sending a robot to explore the planet Mars.

Letting robots handle search and rescue during natural disasters.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 5 /84



Example: Route Planning

Plattsville

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 6 /84



Traveling Salesperson Problem

What is the shortest path that starts at city A, visits each city only
once, and returns to A?

School

Movies

Planter's Farm

Applications: DNA sequencing. School bus routes. Parcel pickups.
See this article for a recent breakthrough.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 7/84


https://www.quantamagazine.org/computer-scientists-break-traveling-salesperson-record-20201008/

Propositional Satisfiability

Propositional satisfiability: Given a formula, is there a way to
assign true/false to the variables to make the formula true?

(((aAb) ve)Ad)V (—e))

FCC spectrum auction: buy radio spectrums from TV broadcasters
and sell them to the telecom companies

Check out this news article and this paper.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 8 /84


https://science.ubc.ca/news/how-ai-helped-fcc-auction-19-billion-worth-radio-spectrum
https://www.cs.ubc.ca/~newmanne/papers/cacm_deep_opt.pdf

8-puzzle

Initial State Goal State
5 3 1 2 3
8 7 6 4 5 6
2 4 1 7 8

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 9 /84



A River Crossing Puzzle

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 10 / 84



N-Queens Problem

The n-queens problem: Place n queens on an n x n board so that
no pair of queens attacks each other.

http://yue-guo.com/wp-content/uploads/2019/02/N_queen.png

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 11 /84


http://yue-guo.com/wp-content/uploads/2019/02/N_queen.png

Formulating a Search Problem

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 12 / 84



Motivation for Search Algorithms

> Problems that involve sequential decision making

» Last resort: No efficient Algorithm (e.g. solve a linear
equation)

Easy to verify a solution, but to find a solution
NP-hard problem

Solve complex problems in Real-Life, trial-and-error

vV v.v Y

On a computer, a search algorithm will explore all paths
systematically

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 13 /84



Graph Searching

Any search problem can be visualized as a graph, where each node
represents a state.

» S is the initial state, G is the goal state

» Search == Traversing the graph to find a path from S to G

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 14 / 84



A Search Problem

Definition (Search Problem)

A search problem is defined by:
> A set of states
> An initial state
> Goal states or a goal test
» a boolean function which tells us whether a given state is a
goal state
» A successor (neighbour) function
» an action which takes us from one state to other states

» (Optionally) a cost associated with each action

A solution to this problem is a path from the start state
to a goal state (optionally with the smallest total cost).

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 15 / 84



Example: 8-Puzzle

Initial State Goal State
5 3 1 2 3
8 7 6 4 5 6
2 4 1 7 8

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 16 / 84



Formulating 8-Puzzle as a Search Problem

> State:

» Initial state:

» Goal states:

» Successor function:

» Cost function:

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 17 / 84



Formulating 8-Puzzle as a Search Problem

> State: T0T01%02, T10T11712, T20T21722
xi; is the number in row ¢ and column j. i,j € {0,1,2}.
zij € {0,...,8}. x;; = 0 denotes the empty square.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 18 / 84



Formulating 8-Puzzle as a Search Problem

> State: T0T01%02, T10T11712, T20T21722
xi; is the number in row ¢ and column j. i,j € {0,1,2}.
zij € {0,...,8}. x;; = 0 denotes the empty square.

» Initial state: 530, 876, 241.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 18 / 84



Formulating 8-Puzzle as a Search Problem

> State: T0T01%02, T10T11712, T20T21722
xi; is the number in row ¢ and column j. i,j € {0,1,2}.
zij € {0,...,8}. x;; = 0 denotes the empty square.

» Initial state: 530, 876, 241.

» Goal states: 123,456, 780.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 18 / 84



Formulating 8-Puzzle as a Search Problem

> State: T0T01%02, T10T11712, T20T21722
xi; is the number in row ¢ and column j. i,j € {0,1,2}.
zij € {0,...,8}. x;; = 0 denotes the empty square.

» Initial state: 530, 876, 241.
» Goal states: 123,456, 780.

» Successor function: Consider the empty square as a tile. State
B is a successor of state A if and only if we can convert A to B
by moving the empty tile up, down, left, or right by one step.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 18 / 84



Formulating 8-Puzzle as a Search Problem

> State: T0T01%02, T10T11712, T20T21722
xi; is the number in row ¢ and column j. i,j € {0,1,2}.
zij € {0,...,8}. x;; = 0 denotes the empty square.

» Initial state: 530, 876, 241.

» Goal states: 123,456, 780.

» Successor function: Consider the empty square as a tile. State
B is a successor of state A if and only if we can convert A to B
by moving the empty tile up, down, left, or right by one step.

» Cost function: Each move has a cost of 1.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 18 / 84



Q: The successor function

Q: Which of the following is a successor of 530, 876, 2417

Initial State
(A) 350,876,241 5 3
(B) 536,870,241
(C) 537,806,241 s | 7|6
(D) 538,076,241

2 4 1

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 19 / 84



Q: The successor function

Q: Which of the following is a successor of 530, 876, 2417

Initial State
(A) 350,876,241 5 3
(B) 536,870,241
(C) 537,806,241 s | 7|6
(D) 538,076,241

2 4 1

— (B) is correct.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 19 / 84



Choosing among multiple formulations

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 20 / 84



Choosing among multiple formulations

» The state definition determines the nodes.
The successor function determines the directed edges.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 20 / 84



Choosing among multiple formulations

» The state definition determines the nodes.
The successor function determines the directed edges.

> Ideally, we want to minimize the number of nodes and edges
in the graph.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 20 / 84



Choosing among multiple formulations

» The state definition determines the nodes.
The successor function determines the directed edges.

> Ideally, we want to minimize the number of nodes and edges
in the graph.

» Choosing a state definition may make it easier or harder to
implement the successor function.

An alternative state definition for the 8-puzzle:
A state is defined by 8 coordinates.
(x4,y:) is the coordinates for tile i where 1 <4 < 8.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 20 / 84



Choosing among multiple formulations

Initial State
5 3

8 7 6
2 4 1

> State: (0, 2), (2, 2), (2, 0), (0, 1), (2, 1), (0, 0), (1, 2), (1, 1), (2,
0)

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 21/ 84



Choosing among multiple formulations

Initial State
5 3

8 7 6
2 4 1

> State: (0, 2), (2, 2), (2, 0), (0, 1), (2, 1), (0, 0), (1, 2), (1, 1), (2,
0)

» Space Consumption will increase by 2x.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 21/ 84



Choosing among multiple formulations

Initial State
5 3

8 7 6
2 4 1

> State: (0, 2), (2, 2), (2, 0), (0, 1), (2, 1), (0, 0), (1, 2), (1, 1), (2,
0)

» Space Consumption will increase by 2x.

» Successor Function: Swap the 0 tile coordinate with another
neighbor tile

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 21/ 84



Generic Search Algorithm

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 22 /84



The Search Graph

» normally no duplicate of nodes
P label each edge with its cost
» this lecture will assume each edge has an equal cost of 1

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 23/ 84



Searching for a Solution

— A formulation gives us enough info to generate the search
graph. However, we often don’t generate the search graph
explicitly and store it. It may be large or infinite and it is not
necessary.

Instead, we will generate a search tree as we explore the search
graph.

» Construct the search tree as we explore paths incrementally
from the start node.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 24 / 84



Searching for a Solution

— A formulation gives us enough info to generate the search
graph. However, we often don’t generate the search graph
explicitly and store it. It may be large or infinite and it is not
necessary.

Instead, we will generate a search tree as we explore the search
graph.

» Construct the search tree as we explore paths incrementally
from the start node.

» Maintain a frontier of paths from the start node.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 24 / 84



Searching for a Solution

— A formulation gives us enough info to generate the search
graph. However, we often don’t generate the search graph
explicitly and store it. It may be large or infinite and it is not
necessary.

Instead, we will generate a search tree as we explore the search
graph.

» Construct the search tree as we explore paths incrementally
from the start node.

» Maintain a frontier of paths from the start node.

» Frontier contains all the paths available for expansion.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 24 / 84



Searching for a Solution

— A formulation gives us enough info to generate the search
graph. However, we often don’t generate the search graph
explicitly and store it. It may be large or infinite and it is not
necessary.

Instead, we will generate a search tree as we explore the search
graph.

» Construct the search tree as we explore paths incrementally
from the start node.

» Maintain a frontier of paths from the start node.
» Frontier contains all the paths available for expansion.

» Expanding a path: removing it from the frontier, generating
all the neighbors of the last node, and adding the paths
ending with each neighbor to the frontier.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 24 / 84



The Search Tree

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 25/ 84



Generic Search Algorithm

Algorithm 1 A Generic Search Algorithm

1. procedure SEARCH(Graph, Start node s, Goal test goal(n))

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 26 / 84



Generic Search Algorithm

Algorithm 2 A Generic Search Algorithm

1. procedure SEARCH(Graph, Start node s, Goal test goal(n))
2: frontier := {(s)}

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 26 / 84



Generic Search Algorithm

Algorithm 3 A Generic Search Algorithm

1. procedure SEARCH(Graph, Start node s, Goal test goal(n))
2: frontier := {(s)}
3 while frontier is not empty do

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 26 / 84



Generic Search Algorithm

Algorithm 4 A Generic Search Algorithm

1. procedure SEARCH(Graph, Start node s, Goal test goal(n))
2: frontier := {(s)}

3 while frontier is not empty do

4: select and remove path (ng,...,n;) from frontier

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 26 / 84



Generic Search Algorithm

Algorithm 5 A Generic Search Algorithm

1. procedure SEARCH(Graph, Start node s, Goal test goal(n))
2 frontier := {(s)}

3 while frontier is not empty do

4: select and remove path (ng,...,n;) from frontier

5 if goal(ny) then

6 return (ng,...,ng)

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 26 / 84



Generic Search Algorithm

Algorithm 6 A Generic Search Algorithm

1. procedure SEARCH(Graph, Start node s, Goal test goal(n))
2 frontier := {(s)}

3 while frontier is not empty do

4 select and remove path (ng,...,n;) from frontier
5: if goal(ny) then

6 return (ng,...,ng)

7 for every neighbour n of n; do

8 add (ng,...,ng,n) to frontier

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 26 / 84



Generic Search Algorithm

Algorithm 7 A Generic Search Algorithm

1. procedure SEARCH(Graph, Start node s, Goal test goal(n))
2 frontier := {(s)}

3 while frontier is not empty do

4 select and remove path (ng,...,n;) from frontier
5: if goal(ny) then

6 return (ng,...,ng)

7 for every neighbour n of n; do

8 add (ng,...,ng,n) to frontier

9

return no solution

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 26 / 84



Uninformed Search Algorithms

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 27 / 84



Uninformed Search Algorithms
Depth-First Search

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 28 / 84



Depth-First Search

» Treats the frontier as a stack (LIFO).
» Expands the last/most recent node added to the frontier.
— Search one path to completion before trying another path.

Backtracks to another alternative after it has explored all the paths
from the first alternative.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 29 / 84



Trace DFS on a Search Graph

» Trace DFS on the search graph below, with S as the initial
state.

» Add nodes to the frontier in alphabetical order.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 30/ 84



Trace DFS on a Search Graph

Frontier: (S):
)

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 31/84



Trace DFS on a Search Graph
Frontier: (S) — (D, E, P):

(s,

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 32 /84



Trace DFS on a Search Graph
Frontier: (D, E, P) — (D, E, Q):

(s).
e ® @

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 33 /84



Trace DFS on a Search Graph
Frontier: (D, E, Q) — (D, E):

(s)
OENORG)
O]

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 34 /84



Trace DFS on a Search Graph
Frontier: (D, E) — (D, H, R):

(s)
@ (=
) @® (@

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 35/ 84



Trace DFS on a Search Graph
Frontier: (D, H, R) — (D, H, F):

(s)
@ (=
) @ (@

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 36 /84



Trace DFS on a Search Graph
Frontier: (D, H, F) — (D, H, C, G):

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 37 /84



Trace DFS on a Search Graph
Frontier: (D, H, C, G) — (D, H, C):

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 38 /84



Properties of DFS

Properties
» Space Complexity: size of frontier in worst case
» Time Complexity: # nodes visited in worst case
» Completeness: does it find a solution when one exists?

» Optimality: if solution found, is it the one with the least cost?

Useful Quantities
» b is the branching factor.
> m is the maximum depth of the search tree.

» d is the depth of the shallowest goal node.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 39 /84



Properties of DFS - Space Complexity

Space Complexity

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 40 / 84



Properties of DFS - Space Complexity

Space Complexity
> O(bm)

b is the branching factor.
m is the max depth of the search tree.

» Linear in m

» Remembers m nodes on current path and
at most b siblings for each node.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 40 / 84



Properties of DFS - Time Complexity

Time Complexity

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 41 / 84



Properties of DFS - Time Complexity

Time Complexity
> O@™)
» Exponential in m.

> Visit the entire search tree in the worst case.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 41 / 84



Properties of DFS - Completeness

Is DFS guaranteed to find a solution if a solution exists?

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 42 / 84



Properties of DFS - Completeness

Is DFS guaranteed to find a solution if a solution exists?
> No.
> Will get stuck in an infinite path.

» An infinite path may or may not be a cycle.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo

42/ 84



Properties of DFS - Completeness

Is DFS guaranteed to find a solution if a solution exists?

G
G\
o
o

» Loop: H — I — J — H, cannot find the solution

» Solution G exists

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 43 / 84



Properties of DFS - Optimality

Is DFS guaranteed to return an optimal solution if it terminates?

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 44 / 84



Properties of DFS - Optimality

Is DFS guaranteed to return an optimal solution if it terminates?
> No.

» Pays no attention to the costs and
makes no guarantee on the solution’s quality.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 44 / 84



Properties of DFS - Optimality

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 45 / 84



When should we use DFS?

DFS is useful when:
» Space is restricted.

» Many solutions exist, perhaps with long paths.

DFS is a poor method when:
» There are infinite paths.
» Solutions are shallow.

» There are multiple paths to a node.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo

46 / 84



Uninformed Search Algorithms

Breadth-First Search

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 47 / 84



Breadth-First Search

> Treats the frontier as a queue (FIFO).
» Expands the first/oldest node added to the frontier.

— Select a path with the fewest arcs at each step.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 48 / 84



Trace BFS on a Search Graph
» Trace the BFS algorithm

(r) {@)—(c)
(2) (1)
(7

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 49 / 84



Trace BFS on a Search Graph

Frontier: (S)
()

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 50 / 84



Trace BFS on a Search Graph
Frontier: (S) — (D, E, P)

(s).

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 51 /84



Trace BFS on a Search Graph
Frontier: (D, E, P) — (B, C, H, J, Q)

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 52 / 84



Trace BFS on a Search Graph
Frontier: (B, C, H, J, Q) — (P, B, G)

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 53 / 84



Trace BFS on a Search Graph
Frontier: (P, B, G) — (G, Q, P)

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 54 / 84



Properties of BFS - Space Complexity

Space Complexity

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 55/ 84



Properties of BFS - Space Complexity

Space Complexity

> O(b?9)

b is the branching factor.
d is the depth of the shallowest goal node.

» Exponential in d.

> Must visit the top d levels.
The size of the frontier is dominated by the size of level d.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 55/ 84



Properties of BFS - Time Complexity

Time Complexity

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 56 / 84



Properties of BFS - Time Complexity

Time Complexity
> O(bv?9)
» Exponential in d.

> Visit the entire search tree in the worst case.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 56 / 84



Properties of BFS - Completeness

Is BFS guaranteed to find a solution if a solution exists?

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 57 / 84



Properties of BFS - Completeness

Is BFS guaranteed to find a solution if a solution exists?
> Yes.

» Explores the tree level by level until it finds a goal.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 57 / 84



Properties of BFS - Optimality

Is BFS guaranteed to return an optimal solution if it terminates?

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 58 / 84



Properties of BFS - Optimality

Is BFS guaranteed to return an optimal solution if it terminates?
> No.

» Guaranteed to find the shallowest goal node.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 58 / 84



When should we use BFS?

BFS is useful when:
» Space is not a concern.

» Want a solution with the fewest arcs.

BFS is a poor method when:
» All the solutions are deep in the tree.

» The problem is large and the graph is dynamically generated.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 59 / 84



Q: BFS v.s. DFS

Q #1: Suppose that memory is very limited.
Which of BFS and DFS would you choose?

(A
(B
(
(

) BFS is a better choice.
)
C) Both are good choices.
)

DFS is a better choice.

D) Neither is a good choice.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 60 / 84



Q: BFS v.s. DFS

Q #1: Suppose that memory is very limited.
Which of BFS and DFS would you choose?

BFS is a better choice.

(A)

(B) DFS is a better choice.
(C) Both are good choices.
(D)

Neither is a good choice.

— (B) DFS is better.
BFS requires exponential memory.
DFS requires linear memory.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo

61 /84



Q: BFS v.s. DFS

Q #2: Suppose that all the solutions are deep in the search tree.
Which of BFS and DFS would you choose?

(A) BFS is a better choice.
(B) DFS is a better choice.
(C) Both are good choices.
(D) Neither is a good choice.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 62 / 84



Q: BFS v.s. DFS

Q #2: Suppose that all the solutions are deep in the search tree.
Which of BFS and DFS would you choose?

BFS is a better choice.

(A)

(B) DFS is a better choice.
(C) Both are good choices.
(D)

Neither is a good choice.

— (B) DFS is better.

DFS will explore long paths first and find a solution faster.
BFS will explore shallow nodes first and will likely require more
time to find a solution.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 63 / 84



Q: BFS v.s. DFS

Q #3: Suppose that the search graph contains cycles.
Which of BFS and DFS would you choose?

(A
(B
(
(

) BFS is a better choice.
)
C) Both are good choices.
)

DFS is a better choice.

D) Neither is a good choice.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 64 / 84



Q: BFS v.s. DFS

Q #3: Suppose that the search graph contains cycles.
Which of BFS and DFS would you choose?

(A
(B
(
(

) BFS is a better choice.
)
C) Both are good choices.
)

DFS is a better choice.

D) Neither is a good choice.

— (A) BFS is better.
DFS may get stuck in cycles.
BFS has no problem with cycles.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo

65/ 84



Q: BFS v.s. DFS

Q #4: Suppose that the branching factor is large/infinite.
Which of BFS and DFS would you choose?

(A) BFS is a better choice.
(B) DFS is a better choice.
(C) Both are good choices.
(D) Neither is a good choice.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 66 / 84



Q: BFS v.s. DFS

Q #4: Suppose that the branching factor is large/infinite.
Which of BFS and DFS would you choose?

(A
(B
(
(

) BFS is a better choice.
)
C) Both are good choices.
)

DFS is a better choice.

D) Neither is a good choice.

— (B) DFS is better.
BFS will be slow for large b and will not terminate with infinite b.
DFS requires linear memory.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 67 / 84



Q: BFS v.s. DFS

Q #5: Suppose that we must find the shallowest goal node.
Which of BFS and DFS would you choose?

(A
(B
(
(

) BFS is a better choice.
)
C) Both are good choices.
)

DFS is a better choice.

D) Neither is a good choice.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 68 / 84



Q: BFS v.s. DFS

Q #5: Suppose that we must find the shallowest goal node.
Which of BFS and DFS would you choose?

(A
(B
(
(

) BFS is a better choice.
)
C) Both are good choices.
)

DFS is a better choice.

D) Neither is a good choice.

— (A) BFS is better.
BFS is guaranteed to find the shallowest goal node.
DFS will likely find a deep goal node first.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 69 / 84



Q: BFS v.s. DFS

Q #6: Suppose that all the solutions are very shallow.
Which of BFS and DFS would you choose?

(A
(B
(
(

) BFS is a better choice.
)
C) Both are good choices.
)

DFS is a better choice.

D) Neither is a good choice.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 70 / 84



Q: BFS v.s. DFS

Q #6: Suppose that all the solutions are very shallow.
Which of BFS and DFS would you choose?

(A
(B
(
(

) BFS is a better choice.
)
C) Both are good choices.
)

DFS is a better choice.

D) Neither is a good choice.

— (A) BFS is better.
BFS is guaranteed to find the shallowest goal node.
DFS will likely find a deep goal node first.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 71/ 84



Uninformed Search Algorithms

Iterative-Deepening Search

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 72/ 84



Combining The Best of BFS and DFS

Can we create a search algorithm
that combines the best of BFS and DFS?

BFS DFS
O(b?) exponential space O(bm) linear space
Guaranteed to find May get stuck
a solution if one exists on infinite paths

Can we bring the best of two together?

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 73/ 84



Combining The Best of BFS and DFS

Can we create a search algorithm
that combines the best of BFS and DFS?

BFS DFS
O(b?) exponential space O(bm) linear space
Guaranteed to find May get stuck
a solution if one exists on infinite paths

Can we bring the best of two together?

Iterative-Deepening Search:
For every depth limit,
perform depth-first search until the depth limit is reached.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 73/ 84



Trace IDS on a Search Graph

» Trace IDS on the search graph below.

» Add nodes to the frontier in alphabetical order.

(7) OO0
() (1)
)

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 74 / 84



Trace IDS on a Search Graph
Depth: 1

@1

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 75 / 84



Trace IDS on a Search Graph
Depth: 2

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 76 / 84



Trace IDS on a Search Graph
Depth: 3

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 77 / 84



Trace IDS on a Search Graph
Depth: 4

()

O

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 78 / 84



Properties of IDS - Space Complexity

Space Complexity

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 79 / 84



Properties of IDS - Space Complexity

Space Complexity

> O(bd)

b is the branching factor.
d is the depth of the shallowest goal node.

» Linear in d.
Similar to DFS.

» Executes DFS for each depth limit.
Guaranteed to terminate at depth d.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 79 / 84



Properties of IDS - Time Complexity

Time Complexity

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 80 / 84



Properties of IDS - Time Complexity

Time Complexity
> O(bv?9)

» Exponential in d.
Same as BFS.

> Visits all the nodes on the top d levels in the worst case.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 80 / 84



Properties of IDS - Completeness

Is IDS guaranteed to find a solution if a solution exists?

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 81 /84



Properties of IDS - Completeness

Is IDS guaranteed to find a solution if a solution exists?

> Yes.
Same as BFS.

» Explores the tree level by level until it finds a goal.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 81 /84



Properties of IDS - Optimality

Is IDS guaranteed to return an optimal solution if it terminates?

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 82 /84



Properties of IDS - Optimality

Is IDS guaranteed to return an optimal solution if it terminates?
> No.

» Guaranteed to find the shallowest goal node.
Same as BFS.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 82 /84



A Summary of IDS Properties
» Space Complexity:
O(bd), linear in d. Similar to DFS.

» Time Complexity:
O(b%), exponential in d. Same as BFS.

» Completeness:

Yes. Same as BFS.

» Optimality:

No, but guaranteed to find the shallowest goal node.
Same as BFS.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo

83 /84



Learning goals

» Formulate a real-world problem as a search problem.

» Trace the execution of and implement uninformed search
algorithms (Breadth-first search, Depth-first search,
Iterative-deepening search).

» Given an uninformed search algorithm, explain its space
complexity, time complexity, and whether it has any
guarantees on the quality of the solution found.

» Given a scenario, explain whether and why it is appropriate to
use an uninformed algorithm.

CS 486/686: Intro to Al Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 84 / 84



	Learning Goals
	Applications of Search
	Formulating a Search Problem
	Generic Search Algorithm
	Uninformed Search Algorithms
	Depth-First Search
	Breadth-First Search
	Iterative-Deepening Search

	Learning Goals

