Value Iteration \& Policy Iteration

Wenhu Chen

Lecture 14
Readings: RN 17.2. PM 9.5.2, 9.5.3.

Outline

Learning Goals

Definition of V/Q-Function

Bellman Equation

Value Iteration

Policy Iteration

Revisiting Learning Goals

Learning Goals

- Trace the execution of and implement the value iteration algorithm for solving a Markov Decision Process.
- Trace the execution of and implement the policy iteration algorithm for solving a Markov Decision Process.

Learning Goals

Definition of V/Q-Function

Bellman Equation

Value Iteration

Policy Iteration

Revisiting Learning Goals

Value Functions

- $V^{\pi}(s)$: Value of being in state s following a policy π
- $V^{*}(s)$: Value of being in state s following optimal policy π^{*}
- $Q^{\pi}(s, a)$: Value of taking action a while in state s and then follow π
- $Q^{*}(s, a)$: Value of taking action a while in state s and then follow π^{*}
- $\pi(a \mid s)$: the policy function, converting state into a distribution over actions

Expected Return

Remember that the agent's goal is to find a sequence of actions that will maximize the long-term return. We have defined the long-term return in a discounted format:

$$
\begin{aligned}
G_{t} & =R_{t+1}+\gamma R_{t+2}+\gamma^{2} R_{t+2}+\gamma^{T-1} R_{T} \\
& =R_{t+1}+\gamma G_{t+1}
\end{aligned}
$$

A value function estimates how good it is for the agent to be in a given state (or how good it is to perform a given action in a given state) in terms of return G.

The V-function

More formally, the V -function also referred to as the state-value function, or simply V, measures the goodness of each state.

$$
\begin{equation*}
V^{\pi}(s)=E_{\pi}\left[G_{t} \mid s_{t}=s\right]=E_{\pi}\left[\sum_{j=0}^{T} \gamma^{j} R_{t+j+1} \mid s=s_{t}\right] \tag{1}
\end{equation*}
$$

It describes the expected value of the total return G, at time step t starting from the state s at time t and then following policy π. We use expectation E in this definition because the Environment transition function might act in a stochastic way.

The Q-function

It defines the value of taking action a in state s under a policy π, denoted by Q, as the expected Return G starting from s, taking the action a, and thereafter following policy π.
A policy can be written as $\pi(a \mid s)$, where $\sum_{a} \pi(a \mid s)=1$.

$$
\begin{align*}
Q^{\pi}(s, a) & =E_{\pi}\left[G_{t} \mid s_{t}=s, a_{t}=a\right] \tag{2}\\
& =E_{\pi}\left[\sum_{j=0}^{T} \gamma^{j} R_{t+j+1} \mid s_{t}=s, a_{t}=a\right] \tag{3}
\end{align*}
$$

In this equation again it is used expectation E because the Environment transition function might act in a stochastic way.

Relation between Q / V function

We can assert the state-value function is equivalent to the sum of action-value functions of all outgoing actions a, multiplied by the policy probability of selecting each action:

$$
\begin{equation*}
V^{\pi}(s)=\sum_{a} \pi(a \mid s) Q^{\pi}(s, a) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
Q^{\pi}(s, a)=r(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V^{\pi}\left(s^{\prime}\right) \tag{5}
\end{equation*}
$$

Graph Relation between Q / V function

Learning Goals

Definition of V / Q-Function

Bellman Equation

Value Iteration

Policy Iteration

Revisiting Learning Goals

Solving for $V^{*}(s)$

V and Q are defined recursively in terms of each other.

$$
\begin{align*}
V^{*}(s) & =\max _{a} Q^{*}(s, a) \tag{6}\\
Q^{*}(s, a) & =R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V^{*}\left(s^{\prime}\right) . \tag{7}
\end{align*}
$$

Combining equations 6 and 7, we get the Bellman equations:

$$
\begin{equation*}
V^{*}(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V^{*}\left(s^{\prime}\right) \tag{8}
\end{equation*}
$$

$V^{*}(s)$ are the unique solutions to the Bellman equations.

Write down $V^{*}\left(s_{11}\right)$
Recall the grid environment from Lecture 19.
Write down the Bellman equation for $V^{*}\left(s_{11}\right)$.

	1	2	3	4
1	-0.04	-0.04	-0.04	-0.04
2	-0.04	X	-0.04	-1
3	-0.04	-0.04	-0.04	+1

\rightarrow

$$
\begin{aligned}
V^{*}\left(s_{11}\right)=-0.04+\gamma \max [& 0.8 V^{*}\left(s_{12}\right)+0.1 V^{*}\left(s_{21}\right)+0.1 V^{*}\left(s_{11}\right) \\
& 0.9 V^{*}\left(s_{11}\right)+0.1 V^{*}\left(s_{12}\right) \\
& 0.9 V^{*}\left(s_{11}\right)+0.1 V^{*}\left(s_{21}\right) \\
& \left.0.8 V^{*}\left(s_{21}\right)+0.1 V^{*}\left(s_{12}\right)+0.1 V^{*}\left(s_{11}\right)\right]
\end{aligned}
$$

Q: Solve the Bellman equations efficiently

Q \#1: Can we solve the system of Bellman equations in polynomial time?
(A) Yes
(B) No
(C) I don't know

The Bellman equation for $V^{*}\left(s_{11}\right)$:
$V^{*}\left(s_{11}\right)=-0.04+\gamma \max \left[0.8 V^{*}\left(s_{12}\right)+0.1 V^{*}\left(s_{21}\right)+0.1 V^{*}\left(s_{11}\right)\right.$,

$$
\begin{aligned}
& 0.9 V^{*}\left(s_{11}\right)+0.1 V^{*}\left(s_{12}\right), \\
& 0.9 V^{*}\left(s_{11}\right)+0.1 V^{*}\left(s_{21}\right), \\
& \left.0.8 V^{*}\left(s_{21}\right)+0.1 V^{*}\left(s_{12}\right)+0.1 V^{*}\left(s_{11}\right)\right] .
\end{aligned}
$$

Q: Solve the Bellman equations efficiently

Q \#1: Can we solve the system of Bellman equations in polynomial time?
(A) Yes
(B) No
(C) I don't know

The Bellman equation for $V^{*}\left(s_{11}\right)$:
$V^{*}\left(s_{11}\right)=-0.04+\gamma \max \left[0.8 V^{*}\left(s_{12}\right)+0.1 V^{*}\left(s_{21}\right)+0.1 V^{*}\left(s_{11}\right)\right.$,

$$
\begin{aligned}
& 0.9 V^{*}\left(s_{11}\right)+0.1 V^{*}\left(s_{12}\right) \\
& 0.9 V^{*}\left(s_{11}\right)+0.1 V^{*}\left(s_{21}\right) \\
& \left.0.8 V^{*}\left(s_{21}\right)+0.1 V^{*}\left(s_{12}\right)+0.1 V^{*}\left(s_{11}\right)\right]
\end{aligned}
$$

\rightarrow Correct answer is (B) No. The system of Bellman equations is nonlinear because of "max". There is no general technique to solve a nonlinear system of equations efficiently.

Learning Goals

Definition of V/Q-Function

Bellman Equation

Value Iteration

Policy Iteration

Revisiting Learning Goals

Value Iteration

The Bellman equations:

$$
V^{*}(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V^{*}\left(s^{\prime}\right)
$$

Let $V_{i}(s)$ be the values for the $i^{t h}$ iteration.

1. Start with arbitrary initial values for $V_{0}(s)$.
2. At the $i^{\text {th }}$ iteration, compute $V_{i+1}(s)$ as follows.

$$
V_{i+1}(s) \leftarrow R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V_{i}\left(s^{\prime}\right)
$$

3. Terminate when $\max _{s}\left|V_{i}(s)-V_{i+1}(s)\right|$ is small enough.

If we apply the Bellman update infinitely often, the V_{i} 's are guaranteed to converge to the optimal values.

Apply Value Iteration

Let's apply the value iteration algorithm.
Assume that

- the discount factor $\gamma=1$.
- $R(s)=-0.04, \forall s \neq s_{24}, s \neq s_{34}$.

Start with $V_{0}(s)=0, \forall s \neq s_{24}, s \neq s_{34}$.
Note: for terminal states $s_{T} \in\left\{s_{24}, s_{34}\right\}, V\left(s_{T}\right)=R\left(s_{T}\right)$.

Q: Calculating $V_{1}\left(s_{23}\right)$

\#2: What is $V_{1}\left(s_{23}\right)$?

$$
V_{i+1}(s) \leftarrow R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V_{i}\left(s^{\prime}\right)
$$

(A) $(-\infty, 0)$
(B) $[0,0.25)$
(C) $[0.25,0.5)$
(D) $[0.5,0.75)$
(E) $[0.75,1]$
$V_{0}(s):$

	1	2	3	4
1	0	0	0	0
2	0	X	0	-1
3	0	0	0	+1

Q: Calculating $V_{1}\left(s_{23}\right)$

\#2: What is $V_{1}\left(s_{23}\right)$?

$$
V_{i+1}(s) \leftarrow R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V_{i}\left(s^{\prime}\right)
$$

(A) $(-\infty, 0)$
(B) $[0,0.25)$
(C) $[0.25,0.5)$
(D) $[0.5,0.75)$
(E) $[0.75,1]$
$V_{0}(s):$

	1	2	3	4
1	0	0	0	0
2	0	X	0	-1
3	0	0	0	+1

\rightarrow Correct answer is (A). $V_{1}\left(s_{23}\right)=-0.04$.

Q: Calculating $V_{1}\left(s_{33}\right)$

\#3: What is $V_{1}\left(s_{33}\right)$?

$$
V_{i+1}(s) \leftarrow R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V_{i}\left(s^{\prime}\right)
$$

(A) 0.26
(B) 0.36
(C) 0.46
(D) 0.56
(E) 0.76
$V_{0}(s):$

	1	2	3	4
1	0	0	0	0
2	0	X	0	-1
3	0	0	0	+1

Q: Calculating $V_{1}\left(s_{33}\right)$

\#3: What is $V_{1}\left(s_{33}\right)$?

$$
V_{i+1}(s) \leftarrow R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V_{i}\left(s^{\prime}\right)
$$

(A) 0.26
(B) 0.36
(C) 0.46
(D) 0.56
(E) 0.76
$V_{0}(s):$

	1	2	3	4
1	0	0	0	0
2	0	X	0	-1
3	0	0	0	+1

\rightarrow Correct answer is (A). $V_{1}\left(s_{33}\right)=0.76$.

The Values of $V_{1}(s)$

$V_{0}(s):$

	1	2	3	4
1	0	0	0	0
2	0	X	0	-1
3	0	0	0	+1

$V_{1}(s):$

	1	2	3	4
1	-0.04	-0.04	-0.04	-0.04
2	-0.04	X	-0.04	-1
3	-0.04	-0.04	0.76	+1

Q: Calculating $V_{2}\left(s_{33}\right)$

Q \#4: What is $V_{2}\left(s_{33}\right)$?

$$
V_{i+1}(s) \leftarrow R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V_{i}\left(s^{\prime}\right)
$$

Here is $V_{1}(s)$:

	1	2	3	4
1	-0.04	-0.04	-0.04	-0.04
2	-0.04	X	-0.04	-1
3	-0.04	-0.04	0.76	+1

(A) 0.822
(B) 0.832
(C) 0.842

Q: Calculating $V_{2}\left(s_{33}\right)$

Q \#4: What is $V_{2}\left(s_{33}\right)$?

$$
V_{i+1}(s) \leftarrow R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V_{i}\left(s^{\prime}\right)
$$

Here is $V_{1}(s)$:

	1	2	3	4
1	-0.04	-0.04	-0.04	-0.04
2	-0.04	X	-0.04	-1
3	-0.04	-0.04	0.76	+1

(A) 0.822
(B) 0.832
(C) 0.842
(D) 0.852
(E) 0.862
\rightarrow Correct answer is (B).
$V_{2}\left(s_{33}\right)=0.832$.

Q: Calculating $V_{2}\left(s_{23}\right)$

Q \#5: What is $V_{2}\left(s_{23}\right)$?

$$
V_{i+1}(s) \leftarrow R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V_{i}\left(s^{\prime}\right)
$$

Here is $V_{1}(s)$:

	1	2	3	4
1	-0.04	-0.04	-0.04	-0.04
2	-0.04	X	-0.04	-1
3	-0.04	-0.04	0.76	+1

(A) 0.464
(B) 0.466
(C) 0.468

Q: Calculating $V_{2}\left(s_{23}\right)$

Q \#5: What is $V_{2}\left(s_{23}\right)$?

$$
V_{i+1}(s) \leftarrow R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V_{i}\left(s^{\prime}\right)
$$

Here is $V_{1}(s)$:

	1	2	3	4
1	-0.04	-0.04	-0.04	-0.04
2	-0.04	X	-0.04	-1
3	-0.04	-0.04	0.76	+1

(A) 0.464
(B) 0.466
(C) 0.468
(D) 0.470
(E) 0.472
\rightarrow Correct answer is (A).
$V_{2}\left(s_{23}\right)=0.464$.

Q: Calculating $V_{2}\left(s_{32}\right)$

Q \#6: What is $V_{2}\left(s_{32}\right)$?

$$
V_{i+1}(s) \leftarrow R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V_{i}\left(s^{\prime}\right)
$$

Here is $V_{1}(s)$:

	1	2	3	4
1	-0.04	-0.04	-0.04	-0.04
2	-0.04	X	-0.04	-1
3	-0.04	-0.04	0.76	+1

(A) 0.16
(B) 0.36
(C) 0.56

Q: Calculating $V_{2}\left(s_{32}\right)$

Q \#6: What is $V_{2}\left(s_{32}\right)$?

$$
V_{i+1}(s) \leftarrow R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V_{i}\left(s^{\prime}\right)
$$

Here is $V_{1}(s)$:

	1	2	3	4
1	-0.04	-0.04	-0.04	-0.04
2	-0.04	X	-0.04	-1
3	-0.04	-0.04	0.76	+1

(A) 0.16
(B) 0.36
(C) 0.56
(D) 0.76
(E) 0.96
\rightarrow Correct answer is (C).
$V_{2}\left(s_{32}\right)=0.56$.

The Values of $V_{2}(s)$

$V_{1}(s):$

	1	2	3	4
1	-0.04	-0.04	-0.04	-0.04
2	-0.04	X	-0.04	-1
3	-0.04	-0.04	0.76	+1

$V_{2}(s)$:

	1	2	3	4
1	-0.08	-0.08	-0.08	-0.08
2	-0.08	X	0.464	-1
3	-0.08	0.56	0.832	+1

Observations from Value Iteration

Each state accumulates negative rewards until the algorithm finds a path to the +1 goal state.

How should we update $V^{*}(s)$ for all states s ?

- synchronously: store and use $V_{i}(s)$ to calculate $V_{i+1}(s)$.
- asynchronously: stores $V_{i}(s)$ and update the values one at a time, in any order.

Learning Goals

Definition of V/Q-Function

Bellman Equation

Value Iteration

Policy Iteration

Revisiting Learning Goals

Policy Iteration

- Deriving the optimal policy does not require accurate estimates of the utility function $\left(V^{*}(s)\right)$.
\rightarrow If one action is clearly better than all others, then the exact magnitude of the utilities on the states involved need not be precise.
- Policy iteration alternates between two steps.

1. Policy evaluation: Given a policy π_{i}, calculate $V^{\pi_{i}}(s)$, which is the utility of each state if π_{i} were to be executed.
2. Policy improvement: Calculate a new policy π_{i+1} using $V^{\pi_{i}}$.

Terminates when there is no change in the policy.
\rightarrow Must terminate because there are finitely many policies for a finite state space and each iteration yields a better policy.

Policy Iteration

- Policy evaluation:

$$
V^{\pi_{i}}(s)=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi_{i}(s)\right) V^{\pi_{i}}\left(s^{\prime}\right)
$$

- Policy improvement:

$$
\pi_{i+1}(s)=\arg \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V^{\pi_{i}}\left(s^{\prime}\right)
$$

Policy Evaluation v.s. Bellman Equations

Policy evaluation:

$$
V(s)=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right) V\left(s^{\prime}\right)
$$

Bellman equations:

$$
V(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right) .
$$

Write down both equations for $V\left(s_{11}\right)$.
Assume that $\pi\left(s_{11}\right)=$ down.

Performing Policy Evaluation Exactly

Policy evaluation:

$$
V(s)=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right) V\left(s^{\prime}\right)
$$

We could solve the system of linear equations exactly using standard linear algebra techniques.

For n states, this will take $O\left(n^{3}\right)$ time...

Performing Policy Evaluation Iteratively

Policy evaluation:

$$
V(s)=R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right) V\left(s^{\prime}\right)
$$

Solve the system of linear equations approximately by performing a number of simplified value iteration steps:

Repeat for $j \in\{1,2, \ldots, m\}$:

$$
V_{j+1}(s) \leftarrow R(s)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right) V_{j}\left(s^{\prime}\right)
$$

Policy Iteration: An Example

Apply policy iteration for the simple grid environment below. Use iteration for policy evaluation with $m=1 . s_{12}$ and s_{22} are terminal states.

-0.04	+1
-0.04	-1

$\mathcal{A}=\{u p$, right, down, left $\}$.
The initial policy is $\pi_{1}(s)=$ right, $\forall s \in \mathcal{S}$.
The agent moves towards, to the right of, or to the left of the intended direction with probabilities $0.8,0.1$, and 0.1 respectively.

Let $\gamma=1$.

Revisiting Learning Goals

- Trace the execution of and implement the value iteration algorithm for solving a Markov Decision Process.
- Trace the execution of and implement the policy iteration algorithm for solving a Markov Decision Process.

