Value Iteration & Policy Iteration

Wenhu Chen

Lecture 14

Readings: RN 17.2, PM 9.5.2, 9.5.3.
Outline

Learning Goals

Definition of V/Q-Function

Bellman Equation

Value Iteration

Policy Iteration

Revisiting Learning Goals
Learning Goals

▶ Trace the execution of and implement the value iteration algorithm for solving a Markov Decision Process.

▶ Trace the execution of and implement the policy iteration algorithm for solving a Markov Decision Process.
Learning Goals

Definition of V/Q-Function

Bellman Equation

Value Iteration

Policy Iteration

Revisiting Learning Goals
Value Functions

- $V^\pi(s)$: Value of being in state s following a policy π
- $V^*(s)$: Value of being in state s following optimal policy π^*
- $Q^\pi(s, a)$: Value of taking action a while in state s and then follow π
- $Q^*(s, a)$: Value of taking action a while in state s and then follow π^*
- $\pi(a|s)$: the policy function, converting state into a distribution over actions
Expected Return

Remember that the agent’s goal is to find a sequence of actions that will maximize the long-term return. We have defined the long-term return in a discounted format:

\[G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+2} + \gamma^{T-1} R_T \]

\[= R_{t+1} + \gamma G_{t+1} \]

A value function estimates how good it is for the agent to be in a given state (or how good it is to perform a given action in a given state) in terms of return \(G \).
The V-function

More formally, the V-function also referred to as the state-value function, or simply V, measures the goodness of each state.

\[V^\pi(s) = E_\pi[G_t|s_t = s] = E_\pi[\sum_{j=0}^{T} \gamma^j R_{t+j+1}|s = s_t] \] \hspace{1cm} (1)

It describes the expected value of the total return \(G \), at time step \(t \) starting from the state \(s \) at time \(t \) and then following policy \(\pi \). We use expectation \(E \) in this definition because the Environment transition function might act in a stochastic way.
The Q-function

It defines the value of taking action a in state s under a policy π, denoted by Q, as the expected Return G starting from s, taking the action a, and thereafter following policy π.

A policy can be written as $\pi(a|s)$, where $\sum_a \pi(a|s) = 1$.

\[
Q^\pi(s, a) = E_\pi[G_t|s_t = s, a_t = a]
= E_\pi[\sum_{j=0}^T \gamma^j R_{t+j+1}|s_t = s, a_t = a]
\]

In this equation again it is used expectation E because the Environment transition function might act in a stochastic way.
Relation between Q/V function

We can assert the state-value function is equivalent to the sum of action-value functions of all outgoing actions a, multiplied by the policy probability of selecting each action:

$$V^\pi(s) = \sum_a \pi(a|s)Q^\pi(s, a) \quad (4)$$

$$Q^\pi(s, a) = r(s) + \gamma \sum_{s'} P(s'|s, a)V^\pi(s') \quad (5)$$
Graph Relation between Q/V function

$V^\pi(s) = \sum \pi(a|s)Q(s,a)$

$Q(s,a_1)$ $Q(s,a_2)$ $Q(s,a_3)$

$R(s) + \sum p(s'|s,a)V(s')$

$V(s'_1)$ $V(s'_2)$
Learning Goals

Definition of V/Q-Function

Bellman Equation

Value Iteration

Policy Iteration

Revisiting Learning Goals
Solving for $V^*(s)$

V and Q are defined recursively in terms of each other.

\[V^*(s) = \max_a Q^*(s, a) \]
\[Q^*(s, a) = R(s) + \gamma \sum_{s'} P(s'|s, a) V^*(s') \]

Combining equations 6 and 7, we get the Bellman equations:

\[V^*(s) = R(s) + \gamma \max_a \sum_{s'} P(s'|s, a) V^*(s') \]

$V^*(s)$ are the unique solutions to the Bellman equations.
Write down $V^*(s_{11})$

Recall the grid environment from Lecture 19.

Write down the Bellman equation for $V^*(s_{11})$.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
</tr>
<tr>
<td>2</td>
<td>-0.04</td>
<td>X</td>
<td>-0.04</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
<td>$+1$</td>
</tr>
</tbody>
</table>

$V^*(s_{11}) = -0.04 + \gamma \max[0.8V^*(s_{12}) + 0.1V^*(s_{21}) + 0.1V^*(s_{11}),$

$0.9V^*(s_{11}) + 0.1V^*(s_{12}),$

$0.9V^*(s_{11}) + 0.1V^*(s_{21}),$

$0.8V^*(s_{21}) + 0.1V^*(s_{12}) + 0.1V^*(s_{11})]$.
Q: Solve the Bellman equations efficiently

Q #1: Can we solve the system of Bellman equations in polynomial time?

(A) Yes

(B) No

(C) I don’t know

The Bellman equation for $V^*(s_{11})$:

$$V^*(s_{11}) = -0.04 + \gamma \max \left[0.8V^*(s_{12}) + 0.1V^*(s_{21}) + 0.1V^*(s_{11}),
0.9V^*(s_{11}) + 0.1V^*(s_{12}),
0.9V^*(s_{11}) + 0.1V^*(s_{21}),
0.8V^*(s_{21}) + 0.1V^*(s_{12}) + 0.1V^*(s_{11}) \right].$$
Q: Solve the Bellman equations efficiently

Q #1: Can we solve the system of Bellman equations in polynomial time?

(A) Yes

(B) No

(C) I don’t know

The Bellman equation for \(V^*(s_{11}) \):

\[
V^*(s_{11}) = -0.04 + \gamma \max\{0.8V^*(s_{12}) + 0.1V^*(s_{21}) + 0.1V^*(s_{11}), \\
0.9V^*(s_{11}) + 0.1V^*(s_{12}), \\
0.9V^*(s_{11}) + 0.1V^*(s_{21}), \\
0.8V^*(s_{21}) + 0.1V^*(s_{12}) + 0.1V^*(s_{11})\}.
\]

→ Correct answer is (B) No. The system of Bellman equations is nonlinear because of “max”. There is no general technique to solve a nonlinear system of equations efficiently.
Learning Goals

Definition of V/Q-Function

Bellman Equation

Value Iteration

Policy Iteration

Revisiting Learning Goals
Value Iteration

The Bellman equations:

\[
V^*(s) = R(s) + \gamma \max_a \sum_{s'} P(s'|s, a)V^*(s').
\]

Let \(V_i(s) \) be the values for the \(i^{th} \) iteration.

1. Start with arbitrary initial values for \(V_0(s) \).
2. At the \(i^{th} \) iteration, compute \(V_{i+1}(s) \) as follows.

\[
V_{i+1}(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} P(s'|s, a)V_i(s').
\]

3. Terminate when \(\max_s |V_i(s) - V_{i+1}(s)| \) is small enough.

If we apply the Bellman update infinitely often, the \(V_i \)'s are guaranteed to converge to the optimal values.
Apply Value Iteration

Let’s apply the value iteration algorithm.

Assume that

- the discount factor $\gamma = 1$.
- $R(s) = -0.04, \forall s \neq s_{24}, s \neq s_{34}$.

Start with $V_0(s) = 0, \forall s \neq s_{24}, s \neq s_{34}$.

Note: for terminal states $s_T \in \{s_{24}, s_{34}\}$, $V(s_T) = R(s_T)$.

Q: Calculating $V_1(s_{23})$

#2: What is $V_1(s_{23})$?

$$V_{i+1}(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} P(s'|s,a)V_i(s')$$

(A) $(-\infty, 0)$ \hspace{1cm} (B) $[0, 0.25)$ \hspace{1cm} (C) $[0.25, 0.5)$

(D) $[0.5, 0.75)$ \hspace{1cm} (E) $[0.75, 1]$

$V_0(s)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
</tr>
</tbody>
</table>
Q: Calculating $V_1(s_{23})$

#2: What is $V_1(s_{23})$?

$$V_{i+1}(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} P(s'|s,a) V_i(s')$$

(A) $(-\infty, 0)$ (B) $[0, 0.25)$ (C) $[0.25, 0.5)$
(D) $[0.5, 0.75)$ (E) $[0.75, 1]$

$V_0(s)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
</tr>
</tbody>
</table>

→ Correct answer is (A). $V_1(s_{23}) = -0.04$.
Q: Calculating $V_1(s_{33})$

#3: What is $V_1(s_{33})$?

$$V_{i+1}(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} P(s'|s, a) V_i(s')$$

(A) 0.26 (B) 0.36 (C) 0.46
(D) 0.56 (E) 0.76

$V_0(s)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
</tr>
</tbody>
</table>
Q: Calculating $V_1(s_{33})$

#3: What is $V_1(s_{33})$?

$$V_{i+1}(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} P(s'|s, a)V_i(s')$$

(A) 0.26 (B) 0.36 (C) 0.46
(D) 0.56 (E) 0.76

$V_0(s)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
</tr>
</tbody>
</table>

→ Correct answer is (A). $V_1(s_{33}) = 0.76.$
The Values of $V_1(s)$

$V_0(s)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+1</td>
</tr>
</tbody>
</table>

$V_1(s)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
</tr>
<tr>
<td>2</td>
<td>-0.04</td>
<td>X</td>
<td>-0.04</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>-0.04</td>
<td>-0.04</td>
<td>0.76</td>
<td>+1</td>
</tr>
</tbody>
</table>
Q: Calculating $V_2(s_{33})$

Q #4: What is $V_2(s_{33})$?

$$V_{i+1}(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} P(s'|s, a)V_i(s')$$

Here is $V_1(s)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td>-0.04</td>
<td>X</td>
<td>-0.04</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>-0.04</td>
<td>-0.04</td>
<td>0.76</td>
<td>+1</td>
</tr>
</tbody>
</table>

(A) 0.822 (D) 0.852
(B) 0.832 (E) 0.862
(C) 0.842
Q: Calculating $V_2(s_{33})$

Q #4: What is $V_2(s_{33})$?

$$V_i+1(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} P(s'|s, a)V_i(s')$$

Here is $V_1(s)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
</tr>
<tr>
<td>2</td>
<td>-0.04</td>
<td>X</td>
<td>-0.04</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>-0.04</td>
<td>-0.04</td>
<td>0.76</td>
<td>+1</td>
</tr>
</tbody>
</table>

(A) 0.822
(B) 0.832
(C) 0.842
(D) 0.852
(E) 0.862

→ Correct answer is (B).

$V_2(s_{33}) = 0.832.$
Q: Calculating $V_2(s_{23})$

Q #5: What is $V_2(s_{23})$?

$$V_{i+1}(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} P(s'|s,a)V_i(s')$$

Here is $V_1(s)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
</tr>
<tr>
<td>2</td>
<td>-0.04</td>
<td>X</td>
<td>-0.04</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>-0.04</td>
<td>-0.04</td>
<td>0.76</td>
<td>+1</td>
</tr>
</tbody>
</table>

(A) 0.464
(B) 0.466
(C) 0.468
(D) 0.470
(E) 0.472
Q: Calculating $V_2(s_{23})$

Q #5: What is $V_2(s_{23})$?

$$V_{i+1}(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} P(s'|s, a)V_i(s')$$

Here is $V_1(s)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
</tr>
<tr>
<td>2</td>
<td>-0.04</td>
<td>X</td>
<td>-0.04</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>-0.04</td>
<td>-0.04</td>
<td>0.76</td>
<td>+1</td>
</tr>
</tbody>
</table>

(A) 0.464
(B) 0.466
(C) 0.468
(D) 0.470
(E) 0.472

→ Correct answer is (A).

$V_2(s_{23}) = 0.464$.

CS 486/686: Intro to AI
Lecturer: Wenhu Chen
Slides: Alice Gao / Blake Vanberlo
22 / 33
Q: Calculating $V_2(s_{32})$

Q #6: What is $V_2(s_{32})$?

$$
V_{i+1}(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} P(s'|s, a)V_i(s')
$$

Here is $V_1(s)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
</tr>
<tr>
<td>2</td>
<td>-0.04</td>
<td>X</td>
<td>-0.04</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>-0.04</td>
<td>-0.04</td>
<td>0.76</td>
<td>+1</td>
</tr>
</tbody>
</table>

(A) 0.16
(B) 0.36
(C) 0.56
(D) 0.76
(E) 0.96
Q: Calculating $V_2(s_{32})$

Q #6: What is $V_2(s_{32})$?

$$V_{i+1}(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} P(s'|s, a)V_i(s')$$

Here is $V_1(s)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
</tr>
<tr>
<td>2</td>
<td>-0.04</td>
<td>X</td>
<td>-0.04</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>-0.04</td>
<td>-0.04</td>
<td>0.76</td>
<td>+1</td>
</tr>
</tbody>
</table>

(A) 0.16 (D) 0.76
(B) 0.36 (E) 0.96
(C) 0.56

→ Correct answer is (C).

$V_2(s_{32}) = 0.56$.
The Values of $V_2(s)$

$V_1(s)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.04</td>
</tr>
<tr>
<td>2</td>
<td>-0.04</td>
<td>X</td>
<td>-0.04</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>-0.04</td>
<td>-0.04</td>
<td>0.76</td>
<td>+1</td>
</tr>
</tbody>
</table>

$V_2(s)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.08</td>
<td>-0.08</td>
<td>-0.08</td>
<td>-0.08</td>
</tr>
<tr>
<td>2</td>
<td>-0.08</td>
<td>X</td>
<td>0.464</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>-0.08</td>
<td>0.56</td>
<td>0.832</td>
<td>+1</td>
</tr>
</tbody>
</table>
Observations from Value Iteration

Each state accumulates negative rewards until the algorithm finds a path to the +1 goal state.

How should we update $V^*(s)$ for all states s?

- synchronously: store and use $V_i(s)$ to calculate $V_{i+1}(s)$.

- asynchronously: stores $V_i(s)$ and update the values one at a time, in any order.
Learning Goals

Definition of V/Q-Function

Bellman Equation

Value Iteration

Policy Iteration

Revisiting Learning Goals
Policy Iteration

- Deriving the optimal policy does not require accurate estimates of the utility function \((V^*(s))\).

→ If one action is clearly better than all others, then the exact magnitude of the utilities on the states involved need not be precise.

- **Policy iteration** alternates between two steps.

 1. **Policy evaluation**: Given a policy \(\pi_i\), calculate \(V^{\pi_i}(s)\), which is the utility of each state if \(\pi_i\) were to be executed.

 2. **Policy improvement**: Calculate a new policy \(\pi_{i+1}\) using \(V^{\pi_i}\).

Terminates when there is no change in the policy.

→ Must terminate because there are finitely many policies for a finite state space and each iteration yields a better policy.
Policy Iteration

- Policy evaluation:

\[V^{\pi_i}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi_i(s)) V^{\pi_i}(s') . \]

- Policy improvement:

\[\pi_{i+1}(s) = \arg \max_a \sum_{s'} P(s'|s, a) V^{\pi_i}(s') . \]
Policy Evaluation v.s. Bellman Equations

Policy evaluation:

\[V(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s))V(s'). \]

Bellman equations:

\[V(s) = R(s) + \gamma \max_a \sum_{s'} P(s'|s, a)V(s'). \]

Write down both equations for \(V(s_{11}) \).
Assume that \(\pi(s_{11}) = \text{down} \).
Performing Policy Evaluation Exactly

Policy evaluation:

\[V(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s))V(s') . \]

We could solve the system of linear equations exactly using standard linear algebra techniques.

For \(n \) states, this will take \(O(n^3) \) time...
Performing Policy Evaluation Iteratively

Policy evaluation:

\[V(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V(s') \].

Solve the system of linear equations approximately by performing a number of simplified value iteration steps:

Repeat for \(j \in \{1, 2, \ldots, m\} \):

\[V_{j+1}(s) \leftarrow R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V_j(s') \].
Policy Iteration: An Example

Apply policy iteration for the simple grid environment below. Use iteration for policy evaluation with $m = 1$. s_{12} and s_{22} are terminal states.

\[
\begin{array}{|c|c|}
\hline
-0.04 & +1 \\
\hline
-0.04 & -1 \\
\hline
\end{array}
\]

$A = \{up, right, down, left\}$.

The initial policy is $\pi_1(s) = right, \forall s \in S$.

The agent moves towards, to the right of, or to the left of the intended direction with probabilities 0.8, 0.1, and 0.1 respectively.

Let $\gamma = 1$.
Revisiting Learning Goals

- Trace the execution of and implement the value iteration algorithm for solving a Markov Decision Process.
- Trace the execution of and implement the policy iteration algorithm for solving a Markov Decision Process.