Markov Decision Processes

Wenhu Chen

Lecture 13

Readings: RN 17.1. PM 9.5.
Outline

Learning Goals

Introduction to Markov Decision Processes

A Grid World

Policies

The optimal policies of the grid world

Determine the Optimal Policy Given $V^*(s)$

Revisiting Learning Goals
Learning Goals

▶ Describe motivations for modeling a decision problem as a Markov decision process.
▶ Describe components of a fully-observable Markov decision process.
▶ Describe reasons for using a discounted reward function.
▶ Define the policy of a Markov decision process.
▶ Give examples of how the reward function affects the optimal policy of a Markov decision process.
Learning Goals

Introduction to Markov Decision Processes

A Grid World

Policies

The optimal policies of the grid world

Determine the Optimal Policy Given $V^*(s)$

Revisiting Learning Goals
Modelling an Ongoing Decision Process

- Finite-stage v.s. ongoing problems
 - **Infinite horizon**: the process may go on forever.
 - **Indefinite horizon**: the agent will eventually stop, but it does not know when it will stop.

- Utility at the end vs. a sequence of rewards
 - It may not make sense to consider only the utility at the end, because the agent may never get to the end.
 - The reward incorporates the costs of actions and any rewards/punishments.
A Markov Decision Process

- S: a set of states
- A: a set of actions
- $P(s'|s, a)$ transition probabilities. A stationary model.
- $R(s, a, s')$ is the reward function.
Rewards

Define $R(s)$ as the reward received for entering state s.

- **Total reward**

$$\sum_{t=0}^{\infty} R(S_t) = R(S_0) + R(S_1) + R(S_2) + \ldots$$

→ If the sum is infinite, cannot compare different policies.
Rewards

Define $R(s)$ as the reward received for entering state s.

- **Total reward**

$$\sum_{t=0}^{\infty} R(S_t) = R(S_0) + R(S_1) + R(S_2) + \ldots$$

→ If the sum is infinite, cannot compare different policies.

- **Average reward**

$$\lim_{n \to \infty} \frac{1}{n} \sum_{t=0}^{n} R(S_t) = \lim_{n \to \infty} \frac{1}{n} (R(S_0) + R(S_1) + R(S_2) + \ldots)$$

→ If the total reward is finite, the average reward is zero.
Rewards

- **Discounted reward**

\[
\sum_{t=0}^{\infty} \gamma^t R(S_t) = R(S_0) + \gamma R(S_1) + \gamma^2 R(S_2) + \ldots
\]

with **discount factor** \(\gamma \in [0, 1] \)
Rewards

- **Discounted reward**

\[
\sum_{t=0}^{\infty} \gamma^t R(S_t) = R(S_0) + \gamma R(S_1) + \gamma^2 R(S_2) + \ldots
\]

with **discount factor** \(\gamma \in [0, 1] \)

\(\rightarrow \) a.k.a. the **return**, \(G(S_0) \)

- We prefer getting a dollar today than getting a dollar tomorrow

- The total discounted reward is finite

\(\rightarrow \) If \(\gamma \in [0, 1) \) and \(R(S) \in [-R_{\text{max}}, R_{\text{max}}] \), then

\[
\sum_{t=0}^{\infty} \gamma^t R(S_t) \leq \frac{R_{\text{max}}}{1-\gamma}
\]
Variations of MDP

- **Fully-observable MDP**: The state is fully observable

- **Partially observable MDP (POMDP)**: combines a MDP and a hidden Markov model. The agent cannot directly observe the current state.
Learning Goals

Introduction to Markov Decision Processes

A Grid World

Policies

The optimal policies of the grid world

Determine the Optimal Policy Given $V^*(s)$

Revisiting Learning Goals
A 3×4 Grid World Problem

What should the robot do to maximize its rewards?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>X</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>+1</td>
</tr>
</tbody>
</table>

- Let s_{ij} be the position in row i and column j.
- s_{11} is the initial state.
- There is a wall at s_{22}.
- s_{24} and s_{34} are goal states.
 The robot escapes the world at either goal state.
An MDP for the 3×4 Grid World

- There are four actions: up, down, left, and right. Every action is possible in every state.

- The transition model $P(s'|s,a)$. An action achieves its intended effect with probability 0.8. An action leads to a 90-degree left turn with probability 0.1. An action leads to a 90-degree right turn with probability 0.1. If the robot bumps into a wall, it stays in the same square.

- The reward function $R(s)$ is the reward of entering state s. $R(s_{24}) = -1$. $R(s_{34}) = 1$. Otherwise, $R(s) = -0.04$.
Q: Understanding the transition model

Q #1: The robot is in s_{14} and tries to move to our right, what is the probability that the robot stays in s_{14}?

(A) 0.1
(B) 0.2
(C) 0.8
(D) 0.9
(E) 1.0

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>X</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>+1</td>
<td></td>
</tr>
</tbody>
</table>

1
2
3
4

The correct answer is 0.9. If the robot moves right or up, it will stay in the current square. The total probability is $0.8 + 0.1 = 0.9$.
Q: Understanding the transition model

Q #1: The robot is in s_{14} and tries to move to our right, what is the probability that the robot stays in s_{14}?

(A) 0.1
(B) 0.2
(C) 0.8
(D) 0.9
(E) 1.0

→ (C) Correct answer is 0.9. If the robot moves right or up, it will stay in the current square. The total probability is $0.8 + 0.1 = 0.9$.
Learning Goals

Introduction to Markov Decision Processes

A Grid World

Policies

The optimal policies of the grid world

Determine the Optimal Policy Given $V^*(s)$

Revisiting Learning Goals
Q: A fixed sequence of actions

Q #2: If the environment is deterministic, an optimal solution to the grid world problem is the fixed action sequence: \textit{down, down, right, right, right}.

(A) True
(B) False
(C) I don’t know

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Start</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>X</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>+1</td>
</tr>
</tbody>
</table>
Q: A fixed sequence of actions

Q #2: If the environment is deterministic, an optimal solution to the grid world problem is the fixed action sequence: *down, down, right, right, right.*

(A) True
(B) False
(C) I don’t know

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>+1</td>
</tr>
</tbody>
</table>

→ (A) Correct answer is True. This sequence of actions takes us to s_{34} with a minimum number of steps.
Q #3: Consider the action sequence *down, down, right, right, right*. This action sequence could take the robot to more than one square with positive probability.

(A) True
(B) False
(C) I don’t know
Q: A fixed sequence of actions

Q #3: Consider the action sequence *down, down, right, right, right*. This action sequence could take the robot to more than one square with positive probability.

(A) True
(B) False
(C) I don’t know

→ (A) Correct answer is True. For example, it could take us to s_{12} if we end up going right, down, down, down, and down.

A policy must specify what to do in every state.
Policies

A policy specifies what the agent should do as a function of the current state.

A policy is

- *non-stationary* if it is a function of the state and the time.
- *stationary* if it is a function of the state.
Learning Goals

Introduction to Markov Decision Processes

A Grid World

Policies

The optimal policies of the grid world

Determine the Optimal Policy Given $V^*(s)$

Revisiting Learning Goals
The optimal policies of the grid world

Before I show you the algorithm to solve an MDP (next lecture), let’s look at how the optimal policy of the grid world is influenced by the reward function $R(s)$.

The optimal policy of the grid world changes based on $R(s)$ for any non-goal state s. It shows a careful balancing of risk and reward.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>X</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>+1</td>
<td></td>
</tr>
</tbody>
</table>

Reward – want to reach the +1 state ASAP. There are 2 paths.
Risk – do not want to fall into the -1 state. The longer we explore, we more negative penalty we accumulate.
Let’s determine optimal policies for these situations, where the reward function for entering nonterminal states is:

- $R(s) < -1.6284$
- $-0.4278 < R(s) < -0.0850$
- $R(s) = -0.04$
- $-0.0221 < R(s) \leq 0$
- $0 < R(s)$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Start</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>X</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>+1</td>
</tr>
</tbody>
</table>
The optimal policy when life is quite unpleasant

When $-0.4278 < R(s) < -0.0850$, what does the optimal policy look like?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>X</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>+1</td>
<td></td>
</tr>
</tbody>
</table>

→ Optimal policy:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>↓</td>
<td>→</td>
<td>↓</td>
<td>←</td>
</tr>
<tr>
<td>2</td>
<td>↓</td>
<td>X</td>
<td>↓</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>+1</td>
</tr>
</tbody>
</table>

Life is quite unpleasant. The agent takes the shortest route to the $+1$ state and is willing to risk falling into the -1 state by accident. The agent takes the shortcut from s_{13}.
The optimal policy when life is painful

When \(R(s) < -1.6284 \), what does the optimal policy look like?

Optimal policy:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>+1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Life is so painful that the agent heads straight for the nearest exit, even if the exit is worth \(-1\).
The optimal policy when life is unpleasant

When $R(s) = -0.04$, what does the optimal policy look like?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>+1</td>
<td></td>
</tr>
</tbody>
</table>

The optimal policy for s_{13} is conservative. We prefer to take the long way around to avoid reaching the -1 state by accident.
The optimal policy when life is only slightly dreary

When \(-0.0221 < R(s) \leq 0\),
what does the optimal policy look like?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Start</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>+1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Life is only slightly dreary. The optimal policy takes no risk.

In \(s_{14}\) and \(s_{23}\), the agent heads directly away from the \(-1\) state to avoid falling into the \(-1\) state by accident even though this means banging its head against the wall quite a few times.
The optimal policy when life is GOOD =D

When $R(s) > 0$, what does the optimal policy look like?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>X</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>+1</td>
<td></td>
</tr>
</tbody>
</table>

Life is so pleasant and the agent avoids both goal states.
Q #4: True or False: The solution to this problem should be a fixed sequence of actions. For example, a fixed sequence of actions is *down, down, right, right, right*.

(A) True
(B) False
(C) I don’t know
Q: A stochastic environment

Q #4: True or False: The solution to this problem should be a fixed sequence of actions. For example, a fixed sequence of actions is down, down, right, right, right.

(A) True
(B) False
(C) I don’t know

→ (B) Correct answer is False. Since actions may not have their intended effects, a fixed sequence of actions is not guaranteed to reach a desirable state. We need to constantly revise our plan based on the current state we are in.
Learning Goals

Introduction to Markov Decision Processes

A Grid World

Policies

The optimal policies of the grid world

Determine the Optimal Policy Given $V^*(s)$

Revisiting Learning Goals
The Expected Utility of a Policy

$V^\pi(s)$: expected utility of entering state s and following the policy π thereafter.

$V^*(s)$: expected utility of entering state s and following the optimal policy π^* thereafter.
The Values of $V^*(s)$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.705</td>
<td>0.655</td>
<td>0.611</td>
<td>0.388</td>
</tr>
<tr>
<td>2</td>
<td>0.762</td>
<td>X</td>
<td>0.660</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>0.812</td>
<td>0.868</td>
<td>0.918</td>
<td>+1</td>
</tr>
</tbody>
</table>

Figure: $V^*(s)$ for $\gamma = 1$ and $R(s) = -0.04, \forall s \neq s_{24}, s \neq s_{34}$.
Calculate the Optimal Policy Given $V^*(s)$

Calculate my expected utility if I am in state s and take action a.

$$Q^*(s, a) = R(s) + \sum_{s'} P(s'|s, a)V^*(s')$$ \hspace{1cm} (1)$$

In state s, choose an action that maximizes my expected utility.

$$\pi^*(s) = \arg \max_a Q^*(s, a)$$ \hspace{1cm} (2)$$
Q: Determine optimal action given $V^*(s)$

Q #5: What is the optimal action for state s_{13}?

(A) Up (B) Down (C) Left (D) Right

$$Q^*(s, a) = R(s) + \sum_{s'} P(s'|s, a)V^*(s')$$

$$\pi^*(s) = \arg\max_a Q^*(s, a).$$

The values of $V^*(s)$ are given below.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.705</td>
<td>0.655</td>
<td>0.611</td>
<td>0.388</td>
</tr>
<tr>
<td>2</td>
<td>0.762</td>
<td>X</td>
<td>0.660</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>0.812</td>
<td>0.868</td>
<td>0.918</td>
<td>+1</td>
</tr>
</tbody>
</table>
Q: Determine optimal action given $V^*(s)$

$$Q^*(s, a) = R(s) + \sum_{s'} P(s'|s, a)V^*(s')$$

$$\pi^*(s) = \arg \max_a Q^*(s, a).$$

The values of $V^*(s)$ are given below.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.705</td>
<td>0.655</td>
<td>0.611</td>
<td>0.388</td>
</tr>
<tr>
<td>2</td>
<td>0.762</td>
<td>X</td>
<td>0.660</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>0.812</td>
<td>0.868</td>
<td>0.918</td>
<td>+1</td>
</tr>
</tbody>
</table>
Q: Determine optimal action given $V^*(s)$

$$Q^*(s, a) = R(s) + \sum_{s'} P(s'|s, a)V^*(s')$$

$$\pi^*(s) = \arg\max_a Q^*(s, a).$$

The values of $V^*(s)$ are given below.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.705</td>
<td>0.655</td>
<td>0.611</td>
<td>0.388</td>
</tr>
<tr>
<td>2</td>
<td>0.762</td>
<td>X</td>
<td>0.660</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>0.812</td>
<td>0.868</td>
<td>0.918</td>
<td>+1</td>
</tr>
</tbody>
</table>

Left: $-0.04 + 0.8 \times 0.655 + 0.1 \times 0.611 + 0.1 \times 0.660 = 0.6111$

Right: $-0.04 + 0.8 \times 0.388 + 0.1 \times 0.611 + 0.1 \times 0.660 = 0.3975$

Down: $-0.04 + 0.8 \times 0.660 + 0.1 \times 0.388 + 0.1 \times 0.655 = 0.5923$

Up: $-0.04 + 0.8 \times 0.611 + 0.1 \times 0.655 + 0.1 \times 0.388 = 0.5531$
Q: Determine optimal action given $V^*(s)$

Q #5: What is the optimal action for state s_{13}?

(A) Up (B) Down (C) Left (D) Right

$$Q^*(s, a) = R(s) + \sum_{s'} P(s'|s, a)V^*(s')$$

$$\pi^*(s) = \arg \max_a Q^*(s, a).$$

The values of $V^*(s)$ are given below.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.705</td>
<td>0.655</td>
<td>0.611</td>
<td>0.388</td>
</tr>
<tr>
<td>2</td>
<td>0.762</td>
<td>X</td>
<td>0.660</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>0.812</td>
<td>0.868</td>
<td>0.918</td>
<td>+1</td>
</tr>
</tbody>
</table>

→ Answer is (C), going left
Revisiting Learning Goals

- Describe motivations for modeling a decision problem as a Markov decision process.
- Describe components of a fully-observable Markov decision process.
- Describe reasons for using a discounted reward function.
- Define the policy of a Markov decision process.
- Give examples of how the reward function affects the optimal policy of a Markov decision process.