
Neural Networks - Part 1

Wenhu Chen

Lecture 19

Readings: RN 21.1, PM 7.5.
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Learning Goals

▶ Describe the simple mathematical model of a neuron.

▶ Describe desirable properties of an activation function.

▶ Distinguish feedforward and recurrent neural networks.

▶ Learn a perceptron that represents a simple logical function.

▶ Determine the logical function represented by a perceptron.

▶ Explain why a perceptron cannot represent the XOR function.

▶ Understanding recurrent neural networks.
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Learning complex relationships

▶ Image interpretation, speech recognition, and translation.

▶ The relationship between inputs and outputs
can be extremely complex.

▶ How can we build a model to learn such complex
relationships?

→ We need a model that can learn complex relationships, that can
be learned efficiently, and does not overfit the data.

Humans can learn complex relationships well.

Can we build a model that mimics the human brain?
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Human brains

▶ A brain is a set of densely connected neurons.

▶ Components of a neuron: dendrites, soma, axon, synapse

▶ Dendrites receive input signals from other neurons.

▶ Soma controls activity of the neuron.

▶ Axon sends output signals to other neurons.

▶ Synapses are the links between neurons.

▶ Depending on the input signals, the neuron performs
computations and decides to fire or not.

→ Conventional models of neurons
have few complex components.
Neural networks have many simple
components.
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A simple mathematical model of a neuron

▶ McCulloch and Pitts 1943.

▶ A linear classfier — it “fires” when a linear combination of its
inputs exceeds some threshold.
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A simple mathematical model of a neuron

▶ Neuron j computes a weighted sum of its input signals.
inj =

∑n
i=0wijai.

▶ Neuron j applies an activation function g to the weighted sum
to derive the output. aj = g(inj) = g (

∑n
i=0wijai) .

→ Neuron i sends input signal ai to neuron j. The link between i
and j has weight wij , which is the strength of the connection. The
neuron has a dummy input a0 = 1 with an associated weight w0j .
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Desirable Properties of The Activation Function
What are some desirable properties of the activation function?

▶ It should be nonlinear.

→ Complex relationships are often nonlinear. Combining
linear functions will not give us a nonlinear function. We can
interleave linear and nonlinear functions to represent complex
relationships.

▶ It should mimic the behaviour of real neurons.

→ If the weighted sum of the input signals is large enough,
then the neuron fires (sends an output signal of 1). Otherwise,
the neuron does not fire (sends an output signal of 0).

▶ It should be differentiable almost everywhere.

→ We learn a neural network using optimization algorithms
such as gradient descent. Many such optimization algorithms
require a function to be differentiable.
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Common activation functions

▶ Step function: g(x) = 1 if x > 0. g(x) = 0 if x ≤ 0.

▶ Simple to use, but not differentiable.

▶ Not used in practice, but useful to explain concepts.
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Common activation functions (continued)

▶ Sigmoid function: g(x) =
1

1 + e−kx
.

▶ For very large or very small x, g(x) is very close to 1 or 0.

▶ Can approximate the step function by tuning k. As k
increases, the sigmoid function becomes steeper and is closer
to the step function. Usually in practice k = 1.

▶ Differentiable.

▶ Vanishing gradient problem: when x is very large or very
small, g(x) responds little to changes in x. The network does
not learn further or learns very slowly.

▶ Computationally expensive.
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Common activation functions (continued)

▶ Rectified linear unit (ReLU): g(x) = max(0, x).

▶ Computationally efficient; network converges quickly.

▶ Differentiable.

▶ The dying ReLU problem: when inputs approach 0 or are
negative, the gradient becomes 0 and the network cannot learn.
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Common activation functions (continued)

▶ Leaky ReLU: g(x) = max(0, x) + k ·min(0, x)

→ Small positive slope k in the negative area. Enables
learning for negative input values.
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Connecting the neurons together into a network

▶ Feedforward network

▶ Forms a directed acyclic graph (no loops).

▶ Have connections only in one direction.

▶ Represents a function of its inputs.

▶ Recurrent network

▶ Feeds its outputs back into its inputs.

▶ Can support short-term memory. For the given inputs, the
behaviour of the network depends on its initial state, which
may depend on previous inputs.

▶ The model is more interesting, but more difficult to understand
and to learn.
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Perceptrons

▶ Single-layer feedforward neural network

▶ The inputs are connected directly to the outputs.

▶ Can represent some logical functions, e.g. AND, OR, and
NOT.

→ A big deal at the time. People believed that AI is solved if
computers could perform formal logical reasoning.

→ Learn the perceptron for each output separately.
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Q: What does the perceptron compute?

Q #1: Consider the following perceptron, where the activation
function is the step function. (g(x) = 1 if x > 0. g(x) = 0 if
x ≤ 0.). Which of the following logical functions does the
perceptron compute?

(A) x1 ∧ x2
(B) ¬(x1 ∧ x2)
(C) x1 ∨ x2
(D) ¬(x1 ∨ x2)

→ (D) is correct. This perceptron computes a NOR gate.
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Q: Learning a perceptron for the AND function

Q #2: Consider the perceptron below where the activation
function is the step function (g(x) = 1 if x > 0. g(x) = 0 if
x ≤ 0.). What should the weights w01, w11 and w21 be such that
the perceptron represents an AND function?

x1 x2 o1
0 0 0
0 1 0
1 0 0
1 1 1

(A) w01 = −1. w11 = 0.5. w21 = 0.5

(B) w01 = 0.5. w11 = −1. w21 = 1

(C) w01 = 1.5. w11 = −1. w21 = −1

(D) w01 = −1.5. w11 = 1. w21 = 1

→ (D) is correct. (−1.5)x0 + 1x1 + 1x2 ≥ 0.
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Q: What does this perceptron compute?

Q #3: What does h1 compute?

h1 = g(x1 + x2 − 0.5)

where g(x) = 1 if x > 0 and g(x) = 0 if x ≤ 0.

(A) (x1 ∨ x2)

(B) (x1 ∧ x2)

(C) (¬(x1 ∨ x2))

(D) (¬(x1 ∧ x2))

→ (A) is the correct answer. This perceptron computes an OR
gate.
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Q: What does this perceptron compute?

Q #4: What does h2 compute?

h2 = g(−x1 − x2 + 1.5)

where g(x) = 1 if x > 0 and g(x) = 0 if x ≤ 0.

(A) (x1 ∨ x2)

(B) (x1 ∧ x2)

(C) (¬(x1 ∨ x2))

(D) (¬(x1 ∧ x2))

→ (D) is the correct answer. This perceptron computes a NAND
gate.
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Limitations of perceptrons

▶ Perceptrons: An introduction to computational geometry.
Minsky and Papert. MIT Press. Cambridge MA 1969.

→ Marvin Minsky (founder of MIT AI lab)

Seymour Papert (director of the lab).

▶ Results:

▶ XOR cannot be represented using perceptrons.
We need a deeper network.

▶ No one knew how to train deeper networks.

▶ Led to the first AI winter.

→ This approach was a dead end. A freeze to funding and
publications.
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Why can’t a perceptron represent XOR?

→ Intuition: a perceptron is a linear classifier. XOR is not linearly
separable.
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XOR as a 2-Layer Neural Network

Can you come up with the weights such that the following network
represents the XOR function?

→ Hint: Start by converting XOR to logical formula composed of
logical operations that can be represented by a perceptron:
o1 = (x1 ∨ x2) ∧ (¬(x1 ∧ x2)) = h1 ∧ h2
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XOR as a 2-Layer Neural Network

o1 = (x1 ∨ x2) ∧ (¬(x1 ∧ x2)) = h1 ∧ h2
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XOR function

The decision boundary of XOR network:
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Recurrent Neural Network

We can process a sequence of vectors x by applying a recurrence
formula at every time step:

We need to maintain a state variable ht to keep track of the
history of all the seen information.

ht = fW (ht−1, xt) yt = fY (ht)
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Vanilla Recurrent Neural Network

ht = fW (ht−1, xt)

ht = tanh(Whhht−1 +Wxhxt); yt = Whyht
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Vanilla Recurrent Neural Network

Proceed from x1 · · ·xn, the weights of the transition is being
shared among all the transitions.
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Modeling Language
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Modeling Language
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Revisiting Learning Goals

▶ Describe the simple mathematical model of a neuron.

▶ Describe desirable properties of an activation function.

▶ Distinguish feedforward and recurrent neural networks.

▶ Learn a perceptron that represents a simple logical function.

▶ Determine the logical function represented by a perceptron.

▶ Explain why a perceptron cannot represent the XOR function.

▶ Understanding recurrent neural networks.
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