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Learning Goals

▶ Understanding what is unsupervised Learning

▶ Understanding K-Means clustering algorithm

▶ Knowing how to perform PCA

▶ Understanding the basic idea of Auto-Encoder and GAN
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Unsupervised Learning Tasks

2 major types of tasks:

▶ Representation learning : learning low-dimensional
representations of examples

▶ Generative modelling : learning probability distribution from
which new examples can be drawn as samples
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Unsupervised Learning - Clustering

Clustering is a common unsupervised representation learning task

→ Goal is to group training examples into clusters.

→ Clusters can be thought of as classes/categories.
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Unsupervised Learning - Clustering

2 types of clustering tasks

▶ Hard clustering : each example is assigned to 1 cluster with
certainty
→ class(x) = c

▶ Soft clustering : each example has a probability distribution
over all clusters
→ class(x) ∼ P (C|x)
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k-Means Clustering - Overview

▶ A hard clustering algorithm

▶ Learns to definitively assign examples to classes

▶ Input: number of clusters k, training examples X

▶ Goal is to learn a representation that assigns examples to the
appropriate class c ∈ {1, 2, . . . , k}
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k-Means Clustering - Centroids

Suppose each example contains n features: x = ⟨x1, x2, . . . , xn⟩

Each feature xj is real-valued.

k-Means learns a centroid for each cluster and assigns examples to
the closest centroid

▶ By “closest” we mean the centroid that is the shortest
distance from x

▶ Need to define a distance function d(c, x)

→ E.g. Euclidean distance (L2): d(c, x) =
√∑n

j=1(cj − xj)2
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k-Means Clustering - Centroids

Example: k = 3, x = ⟨x1, x2⟩

x1

x2

x1

x2
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k-Means Clustering - Algorithm Overview

k-means alternates between 2 steps:

1. Centroid update: Set the centroid of each cluster as the
feature-wise mean of each example currently assigned to the
cluster.

2. Cluster assignment: Assign each training example x to the
cluster with the closest centroid.
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k-Means Clustering - Algorithm

Input: X ∈ Rm×n, k ∈ N, d(c, x)

1. Initialization:
Randomly initialize k centroids: C ∈ Rk×n

2. While not converged, do:

▶ Assign each example to the cluster whose centroid is closest.
Y [i]← argminc d(C[c], X[i])

▶ Calculate the centroid for each cluster c by calculating the
average feature value for each exmaple currently classified as
cluster c.
C[c]← 1

nc

∑nc

j=1 Xc[j]
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Visualization of Clustering Algorithm

The clustering algorithm visualization:
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k-Means Clustering - Example Iteration

Let’s perform 1 iteration of k-means with k = 2, using Euclidean
distance. Use the following dataset:

Example x1, x2 x3
1 0.2 0.5 0
2 -0.6 2.1 1.2
3 -0.5 1.9 1.3
4 0.1 0.5 -0.3

Assume the current values for the centroids are as follows:

c c1, c2 c3
1 0.3 0.8 -0.5
2 -0.1 -0.5 1.0
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k-Means Clustering - Example Iteration

Let’s perform 1 iteration of k-means with k = 2, using Euclidean
distance. Use the following dataset:

Example x1, x2 x3
1 0.2 0.5 0
2 -0.6 2.1 1.2
3 -0.5 1.9 1.3
4 0.1 0.5 -0.3

c1 = [0.3, 0.8,−0.5], c2 = [−0.1,−0.5, 1.0]

Example 1 to c1: 0.12 + 0.32 + 0.52, to c2: 0.32 + 1.02 + 1.02: c1
Example 2 to c1: 0.92 + 1.32 + 1.72, to c2: 0.42 + 2.62 + 0.22: c1
Example 3 to c1: 0.82 + 1.12 + 1.82, to c2: 0.42 + 2.42 + 0.32: c1
Example 4 to c1: 0.22 + 0.32 + 0.22, to c2: 0.22 + 1.02 + 1.32: c1
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k-Means Clustering - Example Iteration

Let’s perform 1 iteration of k-means with k = 2, using Euclidean
distance. Use the following dataset:

Example x1, x2 x3
1 0.2 0.5 0
2 -0.6 2.1 1.2
3 -0.5 1.9 1.3
4 0.1 0.5 -0.3

Computing the new centroid:

c1 = [0.2, 1.25, 0.55] c2 = []

→ ou need to re-initialize the centroid.
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k-Means Clustering - Finding the Best Solution

▶ k-means is guaranteed to converge (with L2 distance)

▶ Solution not guaranteed to be optimal

▶ To increase chance of finding better solution, you could:

▶ Run multiple times with different random initial cluster
assignments

▶ Scale the features so that their domains are similar

CS 486/686: Intro to AI Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 18 / 37



k-Means Clustering - Choosing proper k

The choice of k greatly determines the outcome of the clustering.

▶ As long as there are ≤ k + 1 examples, running k-means with
k + 1 clusters will result in lower error than running with k
clusters

▶ But using too large k will defeat the point of representation
learning...
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k-Means Clustering - The Elbow Method

1. Execute k-means with multiple values of k ∈ {1, 2, . . . , kmax}.

2. Plot average distance across all examples and assigned
clusters.

3. Select k where there is drastic reduction in error improvement
on the plot (i.e. “elbow point”)

k
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→ Can be ambiguous, since it is manual
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k-Means Clustering - Silhouette Analysis

1. Execute k-means with multiple values of k ∈ {1, 2, . . . , kmax}.

2. Calculate average silhouette score s(x) for each k across the
dataset

3. Select k that maximizes average s(x)

s(x) =

{
b(x)−a(x)

max(a(x),b(x)) if |Cx| > 1

0 if |Cx| = 1

▶ a(x) is the average distance from example x to all other
examples in its own cluster

▶ b(x) is the smallest of the average distance of x to examples
in any other cluster

→ Significantly more objective than the Elbow Method
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Dimension Reduction

Dimensionality reduction simply refers to the process of reducing
the number of attributes in a dataset while keeping as much of the
variation in the original dataset as possible.

▶ High Dimension Data actually resides in an inherent
low-dimensional space.

▶ Additional dimensions are just random noise.

▶ Goal is to recover these inherent dimension and discard noise
dimension.
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Dimension Reduction

The observed data point dimensionality is not necessarily the
intrinsic dimension of the data.

By finding the intrinsic dimension, the problem becomes simpler.

CS 486/686: Intro to AI Lecturer: Wenhu Chen Slides: Alice Gao / Blake Vanberlo 24 / 37



Principal Component Analysis

▶ Widely used method for unsupervised dimensionality reduction

▶ account for variance of data in as few dimensions as possible

▶ First PC is the project of direction that maximizes the
variance of projected data

▶ Second PC is the project of direction that is orthogonal to the
first PC that maximizes the variance of projected data
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Principal Component Analysis

▶ Mean center the data

▶ Compute Covariance Matrix Σ

▶ Calculate the eigen values and eigen vectors of Σ

▶ Eigenvector with largest eigen value λ1 is the first PC

▶ Eigenvector with kth largest eigenvaluve λk is the k-th PC.

▶ λk/
∑

k λk is the proportion of variance captured by k-th PC.
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Autoencoders - Overview

▶ A representation learning algorithm

▶ Learn to map examples to low-dimensional representation
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Autoencoders - Components

2 main components

1. Encoder e(x): maps x to low-dimensional representation ẑ

2. Decoder d(ẑ): maps ẑ to its original representation x

Autoencoder implements x̂ = d(e(x))

▶ x̂ is the reconstruction of original input x

▶ Encoder and decoder learned such that ẑ contains as much
information about x as needed to reconstruct it

Minimize sum of squares of differences between input and
prediction:

E =
∑
i

(xi − d(e(xi)))
2
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Linear Autoencoders

▶ Simplest form of autoencoder

▶ e and d are linear functions with shared weight matrix W

ẑ = Wx

x̂ = W⊤ẑ
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Deep Neural Network Autoencoders

▶ Good for complex inputs

▶ e and d are feedforward neural networks, joined in series

▶ Train with backpropagation

ẑ x̂x

encoder decoder
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Generative Adversarial Networks - Overview

a.k.a. GANs

▶ A generative unsupervised learning algorithm

▶ Goal is to generate unseen examples that look like training
examples
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GANs - Components

GANs are actually a pair of neural networks:

▶ Generator g(z): Given vector z in latent space, produces
example x drawn from a distribution that approximates the
true distribution of training examples
→ z usually sampled from a Gaussian distribution

▶ Discriminator d(x): A classifier that predicts whether x is real
(from training set) or fake (made by g)
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GANs - Illustrative Example

Generatorz ∈ ℝm

x̂

Discriminator

Discriminator

x

0
(fake)

(real)
1
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GANs - Training

GANs are trained with a minimax error:

E = Ex[log(d(x))] + Ez[log(1− d(g(z)))]

▶ Discriminator tries to maximize E

▶ Generator tries to minimize E

After convergence:

▶ g should be producing realistic images

▶ d should output 1
2 , indicating maximal uncertainty
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GANs - Training

GANs are trained with a minimax error:

E = Ex[log(d(x))] + Ez[log(1− d(g(z)))]

▶ Discriminator tries to maximize E

▶ Generator tries to minimize E

After convergence:

▶ g should be producing realistic images

▶ d should output 1
2 , indicating maximal uncertainty
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Revisiting Learning Goals

▶ Understanding what is unsupervised Learning

▶ Understanding K-Means clustering algorithm

▶ Knowing how to perform PCA

▶ Understanding the basic idea of Auto-Encoder and GAN
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