Inference in Hidden Markov Models Part 1

Wenhu Chen
Lecture 10
Readings: RN 14.1 \& 14.2.1, PM 8.5.1-8.5.3.

Outline

Learning Goals

A Model for the Umbrella Story

Inference in Hidden Markov Models

Filtering Calculations

Filtering Derivations

Revisiting Learning Goals

Learning Goals

- Construct a hidden Markov model given a real-world scenario.
- Explain the independence assumptions in a hidden Markov model.
- Calculating the filtering probability for a time step in a hidden Markov model.
- Describe the justification for a step in the derivation of the filtering formulas.

Learning Goals

A Model for the Umbrella Story

Inference in Hidden Markov Models

Filtering Calculations

Filtering Derivations

Revisiting Learning Goals

Inference in a Changing World

So far, we can reason probabilistically in a static world. However, the world evolves over time.

In an evolving world, we have to reason about a sequence of events.

Applications of sequential belief networks:

- weather predictions
- stock market predictions
- patient monitoring
- robot localization
\rightarrow A robot is trying to figure out where it is.
- speech and handwriting recognition

Speech Recognition

HMMs for Speech

- Example of using HMM for word "yes" on an utterance:

$$
\begin{aligned}
b_{\text {sil }}\left(\mathbf{o}_{1}\right) \cdot 0.6 \cdot b_{\text {sil }}\left(\mathbf{o}_{2}\right) \cdot 0.6 \cdot b_{\text {sil }}\left(\mathbf{o}_{3}\right) \cdot 0.6 \cdot b_{\text {sil }}\left(\mathbf{o}_{4}\right) \cdot 0.4 \cdot b_{y}\left(\mathbf{o}_{5}\right) \cdot 0.3 \cdot b_{\mathrm{y}}\left(\mathbf{o}_{6}\right) \cdot 0.3 \cdot b_{\mathrm{y}}\left(\mathbf{o}_{7}\right) \cdot 0.7 \ldots \\
\text { state }
\end{aligned}
$$

Figure: Speech Recognition

Running Example: the Umbrella Story

You are a security guard stationed at a secret underground facility.

You want to know whether it's raining today.

Unfortunately, your only access to the outside world occurs each morning when you see the director coming in with, or without, an umbrella.

States and Observations

- The world contains a series of time slices.
- Each time slice contains a set of random variables, Let S_{t} denote the unobservable state at time t. Let O_{t} denote the signal/observation at time t.

What are the random variables in the umbrella world?

States and Observations

- The world contains a series of time slices.
- Each time slice contains a set of random variables, Let S_{t} denote the unobservable state at time t.

Let O_{t} denote the signal/observation at time t.
What are the random variables in the umbrella world?
$\rightarrow S_{t}$ denotes whether it rains at time t.
O_{t} denotes whether the director carries an umbrella at time t.

Transition Model

How does the current state depend on the previous states?

In general, every state may depend on all the previous states.

$$
P\left(S_{t} \mid S_{t-1} \wedge S_{t-2} \wedge S_{t-3} \wedge \cdots \wedge S_{0}\right)
$$

Problem: As t increases, the conditional probability distribution can be unboundedly large.

Solution: Let the current state depend on a fixed number of previous states.

K-order Markov Chain

First-order Markov process:

The transition model:

$$
P\left(S_{t} \mid S_{t-1} \wedge S_{t-2} \wedge S_{t-3} \wedge \cdots \wedge S_{0}\right)=P\left(S_{t} \mid S_{t-1}\right)
$$

Second-order Markov process:

The transition model:

$$
P\left(S_{t} \mid S_{t-1} \wedge S_{t-2} \wedge S_{t-3} \wedge \cdots \wedge S_{0}\right)=P\left(S_{t} \mid S_{t-1} \wedge S_{t-2}\right)
$$

The Markov Assumption

The Markov assumption:

 The future is independent of the past given the present.Every day, our slate is wiped clean. We can start fresh. Every day is a new beginning.

The transition model:

$$
P\left(S_{t} \mid S_{t-1} \wedge S_{t-2} \wedge S_{t-3} \wedge \cdots \wedge S_{0}\right)=P\left(S_{t} \mid S_{t-1}\right)
$$

Stationary Process

Is there a different conditional probability distribution for each time step?

Stationary process:

- The dynamics does not change over time.
- The conditional probability distribution for each time step remains the same.

What are the advantages of using a stationary model?
\rightarrow Simple to specify.
Natural: the dynamics typically does not change.
If it changes, it's due to another feature that we can model.
A finite number of parameters gives an infinite network.

Transition model for the umbrella story

Let S_{t} be true if it is raining on day t and false otherwise.

$$
P\left(s_{0}\right)=0.5
$$

$$
\begin{aligned}
& P\left(s_{t} \mid s_{t-1}\right)=0.7 \\
& P\left(s_{t} \mid \neg s_{t-1}\right)=0.3
\end{aligned}
$$

Warm-up Example

What's the chance of raining in day 1 ?

$$
\begin{aligned}
& p\left(s_{1}=T\right)=0.5 * 0.7+0.5 * 0.3=0.5 \\
& p\left(s_{1}=F\right)=0.5 * 0.3+0.5 * 0.7=0.5
\end{aligned}
$$

What's the chance of raining in day 2 ?

$$
\begin{aligned}
& p\left(s_{2}=T\right)=0.5 * 0.7+0.5 * 0.3=0.5 \\
& p\left(s_{2}=F\right)=0.5 * 0.3+0.5 * 0.7=0.5
\end{aligned}
$$

On day K ?

$$
p\left(s_{K}=T\right)=p\left(s_{K}=F\right)=0.5
$$

Sensor model

How does the evidence variable O_{t} at time t depend on the previous and current states $S_{0}, S_{1}, \ldots, S_{t}$?

(Sensor) Markov assumption:

Each state is sufficient to generate its observation.

$$
P\left(O_{t} \mid S_{t} \wedge S_{t-1} \wedge \cdots \wedge S_{0} \wedge O_{t-1} \wedge O_{t-2} \wedge \cdots \wedge O_{0}\right)=P\left(O_{t} \mid S_{t}\right)
$$

Complete model for the umbrella story

Let S_{t} be true if it rains on day t and false otherwise.
Let O_{t} be true if the director carries an umbrella on day t and false otherwise.

$$
P\left(s_{0}\right)=0.5
$$

$$
\begin{aligned}
& P\left(s_{t} \mid s_{t-1}\right)=0.7 \\
& P\left(s_{t} \mid \neg s_{t-1}\right)=0.3
\end{aligned}
$$

$$
\begin{aligned}
& P\left(o_{t} \mid s_{t}\right)=0.9 \\
& P\left(o_{t} \mid \neg s_{t}\right)=0.2
\end{aligned}
$$

Warm-up Example

What's the chance of the director carrying an umbrella on day 1 ?

$$
\begin{aligned}
& p\left(O_{1}=T\right)=0.5 * 0.9+0.5 * 0.2=0.55 \\
& p\left(O_{1}=F\right)=0.5 * 0.1+0.5 * 0.8=0.45
\end{aligned}
$$

What's the chance of the director carrying an umbrella on day 2 ?

$$
\begin{aligned}
& p\left(O_{2}=T\right)=0.5 * 0.9+0.5 * 0.2=0.55 \\
& p\left(O_{2}=F\right)=0.5 * 0.1+0.5 * 0.8=0.45
\end{aligned}
$$

On day K?

$$
p\left(O_{K}=T\right)=0.55, p\left(O_{K}=F\right)=0.45
$$

Learning Goals

A Model for the Umbrella Story

Inference in Hidden Markov Models

Filtering Calculations

Filtering Derivations

Revisiting Learning Goals

Hidden Markov Model

Hidden Markov Model:

- A Markov process
- The state variables are unobservable
- The evidence variables, which depend on the states, are observable

Common Inference Tasks

- Filtering: Which state am I in right now?
\rightarrow The posterior distribution over the most recent state given all evidence to date.

Common Inference Tasks

- Filtering: Which state am I in right now?
\rightarrow The posterior distribution over the most recent state given all evidence to date.
- Prediction: Which state will I be in tomorrow?
\rightarrow The posterior distribution over the future state given all evidence to date.

Common Inference Tasks

- Filtering: Which state am I in right now?
\rightarrow The posterior distribution over the most recent state given all evidence to date.
- Prediction: Which state will I be in tomorrow?
\rightarrow The posterior distribution over the future state given all evidence to date.
- Smoothing: Which state was I in yesterday?
\rightarrow The posterior distribution over a past state, given all evidence to date.

Common Inference Tasks

- Filtering: Which state am I in right now?
\rightarrow The posterior distribution over the most recent state given all evidence to date.
- Prediction: Which state will I be in tomorrow?
\rightarrow The posterior distribution over the future state given all evidence to date.
- Smoothing: Which state was I in yesterday?
\rightarrow The posterior distribution over a past state, given all evidence to date.
- Most likely explanation: Which sequence of states is most likely to have generated the observations? \rightarrow Find the sequence of states that is most likely to have generated all the evidence to date.

Algorithms for the inference tasks

A HMM is a Bayesian network.
We can perform inference using the variable elimination algorithm!

More specialized algorithms:

- The forward-backward algorithm: filtering and smoothing
- The Viterbi algorithm: most likely explanation

Learning Goals

A Model for the Umbrella Story

Inference in Hidden Markov Models

Filtering Calculations

Filtering Derivations

Revisiting Learning Goals

Filtering

Given the observations from time 0 to time k, what is the probability that I am in a particular state at time k ?

$$
P\left(S_{k} \mid o_{0: k}\right)
$$

Warm-up Question

I already know that the manager brought umbrella yesterday, but he did not bring umbrella today. What's the chance of raining for today, e.g. $p\left(S_{1} \mid o_{0}, \neg o_{1}\right)$?

$$
\begin{aligned}
p\left(s_{0}\right) & =0.5 \\
P\left(s_{t} \mid s_{t-1}\right) & =0.7 \\
P\left(s_{t} \mid \neg s_{t-1}\right) & =0.3 \\
P\left(o_{t} \mid s_{t}\right) & =0.9 \\
P\left(o_{t} \mid \neg s_{t}\right) & =0.2
\end{aligned}
$$

Is s_{1} independent of o_{0} given o_{1} ?

Warm-up Question

I already know that the manager brought umbrella yesterday, but he did not bring umbrella today. What's the chance of raining for today, e.g. $p\left(S_{1} \mid o_{0}, \neg o_{1}\right)$?

$$
\begin{aligned}
p\left(s_{0}\right) & =0.5 \\
P\left(s_{t} \mid s_{t-1}\right) & =0.7 \\
P\left(s_{t} \mid \neg s_{t-1}\right) & =0.3 \\
P\left(o_{t} \mid s_{t}\right) & =0.9 \\
P\left(o_{t} \mid \neg s_{t}\right) & =0.2 \\
p\left(S_{1} \mid o_{0}, \neg o_{1}\right) & \propto p\left(S_{1}, o_{0}, \neg o_{1}\right) \\
& =\sum_{S_{0}} p\left(S_{0}\right) p\left(o_{0} \mid S_{0}\right) p\left(S_{1} \mid S_{0}\right) p\left(\neg o_{1} \mid S_{1}\right)
\end{aligned}
$$

Warm-up Question

I already know that the manager brought umbrella yesterday, but he did not bring umbrella today. What's the chance of raining for today, e.g. $p\left(S_{1} \mid o_{0}, \neg o_{1}\right)$?

$$
\begin{aligned}
p\left(s_{0}\right) & =0.5 \\
P\left(s_{t} \mid s_{t-1}\right) & =0.7 \\
P\left(s_{t} \mid \neg s_{t-1}\right) & =0.3 \\
P\left(o_{t} \mid s_{t}\right) & =0.9 \\
P\left(o_{t} \mid \neg s_{t}\right) & =0.2 \\
p\left(S_{1} \mid o_{0}, \neg o_{1}\right) & \propto p\left(S_{1}, o_{0}, \neg o_{1}\right) \\
& =\sum_{S_{0}} p\left(S_{0}\right) p\left(o_{0} \mid S_{0}\right) p\left(S_{1} \mid S_{0}\right) p\left(\neg o_{1} \mid S_{1}\right)
\end{aligned}
$$

Operations: $(3$ mult $* 2+1$ add) $* 2=14$ ops

Filtering through Enumeration

I already know that the manager's behavior in these past K days, what's the chance of raining for today, e.g. $p\left(S_{k} \mid o_{0}, \cdots, o_{k}\right)$?

$$
\begin{aligned}
p\left(s_{0}\right) & =0.5 \\
P\left(s_{t} \mid s_{t-1}\right) & =0.7 \\
P\left(s_{t} \mid \neg s_{t-1}\right) & =0.3 \\
P\left(o_{t} \mid s_{t}\right) & =0.9 \\
P\left(o_{t} \mid \neg s_{t}\right) & =0.2 \\
p\left(S_{k} \mid o_{0}, \cdots, o_{k}\right) & \propto p\left(S_{k}, o_{0}, \cdots, o_{k}\right) \\
& =\sum_{S_{k}} \cdots \sum_{S_{0}} p\left(S_{0}\right) p\left(o_{0} \mid S_{0}\right) \cdots p\left(o_{k} \mid S_{K}\right)
\end{aligned}
$$

Filtering through Enumeration

I already know that the manager's behavior in these past K days, what's the chance of raining for today, e.g. $p\left(S_{k} \mid o_{0}, \cdots, o_{k}\right)$?

$$
\begin{aligned}
p\left(s_{0}\right) & =0.5 \\
P\left(s_{t} \mid s_{t-1}\right) & =0.7 \\
P\left(s_{t} \mid \neg s_{t-1}\right) & =0.3 \\
P\left(o_{t} \mid s_{t}\right) & =0.9 \\
P\left(o_{t} \mid \neg s_{t}\right) & =0.2 \\
p\left(S_{k} \mid o_{0}, \cdots, o_{k}\right) & \propto p\left(S_{k}, o_{0}, \cdots, o_{k}\right) \\
& =\sum_{S_{k}} \cdots \sum_{S_{0}} p\left(S_{0}\right) p\left(o_{0} \mid S_{0}\right) \cdots p\left(o_{k} \mid S_{K}\right)
\end{aligned}
$$

Operations: $O\left(K \times 2^{K}\right)$ ops

Filtering through Forward Recursion

Let $f_{0: k}=P\left(S_{k} \mid o_{0: k}\right)$.
Base case:

$$
f_{0: 0}=\alpha P\left(o_{0} \mid S_{0}\right) P\left(S_{0}\right)
$$

Recursive case:

$$
f_{0: k}=\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \mid s_{k-1}\right) f_{0:(k-1)}
$$

Filtering through Forward Recursion

$$
f_{0: k}=\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \mid s_{k-1}\right) f_{0:(k-1)}
$$

Operations:
$f_{0: 0}$ has 2 mult ops,
$f_{0: 1}$ has $(2$ mult +1 add +1 mult $) * 2$ ops
$f_{0: 2}$ has $(2$ mult +1 add +1 mult $) * 2$ ops
Total Operation: $O(k)$ ops

The Umbrella Story

$$
P\left(s_{0}\right)=0.5
$$

$$
\begin{aligned}
& \hline P\left(s_{t} \mid s_{t-1}\right)=0.7 \\
& P\left(s_{t} \mid \neg s_{t-1}\right)=0.3
\end{aligned} \quad \begin{aligned}
& P\left(o_{t} \mid s_{t}\right)=0.9 \\
& P\left(o_{t} \mid \neg s_{t}\right)=0.2
\end{aligned}
$$

A Filtering Example

Consider the umbrella story.
Assume that $O_{0}=t$ and $O_{1}=t$.
Let's calculate $f_{0: 0}$ and $f_{0: 1}$ using forward recursion.
Here are the useful quantities from the umbrella story.

$$
\begin{aligned}
& P\left(s_{0}\right)=0.5 \\
& P\left(o_{t} \mid s_{t}\right)=0.9, P\left(o_{t} \mid \neg s_{t}\right)=0.2 \\
& P\left(s_{t} \mid s_{(t-1)}\right)=0.7, P\left(s_{t} \mid \neg s_{(t-1)}\right)=0.3
\end{aligned}
$$

A Filtering Example - Base Case of Forward Recursion

Calculate $f_{0: 0}=P\left(S_{0} \mid o_{0}\right)$.

A Filtering Example - Base Case of Forward Recursion

Calculate $f_{0: 0}=P\left(S_{0} \mid o_{0}\right)$.

$$
\begin{aligned}
& \alpha=1 / p\left(o_{0}\right), \text { constant } \\
& P\left(s_{0} \mid o_{0}\right)=\alpha P\left(o_{0} \mid s_{0}\right) P\left(s_{0}\right)=\alpha 0.9 * 0.5=\alpha 0.45 \\
& P\left(\neg s_{0} \mid o_{0}\right)=\alpha P\left(o_{0} \mid \neg s_{0}\right) P\left(\neg s_{0}\right)=\alpha 0.2 * 0.5=\alpha 0.1 \\
& P\left(s_{0} \mid o_{0}\right)=0.45 /(0.45+0.1)=0.818 \\
& P\left(\neg s_{0} \mid o_{0}\right)=1-0.818=0.182
\end{aligned}
$$

A more compact approach:

$$
\begin{aligned}
P\left(S_{0} \mid o_{0}\right) & =\alpha P\left(o_{0} \mid S_{0}\right) P\left(S_{0}\right) \\
& =\alpha\langle 0.9,0.2\rangle *\langle 0.5,0.5\rangle \\
& =\alpha\langle 0.45,0.1\rangle \\
& =\langle 0.818,0.182\rangle
\end{aligned}
$$

A Filtering Example - Recursive Case of Forward Recursion

Calculate $f_{0: 1}=\alpha P\left(o_{1} \mid S_{1}\right) \sum_{s_{0}} P\left(S_{1} \mid s_{0}\right) f_{0: 0}$
where $f_{0: 0}=\langle 0.818,0.182\rangle$.

A Filtering Example - Recursive Case of Forward Recursion

Calculate $f_{0: 1}=\alpha P\left(o_{1} \mid S_{1}\right) \sum_{s_{0}} P\left(S_{1} \mid s_{0}\right) f_{0: 0}$
where $f_{0: 0}=\langle 0.818,0.182\rangle$.

First, let's expand the formula.

$$
\begin{aligned}
& P\left(S_{1} \mid o_{0: 1}\right) \\
& =\alpha P\left(o_{1} \mid S_{1}\right) \sum_{s_{0}} P\left(S_{1} \mid s_{0}\right) P\left(s_{0} \mid o_{0}\right) \\
& =\alpha P\left(o_{1} \mid S_{1}\right) *\left(P\left(S_{1} \mid s_{0}\right) * P\left(s_{0} \mid o_{0}\right)+P\left(S_{1} \mid \neg s_{0}\right) * P\left(\neg s_{0} \mid o_{0}\right)\right) \\
& =\alpha\left\langle P\left(o_{1} \mid s_{1}\right), P\left(o_{1} \mid \neg s_{1}\right)\right\rangle \\
& \quad *\left(\left\langle P\left(s_{1} \mid s_{0}\right), P\left(\neg s_{1} \mid s_{0}\right)\right\rangle * P\left(s_{0} \mid o_{0}\right)\right. \\
& \left.\quad+\left\langle P\left(s_{1} \mid \neg s_{0}\right), P\left(\neg s_{1} \mid \neg s_{0}\right)\right\rangle * P\left(\neg s_{0} \mid o_{0}\right)\right)
\end{aligned}
$$

A Filtering Example - Recursive Case of Forward Recursion

Calculate $f_{0: 1}=\alpha P\left(o_{1} \mid S_{1}\right) \sum_{s_{0}} P\left(S_{1} \mid s_{0}\right) f_{0: 0}$ where $f_{0: 0}=\langle 0.818,0.182\rangle$.

$$
\begin{aligned}
& P\left(S_{1} \mid o_{0: 1}\right)=\alpha\left\langle P\left(o_{1} \mid s_{1}\right), P\left(o_{1} \mid \neg s_{1}\right)\right\rangle \\
& \quad \quad *\left(\left\langle P\left(s_{1} \mid s_{0}\right), P\left(\neg s_{1} \mid s_{0}\right)\right\rangle * P\left(s_{0} \mid o_{0}\right)\right. \\
& \left.\quad+\left\langle P\left(s_{1} \mid \neg s_{0}\right), P\left(\neg s_{1} \mid \neg s_{0}\right)\right\rangle * P\left(\neg s_{0} \mid o_{0}\right)\right) \\
& =\alpha\langle 0.9,0.2\rangle(\langle 0.7,0.3\rangle * 0.818+\langle 0.3,0.7\rangle * 0.182) \\
& =\alpha\langle 0.9,0.2\rangle(\langle 0.5726,0.2454\rangle+\langle 0.0546,0.1274\rangle) \\
& =\alpha\langle 0.9,0.2\rangle *\langle 0.6272,0.3728\rangle \\
& =\alpha\langle 0.56448,0.07456\rangle \\
& =\langle 0.883,0.117\rangle
\end{aligned}
$$

Example: Filtering

Consider a hidden Markov model with 4 time steps.

$$
P\left(s_{0}\right)=0.4
$$

$$
\begin{aligned}
& P\left(s_{t} \mid s_{t-1}\right)=0.7 \\
& P\left(s_{t} \mid \neg s_{t-1}\right)=0.2
\end{aligned}
$$

$$
\begin{aligned}
& P\left(o_{t} \mid s_{t}\right)=0.9 \\
& P\left(o_{t} \mid \neg s_{t}\right)=0.2
\end{aligned}
$$

Calculate $P\left(S_{2} \mid o_{0} \wedge o_{1} \wedge o_{2}\right)$.
\rightarrow i.e. $\alpha f_{0: 2}$

Learning Goals

A Model for the Umbrella Story

Inference in Hidden Markov Models

Filtering Calculations

Filtering Derivations

Revisiting Learning Goals

Filtering (time k)

How did we derive the formula for $P\left(S_{k} \mid o_{0: k}\right)$?

$$
\begin{align*}
& P\left(S_{k} \mid o_{0: k}\right) \\
& =P\left(S_{k} \mid o_{k} \wedge o_{0:(k-1)}\right) \tag{1}\\
& =\alpha P\left(o_{k} \mid S_{k} \wedge o_{0:(k-1)}\right) P\left(S_{k} \mid o_{0:(k-1)}\right) \tag{2}\\
& =\alpha P\left(o_{k} \mid S_{k}\right) P\left(S_{k} \mid o_{0:(k-1)}\right) \tag{3}\\
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \wedge s_{k-1} \mid o_{0:(k-1)}\right) \tag{4}\\
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \mid s_{k-1} \wedge o_{0:(k-1)}\right) P\left(s_{k-1} \mid o_{0:(k-1)}\right) \tag{5}\\
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \mid s_{k-1}\right) P\left(s_{k-1} \mid o_{0:(k-1)}\right) \tag{6}
\end{align*}
$$

Q: Filtering (time k)

Q \#1: What is the justification for the step below?

$$
\begin{aligned}
& P\left(S_{k} \mid o_{0: k}\right) \\
& =P\left(S_{k} \mid o_{k} \wedge o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Q: Filtering (time k)

Q \#1: What is the justification for the step below?

$$
\begin{aligned}
& P\left(S_{k} \mid o_{0: k}\right) \\
& =P\left(S_{k} \mid o_{k} \wedge o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule
\rightarrow Correct answer is (B) Re-writing the expression.

Filtering (time k)

Q \#2: What is the justification for the step below?

$$
\begin{aligned}
& =P\left(S_{k} \mid o_{k} \wedge o_{0:(k-1)}\right) \\
& =\alpha P\left(o_{k} \mid S_{k} \wedge o_{0:(k-1)}\right) P\left(S_{k} \mid o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Filtering (time k)

Q \#2: What is the justification for the step below?

$$
\begin{aligned}
& =P\left(S_{k} \mid o_{k} \wedge o_{0:(k-1)}\right) \\
& =\alpha P\left(o_{k} \mid S_{k} \wedge o_{0:(k-1)}\right) P\left(S_{k} \mid o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule
\rightarrow Correct answer is (A) Bayes' rule.

Filtering (time k)

Q \#3: What is the justification for the step below?

$$
\begin{aligned}
& =\alpha P\left(o_{k} \mid S_{k} \wedge o_{0:(k-1)}\right) P\left(S_{k} \mid o_{0:(k-1)}\right) \\
& =\alpha P\left(o_{k} \mid S_{k}\right) P\left(S_{k} \mid o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Filtering (time k)

Q \#3: What is the justification for the step below?

$$
\begin{aligned}
& =\alpha P\left(o_{k} \mid S_{k} \wedge o_{0:(k-1)}\right) P\left(S_{k} \mid o_{0:(k-1)}\right) \\
& =\alpha P\left(o_{k} \mid S_{k}\right) P\left(S_{k} \mid o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule
\rightarrow Correct answer is (D) The Markov assumption.

Filtering (time k)

Q \#4: What is the justification for the step below?

$$
\begin{aligned}
& =\alpha P\left(o_{k} \mid S_{k}\right) P\left(S_{k} \mid o_{0:(k-1)}\right) \\
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \wedge s_{k-1} \mid o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Filtering (time k)

Q \#4: What is the justification for the step below?

$$
\begin{aligned}
& =\alpha P\left(o_{k} \mid S_{k}\right) P\left(S_{k} \mid o_{0:(k-1)}\right) \\
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \wedge s_{k-1} \mid o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule
\rightarrow Correct answer is (E) The sum rule.

Filtering (time k)

Q \#5: What is the justification for the step below?

$$
\begin{aligned}
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \wedge s_{k-1} \mid o_{0:(k-1)}\right) \\
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \mid s_{k-1} \wedge o_{0:(k-1)}\right) P\left(s_{k-1} \mid o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Filtering (time k)

Q \#5: What is the justification for the step below?

$$
\begin{aligned}
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \wedge s_{k-1} \mid o_{0:(k-1)}\right) \\
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \mid s_{k-1} \wedge o_{0:(k-1)}\right) P\left(s_{k-1} \mid o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule
\rightarrow Correct answer is (C) The chain/product rule.

Filtering (time k)

Q \#6: What is the justification for the step below?

$$
\begin{aligned}
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \mid s_{k-1} \wedge o_{0:(k-1)}\right) P\left(s_{k-1} \mid o_{0:(k-1)}\right) \\
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \mid s_{k-1}\right) P\left(s_{k-1} \mid o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Filtering (time k)

Q \#6: What is the justification for the step below?

$$
\begin{aligned}
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \mid s_{k-1} \wedge o_{0:(k-1)}\right) P\left(s_{k-1} \mid o_{0:(k-1)}\right) \\
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \mid s_{k-1}\right) P\left(s_{k-1} \mid o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule
\rightarrow Correct answer is (D) The Markov assumption.

Revisiting Learning Goals

- Construct a hidden Markov model given a real-world scenario.
- Explain the independence assumptions in a hidden Markov model.
- Calculating the filtering probability for a time step in a hidden Markov model.
- Describe the justification for a step in the derivation of the filtering formulas.

