Inference in Hidden Markov Models Part 2

Wenhu Chen

Lecture 11

Readings: RN 14.2.2.

Outline

Learning Goals

Smoothing Calculations

Smoothing Derivations

The Forward-Backward Algorithm

Viterbi Algorithm

Revisiting Learning Goals

Learning Goals

- Calculate the smoothing probability for a time step in a hidden Markov model.
- Describe the justification for a step in the derivation of the smoothing formulas.
- ▶ Describe the forward-backward algorithm.
- Describe the Viterbi algorithm.

Learning Goals

Smoothing Calculations

Smoothing Derivations

The Forward-Backward Algorithm

Viterbi Algorithm

Revisiting Learning Goals

The Umbrella Model

Let S_t be true if it rains on day t and false otherwise.

Let O_t be true if the director carries an umbrella on day t and false otherwise.

$$P(s_0) = 0.5$$

$$P(s_t|s_{t-1}) = 0.7$$

 $P(s_t|\neg s_{t-1}) = 0.3$ $P(o_t|s_t) = 0.9$
 $P(o_t|r) = 0.2$

$$P(o_t|s_t) = 0.9$$

$$P(o_t|\neg s_t) = 0.2$$

Smoothing

Given the observations from day 0 to day t-1, what is the probability that I am in a particular state on day k?

$$P(S_k|o_{0:(t-1)})$$
, where $0 \le k \le t-1$

Smoothing through Backward Recursion

Calculating the smoothed probability $P(S_k|o_{0:(t-1)})$:

$$P(S_k|o_{0:(t-1)})$$
= $\alpha P(S_k|o_{0:k}) P(o_{(k+1):(t-1)}|S_k)$
= $\alpha f_{0:k} b_{(k+1):(t-1)}$

Calculate $f_{0:k}$ using forward recursion.

Calculate $b_{(k+1):(t-1)}$ using backward recursion.

Backward Recursion:

Base case:

$$b_{t:(t-1)} = \vec{1}.$$

Recursive case:

$$b_{(k+1):(t-1)} = \sum_{s_{k+1}} P(o_{k+1}|s_{k+1}) b_{(k+2):(t-1)} P(s_{k+1}|S_k).$$

Consider the umbrella story.

Assume that $O_0 = true$, $O_1 = true$, and $O_2 = true$.

What is the probability that it rained on day 0 ($P(S_0|o_0 \wedge o_1 \wedge o_2)$) and the probability it rained on day 1 ($P(S_1|o_0 \wedge o_1 \wedge o_2)$)?

Here are the useful quantities from the umbrella story:

$$P(s_0) = 0.5$$

$$P(o_t|s_t) = 0.9, P(o_t|\neg s_t) = 0.2$$

$$P(s_t|s_{(t-1)}) = 0.7, P(s_t|\neg s_{(t-1)}) = 0.3$$

Calculate $P(S_1|o_{0:2})$.

Calculate $P(S_1|o_{0:2})$.

(1) What are the values of k and t?

$$P(S_1|o_{0:2}) = P(S_k|o_{0:(t-1)}) \Rightarrow k = 1, t = 3$$

Lecturer: Wenhu Chen

Calculate $P(S_1|o_{0:2})$.

(1) What are the values of k and t?

$$P(S_1|o_{0:2}) = P(S_k|o_{0:(t-1)}) \Rightarrow k = 1, t = 3$$

(2) Write the probability as a product of forward and backward messages.

$$P(S_1|o_{0:2})$$
= $\alpha P(S_1|o_{0:1}) * P(o_{2:2}|S_1)$
= $\alpha f_{0:1} * b_{2:2}$

Calculate $P(S_1|o_{0:2})$.

(1) What are the values of k and t?

$$P(S_1|o_{0:2}) = P(S_k|o_{0:(t-1)}) \Rightarrow k = 1, t = 3$$

(2) Write the probability as a product of forward and backward messages.

$$P(S_1|o_{0:2})$$
= $\alpha P(S_1|o_{0:1}) * P(o_{2:2}|S_1)$
= $\alpha f_{0:1} * b_{2:2}$

(3) We already calculated $f_{0:1} = \langle 0.883, 0.117 \rangle$ in the last lecture. Next, we will calculate $b_{2:2}$ using backward recursion.

$$b_{2:2} = P(o_{2:2}|S_1)$$

$$= \sum_{s_2} P(o_2|s_2) * b_{3:2} * P(s_2|S_1)$$

$$= \sum_{s_2} P(o_2|s_2) * P(o_{3:2}|s_2) * P(s_2|S_1)$$

$$= \sum_{s_2} P(o_2|s_2) * P(o_{3:2}|s_2) * \langle P(s_2|s_1), P(s_2|\neg s_1) \rangle$$

$$= \left(P(o_2|s_2) * P(o_{3:2}|s_2) * \langle P(s_2|s_1), P(s_2|\neg s_1) \rangle \right)$$

$$+ P(o_2|\neg s_2) * P(o_{3:2}|\neg s_2) * \langle P(\neg s_2|s_1), P(\neg s_2|\neg s_1) \rangle \right)$$

$$b_{2:2} = P(o_{2:2}|S_1)$$

$$= \left(P(o_2|s_2) * P(o_{3:2}|s_2) * \langle P(s_2|s_1), P(s_2|\neg s_1) \rangle + P(o_2|\neg s_2) * P(o_{3:2}|\neg s_2) * \langle P(\neg s_2|s_1), P(\neg s_2|\neg s_1) \rangle \right)$$

$$= \left(0.9 * 1 * \langle 0.7, 0.3 \rangle + 0.2 * 1 * \langle 0.3, 0.7 \rangle \right)$$

$$= (0.9 * \langle 0.7, 0.3 \rangle + 0.2 * \langle 0.3, 0.7 \rangle)$$

$$= (\langle 0.63, 0.27 \rangle + \langle 0.06, 0.14 \rangle)$$

$$= \langle 0.69, 0.41 \rangle$$

Calculate $P(S_1|o_{0:2})$.

Calculate $P(S_1|o_{0:2})$.

$$P(S_1|o_{0:2})$$
= $\alpha P(S_1|o_{0:1}) * P(o_{2:2}|S_1)$
= $\alpha f_{0:1} * b_{2:2}$
= $\alpha \langle 0.883, 0.117 \rangle * \langle 0.69, 0.41 \rangle$
= $\alpha \langle 0.6093, 0.0480 \rangle$
= $\langle 0.927, 0.073 \rangle$

Lecturer: Wenhu Chen

Calculate $P(S_0|o_{0:2})$.

Calculate $P(S_0|o_{0:2})$.

$$k = 0, t = 3$$

$$b_{1:2} = P(o_{1:2}|S_0)$$

$$= (P(o_1|s_1) * P(o_{2:2}|s_1) * \langle P(s_1|s_0), P(s_1|\neg s_0) \rangle$$

$$+ P(o_1|\neg s_1) * P(o_{2:2}|\neg s_1) * \langle P(\neg s_1|s_0), P(\neg s_1|\neg s_0) \rangle)$$

$$= (0.9 * 0.69 * \langle 0.7, 0.3 \rangle + 0.2 * 0.41 * \langle 0.3, 0.7 \rangle)$$

$$= \langle 0.4593, 0.2437 \rangle$$

Calculate $P(S_0|o_{0:2})$.

$$k = 0, t = 3$$

$$b_{1:2} = P(o_{1:2}|S_0)$$

$$= (P(o_1|s_1) * P(o_{2:2}|s_1) * \langle P(s_1|s_0), P(s_1|\neg s_0) \rangle$$

$$+ P(o_1|\neg s_1) * P(o_{2:2}|\neg s_1) * \langle P(\neg s_1|s_0), P(\neg s_1|\neg s_0) \rangle)$$

$$= (0.9 * 0.69 * \langle 0.7, 0.3 \rangle + 0.2 * 0.41 * \langle 0.3, 0.7 \rangle)$$

$$= \langle 0.4593, 0.2437 \rangle$$

$$P(S_0|o_{0:2}) = \alpha f_{0:0} * b_{1:2}$$

= $\alpha \langle 0.818, 0.182 \rangle * \langle 0.4593, 0.2437 \rangle$
= $\langle 0.894, 0.106 \rangle$

Consider a hidden Markov model with 4 time steps.

$$P(s_0) = 0.4$$

$$P(s_t|s_{t-1}) = 0.7$$

 $P(s_t|\neg s_{t-1}) = 0.2$

$$P(o_t|s_t) = 0.9$$

$$P(o_t|\neg s_t) = 0.2$$

Calculate $P(S_2|o_0 \land o_1 \land o_2 \land \neg o_3)$.

Learning Goals

Smoothing Calculations

Smoothing Derivations

The Forward-Backward Algorithm

Viterbi Algorithm

Revisiting Learning Goals

Smoothing (time *k*)

How can we derive the formula for $P(S_k|o_{0:(t-1)}), 0 \le k \le t-1$?

$$P(S_k|o_{0:(t-1)})$$
= $P(S_k|o_{(k+1):(t-1)} \land o_{0:k})$
= $\alpha P(S_k|o_{0:k}) P(o_{(k+1):(t-1)}|S_k \land o_{0:k})$
= $\alpha P(S_k|o_{0:k}) P(o_{(k+1):(t-1)}|S_k)$
= $\alpha f_{0:k}b_{(k+1):(t-1)}$

Calculate $f_{0:k}$ through forward recursion.

Calculate $b_{(k+1):(t-1)}$ through backward recursion.

Q #1: What is the justification for the step below?

$$P(S_k|o_{0:(t-1)})$$

= $P(S_k|o_{(k+1):(t-1)} \land o_{0:k})$

- (A) Bayes' rule
- (B) Re-writing the expression
- (C) The chain/product rule
- (D) The Markov assumption
- (E) The sum rule

Q #1: What is the justification for the step below?

$$P(S_k|o_{0:(t-1)})$$

= $P(S_k|o_{(k+1):(t-1)} \land o_{0:k})$

- (A) Bayes' rule
- (B) Re-writing the expression
- (C) The chain/product rule
- (D) The Markov assumption
- (E) The sum rule
- \rightarrow Correct answer is (B) Re-writing the expression.

Q #2: What is the justification for the step below?

$$= P(S_k | o_{(k+1):(t-1)} \wedge o_{0:k})$$

= $\alpha P(S_k | o_{0:k}) P(o_{(k+1):(t-1)} | S_k \wedge o_{0:k})$

- (A) Bayes' rule
- (B) Re-writing the expression
- (C) The chain/product rule
- (D) The Markov assumption
- (E) The sum rule

Q #2: What is the justification for the step below?

$$= P(S_k | o_{(k+1):(t-1)} \wedge o_{0:k})$$

= $\alpha P(S_k | o_{0:k}) P(o_{(k+1):(t-1)} | S_k \wedge o_{0:k})$

- (A) Bayes' rule
- (B) Re-writing the expression
- (C) The chain/product rule
- (D) The Markov assumption
- (E) The sum rule
- \rightarrow Correct answer is (A) Bayes' rule.

Q #3: What is the justification for the step below?

$$= \alpha P(S_k|o_{0:k}) P(o_{(k+1):(t-1)}|S_k \wedge o_{0:k})$$

= \alpha P(S_k|o_{0:k}) P(o_{(k+1):(t-1)}|S_k)

- (A) Bayes' rule
- (B) Re-writing the expression
- (C) The chain/product rule
- (D) The Markov assumption
- (E) The sum rule

Q #3: What is the justification for the step below?

$$= \alpha P(S_k|o_{0:k}) P(o_{(k+1):(t-1)}|S_k \wedge o_{0:k})$$

= \alpha P(S_k|o_{0:k}) P(o_{(k+1):(t-1)}|S_k)

- (A) Bayes' rule
- (B) Re-writing the expression
- (C) The chain/product rule
- (D) The Markov assumption
- (E) The sum rule
- \rightarrow Correct answer is (D) The Markov assumption.

Backward Recursion Formula Derivations

How did we derive the formula for backward recursion?

$$P(o_{(k+1):(t-1)}|S_k) = \sum_{s_{(k+1)}} P(o_{(k+1):(t-1)} \wedge s_{(k+1)}|S_k)$$
(1)

$$= \sum_{s_{(k+1)}} P(o_{(k+1):(t-1)}|s_{(k+1)} \wedge S_k) * P(s_{(k+1)}|S_k)$$
 (2)

$$= \sum_{s_{(k+1)}} P(o_{(k+1):(t-1)}|s_{(k+1)}) * P(s_{(k+1)}|S_k)$$
(3)

$$= \sum_{s_{(k+1)}} P(o_{(k+1)} \wedge o_{(k+2):(t-1)} | s_{(k+1)}) * P(s_{(k+1)} | S_k)$$
(4)

$$= \sum_{s_{(k+1)}} P(o_{(k+1)}|s_{(k+1)}) * P(o_{(k+2):(t-1)}|s_{(k+1)}) * P(s_{(k+1)}|S_k)$$
 (5)

Q #4: What is the justification for the step below?

$$P(o_{(k+1):(t-1)}|S_k) = \sum_{s_{(k+1)}} P(o_{(k+1):(t-1)} \wedge s_{(k+1)}|S_k)$$

- (A) Bayes' rule
- (B) Re-writing the expression
- (C) The chain/product rule
- (D) The Markov assumption
- (E) The sum rule

Q #4: What is the justification for the step below?

$$P(o_{(k+1):(t-1)}|S_k) = \sum_{s_{(k+1)}} P(o_{(k+1):(t-1)} \wedge s_{(k+1)}|S_k)$$

- (A) Bayes' rule
- (B) Re-writing the expression
- (C) The chain/product rule
- (D) The Markov assumption
- (E) The sum rule
- \rightarrow Correct answer is (E) The sum rule.

Q #5: What is the justification for the step below?

$$= \sum_{s_{(k+1)}} P(o_{(k+1):(t-1)} \wedge s_{(k+1)} | S_k)$$

$$= \sum_{s_{(k+1)}} P(o_{(k+1):(t-1)} | s_{(k+1)} \wedge S_k) P(s_{(k+1)} | S_k)$$

- (A) Bayes' rule
- (B) Re-writing the expression
- (C) The chain/product rule
- (D) The Markov assumption
- (E) The sum rule

Q #5: What is the justification for the step below?

$$\begin{split} &= \sum_{s_{(k+1)}} P(o_{(k+1):(t-1)} \wedge s_{(k+1)} | S_k) \\ &= \sum_{s_{(k+1)}} P(o_{(k+1):(t-1)} | s_{(k+1)} \wedge S_k) P(s_{(k+1)} | S_k) \end{split}$$

- (A) Bayes' rule
- (B) Re-writing the expression
- (C) The chain/product rule
- (D) The Markov assumption
- (E) The sum rule
- → Correct answer is (C) The chain/product rule.

Q #6: What is the justification for the step below?

$$= \sum_{s_{(k+1)}} P(o_{(k+1):(t-1)}|s_{(k+1)} \wedge S_k) P(s_{(k+1)}|S_k)$$

$$= \sum_{s_{(k+1)}} P(o_{(k+1):(t-1)}|s_{(k+1)}) P(s_{(k+1)}|S_k)$$

- (A) Bayes' rule
- (B) Re-writing the expression
- (C) The chain/product rule
- (D) The Markov assumption
- (E) The sum rule

Q #6: What is the justification for the step below?

$$= \sum_{s_{(k+1)}} P(o_{(k+1):(t-1)}|s_{(k+1)} \wedge S_k) P(s_{(k+1)}|S_k)$$

$$= \sum_{s_{(k+1)}} P(o_{(k+1):(t-1)}|s_{(k+1)}) P(s_{(k+1)}|S_k)$$

- (A) Bayes' rule
- (B) Re-writing the expression
- (C) The chain/product rule
- (D) The Markov assumption
- (E) The sum rule
- → Correct answer is (D) The Markov assumption.

Q #7: What is the justification for the step below?

$$\begin{split} &= \sum_{s_{(k+1)}} P(o_{(k+1):(t-1)}|s_{(k+1)}) * P(s_{(k+1)}|S_k) \\ &= \sum_{s_{(k+1)}} P(o_{(k+1)} \wedge o_{(k+2):(t-1)}|s_{(k+1)}) * P(s_{(k+1)}|S_k) \end{split}$$

- (A) Bayes' rule
- (B) Re-writing the expression
- (C) The chain/product rule
- (D) The Markov assumption
- (E) The sum rule

Q #7: What is the justification for the step below?

$$\begin{split} &= \sum_{s_{(k+1)}} P(o_{(k+1):(t-1)}|s_{(k+1)}) * P(s_{(k+1)}|S_k) \\ &= \sum_{s_{(k+1)}} P(o_{(k+1)} \wedge o_{(k+2):(t-1)}|s_{(k+1)}) * P(s_{(k+1)}|S_k) \end{split}$$

- (A) Bayes' rule
- (B) Re-writing the expression
- (C) The chain/product rule
- (D) The Markov assumption
- (E) The sum rule

Q #8: What is the justification for the step below?

$$\begin{split} &= \sum_{s_{(k+1)}} P(o_{(k+1)} \wedge o_{(k+2):(t-1)} | s_{(k+1)}) * P(s_{(k+1)} | S_k) \\ &= \sum_{s_{(k+1)}} P(o_{(k+1)} | s_{(k+1)}) * P(o_{(k+2):(t-1)} | s_{(k+1)}) * P(s_{(k+1)} | S_k) \end{split}$$

- (A) Bayes' rule
- (B) Re-writing the expression
- (C) The chain/product rule
- (D) The Markov assumption
- (E) The sum rule

Q #8: What is the justification for the step below?

$$\begin{split} &= \sum_{s_{(k+1)}} P(o_{(k+1)} \wedge o_{(k+2):(t-1)} | s_{(k+1)}) * P(s_{(k+1)} | S_k) \\ &= \sum_{s_{(k+1)}} P(o_{(k+1)} | s_{(k+1)}) * P(o_{(k+2):(t-1)} | s_{(k+1)}) * P(s_{(k+1)} | S_k) \end{split}$$

- (A) Bayes' rule
- (B) Re-writing the expression
- (C) The chain/product rule
- (D) The Markov assumption
- (E) The sum rule
- → Correct answer is (D) The Markov assumption.

Learning Goals

Smoothing Calculations

Smoothing Derivations

The Forward-Backward Algorithm

Viterbi Algorithm

Revisiting Learning Goals

The Forward-Backward Algorithm

For a hidden Markov model with any number of time steps, we can calculate the smoothed probabilities using one forward pass and one backward pass through the network.

$$P(S_k|o_{0:(t-1)})$$
= $\alpha P(S_k|o_{0:k}) P(o_{(k+1):(t-1)}|S_k)$
= $\alpha f_{0:k} b_{(k+1):(t-1)}$

Learning Goals

Smoothing Calculations

Smoothing Derivations

The Forward-Backward Algorithm

Viterbi Algorithm

Revisiting Learning Goals

Finding most likely explanation

We have observed all the states $o_{0:t-1}$ and want to decode all the hidden states $s_{0:t-1}$. Here we make a more general assumption:

- ▶ S_t is not boolean variable, $S_t \in \{0, 1, 2, \dots, n-1\}$.
- ▶ The time spans from 0 to t-1.
- The transition matrix $A \in \mathbb{R}^{n \times n}$ and emission matrix $O^{n \times o}$ are already given, where o is the possible observations.

$$\hat{s}_0, \cdots, \hat{s}_{t-1} = \underset{S_0: S_{t-1}}{\arg\max} p(S_0, \cdots, S_{t-1} | o_{0:t-1})$$

Brutal-Force Decoding

Loop through all the possible $S_{0:t-1}$, and then compute their likelihood $p(S_{0:t-1}|o_{0:t-1})$ to find the maximum.

$$ightharpoonup S_0 = T, S_1 = T, S_2 = T, \dots, S_{t-1} = T$$

$$ightharpoonup S_0 = T, S_1 = T, S_2 = T, \cdots, S_{t-1} = F$$

- **...**
- \triangleright $S_0 = F, S_1 = F, S_2 = F, \cdots, S_{t-1} = F$

The complexity is $O(n^t)$, which is extremely expensive.

Dynamic Programming

Assuming we have a sequence $S_{0:k}$ ending at $S_k=j$, we can define a function $r(S_k=j,S_{0:k-1})$ as:

$$r(S_k = j, S_{0:k-1}) = P(S_{0:k-1}, S_k = j | o_{0:k})$$

Define an auxiliary function $\pi_k(j)$ as:

$$\pi_k(j) = \max_{S_{0:k-1}} r(S_k = j, S_{0:k-1})$$

$$= \max_{S_{0:k-1}; s.t. S_{k-1} = j} P(S_{0:k-1}, S_k = j | o_{0:k})$$

By definition, we have:

 $\pi_k(j)$ denotes the maximum probability of any sequence $S_{0:k}$ ending with $S_k=j$ under the current observations.

Dynamic Programming

Dynamic Programming

Base case:

For 0-th step, we have:

$$\pi_0(j) = \alpha P(S_0) P(o_0|S_0)$$

Recursive definition:

For any $k \in \{1, \dots, t-1\}$, for any j, we have:

$$\pi_k(j) = P(o_k|S_k = j) \max_z [\pi_{k-1}(z)P(S_k = j|S_{k-1} = z)]$$

$$\phi_k(j) = \arg\max_z [\pi_{k-1}(z)P(S_k = j|S_{k-1} = z)]$$

Viterbi Algorithm

Given: π_0 and probabilities P. Return \hat{s} as the output.

- ▶ For $k = 1, \dots, t 1$
 - ightharpoonup For $j=0,\cdots n-1$

$$\pi_k(j) = P(o_k|S_k = j) \max_z [\pi_{k-1}(z)P(S_k = j|S_{k-1} = z)]$$

$$\phi_k(j) = \arg\max_z [\pi_{k-1}(z)P(S_k = j|S_{k-1} = z)]$$

Find last state $\hat{s}_{t-1} = \arg \max_{i} \pi_{t-1}(j)$.

ightharpoonup For $k=t-1,\cdots,1$

$$\hat{s}_{k-1} = \phi_k(\hat{s}_k)$$

ightharpoonup Return $\hat{s} = \hat{s}_0, \cdots, \hat{s}_{t-1}$.

Viterbi Algorithm

Figure: viterbi algorithm visualization.

Given the length of the sequence as t, and the number of states as n, the time complexity is $O(t \times n^2)$

Revisiting Learning Goals

- Calculate the smoothing probability for a time step in a hidden Markov model.
- Describe the justification for a step in the derivation of the smoothing formulas.
- ▶ Describe the forward-backward algorithm.
- Describe the Viterbi algorithm.