Inference in Hidden Markov Models Part 2

Wenhu Chen
Lecture 11

Readings: RN 14.2.2.

Outline

Learning Goals

Smoothing Calculations

Smoothing Derivations

The Forward-Backward Algorithm

Viterbi Algorithm

Revisiting Learning Goals

Learning Goals

- Calculate the smoothing probability for a time step in a hidden Markov model.
- Describe the justification for a step in the derivation of the smoothing formulas.
- Describe the forward-backward algorithm.
- Describe the Viterbi algorithm.

Learning Goals

Smoothing Calculations

Smoothing Derivations

The Forward-Backward Algorithm

Viterbi Algorithm

Revisiting Learning Goals

The Umbrella Model

Let S_{t} be true if it rains on day t and false otherwise.
Let O_{t} be true if the director carries an umbrella on day t and false otherwise.

$$
P\left(s_{0}\right)=0.5
$$

$$
\begin{aligned}
& P\left(s_{t} \mid s_{t-1}\right)=0.7 \\
& P\left(s_{t} \mid \neg s_{t-1}\right)=0.3
\end{aligned}
$$

$$
\begin{aligned}
& P\left(o_{t} \mid s_{t}\right)=0.9 \\
& P\left(o_{t} \mid \neg s_{t}\right)=0.2
\end{aligned}
$$

Smoothing

Given the observations from day 0 to day $t-1$, what is the probability that I am in a particular state on day k ?

$$
P\left(S_{k} \mid o_{0:(t-1)}\right), \text { where } 0 \leq k \leq t-1
$$

Smoothing through Backward Recursion

Calculating the smoothed probability $P\left(S_{k} \mid o_{0:(t-1)}\right)$:

$$
\begin{aligned}
& P\left(S_{k} \mid o_{0:(t-1)}\right) \\
& =\alpha P\left(S_{k} \mid o_{0: k}\right) P\left(o_{(k+1):(t-1)} \mid S_{k}\right) \\
& =\alpha f_{0: k} b_{(k+1):(t-1)}
\end{aligned}
$$

Calculate $f_{0: k}$ using forward recursion.
Calculate $b_{(k+1):(t-1)}$ using backward recursion.

Backward Recursion:

Base case:

$$
b_{t:(t-1)}=\overrightarrow{1}
$$

Recursive case:

$$
b_{(k+1):(t-1)}=\sum_{s_{k+1}} P\left(o_{k+1} \mid s_{k+1}\right) b_{(k+2):(t-1)} P\left(s_{k+1} \mid S_{k}\right)
$$

A Smoothing Example

Consider the umbrella story.

Assume that $O_{0}=$ true, $O_{1}=$ true, and $O_{2}=$ true.
What is the probability that it rained on day $0\left(P\left(S_{0} \mid o_{0} \wedge o_{1} \wedge o_{2}\right)\right)$ and the probability it rained on day $1\left(P\left(S_{1} \mid o_{0} \wedge o_{1} \wedge o_{2}\right)\right)$?

Here are the useful quantities from the umbrella story:

$$
\begin{aligned}
& P\left(s_{0}\right)=0.5 \\
& P\left(o_{t} \mid s_{t}\right)=0.9, P\left(o_{t} \mid \neg s_{t}\right)=0.2 \\
& P\left(s_{t} \mid s_{(t-1)}\right)=0.7, P\left(s_{t} \mid \neg s_{(t-1)}\right)=0.3
\end{aligned}
$$

A Smoothing Example

Calculate $P\left(S_{1} \mid o_{0: 2}\right)$.

A Smoothing Example

Calculate $P\left(S_{1} \mid o_{0: 2}\right)$.
(1) What are the values of k and t ?

$$
P\left(S_{1} \mid o_{0: 2}\right)=P\left(S_{k} \mid o_{0:(t-1)}\right) \Rightarrow k=1, t=3
$$

A Smoothing Example

Calculate $P\left(S_{1} \mid o_{0: 2}\right)$.
(1) What are the values of k and t ?

$$
P\left(S_{1} \mid o_{0: 2}\right)=P\left(S_{k} \mid o_{0:(t-1)}\right) \Rightarrow k=1, t=3
$$

(2) Write the probability as a product of forward and backward messages.

$$
\begin{aligned}
& P\left(S_{1} \mid o_{0: 2}\right) \\
& =\alpha P\left(S_{1} \mid o_{0: 1}\right) * P\left(o_{2: 2} \mid S_{1}\right) \\
& =\alpha f_{0: 1} * b_{2: 2}
\end{aligned}
$$

A Smoothing Example

Calculate $P\left(S_{1} \mid o_{0: 2}\right)$.
(1) What are the values of k and t ?

$$
P\left(S_{1} \mid o_{0: 2}\right)=P\left(S_{k} \mid o_{0:(t-1)}\right) \Rightarrow k=1, t=3
$$

(2) Write the probability as a product of forward and backward messages.

$$
\begin{aligned}
& P\left(S_{1} \mid o_{0: 2}\right) \\
& =\alpha P\left(S_{1} \mid o_{0: 1}\right) * P\left(o_{2: 2} \mid S_{1}\right) \\
& =\alpha f_{0: 1} * b_{2: 2}
\end{aligned}
$$

(3) We already calculated $f_{0: 1}=\langle 0.883,0.117\rangle$ in the last lecture. Next, we will calculate $b_{2: 2}$ using backward recursion.

A Backward Recursion Example - Recursive Case

Calculate $b_{2: 2}=P\left(o_{2: 2} \mid S_{1}\right)$ where $k=1, t=3$.

A Backward Recursion Example - Recursive Case

Calculate $b_{2: 2}=P\left(o_{2: 2} \mid S_{1}\right)$ where $k=1, t=3$.

$$
\begin{aligned}
& b_{2: 2}=P\left(o_{2: 2} \mid S_{1}\right) \\
& =\sum_{s_{2}} P\left(o_{2} \mid s_{2}\right) * b_{3: 2} * P\left(s_{2} \mid S_{1}\right) \\
& =\sum_{s_{2}} P\left(o_{2} \mid s_{2}\right) * P\left(o_{3: 2} \mid s_{2}\right) * P\left(s_{2} \mid S_{1}\right) \\
& =\sum_{s_{2}} P\left(o_{2} \mid s_{2}\right) * P\left(o_{3: 2} \mid s_{2}\right) *\left\langle P\left(s_{2} \mid s_{1}\right), P\left(s_{2} \mid \neg s_{1}\right)\right\rangle \\
& =\left(P\left(o_{2} \mid s_{2}\right) * P\left(o_{3: 2} \mid s_{2}\right) *\left\langle P\left(s_{2} \mid s_{1}\right), P\left(s_{2} \mid \neg s_{1}\right)\right\rangle\right. \\
& \left.\quad \quad+P\left(o_{2} \mid \neg s_{2}\right) * P\left(o_{3: 2} \mid \neg s_{2}\right) *\left\langle P\left(\neg s_{2} \mid s_{1}\right), P\left(\neg s_{2} \mid \neg s_{1}\right)\right\rangle\right)
\end{aligned}
$$

A Backward Recursion Example - Recursive Case

Calculate $b_{2: 2}=P\left(o_{2: 2} \mid S_{1}\right)$ where $k=1, t=3$.

A Backward Recursion Example - Recursive Case

Calculate $b_{2: 2}=P\left(o_{2: 2} \mid S_{1}\right)$ where $k=1, t=3$.

$$
\begin{aligned}
& b_{2: 2}=P\left(o_{2: 2} \mid S_{1}\right) \\
& = \\
& \quad\left(P\left(o_{2} \mid s_{2}\right) * P\left(o_{3: 2} \mid s_{2}\right) *\left\langle P\left(s_{2} \mid s_{1}\right), P\left(s_{2} \mid \neg s_{1}\right)\right\rangle\right. \\
& \\
& \left.\quad \quad+P\left(o_{2} \mid \neg s_{2}\right) * P\left(o_{3: 2} \mid \neg s_{2}\right) *\left\langle P\left(\neg s_{2} \mid s_{1}\right), P\left(\neg s_{2} \mid \neg s_{1}\right)\right\rangle\right) \\
& =(0.9 * 1 *\langle 0.7,0.3\rangle+0.2 * 1 *\langle 0.3,0.7\rangle) \\
& =(0.9 *\langle 0.7,0.3\rangle+0.2 *\langle 0.3,0.7\rangle) \\
& =(\langle 0.63,0.27\rangle+\langle 0.06,0.14\rangle) \\
& =\langle 0.69,0.41\rangle
\end{aligned}
$$

A Smoothing Example

Calculate $P\left(S_{1} \mid o_{0: 2}\right)$.

A Smoothing Example

Calculate $P\left(S_{1} \mid o_{0: 2}\right)$.

$$
\begin{aligned}
& P\left(S_{1} \mid o_{0: 2}\right) \\
& =\alpha P\left(S_{1} \mid o_{0: 1}\right) * P\left(o_{2: 2} \mid S_{1}\right) \\
& =\alpha f_{0: 1} * b_{2: 2} \\
& =\alpha\langle 0.883,0.117\rangle *\langle 0.69,0.41\rangle \\
& =\alpha\langle 0.6093,0.0480\rangle \\
& =\langle 0.927,0.073\rangle
\end{aligned}
$$

A Smoothing Example

Calculate $P\left(S_{0} \mid o_{0: 2}\right)$.

A Smoothing Example

Calculate $P\left(S_{0} \mid o_{0: 2}\right)$.

$$
\begin{aligned}
k= & 0, t=3 \\
b_{1: 2}= & P\left(o_{1: 2} \mid S_{0}\right) \\
= & \left(P\left(o_{1} \mid s_{1}\right) * P\left(o_{2: 2} \mid s_{1}\right) *\left\langle P\left(s_{1} \mid s_{0}\right), P\left(s_{1} \mid \neg s_{0}\right)\right\rangle\right. \\
& \left.\quad+P\left(o_{1} \mid \neg s_{1}\right) * P\left(o_{2: 2} \mid \neg s_{1}\right) *\left\langle P\left(\neg s_{1} \mid s_{0}\right), P\left(\neg s_{1} \mid \neg s_{0}\right)\right\rangle\right) \\
= & (0.9 * 0.69 *\langle 0.7,0.3\rangle+0.2 * 0.41 *\langle 0.3,0.7\rangle) \\
= & \langle 0.4593,0.2437\rangle
\end{aligned}
$$

A Smoothing Example

Calculate $P\left(S_{0} \mid o_{0: 2}\right)$.

$$
\begin{aligned}
k= & 0, t=3 \\
b_{1: 2}= & P\left(o_{1: 2} \mid S_{0}\right) \\
= & \left(P\left(o_{1} \mid s_{1}\right) * P\left(o_{2: 2} \mid s_{1}\right) *\left\langle P\left(s_{1} \mid s_{0}\right), P\left(s_{1} \mid \neg s_{0}\right)\right\rangle\right. \\
& \left.\quad+P\left(o_{1} \mid \neg s_{1}\right) * P\left(o_{2: 2} \mid \neg s_{1}\right) *\left\langle P\left(\neg s_{1} \mid s_{0}\right), P\left(\neg s_{1} \mid \neg s_{0}\right)\right\rangle\right) \\
= & (0.9 * 0.69 *\langle 0.7,0.3\rangle+0.2 * 0.41 *\langle 0.3,0.7\rangle) \\
= & \langle 0.4593,0.2437\rangle
\end{aligned}
$$

$$
\begin{aligned}
P\left(S_{0} \mid o_{0: 2}\right) & =\alpha f_{0: 0} * b_{1: 2} \\
& =\alpha\langle 0.818,0.182\rangle *\langle 0.4593,0.2437\rangle \\
& =\langle 0.894,0.106\rangle
\end{aligned}
$$

Smoothing: Example 2

Consider a hidden Markov model with 4 time steps.

$$
P\left(s_{0}\right)=0.4
$$

$$
\begin{aligned}
& P\left(s_{t} \mid s_{t-1}\right)=0.7 \\
& P\left(s_{t} \mid \neg s_{t-1}\right)=0.2
\end{aligned}
$$

$$
\begin{aligned}
& P\left(o_{t} \mid s_{t}\right)=0.9 \\
& P\left(o_{t} \mid \neg s_{t}\right)=0.2
\end{aligned}
$$

Calculate $P\left(S_{2} \mid o_{0} \wedge o_{1} \wedge o_{2} \wedge \neg o_{3}\right)$.

Learning Goals

Smoothing Calculations

Smoothing Derivations

The Forward-Backward Algorithm

Viterbi Algorithm

Revisiting Learning Goals

Smoothing (time k)

How can we derive the formula for $P\left(S_{k} \mid o_{0:(t-1)}\right), 0 \leq k \leq t-1$?

$$
\begin{aligned}
& P\left(S_{k} \mid o_{0:(t-1)}\right) \\
& =P\left(S_{k} \mid o_{(k+1):(t-1)} \wedge o_{0: k}\right) \\
& =\alpha P\left(S_{k} \mid o_{0: k}\right) P\left(o_{(k+1):(t-1)} \mid S_{k} \wedge o_{0: k}\right) \\
& =\alpha P\left(S_{k} \mid o_{0: k}\right) P\left(o_{(k+1):(t-1)} \mid S_{k}\right) \\
& =\alpha f_{0: k} b_{(k+1):(t-1)}
\end{aligned}
$$

Calculate $f_{0: k}$ through forward recursion.
Calculate $b_{(k+1):(t-1)}$ through backward recursion.

Q: Smoothing Derivation

Q \#1: What is the justification for the step below?

$$
\begin{aligned}
& P\left(S_{k} \mid o_{0:(t-1)}\right) \\
& =P\left(S_{k} \mid o_{(k+1):(t-1)} \wedge o_{0: k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Q: Smoothing Derivation

Q \#1: What is the justification for the step below?

$$
\begin{aligned}
& P\left(S_{k} \mid o_{0:(t-1)}\right) \\
& =P\left(S_{k} \mid o_{(k+1):(t-1)} \wedge o_{0: k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule
\rightarrow Correct answer is (B) Re-writing the expression.

Q: Smoothing Derivation

Q \#2: What is the justification for the step below?

$$
\begin{aligned}
& =P\left(S_{k} \mid o_{(k+1):(t-1)} \wedge o_{0: k}\right) \\
& =\alpha P\left(S_{k} \mid o_{0: k}\right) P\left(o_{(k+1):(t-1)} \mid S_{k} \wedge o_{0: k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Q: Smoothing Derivation

Q \#2: What is the justification for the step below?

$$
\begin{aligned}
& =P\left(S_{k} \mid o_{(k+1):(t-1)} \wedge o_{0: k}\right) \\
& =\alpha P\left(S_{k} \mid o_{0: k}\right) P\left(o_{(k+1):(t-1)} \mid S_{k} \wedge o_{0: k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule
\rightarrow Correct answer is (A) Bayes' rule.

Q: Smoothing Derivation

Q \#3: What is the justification for the step below?

$$
\begin{aligned}
& =\alpha P\left(S_{k} \mid o_{0: k}\right) P\left(o_{(k+1):(t-1)} \mid S_{k} \wedge o_{0: k}\right) \\
& =\alpha P\left(S_{k} \mid o_{0: k}\right) P\left(o_{(k+1):(t-1)} \mid S_{k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Q: Smoothing Derivation

Q \#3: What is the justification for the step below?

$$
\begin{aligned}
& =\alpha P\left(S_{k} \mid o_{0: k}\right) P\left(o_{(k+1):(t-1)} \mid S_{k} \wedge o_{0: k}\right) \\
& =\alpha P\left(S_{k} \mid o_{0: k}\right) P\left(o_{(k+1):(t-1)} \mid S_{k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

\rightarrow Correct answer is (D) The Markov assumption.

Backward Recursion Formula Derivations

How did we derive the formula for backward recursion?

$$
\begin{align*}
& P\left(o_{(k+1):(t-1)} \mid S_{k}\right) \\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \wedge s_{(k+1)} \mid S_{k}\right) \tag{1}\\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \mid s_{(k+1)} \wedge S_{k}\right) * P\left(s_{(k+1)} \mid S_{k}\right) \tag{2}\\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right) \tag{3}\\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1)} \wedge o_{(k+2):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right) \tag{4}\\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1)} \mid s_{(k+1)}\right) * P\left(o_{(k+2):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right) \tag{5}
\end{align*}
$$

Q: Backward Recursion Derivation

Q \#4: What is the justification for the step below?

$$
\begin{aligned}
& P\left(o_{(k+1):(t-1)} \mid S_{k}\right) \\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \wedge s_{(k+1)} \mid S_{k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Q: Backward Recursion Derivation

Q \#4: What is the justification for the step below?

$$
\begin{aligned}
& P\left(o_{(k+1):(t-1)} \mid S_{k}\right) \\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \wedge s_{(k+1)} \mid S_{k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule
\rightarrow Correct answer is (E) The sum rule.

Q: Backward Recursion Derivation

Q \#5: What is the justification for the step below?

$$
\begin{aligned}
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \wedge s_{(k+1)} \mid S_{k}\right) \\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \mid s_{(k+1)} \wedge S_{k}\right) P\left(s_{(k+1)} \mid S_{k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Q: Backward Recursion Derivation

Q \#5: What is the justification for the step below?

$$
\begin{aligned}
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \wedge s_{(k+1)} \mid S_{k}\right) \\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \mid s_{(k+1)} \wedge S_{k}\right) P\left(s_{(k+1)} \mid S_{k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule
\rightarrow Correct answer is (C) The chain/product rule.

Q: Backward Recursion Derivation

Q \#6: What is the justification for the step below?

$$
\begin{aligned}
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \mid s_{(k+1)} \wedge S_{k}\right) P\left(s_{(k+1)} \mid S_{k}\right) \\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \mid s_{(k+1)}\right) P\left(s_{(k+1)} \mid S_{k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Q: Backward Recursion Derivation

Q \#6: What is the justification for the step below?

$$
\begin{aligned}
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \mid s_{(k+1)} \wedge S_{k}\right) P\left(s_{(k+1)} \mid S_{k}\right) \\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \mid s_{(k+1)}\right) P\left(s_{(k+1)} \mid S_{k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption

(E) The sum rule
\rightarrow Correct answer is (D) The Markov assumption.

Q: Backward Recursion Derivation

Q \#7: What is the justification for the step below?

$$
\begin{aligned}
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right) \\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1)} \wedge o_{(k+2):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Q: Backward Recursion Derivation

Q \#7: What is the justification for the step below?

$$
\begin{aligned}
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right) \\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1)} \wedge o_{(k+2):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule
\rightarrow Correct answer is (B) Re-writing the expression.

Q: Backward Recursion Derivation

Q \#8: What is the justification for the step below?

$$
\begin{aligned}
& =\sum_{s_{(k+1)}} P\left(o_{(k+1)} \wedge o_{(k+2):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right) \\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1)} \mid s_{(k+1)}\right) * P\left(o_{(k+2):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Q: Backward Recursion Derivation

Q \#8: What is the justification for the step below?

$$
=\sum_{s_{(k+1)}} P\left(o_{(k+1)} \wedge o_{(k+2):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right)
$$

$$
=\sum_{s_{(k+1)}} P\left(o_{(k+1)} \mid s_{(k+1)}\right) * P\left(o_{(k+2):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right)
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption

(E) The sum rule
\rightarrow Correct answer is (D) The Markov assumption.

Learning Goals

Smoothing Calculations

Smoothing Derivations

The Forward-Backward Algorithm

Viterbi Algorithm

Revisiting Learning Goals

The Forward-Backward Algorithm

For a hidden Markov model with any number of time steps, we can calculate the smoothed probabilities using one forward pass and one backward pass through the network.

$$
\begin{aligned}
& P\left(S_{k} \mid o_{0:(t-1)}\right) \\
& =\alpha P\left(S_{k} \mid o_{0: k}\right) P\left(o_{(k+1):(t-1)} \mid S_{k}\right) \\
& =\alpha f_{0: k} b_{(k+1):(t-1)}
\end{aligned}
$$

Learning Goals

Smoothing Calculations

Smoothing Derivations

The Forward-Backward Algorithm

Viterbi Algorithm

Revisiting Learning Goals

Finding most likely explanation

We have observed all the states $o_{0: t-1}$ and want to decode all the hidden states $s_{0: t-1}$. Here we make a more general assumption:

- S_{t} is not boolean variable, $S_{t} \in\{0,1,2, \cdots, n-1\}$.
- The time spans from 0 to $t-1$.
- The transition matrix $A \in \mathbb{R}^{n \times n}$ and emission matrix $O^{n \times o}$ are already given, where o is the possible observations.

$$
\hat{s}_{0}, \cdots, \hat{s}_{t-1}=\underset{S_{0}: S_{t-1}}{\arg \max } p\left(S_{0}, \cdots, S_{t-1} \mid o_{0: t-1}\right)
$$

Brutal-Force Decoding

Loop through all the possible $S_{0: t-1}$, and then compute their likelihood $p\left(S_{0: t-1} \mid o_{0: t-1}\right)$ to find the maximum.

- $S_{0}=T, S_{1}=T, S_{2}=T, \cdots, S_{t-1}=T$
- $S_{0}=T, S_{1}=T, S_{2}=T, \cdots, S_{t-1}=F$
- $S_{0}=F, S_{1}=F, S_{2}=F, \cdots, S_{t-1}=F$

The complexity is $O\left(n^{t}\right)$, which is extremely expensive.

Dynamic Programming

Assuming we have a sequence $S_{0: k}$ ending at $S_{k}=j$, we can define a function $r\left(S_{k}=j, S_{0: k-1}\right)$ as:

$$
r\left(S_{k}=j, S_{0: k-1}\right)=P\left(S_{0: k-1}, S_{k}=j \mid o_{0: k}\right)
$$

Define an auxiliary function $\pi_{k}(j)$ as:

$$
\begin{aligned}
\pi_{k}(j) & =\max _{S_{0: k-1}} r\left(S_{k}=j, S_{0: k-1}\right) \\
& =\max _{S_{0: k-1} ; s . t . S_{k-1}=j} P\left(S_{0: k-1}, S_{k}=j \mid o_{0: k}\right)
\end{aligned}
$$

By definition, we have:
$\pi_{k}(j)$ denotes the maximum probability of any sequence $S_{0: k}$ ending with $S_{k}=j$ under the current observations.

Dynamic Programming

$$
\pi\left(S_{k-1}=j\right) \quad \pi\left(S_{k}=j\right)
$$

Dynamic Programming

Base case:

For 0-th step, we have:

$$
\pi_{0}(j)=\alpha P\left(S_{0}\right) P\left(o_{0} \mid S_{0}\right)
$$

Recursive definition:

For any $k \in\{1, \cdots, t-1\}$, for any j, we have:

$$
\begin{aligned}
& \pi_{k}(j)=P\left(o_{k} \mid S_{k}=j\right) \max _{z}\left[\pi_{k-1}(z) P\left(S_{k}=j \mid S_{k-1}=z\right)\right] \\
& \phi_{k}(j)=\underset{z}{\arg \max }\left[\pi_{k-1}(z) P\left(S_{k}=j \mid S_{k-1}=z\right)\right]
\end{aligned}
$$

Viterbi Algorithm

Given: π_{0} and probabilities P. Return \hat{s} as the output.

- For $k=1, \cdots, t-1$
- For $j=0, \cdots n-1$

$$
\begin{gathered}
\pi_{k}(j)=P\left(o_{k} \mid S_{k}=j\right) \max _{z}\left[\pi_{k-1}(z) P\left(S_{k}=j \mid S_{k-1}=z\right)\right] \\
\phi_{k}(j)=\arg \max \left[\pi_{k-1}(z) P\left(S_{k}=j \mid S_{k-1}=z\right)\right]
\end{gathered}
$$

Find last state $\hat{s}_{t-1}=\arg \max _{j} \pi_{t-1}(j)$.

- For $k=t-1, \cdots, 1$

$$
\hat{s}_{k-1}=\phi_{k}\left(\hat{s}_{k}\right)
$$

- Return $\hat{s}=\hat{s}_{0}, \cdots, \hat{s}_{t-1}$.

Viterbi Algorithm

Figure: viterbi algorithm visualization.

Given the length of the sequence as t, and the number of states as n, the time complexity is $O\left(t \times n^{2}\right)$

Revisiting Learning Goals

- Calculate the smoothing probability for a time step in a hidden Markov model.
- Describe the justification for a step in the derivation of the smoothing formulas.
- Describe the forward-backward algorithm.
- Describe the Viterbi algorithm.

