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Preface

This is a book on the mathematical theory of quantum information, focusing
on a formal presentation of definitions, theorems, and proofs. It is primarily
intended for graduate students and researchers having some familiarity with
quantum information and computation, such as would be covered in an
introductory-level undergraduate or graduate course, or in one of several
books on the subject that now exist.

Quantum information science has seen an explosive development in recent
years, particularly within the past two decades. A comprehensive treatment
of the subject, even if restricted to its theoretical aspects, would certainly
require a series of books rather than just one. Consistent with this fact, the
selection of topics covered herein is not intended to be fully representative
of the subject. Quantum error correction and fault-tolerance, quantum
algorithms and complexity theory, quantum cryptography, and topological
quantum computation are among the many interesting and fundamental
topics found within the theoretical branches of quantum information science
that are not covered in this book. Nevertheless, one is likely to encounter
some of the core mathematical notions discussed in this book when studying
these topics.

More broadly speaking, while the theory of quantum information is of
course motivated both by quantum mechanics and the potential utility of
implementing quantum computing devices, these topics fall well outside of
the scope of this book. The Schrodinger equation will not be found within
these pages, and the difficult technological challenge of building quantum
information processing devices is blissfully ignored. Indeed, no attention is
paid in general to motives for studying the theory of quantum information; it
is assumed that the reader has already been motivated to study this theory,
and is perhaps interested in proving new theorems on quantum information
of his or her own.



viii Preface

Some readers will find that this book deviates in some respects from the
standard conventions of quantum information and computation, particularly
with respect to notation and terminology. For example, the commonly used
Dirac notation is not used in this book, and names and symbols associated
with certain concepts differ from many other works. These differences are,
however, fairly cosmetic, and those who have previously grown familiar with
the notation and conventions of quantum information that are not followed
in this book should not find it overly difficult to translate between the text
and their own preferred notation and terminology.

Each chapter aside from the first includes a collection of exercises, some of
which can reasonably be viewed as straightforward, and some of which are
considerably more difficult. While the exercises may potentially be useful
to course instructors, their true purpose is to be useful to students of the
subject; there is no substitute for the learning experience to be found in
wrestling with (and ideally solving) a difficult problem. In some cases the
exercises represent the results of published research papers, and in those
cases there has naturally been no attempt to disguise this fact or hide their
sources, which may clearly reveal their solutions.

I thank Debbie Leung, Ashwin Nayak, Marco Piani, and Patrick Hayden
for helpful discussions on some of the topics covered in this book. Over a
number of years, this book has developed from a set of lecture notes, through
a couple of drafts, to the present version, and during that time many people
have brought mistakes to my attention and made other valuable suggestions,
and I thank all of them. While the list of such people has grown quite long,
and will not be included in this preface, I would be remiss if I did not
gratefully acknowledge the efforts of Yuan Su and Maris Ozols, who provided
extensive and detailed comments, corrections, and suggestions. Thanks are
also due to Sascha Agne for assisting me with German translations.

The Institute for Quantum Computing and the School of Computer
Science at the University of Waterloo have provided me with both the
opportunity to write this book and with an environment in which it was
possible, for which T am grateful. I also gratefully acknowledge financial
support for my research program provided by the Natural Sciences and
Engineering Research Council of Canada and the Canadian Institute for
Advanced Research.

Finally, I thank Christiane, Anne, Liam, and Ethan, for reasons that have
nothing to do with quantum information.

John Watrous
Waterloo, January 2018
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Mathematical preliminaries

This chapter is intended to serve as a review of mathematical concepts to
be used throughout this book, and also as a reference to be consulted as
subsequent chapters are studied, if the need should arise. The first section
focuses on linear algebra, and the second on analysis and related topics.
Unlike the other chapters in this book, the present chapter does not include
proofs, and is not intended to serve as a primary source for the material it
reviews—a collection of references provided at the end of the chapter may
be consulted by readers interested in a proper development of this material.

1.1 Linear algebra

The theory of quantum information relies heavily on linear algebra in finite-
dimensional spaces. The subsections that follow present an overview of the
aspects of this subject that are most relevant within the theory of quantum
information. It is assumed that the reader is already familiar with the most
basic notions of linear algebra, including those of linear dependence and
independence, subspaces, spanning sets, bases, and dimension.

1.1.1 Complex FEuclidean spaces

The notion of a complex Euclidean space is used throughout this book. One
associates a complex Euclidean space with every discrete and finite system:;
and fundamental notions such as states and measurements of systems are
represented in linear-algebraic terms that refer to these spaces.

Definition of complex Fuclidean spaces

An alphabet is a finite and nonempty set, whose elements may be considered
to be symbols. Alphabets will generally be denoted by capital Greek letters,
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including X, I', and A, while lower case Roman letters near the beginning
of the alphabet, including a, b, ¢, and d, will be used to denote symbols
in alphabets. Examples of alphabets include the binary alphabet {0,1}, the
n-fold Cartesian product {0,1}" of the binary alphabet with itself, and the
alphabet {1,...,n}, for n being a fixed positive integer.

For any alphabet ¥, one denotes by C* the set of all functions from ¥
to the complex numbers C. The set C* forms a vector space of dimension
|3 over the complex numbers when addition and scalar multiplication are
defined in the following standard way:

1. Addition: for vectors u,v € C*, the vector u + v € C* is defined by the
equation (u + v)(a) = u(a) + v(a) for all a € X.

2. Scalar multiplication: for a vector v € C* and a scalar a € C, the vector
au € C¥ is defined by the equation (au)(a) = au(a) for all a € X.

A vector space defined in this way will be called a complex Euclidean space.*

The value u(a) is referred to as the entry of v indexed by a, for each v € C*>
and a € Y. The vector whose entries are all zero is simply denoted 0.

Complex Euclidean spaces will be denoted by scripted capital letters near
the end of the alphabet, such as W, X', ), and Z. Subsets of these spaces
will also be denoted by scripted letters, and when possible this book will
follow a convention to use letters such as A, B, and C near the beginning of
the alphabet when these subsets are not necessarily vector spaces. Vectors
will be denoted by lowercase Roman letters, again near the end of the
alphabet, such as u, v, w, x, y, and z.

When n is a positive integer, one typically writes C* rather than C{1:-n}
and it is also typical that one views a vector u € C" as an n-tuple of the

form u = (ay,...,ay,), or as a column vector of the form
aq
Qp

for complex numbers aq, ..., ay,.

For an arbitrary alphabet ¥, the complex Euclidean space C* may be
viewed as being equivalent to C™ for n = |X|; one simply fixes a bijection

f:{l,....,n} =% (1.2)
and associates each vector u € C* with the vector in C" whose k-th entry

I Many quantum information theorists prefer to use the term Hilbert space. The term complex
FEuclidean space will be preferred in this book, however, as the term Hilbert space refers to a
more general notion that allows the possibility of infinite index sets.
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is u(f(k)), for each k € {1,...,n}. This may be done implicitly when there
is a natural or obviously preferred choice for the bijection f. For example,
the elements of the alphabet ¥ = {0,1}? are naturally ordered 00, 01, 10,
11. Each vector u € C* may therefore be associated with the 4-tuple

(u(00),%(01), u(10),u(11)), (1.3)
or with the column vector
u(00)
u(01)
4(10) , (1.4)
u(11)

when it is convenient to do this. While little or no generality would be
lost in restricting one’s attention to complex Euclidean spaces of the form
C™ for this reason, it is both natural and convenient within computational
and information-theoretic settings to allow complex FEuclidean spaces to be
indexed by arbitrary alphabets.

Inner products and norms of vectors

The inner product (u,v) of two vectors u,v € C* is defined as

(u,0) = 3 ula) vla). (1.5)

acX

It may be verified that the inner product satisfies the following properties:
1. Linearity in the second argument:
(u, v + fw) = au, v) + Bu, w) (1.6)

for all u,v,w € C* and «, 3 € C.
2. Conjugate symmetry:

(u,v) = (v, u) (1.7)

for all u,v € C>.
3. Positive definiteness:

(u,u) >0 (1.8)
for all u € C*, with equality if and only if u = 0.

It is typical that any function satisfying these three properties is referred to
as an inner product, but this is the only inner product for vectors in complex
Euclidean spaces that is considered in this book.
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The Euclidean norm of a vector u € C* is defined as

lull = /(u,u) = [>|u(a)|?. (1.9)
acy

The Euclidean norm possesses the following properties, which define the
more general notion of a norm:

1. Positive definiteness: ||u|| > 0 for all u € C*, with ||u|| = 0 if and only if
u = 0.
2. Positive scalability: ||au| = |a|||«| for all w € C* and a € C.
3. The triangle inequality: ||u + v|| < ||u| + ||v]| for all u,v € C*.
The Cauchy-Schwarz inequality states that
[{u, v)| < [Jull|[v]] (1.10)

for all u,v € C*, with equality if and only if v and v are linearly dependent.
The collection of all unit vectors in a complex Euclidean space X is called
the unit sphere in that space, and is denoted

S(X)={ue X : ||ul =1} (1.11)

The Euclidean norm represents the case p = 2 of the class of p-norms,
defined for each u € C* as

lull, = (Du(anp) : (1.12)

acy
for p < oo, and
|u|loo = max{|u(a)| : a € X}. (1.13)
The above three norm properties (positive definiteness, positive scalability,

and the triangle inequality) hold for ||-|| replaced by ||-||, for any choice of
p € [1,00].

Orthogonality and orthonormality

Two vectors u, v € C* are said to be orthogonal if (u, v) = 0. The notation
u L v is also used to indicate that u and v are orthogonal. More generally,
for any set A C C*, the notation u L A indicates that (u,v) = 0 for all
vectors v € A.

A collection of vectors

{ug : a €T} C C*, (1.14)

indexed by an alphabet T, is said to be an orthogonal set if it holds that



1.1 Linear algebra 5)

(ug,up) = 0 for all choices of a,b € T' with a # b. A collection of nonzero
orthogonal vectors is necessarily linearly independent.

An orthogonal set of unit vectors is called an orthonormal set, and when
such a set forms a basis it is called an orthonormal basis. It holds that an
orthonormal set of the form (1.14) is an orthonormal basis of C* if and only
if |I| = |X|. The standard basis of C* is the orthonormal basis given by
{eq : a € X}, where

1 ifa=b

eq(b) = {0 st (1.15)

for all a,b € X.

Direct sums of complex Euclidean spaces

The direct sum of n complex Euclidean spaces X} = C>',..., &, = C>" is
the complex Euclidean space

X @ ®X, =CHUUEn (1.16)

where 1 LI --- LI 3, denotes the disjoint union of the alphabets 1, ...,3%,,
defined as

SpU- U= | {(ka):ae S} (1.17)
ke{l,...,n}
For vectors u; € A4, ..., u, € &, the notation u; &---bu, € X10---B A,

refers to the vector for which
(u1 @ © up)(k,a) = u(a), (1.18)

for each k € {1,...,n} and a € k. If each uy is viewed as a column vector
of dimension ||, the vector u; ®- - - G u, may be viewed as a column vector

Ui
(1.19)

Un

having dimension |X1| + -+ + |3,].
Every element of the space X1 @ --- @ &), can be written as u; ® -+ - D uy,
for a unique choice of vectors ui,...,u,. The following identities hold for
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every choice of uy,v1 € Xq,...,up, v, € Xy, and a € C:
U D DUy, +v1 D Duy = (ug +v1) B D (up + vyp), (1.20)
a(u; @ Buy) = (auy) @ - @ (auy), (1.21)
(U ® -+ D Up,v1 D D vy) = (up,v1) + -+ (Un, Up)- (1.22)

Tensor products of complex Fuclidean spaces

The tensor product of n complex Euclidean spaces X; = C>',..., X, = C>»
is the complex FEuclidean space

X Q@ X, = CEXxEn, (1.23)

For vectors u; € X1,...,u, € X, the notation u1 ®---Qu, € X1 ®--- R A,
refers to the vector for which

(U ® -+~ @ up)(ay,...,an) =ui(ay) -+ up(an)- (1.24)

Vectors of the form u; ®- - -®u,, are called elementary tensors. They span the
space X1 ® - - - ® X, but not every element of X1 ®---® A, is an elementary
tensor.

The following identities hold for all vectors uy,v; € Xq,..., up, v, € Xy,
scalars o, 8 € C, and indices k € {1,...,n}:

U1®---®uk_1®(auk+5vk)®uk+1®...®un
+6(u1®'-'®uk—1®vk®uk+1®---®un),

(Ul @+ R Up, V1 Q- @ Up) = (U, V1) (Up, Vn). (1.26)

Tensor products are often defined in a way that is more abstract (and more
generally applicable) than the definition above, which is sometimes known
more specifically as the Kronecker product. The following proposition is a
reflection of the more abstract definition.

Proposition 1.1 Let A,,..., &, and Y be complex Fuclidean spaces and
let

p: X1 XXX, =) (1.27)
be a multilinear function, meaning a function for which the mapping

ug > G(ugy ..., Up) (1.28)
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is linear for all k € {1,...,n} and every fixed choice of vectors ui, ..., ui_1,
Uk+1,---,Un. There exists a unique linear mapping
AXN® -0, =Y (1.29)
such that
d(ut, . un) = Alur @ -+ - @ uy) (1.30)

for all choices of u1 € X1,...,up € &),

If X is a complex Euclidean space, u € X is a vector, and n is a positive
integer, then the notations X®" and u®" refer to the n-fold tensor product
of either X or u with itself. It is often convenient to make the identification

X" =X ® - ® X, (1.31)

under the assumption that A7j,..., A, and X all refer to the same complex
Euclidean space; this allows one to refer to the different tensor factors in
X®" individually, and to express X} ® - - - ® X,, more concisely.

Remark A rigid interpretation of the definitions above suggests that tensor
products of complex Euclidean spaces (or of vectors in complex Euclidean
spaces) are not associative, insofar as Cartesian products are not associative.
For instance, given alphabets 3, T', and A, the alphabet (X xT") x A contains
elements of the form ((a,b), c), the alphabet ¥ x (I' x A) contains elements
of the form (a, (b,c)), and the alphabet ¥ x I" x A contains elements of the
form (a,b,c), for a € ¥, b € I, and ¢ € A. For ¥ = C*, Y = Cl', and
Z = C*, one may therefore view the complex Euclidean spaces (XRY)RZ,
XR(QY®Z),and X ® Y ® Z as being different.

However, the alphabets (¥ x I') x A, ¥ x (I' x A), and ¥ x I' x A can
of course be viewed as equivalent by simply removing parentheses. For this
reason, there is a natural equivalence between the complex Euclidean spaces
(XRYV)RXZ, X (Y Z), and X ® Y ® Z. Whenever it is convenient,
identifications of this sort are made implicitly throughout this book. For
example, given vectors u € X ® Y and v € Z, the vector u ® v may be
treated as an element of X ® Y ® Z rather than (¥ ® V) ® Z.

Although such instances are much less common in this book, a similar
convention applies to direct sums of complex Euclidean spaces.

Real Fuclidean spaces

Real Euclidean spaces are defined in a similar way to complex Euclidean
spaces, except that the field of complex numbers C is replaced by the field
of real numbers R in each of the definitions and concepts in which it arises.
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Naturally, complex conjugation acts trivially in the real case, and therefore
may be omitted.

Complex Euclidean spaces will play a more prominent role than real ones
in this book. Real Euclidean spaces will, nevertheless, be important in those
settings that make use of concepts from the theory of convexity. The space
of Hermitian operators acting on a given complex Euclidean space is an
important example of a real vector space that can be identified with a real
FEuclidean space, as is discussed in the subsection following this one.

1.1.2 Linear operators

Given complex Euclidean spaces X and ), one writes L(X,)) to refer to
the collection of all linear mappings of the form

A:X =Y. (1.32)

Such mappings will be referred to as linear operators, or simply operators,
from X to Y in this book. Parentheses are omitted when expressing the
action of linear operators on vectors when no confusion arises in doing so.
For instance, one writes Au rather than A(u) to denote the vector resulting
from the application of an operator A € L(&X',)) to a vector u € X.

The set L(X,)) forms a complex vector space when addition and scalar
multiplication are defined as follows:

1. Addition: for operators A, B € L(X,)), the operator A+ B € L(X,))
is defined by the equation

(A4 B)u = Au+ Bu (1.33)

for all u € X.
2. Scalar multiplication: for an operator A € L(X,)) and a scalar a € C,
the operator aA € L(X,)) is defined by the equation

(aA)u = aAu (1.34)
for all u € X.

Matrices and their correspondence with operators

A matriz over the complex numbers is a mapping of the form
M:T'x¥—C (1.35)

for alphabets ¥ and I'. For a € I and b € ¥ the value M (a,b) is called the
(a,b) entry of M, and the elements a and b are referred to as indices in this
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context: a is the row index and b is the column index of the entry M (a,b).
Addition and scalar multiplication of matrices are defined in a similar way
to vectors in complex Euclidean spaces:

1. Addition: for matrices M : I' x ¥ — C and N : ' x ¥ — C, the matrix
M + N is defined as

(M + N)(a,b) = M(a,b) + N(a,b) (1.36)

foralla € I'and b € X..
2. Scalar multiplication: for a matrix M : I' x ¥ — C and a scalar o € C,
the matrix oM is defined as

(aM)(a,b) = aM a,b) (1.37)
foralla e I' and b € X..
In addition, one defines matrix multiplication as follows:

3. Matrix multiplication: for matrices M : ' x A - Cand N : A x ¥ — C,
the matrix MN : T' x ¥ — C is defined as

(MN)(a,b) = Z M(a,c)N(c,b) (1.38)
ceEA

foralla € " and b € ..

For any choice of complex Euclidean spaces X = C* and ) = C, there is
a bijective linear correspondence between the set of operators L(X,)) and
the collection of all matrices taking the form M : I'x ¥ — C that is obtained
as follows. With each operator A € L(X,)), one associates the matrix M
defined as

M (a,b) = (eq, Aep) (1.39)

for a € I' and b € X. The operator A is uniquely determined by M, and may
be recovered from M by the equation

(Au)(a) = Z M (a,b)u(b) (1.40)
bex
for all a € I'. With respect to this correspondence, matrix multiplication is
equivalent to operator composition.
Hereafter in this book, linear operators will be associated with matrices
implicitly, without the introduction of names that distinguish matrices from
the operators with which they are associated. With this in mind, the notation

A(a,b) = (eq, Aep) (1.41)
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is introduced for each A € L(X,)), a € T', and b € X (where it is to be
assumed that X = C* and ) = CF, as above).

The standard basis of a space of operators

For every choice of complex Euclidean spaces X = C* and Y = C!, and
each choice of symbols a € I" and b € X, the operator E,;, € L(X,)) is
defined as

Eopu=u(b)e, (1.42)

for every u € X. Equivalently, E,; is defined by the equation

1 if (¢,d) = (a,b
Bup(ed) = 4+ Tled =(ab) (1.43)
0 otherwise
holding for all ¢ € I" and d € ¥. The collection
{Eap :a€l', be X} (1.44)

forms a basis of L(X,)) known as the standard basis of this space. The
number of elements in this basis is, of course, consistent with the fact that
the dimension of L(X,)) is given by dim(L(X,))) = dim(X) dim(}).

The entry-wise conjugate, transpose, and adjoint

For every operator A € L(X,)), for complex Euclidean spaces X = C*> and
Y = CF, one defines three additional operators,

Ae L(X,Y) and A", A* € L(Y,X), (1.45)
as follows:

1. The operator A € L(X,)) is the operator whose matrix representation
has entries that are complex conjugates to the matrix representation of A:

A(a,b) = Aa,b) (1.46)

foralla eI and b € X.

2. The operator AT € L(), X) is the operator whose matrix representation
is obtained by transposing the matrix representation of A:

AT(b,a) = Aa,b) (1.47)

foralla € " and b € ..
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3. The operator A* € L(),X) is the uniquely determined operator that
satisfies the equation

(v, Au) = (A% v, u) (1.48)
for all u € X and v € ). It may be obtained by performing both of the
operations described in items 1 and 2:

A* = AT, (1.49)

The operators A, AT, and A* are called the entry-wise conjugate, transpose,
and adjoint operators to A, respectively.

The mappings A — A and A — A* are conjugate linear and A — A7 is
linear:

aA+pB=aA+ BB,
(aA 4+ BB)* = aA* + BB*,
(A + BB)" = aA" + BB,
for all A,B € L(X,Y) and «a, € C. These mappings are bijections, each
being its own inverse.

Each vector u € X in a complex FEuclidean space X may be identified with
the linear operator in L(C, X) defined as a — au for all @ € C. Through
this identification, the linear mappings w € L(C, X') and u",u* € L(X,C) are
defined as above. As an element of X', the vector @ is simply the entry-wise
complex conjugate of u, i.e., if X = C* then

u(a) = u(a) (1.50)

for every a € X. For each vector u € X the mapping u* € L(X,C) satisfies
u*v = (u,v) for all v € X.

Kernel, image, and rank
The kernel of an operator A € L(X,)) is the subspace of X defined as
ker(A) = {ue X : Au= 0}, (1.51)
while the image of A is the subspace of ) defined as
im(A) ={Au : u e X}. (1.52)
For every operator A € L,(X,)), one has that
ker(A) = ker(A*A) and im(A4) =im(A4A"), (1.53)
as well as the equation

dim(ker(A)) + dim(im(A)) = dim(X). (1.54)
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The rank of an operator A € L(X,)), denoted rank(A), is the dimension of
the image of A:

rank(A) = dim(im(A)). (1.55)
By (1.53) and (1.54), one may conclude that
rank(A) = rank(AA*) = rank(A*A) (1.56)

for every A € L(X,)).
For any choice of vectors u € X and v € ), the operator vu* € L(X,))
satisfies

(vu*)w = v(u*w) = (u, w)v (1.57)

for all w € X. Assuming that v and v are nonzero, the operator vu* has
rank equal to one, and every rank one operator in L(X,)) can be expressed
in this form for vectors v and v that are unique up to scalar multiples.

Operators involving direct sums of complex Fuclidean spaces
Suppose that
X =C*, ..., X, =C* and Y, =C", ... Y,=C (1.58)

are complex Euclidean spaces, for alphabets »¢,...,%, and I'y,...,I[',,. For
a given operator

there exists a unique collection of operators
{Ajr e L(X,Y;) :1<j<m,1<k<n} (1.60)
for which the equation
Ajk(a,b) = A((4, a), (k, D)) (1.61)
holds for all j € {1,...,m}, k € {1,...,n}, a € I';, and b € ¥j. For all
vectors u; € X1, ..., u, € X, one has that
Alu1 @ Dup) =v1 D Doy (1.62)
for v1 € V1,...,0m € Yy being defined as
n
v = Z Aj,kuk (1.63)
k=1
for each j € {1,...,m}. Conversely, for any collection of operators of the

form (1.60), there is a unique operator A of the form (1.59) that obeys the
equations (1.62) and (1.63) for all vectors u; € Xi,...,u, € X,.
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There is therefore a bijective correspondence between operators of the
form (1.59) and collections of operators of the form (1.60). With respect to
the matrix representations of these operators, this correspondence may be
expressed succinctly as

Am 1 Am,n

One interprets the right-hand side of (1.64) as the specification of the
operator having the form (1.59) that is defined by the collection (1.60) in
this way.

Tensor products of operators
Suppose that
X, =C*,...,X,=C* and Y =C", ...y, =C" (1.65)

are complex Euclidean spaces, for alphabets >¢,...,%, and I'1,...,I',,. For
any choice of operators

Ay € L(X1, 1), oy Ap € L(X0, Vi), (1.66)
one defines the tensor product
A @ @A ELX ® - QXN ® @ V) (1.67)
of these operators to be the unique operator that satisfies the equation
(A1®-- @A) (U1 ® - Quy) = (A1u1) ® - @ (Apuy) (1.68)

for all choices of u; € &4,...,u, € A,. This operator may equivalently be
defined in terms of its matrix representation as

(A1 X .- ®An)((a1, .. .,an), (bl, .. ,bn))

1.69
:Al(G/l)bl)"'An(an;bn) ( )
foralla €T'y,...,a, €T, and by € Xq,...,b, € X,.
For every choice of complex Euclidean spaces X1,..., X, Vi,...,Vn, and
Z1y..., 2y, operators
Al,Bl - L(Xl,yl), RN An,Bn - L(Xn,yn),
(1.70)

Cl S L(ylazl)7 ceey Cn S L(ynazn)7



14 Mathematical preliminaries
and scalars a, § € C, the following equations hold:
A1 @ @ Ap1 @ (@A + BBr) @ Apy1 @ -+~ @ Ay

=a(A1® - QA1 QAR Ap1 ® - ® Ayp) (1.71)
+B8(A1® A1 @B, @A 1 @ - ® Ay),

(C1® - RC)AI® - ®A,) = (C1A1) @+ ® (CpAy), (1.72)
(Al@-®A,) =410 @ AT, (1.73)
A® QA =AIQ - ®A,, (1.74)
(A1 @ @A) =A@ - A;. (1.75)

Similar to vectors, for an operator A and a positive integer n, the notation
A®" refers to the n-fold tensor product of A with itself.

Square operators

For every complex Euclidean space X', the notation L(X') is understood to be
a shorthand for L(X, X'). Operators in the space L(X) will be called square
operators, due to the fact that their matrix representations are square, with
rows and columns indexed by the same set.

The space L(X) is an associative algebra; in addition to being a vector
space, the composition of square operators is associative and bilinear:

(XY)Z = X(YZ),
Z(aX +pY)=aZX + BZY, (1.76)
(aX 4+ pY)Z =aXZ + BY Z,

for every choice of X,Y,Z € L(X) and o, 8 € C.
The identity operator 1 € L(X) is the operator defined as 1u = w for all
u € X. It may also be defined by its matrix representation as

on-{ ) 408 am

for all a,b € ¥, assuming X = C*. One writes 1y rather than 1 when it is
helpful to indicate explicitly that this operator acts on X.

For a complex Euclidean space X', an operator X € L(X) is invertible
if there exists an operator Y € L(X) such that Y X = 1. When such an
operator Y exists it is necessarily unique and is denoted X ~!'. When the
inverse X ! of X exists, it must also satisfy XX 1 = 1.
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Trace and determinant

The diagonal entries of a square operator X € L(X), for X = C*, are those
of the form X (a,a) for a € 3. The trace of a square operator X € L(X) is
defined as the sum of its diagonal entries:

Tr(X) =) _ X(a,a). (1.78)

Alternatively, the trace is the unique linear function Tr : L(X) — C such
that, for all vectors u,v € X, one has

Tr(uv®) = (v, u). (1.79)

For every choice of complex Euclidean spaces X and ) and operators
AeL(X,Y)and B € L(Y,X), it holds that

Tr(AB) = Tr(BA). (1.80)

This property is known as the cyclic property of the trace.
By means of the trace, one defines an inner product on the space L(X,))
as follows:

(A, B) = Tr(A*B) (1.81)

for all A, B € L(X,)). It may be verified that this inner product satisfies
the requisite properties of being an inner product:

1. Linearity in the second argument:
(A,aB + 5C) = a(A, B) + 5(A, C) (1.82)

for all A, B,C € L(X,)) and «, 8 € C.
2. Conjugate symmetry:

(A, B) = (B, A) (1.83)

for all A, B € L(X,)).
3. Positive definiteness: (A, A) > 0 for all A € L(&X,)), with equality if and
only if A =0.

The determinant of a square operator X € L(X), for X = C*, is defined
by the equation

Det(X) = Z sign () H X(a,m(a)). (1.84)

TESym(X) acx

Here, the set Sym(X) denotes the collection of all permutations 7 : X — X,
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and sign(m) € {—1,+1} denotes the sign (or parity) of the permutation 7.
The determinant is multiplicative,

Det(XY) = Det(X) Det(Y) (1.85)
for all X,Y € L(X), and Det(X) # 0 if and only if X is invertible.

Eigenvectors and eigenvalues

If X € L(X) is an operator and u € & is a nonzero vector for which it holds
that

Xu = Au (1.86)

for some choice of A € C, then w is said to be an eigenvector of X and A is
its corresponding eigenvalue.
For every operator X € L(&X'), one has that

px(a) = Det(aly — X) (1.87)

is a monic polynomial in the variable a having degree dim(X’), known as
the characteristic polynomial of X. The spectrum of X, denoted spec(X),
is the multiset containing the roots of the polynomial pyx, where each root
appears a number of times equal to its multiplicity. As px is monic, it holds
that

px(@)= J] (a=N). (1.88)

A€spec(X)

Each element A\ € spec(X) is necessarily an eigenvalue of X, and every
eigenvalue of X is contained in spec(X).

The trace and determinant may be expressed in terms of the spectrum as
follows:

Tr(X)= > A and Det(X)= T[] A (1.89)
A€spec(X) A€spec(X)

for every X € L(X). The spectral radius of an operator X € L(X) is the
maximum absolute value |\| taken over all eigenvalues A of X. For every
choice of operators X,Y € L(X) it holds that

spec(XY) = spec(Y X). (1.90)

Lie brackets and commutants

A set A C L(X) is a subalgebra of L(X) if it is closed under addition, scalar
multiplication, and operator composition:

X+YeA aXeA and XY ed (1.91)
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for all X, Y € A and a € C. A subalgebra A of L(X) is said to be self-adjoint
if it holds that X* € A for every X € A, and is said to be unital if it holds
that 1 € A.

For any pair of operators X,Y € L(X), the Lie bracket [X,Y] € L(X) is
defined as

[X,Y]= XY - YX. (1.92)

It holds that [X,Y] = 0 if and only if X and Y commute: XY = Y X. For
any subset of operators A C L(X), one defines the commutant of A as

comm(A) ={Y € L(X) : [X,Y] =0 for all X € A}. (1.93)

The commutant of every subset of L(X') is a unital subalgebra of L(X).

Important classes of operators

The following classes of operators have particular importance in the theory
of quantum information:

1. Normal operators. An operator X € L(X) is normal if it commutes with
its adjoint: [X, X*] = 0, or equivalently, X X* = X*X. The importance
of this collection of operators, for the purposes of this book, is mainly
derived from two facts: (1) the normal operators are those for which the
spectral theorem (discussed later in Section 1.1.3) holds, and (2) most of
the special classes of operators that are discussed below are subsets of
the normal operators.

2. Hermitian operators. An operator X € L(X) is Hermitian if X = X*.
The set of Hermitian operators acting on a complex Euclidean space X
will hereafter be denoted Herm(X') in this book:

Herm(X) = {X € L(X) : X = X*1. (1.94)

Every Hermitian operator is a normal operator.

3. Positive semidefinite operators. An operator X € L(X) is positive semi-
definite if it holds that X = Y*Y for some operator Y € L(X'). Positive
semidefinite operators will, as a convention, often be denoted by the
letters P, ), and R in this book. The collection of positive semidefinite
operators acting on X is denoted Pos(X'), so that

Pos(X) = {Y*Y : YV € L(X)}. (1.95)

Every positive semidefinite operator is Hermitian.
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Positive definite operators. A positive semidefinite operator P € Pos(X)
is said to be positive definite if, in addition to being positive semidefinite,
it is invertible. The notation

Pd(X) = {P € Pos(X) : Det(P) # 0} (1.96)

will be used to denote the set of such operators for a complex Euclidean
space X.

. Density operators. Positive semidefinite operators having trace equal to 1

are called density operators. Lowercase Greek letters, such as p, &, and
o, are conventionally used to denote density operators. The notation

D(X) = {p € Pos(X) : Tr(p) =1} (1.97)

will be used to denote the collection of density operators acting on a
complex FEuclidean space X.

. Projection operators. A positive semidefinite operator II € Pos(X) is said

to be a projection operator? if, in addition to being positive semidefinite,
it satisfies the equation IT> = II. Equivalently, a projection operator is a
Hermitian operator whose only eigenvalues are 0 and 1. The collection
of all projection operators of the form II € Pos(X) is denoted Proj(&X).
For each subspace V C X, there is a uniquely defined projection operator
IT € Proj(X) satisfying im(II) = V; when it is convenient, the notation
IIy, is used to refer to this projection operator.

Isometries. An operator A € L(X,)) is an isometry if it preserves the
Euclidean norm: ||Au|| = ||u|| for all w € X. This condition is equivalent
to A*A = 1. The notation

UX,Y)={AcL(X,)) : A"A=1y) (1.98)

is used to denote this class of operators. In order for an isometry of the
form A € U(X,)) to exist, it must hold that dim()) > dim(X'). Every
isometry preserves not only the Euclidean norm, but inner products as
well: (Au, Av) = (u,v) for all u,v € X.

Unitary operators. The set of isometries mapping a complex Euclidean
space X to itself is denoted U(X), and operators in this set are unitary
operators. The letters U, V, and W will often be used to refer to unitary
operators (and sometimes to isometries more generally) in this book.
Every unitary operator U € U(X) is necessarily invertible and satisfies
the equation UU* = U*U = 1y, and is therefore normal.
Sometimes the term projection operator refers to an operator X € L(X) that satisfies the

equation X2 = X, but that might not be Hermitian. This is not the meaning that is
associated with this term in this book.
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9. Diagonal operators. An operator X € L(X), for a complex Euclidean
space of the form X = C¥, is a diagonal operator if X (a,b) = 0 for all
a,b € ¥ with a # b. For a given vector u € X, one writes Diag(u) € L(X)
to denote the diagonal operator defined as

u(a) ifa=»b

0 if a # b. (1.99)

Diag(u)(a,b) = {

Further remarks on Hermitian and positive semidefinite operators

The sum of two Hermitian operators is Hermitian, as is a real scalar multiple
of a Hermitian operator. The inner product of two Hermitian operators is
real as well. For every choice of a complex Euclidean space X, the space
Herm(X') therefore forms a vector space over the real numbers on which an
inner product is defined.

Indeed, under the assumption that X = C*, it holds that the space
Herm(X) and the real Euclidean space R**> are isometrically isomorphic:
there exists a linear bijection

¢ : R¥*% - Herm(X) (1.100)

with the property that

for all u,v € R¥**. The existence of such a linear bijection allows one to
directly translate many statements about real Fuclidean spaces to the space
of Hermitian operators acting on a complex Euclidean space.

One way to define a mapping ¢ as above is as follows. First, assume that
a total ordering of ¥ has been fixed, and define a collection

{Hap : (a,b) € ¥ x X} C Herm(X) (1.102)
as
Eqyq ifa=">
Hop = 75(Bap + Epa)  ifa<b (1.103)
\/iﬁ(z’Emb —iBy,) ifa>b

for each pair (a,b) € ¥ x 3. It holds that (1.102) is an orthonormal set (with
respect to the usual inner product defined on L(X')), and moreover every
element of Herm(AX') can be expressed uniquely as a real linear combination
of the operators in this set. The mapping ¢ defined by the equation

d(eap)) = Hap (1.104)
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and extended to all of R¥*> by linearity, satisfies the requirement (1.101).

The eigenvalues of a Hermitian operator are necessarily real numbers,
and can therefore be ordered from largest to smallest. For every complex
Euclidean space X and every Hermitian operator H € Herm(X'), the vector

AMH)=(M(H), o(H), ..., \y(H)) e R" (1.105)
is defined so that
spec(H) = { i (H), X\o(H), ..., \(H)} (1.106)

and

M(H) > Ao(H) > - > Ao (H). (1.107)

The notation A\;(H) may also be used in isolation to refer to the k-th largest
eigenvalue of a Hermitian operator H.

The eigenvalues of Hermitian operators can be characterized by a theorem
known as the Courant—Fischer theorem, which is as follows.

Theorem 1.2 (Courant-Fischer theorem) Let X be a compler Euclidean
space of dimension n and let H € Herm(X) be a Hermitian operator. For
every k € {1,...,n} it holds that

Me(H) = max min v*Hv

UL yeeny Uy ES(X) vES(X)
Lty
vtk (1.108)
= min max v*Huv
UL,...,up—1 ES(X) veS(X)

vl{ui,...,up_1}
(It is to be interpreted that the mazximum or minimum is omitted if it is to
be taken over an empty set of vectors, and that v L & holds for all v € X.)

There are alternative ways to describe positive semidefinite operators that
are useful in different situations. In particular, the following statements are
equivalent for every operator P € L(X):

1. P is positive semidefinite.

2. P = A*A for an operator A € L(X,)), for some choice of a complex
Fuclidean space ).

P is Hermitian and every eigenvalue of P is nonnegative.

(u, Pu) is a nonnegative real number for all u € X.

(@, P) is a nonnegative real number for all ) € Pos(X).

There exists a collection of vectors {u, : a € X} C X for which it holds
that P(a,b) = (uq,up) for all a,b € X.

S O W
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7. There exists a collection of vectors {u, : a € ¥} C Y, for some choice of
a complex Euclidean space ), for which it holds that P(a,b) = (ug, up)
for all a,b € X.

Along similar lines, one has that the following statements are equivalent for
every operator P € L(X):

. P is positive definite.
. P is Hermitian, and every eigenvalue of P is positive.

. (Q, P) is a positive real number for every nonzero @) € Pos(X).

1

2

3. (u, Pu) is a positive real number for every nonzero u € X.

4

5. There exists a positive real number € > 0 such that P — 1 € Pos(X).

The notations P > 0 and 0 < P indicate that P is positive semidefinite,
while P > 0 and 0 < P indicate that P is positive definite. More generally,
for Hermitian operators X and Y, one writes either X > Y or Y < X to
indicate that X —Y is positive semidefinite, and either X > Y or Y < X to
indicate that X — Y is positive definite.

Linear maps on square operators

Linear maps of the form
¢ LX) = L(Y), (1.109)

for complex Euclidean spaces X and ), play a fundamental role in the theory
of quantum information. The set of all such maps is denoted T(X,)), and
is itself a complex vector space when addition and scalar multiplication are
defined in the straightforward way:

1. Addition: given two maps ¢, ¥ € T(X,)), the map & + ¥ € T(X,)) is
defined as

(@ + T)(X) = B(X) + U(X) (1.110)

for all X € L(X).
2. Scalar multiplication: given a map ® € T(X,))) and a scalar o € C, the
map a® € T(X,)) is defined as

(a®)(X) = a®(X) (1.111)
for all X € L(X).

For a given map ® € T(X,)), the adjoint of ® is defined to be the unique
map ¢* € T(), X) that satisfies

(d*(Y), X) = (Y, ®(X)) (1.112)
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for all X € L(X) and Y € L(Y).

Tensor products of maps of the form (1.109) are defined in a similar way
to tensor products of operators. More specifically, for any choice of complex
Fuclidean spaces X7,..., X, and )V,...,Y, and linear maps

O € T(X, 1), ..., Dy € T(Xn, Vn), (1.113)
one defines the tensor product of these maps
PR @0, TR X, 1@ W) (1.114)
to be the unique linear map that satisfies the equation
(P1®--®@P)(X1®--®@X,) =21(X1) @ @ Dp(Xy) (1.115)

for all operators X; € L(X1),..., X, € L(X,). As for vectors and operators,

the notation ®®" denotes the n-fold tensor product of a map ® with itself.
The notation T(&X') is understood to be a shorthand for T(X, X). The
identity map 1y vy € T(X) is defined as

for all X € L(X).

The trace function defined for square operators acting on X is a linear
mapping of the form

Tr: L(X) — C. (1.117)

By making the identification L(C) = C, one sees that the trace function is
a linear map of the form

Tr € T(X,C). (1.118)
For a second complex Euclidean space ), one may consider the map
Trolyy € T(XQ@Y,D). (1.119)

By the definition of the tensor product of maps stated above, this is the
unique map that satisfies the equation

(Tr@ 1) X ®Y)=Tr(X)Y (1.120)

for all operators X € L(X) and Y € L(Y). This map is called the partial
trace, and is more commonly denoted Try. Along similar lines, the map
Try € T(X ® Y, X) is defined as

Generalizations of these maps may also be defined for tensor products of
three or more complex Euclidean spaces.
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The following classes of maps of the form (1.109) are among those that
are discussed in greater detail later in this book:

1. Hermitian-preserving maps. A map ® € T(X,)) is Hermitian-preserving
if it holds that
®(H) € Herm()) (1.122)

for every Hermitian operator H € Herm(X).
2. Positive maps. A map ® € T(X,)) is positive if it holds that

®(P) € Pos(Y) (1.123)

for every positive semidefinite operator P € Pos(X).
3. Completely positive maps. A map & € T(X,)) is completely positive if
it holds that

O @1z (1.124)
is a positive map for every complex Euclidean space Z. The set of all
completely positive maps of this form is denoted CP(X, ).

4. Trace-preserving maps. A map ® € T(X,)) is trace-preserving if it holds
that

Tr(®(X)) = Tr(X) (1.125)
for all X € L(X).
5. Unital maps. A map ® € T(X,)) is unital if
B(ly) = 1y. (1.126)

Maps of these sorts are discussed in greater detail in Chapters 2 and 4.

The operator-vector correspondence

There is a correspondence between the spaces L(), X) and X ® Y, for any
choice of complex Euclidean spaces X = C* and Y = C!', that will be used
repeatedly throughout this book. This correspondence is given by the linear

mapping
vec: LV, X) > X ®), (1.127)
defined by the action
vec(Eqp) = €q @ € (1.128)

for all @ € ¥ and b € I'. In other words, this mapping is the change-of-basis

taking the standard basis of L(),X) to the standard basis of X ® ). By
linearity, it holds that

vec(uv™) =u®T (1.129)
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for u € X and v € ). This includes the special cases
vec(u) =u and vec(v*) =7, (1.130)

obtained by setting v = 1 and u = 1, respectively.

The vec mapping is a linear bijection, which implies that every vector
u € X ® Y uniquely determines an operator A € L(Y,X) that satisfies
vec(A) = u. It is also an isometry, in the sense that

(A, B) = (vec(A), vec(B)) (1.131)

for all A, B € L(),X).
A few specific identities concerning the vec mapping will be especially
useful throughout this book. One such identity is

(Ag ® Ay) vec(B) = vec(AgBAj), (1.132)

holding for all operators Ay € L(Xyp, W), A1 € L(X1,V1), and B € L(&], X)),
over all choices of complex Euclidean spaces Xy, X1, My, and Y. Two more
such identities are

Try (vec(A) vec(B)*) = AB*, (1.133)
Try (vec(A) vec(B)*) = A™B, (1.134)

which hold for all operators A, B € L(),X), over all choices of complex
Euclidean spaces X and ).

1.1.3 Operator decompositions and norms

Two decompositions of operators—the spectral decomposition and singular
value decomposition—along with various related notions, are discussed in the
present section. Among these related notions is a class of operator norms
called Schatten norms, which include the trace norm, the Frobenius norm,
and the spectral norm. These three norms are used frequently throughout

this book.

The spectral theorem

The spectral theorem establishes that every normal operator can be expressed
as a linear combination of projections onto pairwise orthogonal subspaces.
A formal statement of the spectral theorem follows.
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Theorem 1.3 (Spectral theorem) Let X be a complex Euclidean space
and let X € L(X) be a normal operator. There exists a positive integer m,
distinct complex numbers A, ..., \ym € C, and nonzero projection operators
Iy,...,I0,, € Proj(X) satisfying Iy + - - - + I,, = 1, such that

m
X =) NIl (1.135)
k=1
The scalars A1, ..., A\ and projection operators Iy, ... 11, are unique, up

to their ordering: each scalar A\ is an eigenvalue of X with multiplicity equal
to the rank of 11, and Il is the projection operator onto the space spanned
by the eigenvectors of X corresponding to the eigenvalue \j.

The expression of a normal operator X in the form of the equation (1.135)
is called a spectral decomposition of X.

A simple corollary of the spectral theorem follows. It expresses essentially
the same fact as the spectral theorem, but in a slightly different form that
will sometimes be convenient to refer to later in the book.

Corollary 1.4 Let X be a complex Fuclidean space having dimension n, let
X € L(X) be a normal operator, and assume that

spec(X) = {A1,..., A} (1.136)
There exists an orthonormal basis {x1,...,xn} of X such that
n
X =) Ny (1.137)
k=1

It is evident from the expression (1.137), along with the requirement that
the set {x1,...,z,} is an orthonormal basis, that each xj, is an eigenvector of
X whose corresponding eigenvalue is A\;. It is also evident that any operator
X that is expressible in such a form as (1.137) is normal, implying that the
condition of normality is equivalent to the existence of an orthonormal basis
of eigenvectors.

On a few occasions later in the book, it will be convenient to index the
eigenvectors and eigenvalues of a given normal operator X € L(C*) by
symbols in the alphabet ¥ rather than by integers in the set {1,...,n} for
n = |X|. It follows immediately from Corollary 1.4 that a normal operator
X € L(C¥) may be expressed as

X =) Xaxaz (1.138)
aeX

for some choice of an orthonormal basis {2, : a € £} of C* and a collection
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of complex numbers {\, : a € X}. Indeed, such an expression may be
derived from (1.137) by associating symbols in the alphabet ¥ with integers
in the set {1,...,n} with respect to an arbitrarily chosen bijection.

It is convenient to refer to expressions of operators having either of the
forms (1.137) or (1.138) as spectral decompositions, despite the fact that they
may differ slightly from the form (1.135). Unlike the form (1.135), the forms
(1.137) and (1.138) are generally not unique. Along similar lines, the term
spectral theorem is sometimes used to refer to the statement of Corollary 1.4,
as opposed to the statement of Theorem 1.3. These conventions are followed
throughout this book when there is no danger of any confusion resulting
from their use.

The following important theorem states that the same orthonormal basis
of eigenvectors {z1,...,z,} may be chosen for any two normal operators
under the assumption that they commute.

Theorem 1.5 Let X be a complex Euclidean space having dimension n
and let X, Y € L(X) be normal operators for which [X,Y] = 0. There exists

an orthonormal basis {x1,...,z,} of X such that
X = Z agrrry and Y = Z BrrrTr, (1.139)
k=1 k=1
for some choice of complex numbers a,...,an, B1,..., s satisfying
spec(X) = {a1,...,an} and spec(Y)={p1,...,0n} (1.140)

Jordan—Hahn decompositions

Every Hermitian operator is normal and has real eigenvalues. It therefore
follows from the spectral theorem (Theorem 1.3) that, for every Hermitian
operator H € Herm(X'), there exists a positive integer m, nonzero projection
operators Ilq, ..., I, satisfying

and real numbers Ay, ..., \,, such that
H=> NI (1.142)
k=1
By defining operators
P =) max{\;, 0} and Q=) max{—\, 0}, (1.143)
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one finds that
H=P-Q (1.144)

for P,QQ € Pos(X) satisfying PQ = 0. The expression (1.144) of a given
Hermitian operator H in this form, for positive semidefinite operators P
and @ satisfying PQ = 0, is called a Jordan—Hahn decomposition. There is
only one such expression for a given operator H € Herm(X'); the operators
P and @ are uniquely defined by the requirements that P,Q € Pos(X),
PQ =0,and H=P — Q.

Functions of normal operators
Every function of the form f : C — C may be extended to the set of normal
operators in L(X), for a given complex Euclidean space X', by means of the
spectral theorem (Theorem 1.3). In particular, if X € L(&X’) is normal and
has the spectral decomposition (1.135), then one defines

m

F(X) =" FOw. (1.145)

k=1
Naturally, functions defined only on subsets of C may be extended to normal
operators whose eigenvalues are restricted accordingly.

The following examples of scalar functions extended to operators will be
important later in this book:

1. For r > 0, the function A\ — A" is defined for all A € [0, c0). For a positive
semidefinite operator P € Pos(X') having spectral decomposition

P =) NI, (1.146)
k=1

for which it necessarily holds that Ay > 0 for all £ € {1,...,m}, one
defines

Pr =" X\ 1I. (1.147)
k=1

For positive integer values of r, it is evident that P" coincides with the
usual meaning of this expression given by operator multiplication.

The case that » = 1/2 is particularly common, and in this case one
may write v P to denote P12 The operator v/P is the unique positive
semidefinite operator that satisfies the equation

VPVP=P. (1.148)
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2. Along similar lines to the previous example, for any real number r € R,
the function A — A" is defined for all A € (0,00). For a given positive
definite operator P € Pd(X) having a spectral decomposition of the form
(1.146), for which it holds that Ay > 0 for all k € {1,...,m}, one defines
P" in a similar way to (1.147) above.

3. The (base-2) logarithm function A\ — log(\) is defined for all A € (0, c0).
For a given positive definite operator P € Pd(X), having a spectral
decomposition (1.146) as above, one defines

log(P) = i log(A) L. (1.149)
k=1

The singular value theorem

The singular value theorem has a close relationship to the spectral theorem.
Unlike the spectral theorem, however, the singular value theorem holds for
arbitrary (nonzero) operators, as opposed to just normal operators.

Theorem 1.6 (Singular value theorem) Let A € L(X,)) be a nonzero
operator having rank equal to r, for complex Euclidean spaces X and ).
There exist orthonormal sets {z1,...,x,} C X and {y1,...,yr} C Y, along
with positive real numbers si,...,S,, such that

-
A= spyray. (1.150)
k=1

An expression of a given operator A in the form of (1.150) is said to
be a singular value decomposition of A. The numbers sq,...,s, are called
singular values and the vectors x1,...,x, and y1,...,y, are called right and
left singular vectors, respectively.

The singular values s1,...,s, of an operator A are uniquely determined,
up to their ordering. It will be assumed hereafter that singular values are
always ordered from largest to smallest: s; > --- > s,.. When it is necessary
to indicate the dependence of these singular values on the operator A, they
are denoted s1(A4),...,s,(A). Although 0 is not formally considered to be a
singular value of any operator, it is convenient to also define s;(A) = 0 for
k > rank(A), and to take sp(A) =0 for all £ > 1 when A = 0. The notation
s(A) is used to refer to the vector of singular values

s(A) = (s1(A),...,s-(A)), (1.151)
or to an extension of this vector

s(A) = (s1(A),. .., sm(A)) (1.152)
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when it is convenient to view it as an element of R™ for m > rank(A).

As suggested above, there is a close relationship between the singular
value theorem and the spectral theorem. In particular, the singular value
decomposition of an operator A and the spectral decompositions of the
operators A*A and AA* are related in the following way: it holds that

Sk(A) = \/)\k(AA*) = \/)\]AA*A) (1.153)

for 1 < k < rank(A), and moreover the right singular vectors of A are
eigenvectors of A*A and the left singular vectors of A are eigenvectors of
AA*. One is free, in fact, to choose the left singular vectors of A to be any
orthonormal collection of eigenvectors of AA* for which the corresponding
eigenvalues are nonzero—and once this is done the right singular vectors will
be uniquely determined. Alternately, the right singular vectors of A may be
chosen to be any orthonormal collection of eigenvectors of A*A for which
the corresponding eigenvalues are nonzero, which uniquely determines the
left singular vectors.

In the special case that X € L(X) is a normal operator, one may obtain
a singular value decomposition of X directly from a spectral decomposition
of the form

n
X =) \pwpay. (1.154)
k=1

In particular, one may define S ={k € {1,...,n} : \x # 0}, and set

S = |/\kz| and Y = m$k (1.155)
for each k € S. The expression
X =) spyray (1.156)

keS

then represents a singular value decomposition of X, up to a relabeling of
the terms in the sum.

The following corollary represents a reformulation of the singular value
theorem that is useful in some situations.

Corollary 1.7 Let X and Y be complex Euclidean spaces, let A € L(X,))
be a monzero operator, and let r = rank(A). There exists a diagonal and
positive definite operator D € Pd(C") and isometries U € U(C", X) and
V e U(C",Y) such that A =V DU*.
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Polar decompositions

For every square operator X € L(X), it is possible to choose a positive
semidefinite operator P € Pos(X) and a unitary operator W € U(X) such
that the equation

X=WP (1.157)

holds; this follows from Corollary 1.7 by taking W = VU* and P = UDU™.
Alternatively, by similar reasoning it is possible to write

X =PW (1.158)

for a (generally different) choice of operators P € Pos(X’) and W € U(X).
The expressions (1.157) and (1.158) are known as polar decompositions of X .

The Moore—Penrose pseudo-inverse

For a given operator A € L(X,)), one defines an operator AT € L(), X),
known as the Moore—Penrose pseudo-inverse of A, as the unique operator
that possesses the following properties:

1 AAYA= A,
2. ATAAT = AT, and
3. AAT and AT A are both Hermitian.

It is evident that there is at least one such choice of AT, for if

A= Z SKYLTT, (1.159)
k=1

is a singular value decomposition of a nonzero operator A, then

"1
At =" (1.160)
k=1 ok

possesses the three properties listed above. One may observe that AAT and
AT A are projection operators, projecting onto the spaces spanned by the
left singular vectors and right singular vectors of A, respectively.

The fact that A is uniquely determined by the above equations may be

verified as follows. Suppose that B,C € L(),X) both possess the above
properties:

1. ABA= A= ACA,
2. BAB = B and CAC = C, and
3. AB, BA, AC, and CA are all Hermitian.
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It follows that
B=BAB = (BA)*B=A*"B*B=(ACA)"B*B
= A*C*A*B*B = (CA)"(BA)*B=CABAB
=CAB =CACAB =C(AC)*(AB)* =CC*A*B*A*
=CC*"(ABA)* =CC*A* =C(AC)* = CAC = C,

(1.161)

which shows that B = C.

Schmidt decompositions
Let X and Y be complex Euclidean spaces, and suppose that u € X ® ) is
a nonzero vector. Given that the vec mapping is a bijection, there exists a

unique operator A € L(), X) such that u = vec(A). For any singular value
decomposition

.
A= spreyi, (1.162)
k=1

it holds that

T T

u = vec(A) = vec <Z skrl:ky}:) = Z SkTk @ Y- (1.163)
k=1 k=1

The orthonormality of {y1,...,y,} implies that {71,...,7r} is orthonormal

as well. It follows that every nonzero vector u € X ® ) can be expressed in
the form

T
U= Z SETE Q 2k (1.164)
k=1
for positive real numbers s, ..., s, and orthonormal sets {z1,...,2,} C X
and {z1,...,2.} C Y. An expression of u having this form is called a Schmidt

decomposition of u.

Norms of operators

A norm on the space of operators L(X,)), for complex Euclidean spaces X
and ), is a function ||-|| satisfying the following properties:

1. Positive definiteness: ||A|| > 0 for all A € L(&X,)), with || 4] = 0 if and
only if A =0.

2. Positive scalability: |[a Al = |al||A|| for all A € L(X,)) and « € C.

3. The triangle inequality: ||A + B|| < ||A]| + || B]| for all A, B € L(X,)).
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Many interesting and useful norms can be defined on spaces of operators,
but this book will mostly be concerned with a single family of norms called
Schatten p-norms. This family includes the three most commonly used norms
in quantum information theory: the spectral norm, the Frobenius norm, and
the trace norm.

For any operator A € L(&X,)) and any real number p > 1, one defines the
Schatten p-norm of A as

1
* AN2\\p
lAll, = (Tr ((474)%))" . (1.165)
The Schatten co-norm is defined as
| Alloo = max {]| Au| : u € X, [|u]l < 1}, (1.166)

which coincides with lim, ,~|| A||p, explaining why the subscript oo is used.
The Schatten p-norm of an operator A coincides with the ordinary vector
p-norm of the vector of singular values of A:

[Allp = [[s(A)[lp- (1.167)

The Schatten p-norms possess a variety of properties, including the ones
summarized in the following list:

1. The Schatten p-norms are non-increasing in p: for every operator A and
for 1 <p < g < o0, it holds that

[Allp = [[Allg- (1.168)
2. For every nonzero operator A and for 1 < p < ¢ < oo, it holds that
| Allp < rank(A)» || Al (1.169)

In particular, one has

[Alls < y/rank(A)[|Aflz and  [[All2 < y/rank(A)[[Afje.  (1.170)

3. For every p € [1, 0], the Schatten p-norm is isometrically invariant (and
therefore unitarily invariant): for every A € L(X,Y), U € U()Y, Z), and
V e U(X, W) it holds that

[Allp = [UAV™ [|p. (1.171)
4. For each p € [1, ], one defines p* € [1, 0] by the equation
1 1
+

4= =1. 1.172
p p* ( )
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For every operator A € L(X,)), it holds that the Schatten p-norm and
p*-norm are dual, in the sense that

[Allp = max{[(B, A)| : B € L(X,Y), | Bllp <1}. (1.173)
One consequence of (1.173) is the inequality
(B, A)| < [[Allpl| Bllp~, (1.174)

which is known as the Hélder inequality for Schatten norms.

5. For operators A € L(Z,W), B € L(),Z), and C € L(X,)Y), and any
choice of p € [1, 00|, it holds that

IABClp < [[Allso | Blpl|C lloo- (1.175)
It follows that the Schatten p-norm is submultiplicative:
[AB|lp < [ Allpll Bllp- (1.176)
6. For every p € [1,00] and every A € L(X,)), it holds that
1Al = [[A™], = |47, = Al (1.177)

The Schatten 1-norm is commonly called the trace norm, the Schatten
2-norm is also known as the Frobenius norm, and the Schatten co-norm is
called the spectral norm or operator norm. Some additional properties of
these three norms are as follows:

1. The spectral norm. The spectral norm || ||~ is special in several respects.
It is the operator norm induced by the Euclidean norm, which is its
defining property (1.166). It also has the property that

14" Alloe = [ AA" 0 = [ All3 (1.178)

for every A € L(X,)). Hereafter in this book, the spectral norm of an
operator A will be written ||A|| rather than ||Al/s, which reflects the
fundamental importance of this norm.

2. The Frobenius norm. Substituting p = 2 into the definition of ||-|,, one
sees that the Frobenius norm ||-||2 is given by

1A]l2 = (Tr(A*A4))2 = /(A A), (1.179)

and is therefore analogous to the Euclidean norm for vectors, but defined
by the inner product on L(X,)).
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In essence, the Frobenius norm corresponds to the Euclidean norm of
an operator viewed as a vector:

1All2 = [[vec(A)| = [ |Ala,b)|", (1.180)
a.b

where a and b range over the indices of the matrix representation of A.

The trace norm. Substituting p = 1 into the definition of ||-||,, one has
that the trace norm |- ||; is given by

| Al = Tr(VA*A), (1.181)

which is equal to the sum of the singular values of A. For two density
operators p,o € D(X), the value ||p — o||; is typically referred to as the
trace distance between p and o.

A useful expression of || X||1, for any square operator X € L(X), is
X[l = max{[(U, X)] : U € U()}, (1.182)

which follows from (1.167) and the singular value theorem (Theorem 1.6).
As a result, one has that the trace-norm is non-increasing under the
action of partial tracing: for every operator X € L(X ® )), it holds that

ITry (X))l = max{[(U® 1y, X)| : U € U(X)}

Smax{|(V.X) : VeU@Xoy)} =X
The identity
o — Bov*[|, = /(e + B)2 — daf|(u, v)[2, (1.184)

which holds for all unit vectors u,v and nonnegative real numbers «, (3,
is used multiple times in this book. It may be proved by considering the
spectrum of auu* — Bvv*; this operator is Hermitian, and has at most
two nonzero eigenvalues, represented by the expression

a—p
2

:I:%\/(oz-l—ﬁ)z 40| (u, v)[2. (1.185)

In particular, for unit vectors u and v, one has

|uw™ —vo*||, = 24/1 = [(u,v)|2. (1.186)
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1.2 Analysis, convexity, and probability theory

Some of the proofs to be presented in this book will make use of concepts
from analysis, convexity, and probability theory. The summary that follows

provides an overview of these concepts, narrowly focused on the needs of
this book.

1.2.1 Analysis and convexity

In the same spirit as the previous section on linear algebra, it is assumed that
the reader is familiar with the most basic notions of mathematical analysis,
including the supremum and infimum of sets of real numbers, sequences and
limits, and standard univariate calculus over the real numbers.

The discussion below is limited to finite-dimensional real and complex
vector spaces—and the reader is cautioned that some of the stated facts
rely on the assumption that one is working with finite dimensional spaces.
For the remainder of the subsection, V and W will denote finite dimensional
real or complex vector spaces upon which some norm ||-|| is defined. Unless
it is explicitly noted otherwise, the norm may be chosen arbitrarily—so the
symbol ||-|| may not necessarily denote the Euclidean norm or spectral norm
in this section.

Open and closed sets

A set A CV is open if, for every u € A, there exists ¢ > 0 such that

fveV:|u—v||<e} CA (1.187)
A set A CV is closed if the complement of A, defined as
VWA={veV: :v¢gA}, (1.188)

is open. Given subsets A C B C V), one defines that A is open or closed
relative to B if A is the intersection of B with some set in V that is open or
closed, respectively. Equivalently, A is open relative to B if, for every u € A,
there exists a choice of € > 0 such that

fveB: |lu—v| <e} CA; (1.189)

and A is closed relative to B if B\A is open relative to B5.

For subsets A C B C V, one defines the closure of A relative to B as the
intersection of all subsets C such that A C C C B and C is closed relative
to B. In other words, this is the smallest set that contains A and is closed
relative to B. The set A is dense in B if the closure of A relative to B is B
itself.
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Continuous functions

Let f: A — W be a function defined on some subset A C V. For any vector
u € A, the function f is said to be continuous at u if the following holds:
for every € > 0 there exists § > 0 such that

1f(v) = flu)| <e (1.190)

for all v € A satisfying ||u —v|| < §. If f is continuous at every vector in A,
then one simply says that f is continuous on A.

For a function f : A — W defined on some subset A C V, the preimage
of a set B C W is defined as

fB)={ucA: f(u) € B}. (1.191)

Such a function f is continuous on A if and only if the preimage of every
open set in W is open relative to A. Equivalently, f is continuous on A if
and only if the preimage of every closed set in W is closed relative to A.

For a positive real number k, a function f : A — WV defined on a subset
A CV is said to be a k-Lipschitz function if

1f(u) = F) ]| < sllu =] (1.192)

for all u,v € A. Every k-Lipschitz function is necessarily continuous.

Compact sets

A set A C V is compact if every sequence in A has a subsequence that
converges to a vector u € A. As a consequence of the fact V is assumed to
be finite dimensional, one has that a set A C V is compact if and only if it
is both closed and bounded—a fact known as the Heine—Borel theorem.
Two properties regarding continuous functions and compact sets that are
particularly noteworthy for the purposes of this book are as follows:

1. If A is compact and f : A — R is continuous on A, then f achieves both
a maximum and minimum value on A.

2. If A CV is compact and f: )V — W is continuous on 4, then
flA) ={f(u) : ue A} (1.193)

is also compact. In words, continuous functions always map compact sets
to compact sets.
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Differentiation of multivariate real functions

Basic multivariate calculus will be employed in a few occasions later in this
book, and in these cases it will be sufficient to consider only real-valued
functions.

Suppose n is a positive integer, f : R” — R is a function, and © € R" is a
vector. Under the assumption that the partial derivative

flut aex) = f(u)

O f(u) = Oléli)% - (1.194)
exists and is finite for each k € {1,...,n}, one defines the gradient vector of
f at u as

Vf(u) = (01f(u),...,00f(u)). (1.195)

A function f : R” — R is differentiable at a vector u € R™ if there exists
a vector v € R™ with the following property: for every sequence (wy, ws, .. .)
of vectors in R™ that converges to 0, one has that

|f (u+wp) — fu) — (v, wy)|

lim —0 (1.196)
k—00 | w ||
(where here ||-|| denotes the Euclidean norm). In this case the vector v is

necessarily unique, and one writes v = (D f)(u). If f is differentiable at u,
then it holds that

(Df)(w) = Vf(u). (1.197)

It may be the case that the gradient vector V f(u) is defined for a vector u
at which f is not differentiable, but if the function u — V f(u) is continuous
at u, then f is necessarily differentiable at wu.

If a function f : R” — R is both differentiable and x-Lipschitz, then for
all u € R™ and for ||-|| denoting the Euclidean norm, it must hold that

IVf(u)| < k. (1.198)

Finally, suppose g1,...,9n, : R — R are functions that are differentiable

at a real number o € R and f : R” — R is a function that is differentiable

at the vector (g1(a),...,gn()). The chain rule for differentiation implies
that the function h : R — R defined as

h(B) = f(g1(B);---, gn(B)) (1.199)

is differentiable at «, with its derivative being given by

W(a)=(Vf(g(a),...,gn(a)), (91(a),. .., gp(a))). (1.200)
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Nets

Let V be a real or complex vector space, let A C V be a subset of V, let ||-||
be a norm on V, and let ¢ > 0 be a positive real number. A set of vectors
N C V is an e-net for A if, for every vector u € A, there exists a vector
v € N such that ||u —v| < e. An e-net N for A is minimal if N is finite
and every e-net of A contains at least |N| vectors.

The following theorem gives an upper bound for the number of elements
in a minimal e-net for the unit ball

BX)={ue X : ||ul| <1} (1.201)
in a complex Euclidean space, with respect to the Euclidean norm.

Theorem 1.8 (Pisier) Let X be a complex Euclidean space of dimension n
and let € > 0 be a positive real number. With respect to the Fuclidean norm
on X, there exists an e-net N C B(X) for the unit ball B(X) such that

2n
N < (1 + g) | (1.202)

The proof of this theorem does not require a complicated construction;
one may take N to be any maximal set of vectors chosen from the unit ball
for which it holds that ||u — v|| > € for all u,v € N with u # v. Such a
set is necessarily an e-net for B(X), and the bound on |N] is obtained by
comparing the volume of B(X) with the volume of the union of /2 balls
around vectors in V.

Borel sets and functions

Throughout this subsection, A C V and B C W will denote fixed subsets of
finite-dimensional real or complex vector spaces V and W.

A set C C A is said to be a Borel subset of A if one or more of the following
inductively defined properties holds:

1. C is an open set relative to A.

2. C is the complement of a Borel subset of A.

3. For {C1,Cq,...} being a countable collection of Borel subsets of A, it
holds that C is equal to the union

c=J¢. (1.203)
k=1

The collection of all Borel subsets of A is denoted Borel(.A).
A function f : A — B is a Borel function if f~1(C) € Borel(A) for all
C € Borel(B). That is, Borel functions are functions for which the preimage
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of every Borel subset is also a Borel subset. If f is a continuous function, then
f is necessarily a Borel function. Another important type of Borel function
is any function of the form

fu) = xe(u)v (1.204)
for any choice of v € B and
1 ifuelC
u) = 1.205
xc(u) {0 fudc (1.205)

being the characteristic function of a Borel subset C € Borel(A).
The collection of all Borel functions f : A — B possesses a variety of
closure properties, including the following properties:

1. If B is a vector space, f,g: A — B are Borel functions, and « is a scalar
(either real or complex, depending on whether B is a real or complex
vector space), then the functions af and f + g are also Borel functions.

2. If B is a subalgebra of L(Z), for Z being a real or complex Euclidean
space, and f, g : A — B are Borel functions, then the function h : A — B
defined by

h(u) = f(u)g(u) (1.206)
for all u € A is also a Borel function. (This includes the special cases

frg: A= Rand f,g: A— C.)

Measures on Borel sets

A Borel measure (or simply a measure) defined on Borel(.A) is a function
= Borel(A) — [0, o] (1.207)
that possesses two properties:

1. u(@)=0.
2. For any countable collection {Ci,Cs,...} C Borel(.A) of pairwise disjoint
Borel subsets of A, it holds that

M( Ej Ck) = i#(ck)- (1.208)
k=1 k=1

A measure p defined on Borel(.A) is said to be normalized if it holds that
1(A) = 1. The term probability measure is also used to refer to a normalized
measure.
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There exists a measure v defined on Borel(R), known as the standard
Borel measure,® that has the property

v(la, B]) = B — « (1.209)
for all choices of a, 5 € R with a < £5.
If Ay,..., A, are subsets of (not necessarily equal) finite-dimensional real

or complex vector spaces, and

- Borel(Ay) — [0, 00 (1.210)
is a measure for each k € {1,...,n}, then there is a uniquely defined product
measure

p1 X -+ X py : Borel(Ap x -+ x Ay) — [0, 00] (1.211)
for which
(1 X X pan ) (By X -+ X Bp) = pa(Br) -+ - pin(Bn) (1.212)

for all By € Borel(A;),..., B, € Borel(A,).

Integration of Borel functions

For some (but not all) Borel functions f : A — B, and for p being a Borel
measure of the form p : Borel(A) — [0, oo], one may define the integral

/f ) dpe(u (1.213)

which is an element of B when it is defined.

An understanding of the specifics of the definition through which such
an integral is defined is not critical within the context of this book, but
some readers may find that a high-level overview of the definition is helpful
in associating an intuitive meaning to the integrals that do arise. In short,
one defines what is meant by the integral of an increasingly large collection
of functions, beginning with functions taking nonnegative real values, and
then proceeding to vector (or operator) valued functions by taking linear
combinations.

1. Nonnegative simple functions. A function g : A — [0, 00) is a nonnegative
simple function if it may be written as

W) =3 o) (1.214)
k=1

3 The standard Borel measure agrees with the well-known Lebesgue measure on every Borel
subset of R. The Lebesgue measure is also defined for some subsets of R that are not Borel
subsets, which endows it with additional properties that happen not to be relevant within
the context of this book.
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for a nonnegative integer m, distinct positive real numbers aq, ..., am;,,
and characteristic functions x1, ..., xm given by
1 ifuecly
Xk(u) = . (1.215)
0 ifué¢Cy

for disjoint Borel sets Cy,...,Cp, € Borel(A). (It is to be understood that
the sum is empty when m = 0, which corresponds to g being identically
zZ€ero. )

A nonnegative simple function g of the form (1.214) is integrable with
respect to a measure p : Borel(A) — [0, 00] if 14(Cy) is finite for every

k € {1,...,m}, and in this case the integral of g with respect to p is
defined as

/g(u) dp(u) = i g 11(Cr). (1.216)
k=1

This is a well-defined quantity, by virtue of the fact that the expression
(1.214) happens to be unique for a given simple function g.

. Nonnegative Borel functions. The integral of a Borel function of the form
f i+ A—[0,00), with respect to a given measure p : Borel(A) — [0, oo,
is defined as

[ £ dutw) = sup [ gw) dp(uw) (1.217)

where the supremum is taken over all nonnegative simple functions of the
form g : A — [0, 00) for which it holds that g(u) < f(u) for all u € A. It
is said that f is integrable if the supremum value in (1.217) is finite.

. Real and complex Borel functions. A Borel function g : A — R is
integrable with respect to a measure p : Borel(A) — [0, co] if there exist
integrable Borel functions fy, f1 : A — [0, 00) such that g = fy — f1, and
in this case the integral of g with respect to u is defined as

[ 9t antw) = [ fow dutw) - [ fa(w) dutw). (1.218)

Similarly, a Borel function h : A — C is integrable with respect to a
measure f : Borel(A) — [0, o] if there exist integrable Borel functions
90,91 : A — R such that h = gy + 791, and in this case the integral of h
with respect to u is defined as

[ ) dpatw) = [ golw) dutw) + i [ g1(0) dyutw). (1.219)
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Arbitrary Borel functions. An arbitrary Borel function f : A — B is
integrable with respect to a given measure y : Borel(A) — [0, oo] if there
exists a finite-dimensional vector space W such that B C W, a basis
{wi,...,wy} of W, and integrable functions g1,...,9m : A — R or
91y, 9m : A — C (depending on whether W is a real or complex vector
space) such that

flu) = i gr(u)wg. (1.220)
k=1

In this case, the integral of f with respect to u is defined as

/f(u) dp(u) = i </ gr(u) du(%)) W (1.221)
=1

The fact that the third and fourth items in this list lead to uniquely defined
integrals of integrable functions is not immediate and requires a proof.

A selection of properties and conventions regarding integrals defined in

this way, targeted to the specific needs of this book, follows.

1.

Linearity. For integrable functions f and g, and scalar values a and £,
one has

[(@f ) + Bgt) dutw) = a [ ) antw) + 5 [ g(w dntw). (1222

. Standard Borel measure as the default. Hereafter in this book, whenever

f R — R is an integrable function, and v denotes the standard Borel
measure on R, the shorthand notation

/ Fla)da = / Fla) dv(a) (1.223)

will be used. It is the case that, whenever f is an integrable function for
which the commonly studied Riemann integral is defined, the Riemann
integral will be in agreement with the integral defined as above for the
standard Borel measure—so this shorthand notation is not likely to lead
to confusion or ambiguity.

. Integration over subsets. For an integrable function f : A — B and a

Borel subset C € Borel(A), one defines

[ fw ) = [ e duw) (1.224)
c
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for x¢ being the characteristic function of C. The notation
v
/f(a) da = / f(a) da (1.225)
B [8.:7]

is also used in the case that f takes the form f: R — B and 8,7 € R
satisfy 8 < .

4. Order of integration. Suppose that Ay C Vy, A1 C Vi, and B C W are
subsets of finite-dimensional real or complex vector spaces, where it is
to be assumed that V and V; are either both real or both complex for
simplicity. If po : Borel(Ay) — [0,00] and pp : Borel(A;) — [0, 0] are
Borel measures, f : Ag x A1 — B is a Borel function, and f is integrable
with respect to the product measure po X i1, then it holds (by a theorem
known as Fubini’s theorem) that

/(/f(u,v)duo(U)>du1(v) = /f(u,v)d(uo % 1) (u, v)

- /(/f(u, v) dul(v)>duo(u)-

Conver sets, cones, and functions

(1.226)

Let V be a vector space over the real or complex numbers. A subset C of V
is convez if, for all vectors u,v € C and scalars A € [0, 1], it holds that

Au+ (1 —Xv eC. (1.227)

Intuitively speaking, this means that for any two distinct elements u and v
of C, the line segment whose endpoints are u and v lies entirely within C.
The intersection of any collection of convex sets is also convex.

If V and W are vector spaces, either both over the real numbers or both
over the complex numbers, and A C V and B C W are convex sets, then the
set

{udv :ve A veBCVOW (1.228)
is also convex. Moreover, if A € L(V, W) is an operator, then the set
{Au:ue Ay CW (1.229)

is convex as well.
A set I C V is a cone if, for all choices of u € I and A > 0, one has that
Au € K. The cone generated by a set A CV is defined as

cone(A) = {\u : ue A, \>0}. (1.230)
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If A is a compact set that does not include 0, then cone(.A) is necessarily a
closed set. A convexr cone is simply a cone that is also convex. A cone K is
convex if and only if it is closed under addition, meaning that v+ v € K for
every choice of u,v € K.

A function f : C — R defined on a convex set C C V is a conver function
if the inequality

fOu+ (1 =XNv) < Af(u)+ (1 =N f(v) (1.231)

holds for all u,v € C and A € [0,1]. A function f : C — R defined on a
convex set C C V is a midpoint convex function if the inequality

() < S+ 123
holds for all u,v € C. Every continuous midpoint convex function is convex.

A function f : C — R defined on a convex set C C V is a concave function
if —f is convex. Equivalently, f is concave if the reverse of the inequality
(1.231) holds for all u,v € C and A € [0, 1]. Similarly, a function f :C — R
defined on a convex set C C V is a midpoint concave function if —f is a
midpoint convex function, and therefore every continuous midpoint concave
function is concave.

Convex hulls

For any alphabet ¥, a vector p € R* is said to be a probability vector if it
holds that p(a) > 0 for all @ € ¥ and

> pla) =1. (1.233)

acY

The set of all such vectors will be denoted P(X).
For any vector space V and any subset A C V, a convex combination of
vectors in A is any expression of the form

Z p(a)ug, (1.234)

acl

for some choice of an alphabet X, a probability vector p € P(X), and a
collection

{ug :ae¥}CA (1.235)

of vectors in A.

The convex hull of a set A C V), denoted conv(.A), is the intersection of all
convex sets containing A. The set conv(A) is equal to the set of all vectors
that may be written as a convex combination of elements of A. (This is true
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even in the case that A is infinite.) The convex hull conv(A) of a closed set
A need not itself be closed. However, if A is compact, then so too is conv(.A).

The theorem that follows provides an upper bound on the number of
elements over which one must take convex combinations in order to generate
every point in the convex hull of a given set. The theorem refers to the notion
of an affine subspace: a set U C V is an affine subspace of V having dimension
n if there exists a subspace VW C V of dimension n and a vector v € V such
that

U={u+v:veW} (1.236)

Theorem 1.9 (Carathéodory’s theorem) Let V be a real vector space and
let A be a subset of V. Assume, moreover, that A is contained in an affine
subspace of V having dimension n. For every vector v € conv(A) in the
convexr hull of A, there exist m < n + 1 vectors ui,...,u, € A such that
v € conv({ut,...,un}).

Extreme points

A point w € C in a convex set C is said to be an extreme point of C if, for
every expression

w=Au+ (1—Av (1.237)

for which uw,v € C and A € (0,1), it holds that « = v = w. In words, the
extreme points are those elements of C that do not lie properly between two
distinct points of C.

The following theorem states that every convex and compact subset of a
finite-dimensional vector space, over the real or complex numbers, is equal
to the convex hull of its extreme points.

Theorem 1.10 (Minkowski) Let V be a finite-dimensional vector space
over the real or complexr numbers, let C CV be a compact and convex set,
and let A C C be the set of extreme points of C. It holds that C = conv(A).

A few examples of convex and compact sets, along with an identification
of their extreme points, follow.

1. The spectral norm unit ball. For any complex Euclidean space X, the set
(X eL(X) : |X] <1} (1.238)

is a convex and compact set. The extreme points of this set are the
unitary operators U(X).
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2. The trace norm unit ball. For any complex Euclidean space X, the set
(X eL(X): X <1} (1.239)

is a convex and compact set. The extreme points of this set are those
operators of the form uv* for u,v € S(X) unit vectors.

3. Density operators. For any complex Euclidean space X, the set D(X)
of density operators acting on X is convex and compact. The extreme
points of D(X') coincide with the rank-one projection operators. These
are the operators of the form wu* for u € S(X) being a unit vector.

4. Probability vectors. For any alphabet Y, the set of probability vectors
P(X) is convex and compact. The extreme points of this set are the
elements of the standard basis {e, : a € ¥} of R*.

Hyperplane separation and min-max theorems

Convex sets in real Euclidean spaces possess a fundamentally important
property: every vector lying outside of a given convex set in a real Euclidean
space can be separated from that convex set by a hyperplane. That is, if the
underlying real Euclidean space has dimension n, then there exists an affine
subspace of that space having dimension n — 1 that divides the entire space
into two half-spaces: one contains the convex set and the other contains
the chosen point lying outside of the convex set. The following theorem
represents one specific formulation of this fact.

Theorem 1.11 (Hyperplane separation theorem) LetV be a real FEuclidean
space, let C CV be a closed, convexr subset of V, and let u € V be a vector
with uw € C. There exists a vector v € V and a scalar o € R such that

(v,u) < a < (v,w) (1.240)

for allw € C. If C is a cone, then v may be chosen so that (1.240) holds for
a=0.

Another theorem concerning convex sets that finds uses in the theory of
quantum information is the following theorem.

Theorem 1.12 (Sion’s min-max theorem) Let X and Y be real or complex
FEuclidean spaces, let A C X and B C Y be convex sets with B compact, and
let f: AxB— R be a continuous function such that

1. u— f(u,v) is a convex function on A for all v € B, and

2. v f(u,v) is a concave function on B for all u € A.
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It holds that

f = f 1.241
iy ) = g Jpf S ) i

1.2.2 Probability theory

Concepts from probability theory will play an important role throughout
much of this book. Probability distributions over alphabets or other finite
sets will be viewed as having fundamental importance; they arise naturally
when information-theoretic tasks and settings are considered. The reader is
assumed to have familiarity with basic probability theory for distributions
over sets with finitely many elements. It will also be convenient to use the
language of probability theory to discuss properties of Borel measures.

Random variables distributed with respect to probability measures

Suppose A is a subset of a finite-dimensional real or complex vector space
V and p : Borel(A) — [0, 1] is a probability measure (by which it is meant
that p is a normalized Borel measure). A random wvariable X distributed
with respect to u is a real-valued, integrable Borel function of the form

X:A-R, (1.242)

which is typically viewed as representing an outcome of a random process
of some sort.

For every Borel subset B C R of the real numbers, the probability that X
takes a value in B is defined as

PrX eB)=p({ue A: X(u) € B}). (1.243)
As a matter of notational convenience, one often writes expressions such as
Pr(X > 5) and Pr(|X —p5|>¢), (1.244)

which are to be understood as meaning Pr(X € B) for
B={aceR:a>p} and B={aeR: |a—p3]>c¢}, (1.245)

respectively. Other expressions of this form are interpreted in an analogous
way.

The union bound states, for any random variable X and arbitrary Borel
subsets By,...,B, of R, that

Pr(X e BiU---UB,) <Pr(X € By) +---+Pr(X € B,). (1.246)
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The ezpected value (or mean value) of a random variable X, distributed
with respect to a probability measure p : Borel(A) — [0, 1], is defined as

B(X) = / X (w) dp(u). (1.247)

If X is a random variable taking nonnegative real values, then it holds that

E(X) = / Pr(X > A)dA. (1.248)
0

Random variables for discrete distributions

For a given alphabet 3 and a probability vector p € P(X), one may also
define a random variable X, distributed with respect to p, in an analogous
way to a random variable distributed with respect to a Borel measure. In
particular, such a random variable is a function of the form

X:¥ R, (1.249)

and for every subset I' C ¥ one writes
Pr(X el) =) pla). (1.250)
a€el
In this case, the expected value (or mean value) of X is
E(X)=> p(a)X(a). (1.251)
a€ey

It is, in some sense, not necessary for random variables distributed with
respect to probability vectors of the form p € P(X) to be viewed as being
fundamentally different from random variables distributed with respect to
Borel probability measures. Indeed, one may consider the set

{1,...,n} CR, (1.252)

for some choice of a positive integer n, and observe that every subset of
{1,...,n} is a Borel subset of this set. The Borel probability measures

w: Borel({1,...,n}) = [0,1] (1.253)

coincide precisely with the set of all probability vectors p € P({1,...,n})
through the equations

p(B) =3 pb) and p(a) = u({a}), (1.254)
beB
for every BC {1,...,n} and a € {1,...,n}.
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Thus, by associating an arbitrary alphabet 3 with the set {1,...,n}, one
finds that a random variable distributed with respect to a probability vector
p € P(X) is represented by a random variable distributed with respect to a
Borel probability measure.

Vector and operator valued random wvariables

It is sometimes convenient to define random variables that take vector or
operator values, rather than real number values. Random variables of this
sort will always be specified explicitly in terms of ordinary random variables
(i.e., ones that take real values) in this book. For example, given random
variables X1,..., X, and Y7,...,Y,, for some choice of a positive integer n,
one may refer to the vector-valued random variables

(Xl, ... ,Xn) e R" and (X1 +iYq,..., X, + ZYn) e C". (1.255)

The default meaning of the term random wvariable should be understood as
referring to real-valued random variables, and the term vector-valued random
variable or operator-valued random wvariable will be used when referring to
random variables obtained in the manner just described.

Independent and identically distributed random variables

Two random variables X and Y are said to be independent if
Pr((X,Y) e Ax B) =Pr(X € A)Pr(Y € B) (1.256)

for every choice of Borel subsets A, B C R, and are said to be identically
distributed if

Pr(X € A) =Pr(Y € A) (1.257)

for every Borel subset A C R. In general, these conditions do not require
that X and Y are defined with respect to the same Borel measure. In both
cases, these notions may be extended to more than two random variables,
as well as to vector-valued random variables, in a straightforward way.

Suppose that A is a subset of a finite-dimensional real or complex vector
space, i : Borel(A) — [0,1] is a probability measure, and ¥ : A — R is a
random variable distributed with respect to u. For any choice of a positive
integer n, one may consider independent and identically distributed random
variables Xq,..., X, each being distributed in the same way as Y. For the
purposes of this book, one may assume without a loss of generality that this
means that X,..., X, are Borel functions, taking the form

X, A" >R (1.258)
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and being defined as
Xk(ul, ce ,un) = Y(uk) (1.259)

for each k and each (uq,...,u,) € A". Moreover, each X} is understood to
be distributed with respect to the n-fold product measure p x --- X g on
A™. In essence, this formal specification represents the simple and intuitive
notion that Xq,..., X, are uncorrelated copies of the random variable Y.

A few fundamental theorems

A few fundamental theorems concerning random variables will be used later
in this book. While these theorem do hold for more general notions of random
variables, the theorem statements that follow should be understood to apply
to random variables distributed with respect to Borel probability measures
(including random variables distributed with respect to probability vectors
of the form p € P(X) as a special case, as described above).

The first theorem to be stated in this subsection is Markov’s inequality,
which provides a sometimes coarse upper bound on the probability that a
nonnegative random variable exceeds a given threshold value.

Theorem 1.13 (Markov’s inequality) Let X be a random variable taking
nonnegative real values, and let € > 0 be a positive real number. It holds that

E(X)

Pr(X >¢) <
£

(1.260)

The next theorem, known as Jensen’s inequality, concerns the expected
value of a convex function applied to a random variable.

Theorem 1.14 (Jensen’s inequality) Suppose that X is a random variable
and f : R — R is a conver function. It holds that

FEX)) < E(f(X)). (1.261)

Two additional theorems—known as the weak law of large numbers and
Hoeffding’s inequality—provide bounds on the deviation of the average value
of a collection of independent and identically distributed random variables
from their mean value.

Theorem 1.15 (Weak law of large numbers) Let X be a random variable
and let « = E(X). Assume, moreover, for every positive integer n, that

X1,...,X, are independent random wvariables identically distributed to X.
For every positive real number € > 0, it holds that
X1+ + X,
lim Pr( (B e a‘ > 5) = 0. (1.262)
n—00 n
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Theorem 1.16 (Hoeffding’s inequality) Let Xi,..., X, be independent
and identically distributed random wvariables taking values in the interval
[0, 1] and having mean value . For every positive real number € > 0 it holds

that
Pr (

Gaussian measure and normally distributed random variables

X1+ 4 X,

- a) > g) < 2exp(—2ne?). (1.263)

The standard Gaussian measure on R is the Borel probability measure
v : Borel(R) — [0, 1] (1.264)

defined as

7(A) \/—/exp( )da (1.265)

for every A € Borel(R), where the integral is to be taken with respect to the
standard Borel measure on R. The fact that this is a well-defined measure
follows from the observation that the function
1 a? :
s=exp(—%) ifac A
o VR ( ) (1.266)
0 otherwise

is an integrable Borel function for every Borel subset A C R, and the fact
that it is a probability measure follows from the Gaussian integral

/exp(—%) do = V2. (1.267)

A random variable X is a standard normal random wvariable if it holds
that Pr(X € A) = v(A) for every A € Borel(R). This is equivalent to saying
that X is identically distributed to a random variable Y () = « distributed
with respect to the standard Gaussian measure v on R.

The following integrals are among many integrals of a similar sort that
are useful when reasoning about standard normal random variables:

1. For every positive real number A > 0 and every real number 5 € R it

holds that
/exp(—)\on + Ba) da = ,/W exp(ﬁz) (1.268)
A 4\ '
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2. For every positive integer n, it holds that

7 25T (2tl)
a"dy(a) = ——22, (1.269)
f |

where the I'-function may be defined at positive half-integer points as
follows:

. NZS ifm=20

m

F(T): 1 ifm =1 (1.270)
BED(F) ifm > 2.

3. For every positive real number A > 0 and every pair of real numbers
Bo, B1 € R with By < i it holds that

B1

1 1
/ozexp(—)\oz2) da = 3 exp(—A\G3) — 3 exp(—A57). (1.271)
Bo

This formula also holds for infinite values of 3y and (1, with the natural
interpretation exp(—oo) = 0.

For every positive integer n, the standard Gaussian measure on R" is the
Borel probability measure

Y : Borel(R™) — [0, 1] (1.272)

obtained by taking the n-fold product measure of v with itself. Equivalently,

vl A) = (27) 5 /exp<—““2”2> dv, (1), (1.273)
A

where v,, denotes the n-fold product measure of the standard Borel measure
v with itself and the norm is the Euclidean norm.

The standard Gaussian measure on R” is invariant under orthogonal
transformations (which include rotations):

M(UA) =1 (A) (1.274)

for every Borel set A C R™ and every orthogonal operator U € L(R"),
meaning one that satisfies UU™ = 1. Therefore, for independent standard
normal random variables X1, ..., X,,, one has that the vector valued random
variable (X1, ..., X,) is identically distributed to the vector-valued random
variable (Y1,...,Y,) obtained by defining
n
Vi, =Y Uk, j)X; (1.275)
j=1
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for each k € {1,...,n}, for U € L(R™) being any orthogonal operator. As a
consequence of this fact, one has that if the standard Gaussian measure is
projected onto a subspace, it is equivalent to the standard Gaussian measure
on that subspace.

Proposition 1.17 Let m and n be positive integers satisfying m < n and
let Ve L(R™,R") satisfy V'V = 1. For every Borel set A CR™, one has

Ym(A) =1 ({u e R™ : VTu e A}). (1.276)

It follows from this proposition that the standard Gaussian measure ~, (V)
of any proper subspace V of R" is zero.

Finally, for independent standard normal random variables Xi,..., X,
one may define a random variable

Y = /X2 4+ + X2, (1.277)

The distribution of Y is known as the x-distribution. The mean value of Y
has the following closed-form expression:

o (L
E(Y) = Ln?) (1.278)
L'(3)
From this expression, it may be proved that
E(Y) = v,v/n, (1.279)
where (v1,ve,...) is a strictly increasing sequence that begins
2 8
V1 = -, Vo = ﬁ, v3 = - NP (1.280)

m 2 3’
and converges to 1 in the limit as n goes to infinity.

1.2.3 Semidefinite programming

The paradigm of semidefinite programming finds numerous applications in
the theory of quantum information, both analytical and computational. This
section describes a formulation of semidefinite programming that is well-
suited to its (primarily analytical) applications found in this book.

Definitions associated with semidefinite programs

Let X and ) be complex Euclidean spaces, let ® € T(X,)) be a Hermitian-
preserving map, and let A € Herm(X) and B € Herm()) be Hermitian
operators. A semidefinite program is a triple (®, A, B), with which the
following pair of optimization problems is associated:
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Primal problem Dual problem
maximize: (A, X) minimize: (B,Y)
subject to: ®(X) = B, subject to:  ®*(Y) > A,
X € Pos(X). Y € Herm()).

With these problems in mind, one defines the primal feasible set A and the
dual feasible set B of (P, A, B) as follows:

A={X € Pos(X) : ®(X) = B},

B={Y € Herm(Y) : ®*(Y) > A}. (1.281)

Operators X € A and Y € B are also said to be primal feasible and dual
feasible, respectively.

The function X — (A, X), from Herm(X) to R, is the primal objective
function, while the function Y — (B,Y), from Herm()) to R, is the dual
objective function of (®, A, B). The optimum values associated with the
primal and dual problems are defined as

a=sup{(4,X): X €A} and S=inf{(B,Y):Y eB}, (1.282)

respectively. (If it is the case that A = @ or B = &, then one defines o = —o0
and 8 = oo, respectively.)

Semidefinite programming duality

Semidefinite programs have associated with them a notion of duality, which
refers to the special relationship between the primal and dual problems.

The property of weak duality, which holds for all semidefinite programs,
is that the primal optimum can never exceed the dual optimum. In more
succinct terms, it necessarily holds that o < . This implies that every dual
feasible operator Y € B provides an upper bound of (B,Y’) on the value
(A, X) that is achievable over all choices of a primal feasible X € A, and
likewise every primal feasible operator X € A provides a lower bound of
(A, X) on the value (B,Y’) that is achievable over all dual feasible operators
Y e B.

It is not always the case that the primal optimum and dual optimum of
a semidefinite program (®, A, B) agree, but for many semidefinite programs
that arise naturally in applications, the primal optimum and dual optimum
will be equal. This situation is called strong duality. The following theorem
provides one set of conditions under which strong duality is guaranteed.
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Theorem 1.18 (Slater’s theorem for semidefinite programs) Let X' and )
be complexr Fuclidean spaces, let ® € T(X,)) be a Hermitian-preserving
map, and let A € Herm(X) and B € Herm(Y) be Hermitian operators.
Letting A, B, o, and (8 be as defined above for the semidefinite program
(®, A, B), one has the following two implications:

1. If « is finite and there exists a Hermitian operator Y € Herm()) such
that ®*(Y') > A, then a = 3, and moreover there exists a primal-feasible
operator X € A such that (A, X) = a.

2. If B is finite and there exists a positive definite operator X € Pd(X) such
that ®(X) = B, then o = 3, and moreover there exists a dual-feasible
operator Y € B such that (B,Y) = .

In the situation that the optimum primal and dual values are equal, and
are both achieved for some choice of feasible operators, a simple relationship
between these operators, known as complementary slackness, must hold.

Proposition 1.19 (Complementary slackness for semidefinite programs)
Let X and ) be complex Euclidean spaces, let & € T(X,)Y) be a Hermitian-
preserving map, and let A € Herm(X) and B € Herm(Y) be Hermitian
operators. Let A and B be the primal-feasible and dual-feasible sets associated
with the semidefinite program (®, A, B), and suppose that X € A andY € B
are operators satisfying (A, X) = (B,Y). It holds that

O*(Y)X = AX. (1.283)

Simplified forms and alternative expressions of semidefinite programs

Semidefinite programs are typically presented in a way that is somewhat
less formal than a precise specification of a triple (®, A, B), for ® € T(X,))
being a Hermitian-preserving map and A € Herm(X) and B € Herm())
being Hermitian operators. Rather, the primal and dual problems are stated
directly, often in a simplified form, and it is sometimes left to the reader
to formulate a triple (®, A, B) that corresponds to the simplified problem
statements.

Two examples of semidefinite programs follow, in both cases including
their formal specifications and simplified forms.

Example 1.20 (Semidefinite program for the trace norm) Let X and )
be complex Euclidean spaces and let K € L(X,)) be any operator. Define
a Hermitian-preserving map ® € T(X @ )) as

X - X 0
<1><_ Y):<O Y) (1.284)
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for all X € L(X) and Y € L(Y), where the dots represent elements of
L(X,Y) and L(Y,X) that are effectively zeroed out by ®. The map P is
self-adjoint: ®* = ®. Also define A, B € Herm(X @ )) as

1({0 K (1x 0
A—2<K 0) and B_<O ]ly)' (1.285)

The primal and dual problems associated with the semidefinite program
(®, A, B) may, after some simplifications, be expressed as follows:

Primal problem Dual problem
1 1 1 1
maximize: §<K, Z) + §<K*, Z*)  minimize: 3 Tr(X) + 5 Tr(Y)
_ 1y Z* , X -=-Kr
: > : >
subject to (Z ]ly) >0, subject to (—K v ) > 0,
Z e L(X,)). X € Pos(X),
Y € Pos(Y).

The primal and dual optima are equal for all choices of K, and given by
| K||1. (Given a singular value decomposition of K, one can construct both
a primal feasible and dual feasible solution achieving this value.)

A standard way of expressing this semidefinite program would be to list
only the simplified primal and dual problems given above, letting the triple
(®, A, B) be specified implicitly.

Example 1.21 (Semidefinite programs with inequality constraints) Let X,
Y, and Z be complex Euclidean spaces, let & € T(X,)) and ¥ € T(X, Z)
be Hermitian-preserving maps, and let A € Herm(X'), B € Herm()), and
C € Herm(Z) be Hermitian operators. Define a map

EcT(XDZ,YV02) (1.286)

_(x -\ _ [oXx) 0
() ) o

for all X € L(X) and Z € L(Z). (Similar to the previous example, the dots
in the argument to = represent arbitrary elements of L(&X', Z) and L(Z, X)
upon which = does not depend.) The adjoint map

as

EeT(V@ Z,X@ Z) (1.288)
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(Y -\ () +¥(2) 0
(" )-(FMTD Y.

The primal and dual problems of the semidefinite program specified by
the map =, together with the Hermitian operators

to = is given by

A0 B 0
(0 0>€Herm(X€BZ) and (0 C)GHerm(yGBZ), (1.290)

may be expressed in the following simplified form:

Primal problem Dual problem
maximize: (A, X) minimize: (B,Y) + (C, Z)
subject to: ®(X) = B, subject to: @*(Y) + U*(Z) > A,

U(X)<C, Y € Herm()),
X € Pos(X). Z € Pos(Z).

It is sometimes convenient to consider semidefinite programming problems
of this form, that include both equality and inequality constraints in the
primal problem, as opposed to just equality constraints.

1.3 Suggested references

Several textbooks cover the material on linear algebra summarized in this
chapter; the classic books of Halmos (1978) and Hoffman and Kunze (1971)
are two examples. Readers interested in a more modern development of
linear algebra for finite dimensional spaces are referred to the book of Axler
(1997). The books of Horn and Johnson (1985) and Bhatia (1997) also cover
much of the material on linear algebra that has been summarized in this
chapter (and a great deal more, including relevant theorems to be proved
in subsequent chapters of this book), with a focus on the matrix-theoretic
aspects of the subject.

There are also many textbooks on mathematical analysis, including the
classic texts of Rudin (1964) and Apostol (1974), as well as the books of
Bartle (1966) and Halmos (1974) that focus on measure theory. The book of
Rockafellar (1970) is a standard reference on convex analysis, and the two
volume collection of Feller (1968, 1971) is a standard reference on probability
theory. Semidefinite programming is discussed by Wolkowicz, Saigal, and
Vandenberge (2000).
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Basic notions of quantum information

This chapter introduces the most basic objects and notions of quantum
information theory, including registers, states, channels, and measurements,
and investigates some of their elementary properties.

2.1 Registers and states

This first section of the chapter concerns registers and states. A register is
an abstraction of a physical device in which quantum information may be
stored, and the state of a register represents a description of its contents at
a particular instant.

2.1.1 Registers and classical state sets

The term register is intended to be suggestive of a computer component in
which some finite amount of data can be stored and manipulated. While this
is a reasonable picture to keep in mind, it should be understood that any
physical system in which a finite amount of data may be stored, and whose
state may change over time, could be modeled as a register. For example,
a register could represent a medium used to transmit information from a
sender to a receiver. At an intuitive level, what is most important is that
registers represent mathematical abstractions of physical objects, or parts
of physical objects, that store information.

Definition of registers
The following formal definition of a register is intended to capture a basic
but nevertheless important idea, which is that multiple registers may be
viewed collectively as forming a single register. It is natural to choose an
inductive definition for this reason.
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X

RN

RN

Yo [{1,2,3,4} » NI

SN
{0,1} {0,1} {0,1}
Zl 22 Zg

Figure 2.1 The tree associated with the registers described in Example 2.2.

Definition 2.1 A register X is either one of the following two objects:

1. An alphabet X.
2. An n-tuple X = (Yq,...,Y,), where n is a positive integer and Y1, ...,Y,
are registers.

Registers of the first type are called simple registers and registers of the
second type are called compound registers when it is helpful to distinguish
them.

In the case of a simple register X = X, the alphabet Y represents the
set of classical states that the register may store. The classical state set
associated with a compound register will be specified shortly. As is suggested
by the definition, registers will be denoted by capital letters in a sans serif
font, such as X, Y, and Z. Sometimes registers will be subscripted, such as
Xi,...,X,, when it is necessary to refer to a variable number of registers or
convenient to name them in this way for some other reason.

Based on Definition 2.1, one may naturally identify a tree structure with
a given register, with each leaf node corresponding to a simple register. A
register Y is said to be a subregister of X if the tree associated with Y is a
subtree of the tree associated with X.

Example 2.2 Define registers X, Y, Y1, Z1, Zo2, and Z3, as follows:

X = (Y07Y1)7 Yo = {1727374}7 Z; = {07 1}7
Yl — (21722723)7 ZQ — {07 1}7 (2]‘)
Z; = {0,1}.

The tree associated with the register X is illustrated in Figure 2.1. The
subregisters of X include Yq, Y1, Z1, Za, Z3, and (trivially) X itself.
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The classical state set of a register

Every register has associated with it a classical state set, as specified by the
following definition.

Definition 2.3 The classical state set of a register X is determined as
follows:

1. If X = X is a simple register, the classical state set of X is X..
2. If X=(Yy,...,Yy) is a compound register, the classical state set of X is
the Cartesian product

Y=Tyx--xT}y, (2.2)

where I'y, denotes the classical state set associated with the register Yy
for each k € {1,...,n}.

Elements of a register’s classical state set are called classical states of that
register.

The term classical state is intended to be suggestive of the classical notion
of a state in computer science. Intuitively speaking, a classical state of a
register can be recognized unambiguously, like the values 0 and 1 stored
by a single bit memory component. The term classical state should not be
confused with the term state, which by default will mean quantum state
rather than classical state throughout this book.

A register is said to be trivial if its classical state set contains just a single
element. While trivial registers are useless from the viewpoint of information
processing, it is mathematically convenient to allow for this possibility. The
reader will note, however, that registers with empty classical state sets are
disallowed by the definition. This is consistent with the idea that registers
represent physical systems; while it is possible that a physical system could
have just one possible classical state, it is nonsensical for a system to have
no states whatsoever.

Reductions of classical states

There is a straightforward way in which each classical state of a register
uniquely determines a classical state for each of its subregisters. To be more
precise, suppose that

X=1,...,Yn) (2.3)
is a compound register. Let I';,...,I',, denote the classical state sets of the
registers Yq,...,Y,, respectively, so that the classical state set of X is equal

to X =T x--- xI';,. A given classical state a = (b1,...,b,) of X then
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determines that the classical state of Yy, is by € I'y, for each k € {1,...,n}.
By applying this definition recursively, one defines a unique classical state
of each subregister of X.

Conversely, the classical state of any register is uniquely determined by
the classical states of its simple subregisters. Every classical state of a given
register X therefore uniquely determines a classical state of any register
whose simple subregisters form a subset of those of X. For instance, if X
takes the form (2.3), then one may wish to consider a new register

Z=p, . Ye,) (2.4)

for some choice of indices 1 < k; < -+ < kyp, < n. If a = (by,...,b,) is the
classical state of X at a particular moment, then the corresponding state of

Zis (bkl,. . .,bkm).

2.1.2 Quantum states of registers

Quantum states, as they will be presented in this book, may be viewed as
being analogous to probabilistic states, with which the reader is assumed to
have some familiarity.

Probabilistic states of registers

A probabilistic state of a register X refers to a probability distribution, or
random mixture, over the classical states of that register. Assuming the
classical state set of X is X, a probabilistic state of X is identified with
a probability vector p € P(X); the value p(a) represents the probability
associated with a given classical state a € X. It is typical that one views a
probabilistic state as being a mathematical representation of the contents
of a register, or of a hypothetical individual’s knowledge of the contents of
a register, at a particular moment.

The difference between probabilistic states and quantum states is that,
whereas probabilistic states are represented by probability vectors, quantum
states are represented by density operators (q.v. Section 1.1.2). Unlike the
notion of a probabilistic state, which has a relatively clear and intuitive
meaning, the notion of a quantum state can seem non-intuitive. While it
is both natural and interesting to seek an understanding of why Nature
appears to be well-modeled by quantum states in certain regimes, this book
will not attempt to provide such an understanding: quantum states will be
considered as mathematical objects and nothing more.
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The complex Fuclidean space associated with a register

It is helpful to introduce the following terminology to discuss quantum states
in mathematical terms.

Definition 2.4 The complex Euclidean space associated with a register X
is defined to be C*, for ¥ being the classical state set of X.

The complex Euclidean space associated with a given register will be
denoted by the same letter as the register itself, but with a scripted font
rather than a sans serif font. For example, the complex Euclidean space
associated with a register X will be denoted X, and the spaces associated
with registers Yq,...,Y, will be denoted Yi,..., V..

The reader will note that the complex Euclidean space X associated with
a compound register X = (Y1,...,Y,) is given by the tensor product

X=V1® @V (2.5)

This fact follows directly from the definition stating that the classical state
set of X is given by ¥ = 1"} x - - - xI',,, assuming that the classical state sets of
Yi,...,Y,areI'y,..., I'y, respectively; one has that the complex Euclidean
space associated with X is

X=C*=Ccl>x'n =y .- @Y, (2.6)

for Y =C, ..., Y, =Cl.

Definition of quantum states

As stated above, quantum states are represented by density operators. The
following definition makes this precise.

Definition 2.5 A quantum state is a density operator of the form p € D(X)
for some choice of a complex Euclidean space X.

When one refers to a quantum state of a register X, it is to be understood
that the state in question takes the form p € D(X') for & being the complex
Euclidean space associated with X. It is common that the term state is used
in place of quantum state in the setting of quantum information, because
it is the default assumption that one is primarily concerned with quantum
states (as opposed to classical states and probabilistic states) in this setting.
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Convex combinations of quantum states

For every complex Euclidean space X, the set D(X) is a convex set. For any
choice of an alphabet I', a collection

{pa : a €T} C D(X) (2.7)

of quantum states, and a probability vector p € P(I'), it therefore holds that
the convex combination
p=">_ pla)pa (2.8)
a€el

is an element of D(X). The state p defined by the equation (2.8) is said to be
a mizture of the states {p, : a € I'} according to the probability vector p.

Suppose that X is a register whose associated complex Euclidean space
is X. It is taken as an axiom that a random selection of a € I" according to
the probability vector p, followed by a preparation of X in the state p,, results
in X being in the state p defined in (2.8). More succinctly, random selections
of quantum states are assumed to be represented by convex combinations of
density operators.

Ensembles of quantum states

The notion of a probability distribution over a finite set of quantum states
arises frequently in the theory of quantum information. A distribution of
the form described above may be succinctly represented by a function

n:I' — Pos(X) (2.9)

satisfying the constraint

Tr(Zn(a)) =1. (2.10)
acl

A function 7 of this sort is called an ensemble of states. The interpretation
of an ensemble of states n : I' — Pos(X) is that, for each element a € T,
the operator n(a) represents a state together with the probability associated
with that state: the probability is Tr(n(a)), while the state is

_ n(a)
e~ Te(n(a))

(The operator p, is, of course, determined only when 7n(a) # 0. In the case
that n(a) = 0 for some choice of a, one does not generally need to specify a
specific density operator p,, as it corresponds to a discrete event that occurs
with probability zero.)

(2.11)
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Pure states

A quantum state p € D(X) is said to be a pure state if it has rank equal
to 1. Equivalently, p is a pure state if there exists a unit vector u € X’ such
that

p = uu®. (2.12)

It follows from the spectral theorem (Corollary 1.4) that every quantum state
is a mixture of pure quantum states, and moreover that a state p € D(X) is
pure if and only if it is an extreme point of the set D(X).

It is common that one refers to the pure state (2.12) simply as u, rather
than wu*. There is an ambiguity that arises in following this convention: if
one considers two unit vectors u and v = au, for any choice of a € C with
|a] =1, then their corresponding pure states uu* and vv* are equal, as

w* = |affun = uu®. (2.13)

Fortunately, this convention does not generally cause confusion; it must
simply be kept in mind that every pure state corresponds to an equivalence
class of unit vectors, where u and v are equivalent if and only if v = au for
some choice of o € C with |a| = 1, and that any particular unit vector may
be viewed as being a representative of a pure state from this equivalence
class.

Flat states
A quantum state p € D(X) is said to be a flat state if it holds that

I
~ Tr(ID)

p (2.14)

for a nonzero projection operator Il € Proj(X'). The symbol w will often be
used to denote a flat state, and the notation

- Tr(Ily)

Wy (2.15)
is sometimes used to denote the flat state proportional to the projection IIy
onto a nonzero subspace V C X. Specific examples of flat states include pure
states, which correspond to the case that II is a rank-one projection, and
the completely mixed state

— ]]'X

~ dim(X)’

Intuitively speaking, the completely mixed state represents the state of

w (2.16)

complete ignorance, analogous to a uniform probabilistic state.
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Classical states and probabilistic states as quantum states

Suppose X is a register and X is the classical state set of X, so that the
complex Euclidean space associated with X is X = C*. Within the set D(X)
of states of X, one may represent the possible classical states of X in the
following simple way: the operator E, , € D(X) is taken as a representation
of the register X being in the classical state a, for each a € ¥. Through this
association, probabilistic states of registers correspond to diagonal density
operators, with each probabilistic state p € P(X) being represented by the
density operator

Z p(a)E,,q = Diag(p). (2.17)

acX
In this way, the set of probabilistic states of a given register form a subset
of the set of all quantum states of that register (with the containment being
proper unless the register is trivial).!

Within some contexts, it may be necessary or appropriate to specify that
one or more registers are classical registers. Informally speaking, a classical
register is one whose states are restricted to being diagonal density operators,
corresponding to a classical (probabilistic) states as just described. A more
formal and precise meaning of this terminology must be postponed until the
section on quantum channels following this one.

Product states

Suppose X = (Y1,...,Y,) is a compound register. A state p € D(X) is said
to be a product state of X if it takes the form

pP=01Q Qo (2.18)

for o1 € D(Q4), ..., o € D(Y),) being states of Yq,...,Y,, respectively.
Product states represent independence among the states of registers, and
when the compound register X = (Yq,...,Y,,) is in a product state p of the
form (2.18), the registers Yq,...,Y, are said to be independent. When it is
not the case that Yq,...,Y,, are independent, they are said to be correlated.

Example 2.6 Consider a compound register of the form X = (Y, Z), for Y

and Z being registers sharing the classical state set {0,1}. (Registers having

the classical state set {0,1} are typically called qubits, which is short for

quantum bits.)

I The other basic notions of quantum information to be discussed in this chapter have a similar
character of admitting analogous probabilistic notions as special cases. In general, the theory

of quantum information may be seen as an extension of classical information theory, including
the study of random processes, protocols, and computations.
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The state p € D()Y ® Z) defined as

p= %Eo,o ® Eo,0 + %Eo,o ® Ei1+ %El,l ® Eo,0 + iEl,l ®E1n o (2.19)
is an example of a product state, as one may write
p= (%Eo,o + %Em) ® (% 0,0 + %El,l)- (2.20)
Equivalently, in matrix form, one has
i ? 0o 1 1
p= 8 (7*) g 8 :<g g>®<g (%)) (2.21)
00 0 3
The states 0,7 € D()Y ® Z) defined as
o= L E0o® Eoo+ 11 ® Euy (2.22)

2 2
and
1 1 1 1
T = éEo,o ® Fo,0 + S ko ® Fo,1 + §E1,0 ® Ei o+ §E1,1 ®@FE11  (2.23)

are examples of states that are not product states, as they cannot be written
as tensor products, and therefore represent correlations between the registers
Y and Z. In matrix form, these states are as follows:

1 1 1
2000 200 3
0000 0000

=100 0 0 and ™10 0 0 0 (2.24)
000 3 00 3

The states p and o are diagonal, so they correspond to probabilistic states;
p represents the situation in which Y and Z store independent random bits,
while o represents the situation in which Y and Z store perfectly correlated
random bits. The state 7 does not represent a probabilistic state, and more
specifically is an example of an entangled state. Entanglement is a particular
type of correlation having great significance in quantum information theory,
and is the primary focus of Chapter 6.

Bases of density operators

It is an elementary fact, but nevertheless a useful one, that for every complex
Euclidean space X there exist spanning sets of the space L(X) consisting
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only of density operators. One implication of this fact is that every linear
mapping of the form

¢:L(X)—=C (2.25)

is uniquely determined by its action on the elements of D(X’). This implies,
for instance, that channels and measurements are uniquely determined by
their actions on density operators. The following example describes one way
of constructing such a spanning set.

Example 2.7 Let X be an alphabet, and assume that a total ordering has
been defined on X. For every pair (a,b) € ¥ x X, define a density operator
Pap € D(CF) as follows:

Ea’a 1f a = b
Pap = 5(ea+en)(eat+ep)* ifa<b (2.26)
%(ea +iep)(eq +iep)* if a > 0.

For each pair (a,b) € ¥ x ¥ with a < b, one has

1 1 ) 1 1
Pab — =Pa Pop | — i\ Poa — ZPaa — =Pbb | = Eap,

i ™ 9 2 2
(2.27)
1 1 , 1 1
Pab = 5Paa = 5Pbb + | Poa — gPaa = 5Pbb | = Ep q,
and from these equations it follows that
span{p.p : (a,b) € ¥ x X} = L(C>). (2.28)

2.1.3 Reductions and purifications of quantum states

One may consider a register obtained by removing one or more subregisters
from a given compound register. The quantum state of any register that
results from this process, viewed in isolation from the subregisters that
were removed, is uniquely determined by the state of the original compound
register. This section explains how such states are determined. The special
case in which the original compound register is in a pure state is particularly
important, and is discussed in detail.

The partial trace and reductions of quantum states

Let X = (Y1,...,Y,) be a compound register, for n > 2. For any choice of
k € {1,...,n}, one may form a new register

Y1y oo Yae1s Yists o+ Ya) (2.29)
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by removing the register Y, from X and leaving the remaining registers
untouched. For every state p € D(X) of X, the state of the register (2.29)
that is determined by this process is called the reduction of p to the register
(2.29), and is denoted p[Y1,...,Yr_1, Ygi1,..., Yy]. This state is defined as

p[Yl, e ,Yk_l, Yk+17 oo ,Yn] = Tryk (p), (230)

where

Try, ETN Q@ @V, 1 ®  @Vk-1Q@ Vi1 ® - @ V) (2.31)

denotes the partial trace mapping (q.v. Section 1.1.2).2 This is the unique
linear mapping that satisfies the equation

Tryk (Yl R X Yn) = TI‘(Yk) Y1 - Y1 ® Yk+1 KR RY, (2.32)
for all operators Y1 € L(Q4),...,Y, € L(),). Alternately, one may define
Tryk = ]lL(yl) Q- ® ]]-L()ik_l) ® Tr & ]lL(yk_H) Q- ® ]]‘L(yn)7 (233)

where it is to be understood that the trace mapping on the right-hand side
of this equation acts on L(%).

If the classical state sets of Yq,...,Y, are I'1,...,I',, respectively, one
may write the ((a1,...,ak-1, 041, an), (b1, ,bk_1,bg11,...,by)) entry
of the state p[Y1,...,Yg_1, Ygi1, ..., Yn] explicitly as

Z p((at, ...y Qk—1,C Qks1s- - an), (b1, ..o bp—1,¢bp41,...,0n)) (2.34)
cel'y

for each choice of a;j,b; € I'; and j ranging over the set {1,...,n}\{k}.

Example 2.8 Let Y and Z be registers, both having the classical state
set 3, let X =(Y,Z), and let u € X =Y ® Z be defined as

Z eq ® €q, (2.35)

aEZ
so that
Z E,, ®F (2.36)
a,bes
It holds that
(uu®)[Y] = ; E,p = é]ly. (2.37)

2 It should be noted that reductions of states are determined in this way, by means of the
partial trace, by necessity—mno other choice is consistent with the basic notions concerning
channels and measurements to be discussed in the sections following this one.
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The state uu* is the canonical example of a maximally entangled state of
two registers sharing the classical state set X.

By applying this definition iteratively, one finds that each state p of the

register (Y1,...,Y,) uniquely determines the state of
(Yeys ooy Yk, )s (2.38)
for k1, ...,k being any choice of indices satisfying 1 < k; < --- < k;, < n.

The state determined by this process is denoted p[Yg,,..., Yk, | and again
is called the reduction of p to (Yi,,..., Yk, )-

The definition above may be generalized in a natural way so that it allows
one to specify the states that result from removing an arbitrary collection
of subregisters from a given compound register, assuming that this removal
results in a valid register. For the registers described in Example 2.2, for
instance, removing the subregister Z3 from X while it is in the state p would
leave the resulting register in the state

(Teiyy ® (Iozy) ® Lz, @ Tr))(p), (2.39)

with the understanding that the trace mapping is defined with respect to
Z3. The pattern represented by this example, in which identity mappings
and trace mappings are tensored in accordance with the structure of the
register under consideration, is generalized in the most straightforward way
to other examples. While it is possible to formalize this definition in complete
generality, there is little point in doing so for the purposes of this book: all of
the instances of state reductions to be encountered are either cases where the
reductions take the form p[Yg,,..., Yk, |, as discussed above, or are easily
specified explicitly as in the case of the example (2.39) just mentioned.

Purifications of states and operators

In a variety of situations that arise in quantum information theory, wherein
a given register X is being considered, it is useful to assume (or simply to
imagine) that X is a subregister of a compound register (X,Y), and to view
a given state p € D(X) of X as having been obtained as a reduction

p=oc[X] =Try(o) (2.40)

of some state o of (X,Y). Such a state o is called an extension of p. It is
particularly useful to consider the case in which o is a pure state, and to ask
what the possible states of X are that can arise from a pure state of (X,Y)
in this way. This question has a simple answer to be justified shortly: a state
p € D(X) of X can arise in this way if and only if the rank of p does not
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exceed the number of classical states of the register Y removed from (X,Y)
to obtain X.

The following definition is representative of the situation just described.
The notion of a purification that it defines is used extensively throughout
the remainder of the book.

Definition 2.9 Let X and ) be complex Euclidean spaces, let P € Pos(X)
be a positive semidefinite operator, and let u € X®) be a vector. The vector
u is said to be a purification of P if

Try (uu*) = P. (2.41)

This definition deviates slightly from the setting described above in two
respects. One is that P is not required to have unit trace, and the other is
that the vector u is taken to be the object that purifies P rather than the
operator uu*. Allowing P to be an arbitrary positive semidefinite operator
is a useful generalization that will cause no difficulties in developing the
concept of a purification (and the term eztension is generalized in a similar
way ), while referring to u rather than uu* as the purification of P is simply
a matter of convenience based on the specific ways that the notion is most
typically used—it is also common that the operator uu* is the object referred
to as a purification.

It is straightforward to generalize the notion of a purification. One may, for
instance, consider the situation in which X is a register that is obtained by
removing one or more subregisters from an arbitrary compound register Z.
A purification of a given state p € D(X) in this context would refer to any
pure state of Z whose reduction to X is equal to p. The most interesting
aspects of purifications are, however, represented by Definition 2.9, so the
remainder of the section focuses on this specific definition of purifications for
simplicity. It is to be understood, however, that the various facts concerning
purifications discussed extend easily and directly to a more general notion
of a purification.

Conditions for the existence of purifications

The vec mapping, defined in Section 1.1.2, is useful for understanding
purifications. Given that this mapping is a linear bijection from L(Y, X)
to X ® Y, every vector u € X ® ) may be written as u = vec(A) for some
choice of an operator A € L(), X). By the identity (1.133), it holds that

Try (uu™) = Try(vec(A) vec(A)*) = AA". (2.42)
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This establishes an equivalence between the following statements, for a given
choice of P € Pos(X):

1. There exists a purification u € X ® ) of P.
2. There exists an operator A € L(), X') such that P = AA*.

The next theorem, whose proof is based on this observation, justifies the
answer given above to the question on necessary and sufficient conditions
for the existence of a purification of a given operator.

Theorem 2.10 Let X and Y be compler Fuclidean spaces, and let
P € Pos(X) be a positive semidefinite operator. There exists a vector
u € X ®Y such that Try(uu*) = P if and only if dim(Y) > rank(P).

Proof As observed above, the existence of a vector u € X ® ) for which
Try(uu*) = P is equivalent to the existence of an operator A € L(), X)
satisfying P = AA*. Under the assumption that such an operator A exists,
it must hold that rank(P) = rank(A), and therefore dim()) > rank(P).

Conversely, under the assumption dim())) > rank(P), one may prove the
existence of an operator A € L(), X) satisfying P = AA* as follows. Let
r = rank(P) and use the spectral theorem (Corollary 1.4) to write

.
P =Y M\(P)apz; (2.43)

k=1
for {z1,...,2,} C X being an orthonormal set. For an arbitrary choice of
an orthonormal set {y1,...,y,} C ), which must exist by the assumption

dim()) > rank(P), the operator

A= 3 (P (2.40)
k=1

satisfies AA* = P. O

Corollary 2.11 Let X and Y be complex Fuclidean spaces satisfying
dim()) > dim(X). For every positive semidefinite operator P € Pos(X),
there exists a vector u € X @ Y such that Try(uu*) = P.

Unitary equivalence of purifications

Having established a simple condition under which a purification of a given
positive semidefinite operator exists, it is natural to consider the possible
relationships among different purifications of a given operator. The following
theorem establishes a useful relationship between purifications that must
always hold.
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Theorem 2.12 (Unitary equivalence of purifications) Let X and ) be
complex Euclidean spaces, let u,v € X ® Y be vectors, and assume that

Try (uvu®) = Try(vo®). (2.45)
There exists a unitary operator U € U(Y) such that v= (1xy @ U)u.

Proof Let A,B € L(),X) be the unique operators satisfying u = vec(A)
and v = vec(B), and let P € Pos(X) satisfy

Try(uu*) = P = Try(vv™). (2.46)

It therefore holds that AA* = P = BB*. Letting r = rank(P), it follows
that rank(A) = r = rank(B).

Next, let x1,...,x, € X be any orthonormal sequence of eigenvectors of
P with corresponding eigenvalues A1 (P),...,\.(P). As AA* = P = BB*, it
is possible to select singular value decompositions

A= Z \/Ae(P)xry, and B = Z \/ Ak (P)zpwy, (2.47)
k=1 k=1

of A and B, for some choice of orthonormal collections {yi,...,y.} and
{wi,...,w,} of vectors in Y (as discussed in Section 1.1.3).

Finally, let V' € U()) be any unitary operator satisfying Vwy = y; for
every k € {1,...,r}. It follows that AV = B, and by taking U = V' one
has

Iy @U)u= 1y @ VT)vec(A) = vec(AV) = vec(B) = v, (2.48)

as required. ]

2.2 Quantum channels

Quantum channels represent discrete changes in states of registers that are
to be considered physically realizable (in an idealized sense). For example,
the steps of a quantum computation, or any other processing of quantum
information, as well as the effects of errors and noise on quantum registers,
are modeled as quantum channels.

2.2.1 Definitions and basic notions concerning channels

In mathematical terms, a quantum channel is a linear map, from one space
of square operators to another, that satisfies the two conditions of complete
positivity and trace preservation.
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Definition 2.13 A quantum channel (or simply a channel, for short) is a
linear map

®: L(X) = L(Y) (2.49)

(i.e., an element ¢ € T(X,))), for some choice of complex Euclidean spaces
X and Y, satisfying two properties:

1. @ is completely positive.
2. @ is trace preserving.

The collection of all channels of the form (2.49) is denoted C(X,)), and one
writes C(&X') as a shorthand for C(X, X).

For a given choice of registers X and Y, one may view that a channel of
the form ® € C(X,)) is a transformation from X into Y. That is, when such
a transformation takes place, it is to be viewed that the register X ceases to
exist, with Y being formed in its place. Moreover, the state of Y is obtained
by applying the map ® to the state p € D(X) of X, yielding ®(p) € D(}).
When it is the case that X =Y, one may simply view that the state of the
register X has been changed according to the mapping ®.

Example 2.14 Let X be a complex Euclidean space and let U € U(X) be
a unitary operator. The map ® € C(X) defined by

®(X)=UXU* (2.50)

for every X € L(X) is an example of a channel. Channels of this form
are called unitary channels. The identity channel 1y, is one example of
a unitary channel, obtained by setting U = 1y. Intuitively speaking, this
channel represents an ideal quantum communication channel or a perfect
component in a quantum computer memory, which causes no change in the
state of the register X it acts upon.

Example 2.15 Let X and )Y be complex Euclidean spaces, and let
o € D()) be a density operator. The mapping ® € C(X,)) defined by

B(X) = Tr(X)o, (2.51)

for every X € L(X), is a channel. It holds that ®(p) = o for every p € D(X);
in effect, the channel ® represents the action of discarding the register X,
and replacing it with the register Y initialized to the state . Channels of
this form will be called replacement channels.
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The channels described in the two previous examples (along with other
examples of channels) will be discussed in greater detail in Section 2.2.3.
While one may prove directly that these mappings are indeed channels, these
facts will follow immediately from more general results to be presented in
Section 2.2.2.

Product channels

Suppose Xi,...,X, and Yq,...,Y,, are registers, and recall that one denotes
by Xi,..., &, and Y, ..., Y, the complex Euclidean spaces associated with
these registers. A channel

PeCX @ X, @ Vy) (2.52)
transforming (Xi,...,X,) into (Y1,...,Y,) is called a product channel if
=9 Q- --Q¥, (2.53)

for some choice of channels ¥; € C(&1,)1), ..., ¥, € C(X,, Vy). Product
channels represent an independent application of a sequence of channels
to a sequence of registers, in a similar way to product states representing
independence among the states of registers.

An important special case involving independent channels is the situation
in which a given channel is performed on one register, while nothing at all
is done to one or more other registers under consideration. (As suggested in
Example 2.14, the act of doing nothing at all to a register is equivalent to
performing the identity channel on that register.)

Example 2.16 Suppose that X, Y, and Z are registers, and ® € C(X,))
is a channel that transforms X into Y. Also suppose that the compound
register (X, Z) is in some particular state p € D(X ® Z) at some instant, and
the channel ® is applied to X, transforming it into Y. The resulting state of
the pair (Y,Z) is then given by

(P®@1Lz)(p) e DY@ Z), (2.54)

as one views that the identity channel 1 ;) has independently been applied
to the register Z.

Example 2.16 illustrates the importance of the requirement that channels
are complete positive. That is, it must hold that (® ® 1z))(p) is a density
operator for every choice of Z and every density operator p € D(X ® Z),
which together with the linearity of ® implies that ® is completely positive
(in addition to being trace preserving).
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State preparations as quantum channels

As stated in Section 2.1.1, a register is trivial if its classical state set consists
of a single element. The complex Euclidean space associated with a trivial
register is therefore one-dimensional: it must take the form C{ for {a}
being the singleton classical state set of the register. No generality is lost in
associating such a space with the field of complex numbers C, and in making
the identification L(C) = C, one finds that the scalar 1 is the only possible
state for a trivial register. As is to be expected, such a register is therefore
completely useless from an information-processing viewpoint; the presence
of a trivial register does nothing more than to tensor the scalar 1 to the
state of any other registers under consideration.

It is instructive nevertheless to consider the properties of channels that
involve trivial registers. Suppose, in particular, that X is a trivial register
and Y is arbitrary, and consider a channel of the form ® € C(X,)) that
transforms X into Y. It must hold that & is given by

d(a) = ap (2.55)

for all @ € C, for some choice of p € D()), as ® must be linear and it
must hold that ®(1) is positive semidefinite and has trace equal to one. The
channel ® defined by (2.55) may be viewed as the preparation of the quantum
state p in a new register Y. The trivial register X can be considered as being
essentially a placeholder for this preparation, which is to occur at whatever
moment the channel ® is performed. In this way, a state preparation may
be seen as the application of this form of channel.

To see that every mapping of the form (2.55) is indeed a channel, for an
arbitrary choice of a density operator p € D()), one may check that the
conditions of complete positivity and trace preservation hold. The mapping
® given by (2.55) is obviously trace preserving whenever Tr(p) = 1, and the
complete positivity of ® is implied by the following simple proposition.

Proposition 2.17 Let Y be a complex Euclidean space and let P € Pos())
be a positive semidefinite operator. The mapping ® € T(C,)) defined as
®(a) = aP for all o € C is completely positive.

Proof Let Z be any complex Euclidean space. The action of the mapping
¢ ® 1z on an operator Z € L(Z) = L(C ® Z) is given by

(@@ 1y2)(Z2)=P® Z (2.56)

If Z is positive semidefinite, then P ® Z is positive semidefinite as well, and
therefore ® is completely positive. U



76 Basic notions of quantum information

The trace mapping as a channel

Another situation in which a channel ® involves a trivial register is when
this channel transforms an arbitrary register X into a trivial register Y. By
identifying the complex Euclidean space Y with the complex numbers C as
before, one has that the channel ® must take the form ® € C(X,C).

The only mapping of this form that can possibly preserve trace is the
trace mapping itself, and so it must hold that

B(X) = Tr(X) (2.57)

for all X € L(X). To say that a register X has been transformed into a trivial
register Y is tantamount to saying that X has been destroyed, discarded, or
simply ignored. This channel was, in effect, introduced in Section 2.1.3 when
reductions of quantum states were defined.

In order to conclude that the trace mapping is indeed a valid channel, it
is necessary to verify that it is completely positive. One way to prove this
simple fact is to combine the following proposition with Proposition 2.17.

Proposition 2.18 Let ® € T(X,)) be a positive map, for X and ) being
complexr Euclidean spaces. It holds that ®* is positive.

Proof By the positivity of @, it holds that ®(P) € Pos()’) for every positive
semidefinite operator P € Pos(X'), which is equivalent to the condition that

(@, ®(P)) =0 (2.58)
for all P € Pos(X) and @ € Pos()). It follows that

(2"(Q), P) =(Q,2(P)) = 0 (2.59)
for all P € Pos(X) and @ € Pos()), which is equivalent to ®*(Q) € Pos(X)
for every @ € Pos()). The mapping ®* is therefore positive. 1

Remark Proposition 2.18 implies that if & € CP(X,)) is a completely
positive map, then the adjoint map ®* is also completely positive; for if @ is
completely positive, then ® ® 1,z is positive for every complex Euclidean
space Z, and therefore (¢ @ 1,z))* = ®* ® 1z is also positive.

Corollary 2.19 The trace mapping Tr € T(X,C), for any choice of a
complex Euclidean space X, is completely positive.

Proof The adjoint of the trace is given by Tr*(a) = aly for every a € C.
This map is completely positive by Proposition 2.17, therefore the trace map
is completely positive by the remark above. L]
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2.2.2 Representations and characterizations of channels

Suppose ® € C(X,)) is a channel, for X and ) being complex Euclidean
spaces. It may, in some situations, be sufficient to view such a channel
abstractly, as a completely positive and trace-preserving linear map of the
form ¢ : L(X) — L(Y) and nothing more. In other situations, it may be
useful to consider a more concrete representation of such a channel.

Four specific representations of channels (and of arbitrary maps of the
form & € T(X,)), for complex Euclidean spaces X and )) are discussed
in this section. These different representations reveal interesting properties
of channels, and will find uses in different situations throughout this book.
The simple relationships among the representations generally allow one to
convert from one representation into another, and therefore to choose the
representation that is best suited to a given situation.

The natural representation

For any choice of complex Euclidean spaces X and ), and for every linear
map ¢ € T(X,)), it is evident that the mapping

vec(X) — vec(P(X)) (2.60)

is linear, as it can be represented as a composition of linear mappings. There
must therefore exist a linear operator K(®) € L(X ® X,Y ® V) for which it
holds that

K(®)vec(X) = vec(P(X)) (2.61)

for all X € L(X). The operator K(®), which is uniquely determined by the
requirement that (2.61) holds for all X € L(X), is the natural representation
of @, as it directly represents the action of ® as a linear map (with respect
to the operator-vector correspondence).

It may be noted that the mapping K : T(X,)) - L(X @ X, Y ® V) is
linear:

K(a® + ¥) = aK(®) + K (V) (2.62)
for all choices of a, 8 € C and &, ¥ € T(X,)). Moreover, K is a bijection,
as the action of a given mapping ® can be recovered from K(®); for each
operator X € L(X), one has that Y = ®(X) is the unique operator satisfying
vec(Y) = K(®) vec(X).

The natural representation respects the notion of adjoints, meaning that

K (@) = (K(®))" (2.63)
for every map ® € T(X,)) (with the understanding that K refers to a
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mapping from T(Y,X) to L(Y ® Y,X ® X) on the left-hand side of this
equation, obtained by reversing the roles of X and ) in the definition above).

Despite the fact that the natural representation K (®) of a mapping ® is a
direct representation of the action of ® as a linear map, this representation
is the one of the four representations to be discussed in this section that
is the least directly connected to the properties of complete positivity and
trace preservation. As such, it will turn out to be the least useful of the four
representations from the viewpoint of this book. One explanation for why
this is so is that the aspects of a given map ® that relate to the operator
structure of its input and output arguments is not represented by K (®) in
a convenient or readily accessible form. The operator-vector correspondence
has the effect of ignoring this structure.

The Choi representation

For any choice of complex Euclidean spaces X and ), one may define a
mapping J : T(X,)) - LY ® X) as

J(®) = (P ® L)) (vec(Ly) vec(Ly)") (2.64)

for each ® € T(X,)). Alternatively, under the assumption that X = C*>,
one may write

J(®)= Y ®(Eqp) ® Eqyp. (2.65)
a,beys

The operator J(®) is called the Choi representation (or the Choi operator)
of .

It is evident from the equation (2.65) that the mapping J is a linear
bijection. An alternative way to prove that the mapping J is a bijection
is to observe that the action of the mapping ® can be recovered from the
operator J(®) by means of the equation

B(X) = Tra(J(®)(1y ® XT)). (2.66)

There is a close connection between the operator structure of J(®) and the
aspects of @ that relate to the operator structure of its input and output
arguments. A central component of this connection is that a given map
¢ is completely positive if and only if J(®) is positive semidefinite (as is
established by Theorem 2.22 below).

For a given map ® € T(X,)), the rank of its Choi representation J(®) is
called the Choi rank of ®.
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Kraus representations

For any choice of complex Euclidean spaces X and ), an alphabet 3, and
collections

{4, :a€¥} and {B,:acX} (2.67)

of operators drawn from the space L(X’,)), one may define a linear map
®cT(X,)) as

®(X)=> A.XB; (2.68)
aEX

for every X € L(X). The expression (2.68) is a Kraus representation of the
map . It will be established shortly that a Kraus representation exists for
every map of the form ® € T(X,)). Unlike the natural representation and
Choi representation, however, Kraus representations are not unique.
Under the assumption that ® is determined by the above equation (2.68),
it holds that
O*(Y)=> ALY B, (2.69)
aEX

as follows from a calculation relying on the cyclic property of the trace:

<Y, > AaXB;:> =) Tr(Y*A.XB])
acl agd (270)

=) Tr(BiY*A.X) = <Z AZYBa,X>

a€eY a€eY
for every X € L(X) and Y € L(}).
It is common in the theory of quantum information that one encounters
Kraus representations for which A, = B, for each a € X. As is established

by Theorem 2.22 below, such representations exist precisely when the map
being considered is completely positive.

Stinespring representations
Suppose X, Y, and Z are complex Euclidean spaces and A, B € L(X,Y® 2Z)
are operators. One may then define a map ® € T(X,)) as
®(X) =Trz(AXDB") (2.71)

for every X € L(X). The expression (2.71) is a Stinespring representation
of the map ®. Similar to Kraus representations, Stinespring representations
always exist for a given map ®, and are not unique.
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If a map ® € T(X,)) has a Stinespring representation taking the form
(2.71), then it holds that

*(Y) = A*(Y © 12)B (2.72)
for all Y € L(Y). This observation follows from a calculation:

YV B(X)) = (V. Te2(AXB) = (Y @ 15, AXB")
= TI‘((Y & ]lg)*AXB*) = TI’(B*(Y 0% ]lg)*AX) (2.73)
= <A*(Y & 1Z)B7X>

for every X € L(X) and Y € L()). Expressions of the form (2.72) are
also sometimes referred to as Stinespring representations (in this case of the
map ¢*), although the terminology will not be used in this way in this book.

Similar to Kraus representations, it is common in quantum information
theory that one encounters Stinespring representations for which A = B.
Also similar to Kraus representations, such representations exist if and only
if ® is completely positive.

Relationships among the representations

The following proposition relates the four representations discussed above
to one another, and (implicitly) shows how any one of the representations
may be converted into any other.

Proposition 2.20 Let X and Y be complex FEuclidean spaces, let > be
an alphabet, let {A, : a € X}, {By : a € X} C L(X,)) be collections of
operators indexed by X, and let & € T(X,Y). The following four statements,
which correspond as indicated to the four representations introduced above,
are equivalent:

1. (Natural representation.) It holds that

K(®) =) A,® B,. (2.74)
acy
2. (Choi representation.) It holds that
J(®) = Z vec(Ag) vec(Bg)™. (2.75)
acd

3. (Kraus representations.) It holds that

®(X)=> A.XB; (2.76)
aeXx

for all X € L(X).
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4. (Stinespring representations.) For Z = C* and A,B € L(X,Y ® Z)
defined as

A:ZAa@)ea and B:ZBa@)ea, (2.77)
acY acX
it holds that
P(X) = Trg(AXB*) (2.78)

for all X € L(X).

Proof The equivalence between statements 3 and 4 is a straightforward
calculation. The equivalence between statements 1 and 3 follows from the
identity

vec(A, X B)) = (Aq ® Bg) vec(X) (2.79)

for all choices of @ € ¥ and X € L(X). Finally, the equivalence between
statements 2 and 3 follows from the equations

(4@ L) vea(LLy) = veo(Ay). 250
vec(lx)"(B; ® 1x) = vec(B,)",

which hold for every a € X.. O

Corollary 2.21 Let X and ) be complex Euclidean spaces, let ® € T(X,))
be a nonzero linear map, and let r = rank(J(®)) be the Choi rank of ®. The
following two facts hold:

1. For X being any alphabet with |X| = r, there exists a Kraus representation
of ® having the form

O(X)=> A.XB;, (2.81)
a€X

for some choice of {A, : a € X}, {B, : a € ¥} C L(X,)).
2. For Z being any complexr Euclidean space with dim(Z) = r, there exists
a Stinespring representation of ® having the form

P(X) =Trz(AXB"), (2.82)
for some choice of operators A, B € L(X,Y ® Z).

Proof For X being any alphabet with |X| = r, it is possible to write

J(®) =D uqv; (2.83)
aex
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for some choice of vectors
{ug : aeX}{v, :a €T} CYRX. (2.84)

In particular, one may take {u, : a € ¥} to be any basis for the image of
J(®), which uniquely determines a collection {v, : a € X} for which (2.83)
holds. Taking {A, : a € ¥} and {B, : a € ¥} to be operators defined by the
equations

vec(Aq) =uq, and vec(B,) = v, (2.85)
for every a € X, it follows from Proposition 2.20 that the expression (2.81)

is a Kraus representation of ®. Moreover, it holds that the expression (2.82)
is a Stinespring representation of ® for A, B € L(X,)Y ® Z) defined as

A=) A, ®e, and B=)» B,®e,, (2.86)
acy acd
which completes the proof. O

Characterizations of completely positive maps

Characterizations of completely positive maps, based on their Choi, Kraus,
and Stinespring representations, will now be presented.

Theorem 2.22 Let ® € T(X,)) be a nonzero map, for complex Euclidean
spaces X and ). The following statements are equivalent:

1. ® is completely positive.

2. ®® 1y is positive.

3. J(®) € Pos(Y ® X).

4. There exists a collection {A, : a € ¥} C L(X,)Y), for some choice of
an alphabet 32, for which

O(X) =) AXA; (2.87)
acx
for all X € L(X).
5. Statement 4 holds for an alphabet ¥ satisfying |%| = rank(J(®)).

6. There exists an operator A € L(X,Y ® Z), for some choice of a complex
FEuclidean space Z, such that

B(X) = Trz(AXA*) (2.88)

for all X € L(X).
7. Statement 6 holds for Z having dimension equal to rank(J(®)).
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Proof The theorem will be proved by establishing the following implications
among the seven statements, which are sufficient to imply their equivalence:

(1)=(2)=3)=06)=4) = (1)
(5) = (7) = (6) = (1)
Note that some of these implications are immediate: statement 1 implies
statement 2 by the definition of complete positivity, statement 5 trivially
implies statement 4, statement 7 trivially implies statement 6, and statement

5 implies statement 7 by Proposition 2.20.
Assume ® ® 1y, is positive. Because

vec(ly) vec(ly)® € Pos(X ® X) (2.89)

and
J(®) = (P ® Ly x))(vec(Ly) vec(Ly)™), (2.90)
it follows that J(®) € Pos()Y ® X), so statement 2 implies statement 3.
Next, assume J(®) € Pos(Y ® X). It follows by the spectral theorem

(Corollary 1.4), together with the fact that every eigenvalue of a positive
semidefinite operator is nonnegative, that one may write

J(P) = Z Ug Uy, (2.91)
acy

for some choice of an alphabet ¥ with |X| = rank(J(®)) and a collection
{ug :ae¥}CcyYyoX (2.92)

of vectors. Taking A, € L(X,)) to be the operator defined by the equation
vec(Ay) = ug for each a € X, one has that

J(P) = Z vec(A,) vec(A4y)". (2.93)

The equation (2.87) therefore holds for every X € L(X") by Proposition 2.20,
which establishes that statement 3 implies statement 5.

Now suppose (2.87) holds for every X € L(X), for some alphabet ¥ and
a collection

{4, 1 a € X} CL(X,)) (2.94)

of operators. For a complex Euclidean space VW and a positive semidefinite
operator P € Pos(X ® W), it is evident that

(Ag @ Tyy)P(Ag @ Tyy)* € Pos(Y @ W) (2.95)
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for each a € X, and therefore
(® @ L) (P) € Pos(Y @ W) (2.96)

by the fact that Pos() ® W) is a convex cone. It follows that ® is completely
positive, so statement 4 implies statement 1.

Finally, suppose (2.88) holds for every X € L(X), for some complex
Euclidean space Z and an operator A € L(X,) ® Z). For any complex
Euclidean space VW and any positive semidefinite operator P € Pos(X @ W),
it is again evident that

(AR 1w)P(A®1w)* € Pos(Y @ Z W), (2.97)
so that
(PR Lpon)(P) =Trz(A®1yw)P(A® 1y)*) € Pos(Y @ W)  (2.98)

by the complete positivity of the trace (Corollary 2.19). It therefore holds
that the map ® is completely positive, so statement 6 implies statement 1,
which completes the proof. O

One consequence of this theorem is the following corollary, which relates
Kraus representations of a given completely positive map.

Corollary 2.23 Let X be an alphabet, let X and Y be complex Euclidean
spaces, and assume {Aqg 1 a € X}, {By : a € X} C L(X,)) are collections
of operators for which

Y AXA;=)> B,XB} (2.99)
acy aeX

for all X € L(X). There exists a unitary operator U € U(C*) such that

Ba =) Ula,b)A, (2.100)
bex
for all a € X.
Proof 'The maps
XY AXA; and X~ > B.XB; (2.101)
a€eX aeX

agree for all X € L(X), and therefore their Choi representations must be
equal:

D vee(Aq) vee(Aq)* =) vec(Bg) vec(Bg)*. (2.102)
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Let Z = C* and define vectors u,v € Y @ X ® Z as

u= Z vec(Ay) ® e, and v = Z vec(B,) ® eq, (2.103)
acd acd
so that
Trz(uu®) = Z vec(Ag) vec(Ay)*
ae (2.104)
= Z vec(B,) vec(B,)* = Trz(vv®).

acX

By the unitary equivalence of purifications (Theorem 2.12), there must exist
a unitary operator U € U(Z) such that

v = (1lygxy @ U)u. (2.105)
Thus, for each a € X it holds that

vec(B,) = (Iygxy @ e.)v = (Iygxy @ e,U)u = Z U(a,b)vec(Ap), (2.106)
bex

which is equivalent to (2.100). O

Along similar lines to the previous corollary is the following one, which
concerns Stinespring representations rather than Kraus representations. As
the proof reveals, the two corollaries are essentially equivalent.

Corollary 2.24 Let X, Y, and Z be compler Fuclidean spaces and let
operators A, B € L(X,Y ® Z) satisfy the equation

Trz(AXA*) = Trz(BXBY) (2.107)
for every X € L(X). There exists a unitary operator U € U(Z) such that
B=(1y®U)A. (2.108)

Proof Let X be the alphabet for which Z = C*, and define two collections
{Aqg :ae€e X}, {By : a€ X} C L(X,)Y) of operators as

Ao =(1y®e,)A and B, = (ly®e,)B, (2.109)
for each a € X, so that
A=) A, ®e, and B=)» B;®e,. (2.110)
acx acx

The equation (2.107) is equivalent to (2.99) in Corollary 2.23. It follows
from that corollary that there exists a unitary operator U € U(Z) such that
(2.100) holds, which is equivalent to B = (1y ® U)A. O
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A map & € T(X,)) is said to be Hermitian preserving if it holds that

®(H) € Herm(Y) for all H € Herm(&X'). The following theorem, which
provides four alternative characterizations of this class of maps, is proved
through the use of Theorem 2.22.

Theorem 2.25 Let & € T(X,)) be a map, for complex Euclidean spaces
X and ). The following statements are equivalent:

® is Hermitian preserving.

It holds that (®(X))* = ®(X*) for every X € L(X).

It holds that J(®) € Herm(Y ® X).

There exist completely positive maps ®o, ®; € CP(X,)) for which
® =Py — P;.

5. There exist positive maps ®o, 1 € T(X,)) for which ® = &y — P;.

Lo o=

Proof Assume first that ® is a Hermitian-preserving map. For an arbitrary

operator X € L(X), one may write X = H +iK for H, K € Herm(X') being
defined as

X+ X X-X

H = A+ and K =——7—.

2 21

As ®(H) and ®(K) are both Hermitian and & is linear, it follows that

(2.111)

(®(X))" = (®(H) +i®(K))®

= ®(H) —i®(K) = ®(H — iK) = ®(X"). (2.112)

Statement 1 therefore implies statement 2.
Next, assume statement 2 holds, and let ¥ be the alphabet for which
X = C”. One then has that

J(@) =) ®(E.p) @E;,= ) ®FE;,) ®E;,
a,beX a,bex

= > O(Epa) ® Epg = J(P).
a,bexs

(2.113)

It follows that J(®) is Hermitian, and therefore statement 3 holds.

Now assume statement 3 holds. Let J(®) = Py — P; be the Jordan—Hahn
decomposition of J(®), and let ®g, Py € CP(X,)) be the maps for which
J(®y) = Py and J(®1) = P;. Because Py and P; are positive semidefinite,
it follows from Theorem 2.22 that &3 and ®; are completely positive maps.
By the linearity of the mapping J associated with the Choi representation,
it holds that J(®) = J(®g — @), and therefore & = &5 — P4, implying that
statement 4 holds.

Statement 4 trivially implies statement 5.
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Finally, assume statement 5 holds. Let H € Herm(X) be a Hermitian
operator, and let H = Py — Py, for Py, P; € Pos(X), be the Jordan—-Hahn
decomposition of H. It holds that ®,(P,) € Pos(Y), for all a,b € {0,1}, by
the positivity of &g and ®;. Therefore, one has that

O(H) = (Qo(FPo) + 1(P1)) — (Ro(P1) + @1 (1)) (2.114)

is the difference between two positive semidefinite operators, and is therefore
Hermitian. Thus, statement 1 holds.

As the implications (1) = (2) = (3) = (4) = (5) = (1) among the
statements have been established, the theorem is proved. ]

Characterizations of trace-preserving maps

The next theorem provides multiple characterizations of the class of trace-
preserving maps.

Theorem 2.26 Let & € T(X,)) be a map, for complex Euclidean spaces
X and ). The following statements are equivalent:

1. ® is a trace-preserving map.

2. ®* is a unital map.

3. Try(J(CID)) = ]1)(.

4. There exist collections {Ag : a € X}, {Bq : a € £} C L(X,)Y) of
operators such that

®(X)=> A.XB; (2.115)
a€X
and
> AiB,=1x. (2.116)
acY

5. For all collections {A, : a € X}, {B, : a € X} C L(X,)Y) of operators
satisfying (2.115), the equation (2.116) must also hold.

6. There exist operators A, B € L(X,Y ® Z), for some complex Euclidean
space Z, such that

®(X) = Trz(AXBY) (2.117)

and A*B = 1 .
7. For every choice of operators A, B € L(X,Y ® Z) satisfying (2.117), it
holds that A*B = 1 y.
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Proof Under the assumption that ® preserves trace, it holds that
(L, X) = Tr(X) = Tr(®(X)) = (Iy, ®(X)) = (®*(1y), X),  (2.118)
and therefore
(Iy —9*(1y),X) =0, (2.119)

for all X € L(X). It follows that ®*(1y) = 1y, and therefore ®* is unital.
Along similar lines, the assumption that ®* is unital implies

Tr(®(X)) = (Iy, ®(X)) = (2" (1y), X) = (1x, X) = Tr(X)  (2.120)

for every X € L(X), and therefore ® preserves trace. The equivalence of
statements 1 and 2 has been established.
Next, assume that {4, : a € X}, {By : a € ¥} C L(X,)) satisfy

O(X)=> A.XB; (2.121)
acX

for all X € L(X). It therefore holds that

O*(Y) =) AlYB, (2.122)
aEX

for every Y € L()), and in particular it holds that

®*(1y) =) A}B,. (2.123)

acX

Thus, if ®* is a unital map, then

> AiB, =1y, (2.124)
a€ey

and so it has been proved that statement 2 implies statement 5. On the
other hand, if (2.124) holds, then it follows that ®*(1y) = 1, so that ®* is
unital. Therefore, statement 4 implies statement 2. As statement 5 implies
statement 4, by virtue of the fact that Kraus representations exist for every
map, the equivalence of statements 2, 4, and 5 has been established.

Now assume that A,B € L(X,Y ® Z) satisfy ®(X) = Trz(AXB*) for
every X € L(X). It follows that

**(Y)=A*(Y ® 1z)B (2.125)

for all Y € L()), and in particular ®*(1y) = A*B. The equivalence of
statements 2, 6, and 7 follows by the same reasoning as for the case of
statements 2, 4, and 5.
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Finally, let ' be the alphabet for which X = C'', and consider the operator

Try(J(®)) = Y Te(P(Eap))Eap. (2.126)
a,bel’

If ® preserves trace, then it follows that

1 ifa=0b
To(®(Eap)) =4{ (2.127)
0 ifa#b,
and therefore
Try(J(®)) = Y Eaa = 1x. (2.128)
acl’
Conversely, if Try(J(®)) = 1y, then a consideration of the expression

(2.126) reveals that (2.127) must hold. As the set {E,p : a,b € I'} is a
basis of L(X'), one concludes by linearity that ® preserves trace. Statements
1 and 3 are therefore equivalent, which completes the proof. ]

Characterizations of channels

Theorems 2.22 and 2.26 can be combined, providing characterizations of
channels based on their Choi, Kraus, and Stinespring representations.

Corollary 2.27 Let ® € T(X,)) be a map, for complex Euclidean spaces
X and Y. The following statements are equivalent:

1. ® is a channel.

2. J(®) € Pos(Y ® X) and Try(J(P®)) = 1y.

3. There exists an alphabet ¥ and a collection {A, : a € ¥} C L(X,))
satisfying

Y AtA.=1x and ®(X)=)> AXA; (2.129)
ac® LISy
for all X € L(X).
4. Statement 3 holds for |X| = rank(J(®)).

5. There exists an isometry A € U(X,Y® Z), for some choice of a complex
FEuclidean space Z, such that

B(X) = Trz(AX A*) (2.130)

for all X € L(X).
6. Statement 5 holds under the requirement dim(Z) = rank(J(®)).
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For every choice of complex Euclidean spaces X and ), one has that the
set of channels C(X,)) is compact and convex. One way to prove this fact
makes use of the previous corollary.

Proposition 2.28 Let X and Y be complex Fuclidean spaces. The set
C(X,)Y) is compact and convex.

Proof The map J: T(X,)) — L(Y ® &) defining the Choi representation
is linear and invertible. By Corollary 2.27, one has J~1(A) = C(X,)) for A
being defined as

A={X €Pos(Y®@X) : Try(X) =1x}. (2.131)

It therefore suffices to prove that A is compact and convex. It is evident that
A is closed and convex, as it is the intersection of the positive semidefinite
cone Pos()Y ® X') with the affine subspace

{X - L(J/® X) : TI‘y(X) = ]l)(}, (2.132)

both of which are closed and convex. To complete the proof, it suffices to
prove that A is bounded. For every X € A, one has

X |1 = Tr(X) = Tr(Try(X)) = Tr(1y) = dim(&), (2.133)
and therefore A is bounded, as required. L]

Corollary 2.27 will be used frequently throughout this book, sometimes
implicitly. The next proposition, which builds on the unitary equivalence
of purifications (Theorem 2.12) to relate a given purification of a positive
semidefinite operator to any extension of that operator, is one example of
an application of this corollary.

Proposition 2.29 Let X, YV, and Z be complex Fuclidean spaces, and
suppose that u € X ® Y and P € Pos(X ® Z) satisfy

Try (uu®) = Trz(P). (2.134)
There exists a channel ® € C(), Z) such that

Proof Let W be a complex Euclidean space having dimension sufficiently
large so that

dim(W) > rank(P) and dim(Z® W) > dim()), (2.136)
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and let A € U(Y, Z ® W) be any isometry. Also let v € X ® Z ® W satisfy
Tryy (vv*) = P. It holds that

Trzew((1xy ® A)uu* (1y ® A)*)

= Try(uu®) = Trz(P) = Trzgw (vv"). (2.137)

By Theorem 2.12 there must exist a unitary operator U € U(Z ® W) such
that

Iy @UA)u = . (2.138)
Define ® € T(Y, Z) as
O(Y) =Trw(UA)Y (UA)Y) (2.139)

for all Y € L()). By Corollary 2.27, one has that ® is a channel. It holds
that

(Lo @ @) (wu”) = Trpy (T @ UA)uu™ (Lx @ UA)Y)

2.140
= Tryy (vv*) = P, ( )

as required. ]

2.2.3 Examples of channels and other mappings

This section describes examples of channels, and other maps, along with
their specifications according to the four types of representations discussed
above. Many other examples and general classifications of channels and maps
will be encountered throughout the book.

Isometric and unitary channels

Let X and ) be complex Euclidean spaces, let A, B € L(X,)) be operators,
and consider the map ® € T(X,)) defined by

®(X) = AXB* (2.141)

for all X € L(X).

In the case that A = B, and assuming in addition that this operator is
a linear isometry from X to ), it follows from Corollary 2.27 that ® is a
channel. Such a channel is said to be an isometric channel. If Y = X and
A = B is a unitary operator, ® is said to be a wunitary channel. Unitary
channels, and convex combinations of unitary channels, are discussed in
greater detail in Chapter 4.
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The natural representation of the map ® defined by (2.141) is
K(® =A®B (2.142)
and the Choi representation of & is
J(®) = vec(A) vec(B)*. (2.143)

The expression (2.141) is a Kraus representation of ®, and may also be
regarded as a trivial example of a Stinespring representation if one takes
Z = C and observes that the trace acts as the identity mapping on C.

The identity mapping 1, is a simple example of a unitary channel. The
natural representation of this channel is the identity operator 1y ®1 x, while
its Choi representation is given by the rank-one operator vec(1 x) vec(1 x)*.

Replacement channels and the completely depolarizing channel

Let X and ) be complex Euclidean spaces, let A € L(X) and B € L()) be
operators, and consider the map ® € T(X,)) defined as

®(X)=(A,X)B (2.144)
for all X € L(X). The natural representation of ® is
K(®) = vec(B) vec(A)™, (2.145)
and the Choi representation of ® is
J(®) = B® A. (2.146)

Kraus and Stinespring representations of ® may also be constructed,
although they are not necessarily enlightening in this particular case. One
way to obtain a Kraus representation of ® is to first write

A= Z ugr, and B = vayg‘, (2.147)
acX bel

for some choice of alphabets > and I' and four sets of vectors:

{ug : a € X}, {z, : a€X} CX,

(2.148)
{vp :bel}, {yp : beT}C Y.
It then follows that one Kraus representation of ® is given by
O(X)= > CopXDj, (2.149)

(a,b)eXxT
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where Cyp, = vyuy, and Dy = ypx), for each a € ¥ and b € I', and one
Stinespring representation is given by

®(X) = Trz(CXD*), (2.150)
where
C= Y Cap®epp, D= > Dup®@enyp) (2.151)
(a,b)exxT (a,b)exxT
and Z = C>*T',

If A and B are positive semidefinite operators and the map ® € T(X,))
is defined by (2.144) for all X € L(X), then J(®) = B ® A is positive
semidefinite, and therefore ® is completely positive by Theorem 2.22. In the
case that A = 1y and B = o for some density operator ¢ € D()), the map
® is also trace preserving, and is therefore a channel. Such a channel is a
replacement channel: it effectively discards its input, replacing it with the
state o.

The completely depolarizing channel 2 € C(X) is an important example
of a replacement channel. This channel is defined as

QX) =Tr(X)w (2.152)
for all X € L(X), where
Ly
= 2.1
¥ 7 dim(X) (2.153)

denotes the completely mixed state defined with respect to the space X.
Equivalently, €2 is the unique channel transforming every density operator
into this completely mixed state: (p) = w for all p € D(X). From the
equations (2.145) and (2.146), one has that the natural representation of
the completely depolarizing channel Q € C(X) is

vec(ly) vec(Ly)*

K(Q) = 2.154
(@) = (2154
while the Choi representation of this channel is
Ty ®1x
)= ———-—. 2.1
T =G () (2.155)

The transpose map
Let ¥ be an alphabet, let X = C*, and let T € T(X) denote the transpose
map, defined as

T(X)=X" (2.156)
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for all X € L(X). This map will play an important role in Chapter 6, due
to its connections to properties of entangled states.
The natural representation K (T) of T must, by definition, satisfy

K(T)vec(X) = vec(XT) (2.157)

for all X € L(&X). By considering those operators of the form X = uv' for
vectors u,v € X, one finds that

KT (u®v)=v®u. (2.158)

It follows that K(T) = W, for W € L(X ® X) being the swap operator,
which is defined by the action W(u ® v) = v ® u for all vectors u,v € X.
The Choi representation of T is also equal to the swap operator, as

J(T)= > Fpa®E,,=W. (2.159)
a,bex
Under the assumption that |X| > 2, it therefore follows from Theorem 2.22
that T is not a completely positive map, as W is not a positive semidefinite
operator in this case.
One example of a Kraus representation of T is

T(X)= Y E.wXE;, (2.160)
a,bex

for all X € L(&), from which it follows that T(X) = Trz(AXB*) is a
Stinespring representation of T for Z = C***,

A= Z Ea,b & €(a,b) and B = Z Eb,a @ €(a,b)- (2.161)
a,bex a,bex

The completely dephasing channel
Let ¥ be an alphabet and let X = C*. The map A € T(X) defined as

A(X) =) X(a,a)Eaq (2.162)
a€X
for every X € L(X) is an example of a channel known as the completely
dephasing channel. This channel has the effect of replacing every off-diagonal
entry of a given operator X € L(X) by 0 and leaving the diagonal entries
unchanged.

Through the association of diagonal density operators with probabilistic
states, as discussed in Section 2.1.2, one may view the channel A as an
ideal channel for classical communication: it acts as the identity mapping
on every diagonal density operator, so that it effectively transmits classical
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probabilistic states without error, while all other states are mapped to the
probabilistic state given by their diagonal entries.
The natural representation of A must satisfy the equation

E ifa=»5
K(A) vec(Eyy) = "o Fan) e (2.163)
0 if a # b,
which is equivalent to
a, .f = b
K(A)(ea@ey) = @E@ 10 (2.164)
0 if a # b,
for every a,b € X. It follows that
K(A)=> E4q® Eqa. (2.165)

acyl

Similar to the transpose mapping, the Choi representation of A happens
to coincide with its natural representation, as the calculation

J(A) = Z A(Ea’b) ® Ea,b = Z Ea,a ® Ea,a (2166)
a,bex acy
reveals. It is evident from this expression, together with Corollary 2.27, that
A is indeed a channel.
One example of a Kraus representation of A is

AX) =Y FE..XE},, (2.167)
aEX

and an example of a Stinespring representation of A is
A(X)=Trz(AXA") (2.168)
for Z = C* and

A=) (ea®eq)ey. (2.169)
acX

A digression on classical registers

Classical probabilistic states of registers may be associated with diagonal
density operators, as discussed in Section 2.1.2. The term classical register
was mentioned in that discussion but not fully explained. It is appropriate
to make this notion more precise, now that channels (and the completely
dephasing channel in particular) have been introduced.

From a mathematical point of view, classical registers are not defined in a
manner that is distinct from ordinary (quantum) registers. Rather, the term
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classical register will be used to refer to any register that, by the nature of
the processes under consideration, would be unaffected by an application of
the completely dephasing channel A at any moment during its existence.
Every state of a classical register is necessarily a diagonal density operator,
corresponding to a probabilistic state, as these are the density operators that
are invariant under the action of the channel A. Moreover, the correlations
that may exist between a classical register and one or more other registers
are limited. For example, for a classical register X and an arbitrary register
Y, the only states of the compound register (X,Y) that are consistent with
the term classical register being applied to X are those taking the form

> p(a)Eau ® pa, (2.170)
aceX

for ¥ being the classical state set of X, {p, : a € X} C D()) being an
arbitrary collection of states of Y, and p € P(X) being a probability vector.
States of this form are commonly called classical-quantum states. It is both
natural and convenient in some situations to associate the state (2.170) with
the ensemble 7 : ¥ — Pos()) defined as n(a) = p(a)p, for each a € X.

2.2.4 FExtremal channels

For any choice of complex Euclidean spaces X and ), the set of channels
C(X,)) is compact and convex (by Proposition 2.28). A characterization of
the extreme points of this set is given by Theorem 2.31 below. The following
lemma will be used in the proof of this theorem.

Lemma 2.30 Let A € L()Y,X) be an operator, for complex Euclidean
spaces X and ). It holds that
{P € Pos(X) : im(P) Cim(A)} = {AQA" : Q € Pos())}. (2.171)

Proof For every @ € Pos())), it holds that AQA* is positive semidefinite
and satisfies im(AQA*) C im(A). The set on the right-hand side of (2.171)
is therefore contained in the set on the left-hand side.

For the reverse containment, if P € Pos(X) satisfies im(P) C im(A), then
by setting

Q=ATP(AT), (2.172)
for AT denoting the Moore-Penrose pseudo-inverse of A, one obtains
AQA* = (AAT)P(AAT)" = iy a)Pli(a) = P, (2.173)

which completes the proof. L]
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Theorem 2.31 (Choi) Let X and Y be complex Euclidean spaces, let
® € C(X,Y) be a channel, and let {A, : a € ¥} C L(X,)) be a linearly
independent set of operators satisfying

(X)) =) A XA (2.174)
aEX

for all X € L(X). The channel ® is an extreme point of the set C(X,)) if
and only if the collection

{A; A, : (a,b) € X x X} C L(X) (2.175)
of operators is linearly independent.

Proof Let Z = C*, define an operator M € L(Z,) ® X) as

M= vec(Aq)ey, (2.176)
acYs
and observe that
MM* =" vec(Aq) vec(Ag)* = J(®). (2.177)
a€l

As {A, : a € ¥} is a linearly independent collection of operators, it must
hold that ker(M) = {0}.

Assume first that ® is not an extreme point of C(X,)). It follows that
there exist channels WUy, ¥y € C(X,)), with ¥g # ¥y, along with a scalar
A € (0,1), such that

O = AT+ (1 — \)T. (2.178)
Let P = J(®), Qo = J(¥y), and Q1 = J(V¥1), so that
P =XQo+(1—)NQ. (2.179)

As @, Uy, and ¥ are channels, the operators P, Qq, Q1 € Pos(Y ® X) are
positive semidefinite and satisfy

Try(P) = Try(Qo) = Try(Q1) = L, (2.180)

by Corollary 2.27.
As ) is positive and the operators (g and ()1 are positive semidefinite,
the equation (2.179) implies

im(Qo) C im(P) = im(M). (2.181)

It follows by Lemma 2.30 that there exists a positive semidefinite operator
Ry € Pos(Z) for which Qo = M RyM*. By similar reasoning, there exists a
positive semidefinite operator Ry € Pos(Z) for which Q1 = M Ry M*.
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Letting H = Ry — R1, one finds that

0 =Try(Qo) — Try(Q1) = Try(MHM*) = Y H(a,b)(AjA,)", (2.182)
a,bex

and therefore

> H(a,b)AjA, =0. (2.183)
a,bex

Because ¥y # Wy, it holds that Qg # @1, so Ry # R1, and therefore H # 0.
It has therefore been proved that {AfA, : (a,b) € ¥ x X} is a linearly
dependent collection of operators.

Now assume the set (2.175) is linearly dependent:

> Z(a,b)AjAq =0 (2.184)
a,bex

for some choice of a nonzero operator Z € L(Z). By taking the adjoint of
both sides of this equation, one finds that

> Z*(a,b)AjA, =0, (2.185)
a,bex

from which it follows that

> H(a,b)AjA, =0 (2.186)
a,bex

for both of the Hermitian operators

7+ 7 7 7
2 and 2

H (2.187)
At least one of these operators must be nonzero, which implies that (2.186)
must hold for some choice of a nonzero Hermitian operator H. Let such a
choice of H be fixed, and assume moreover that || H || = 1 (which causes no
loss of generality as (2.186) still holds if H is replaced by H/|| H ||).

Let Wg, ¥y € T(X,)) be the mappings defined by the equations

J(W) =M1+ H)M* and J(Uy) = M(1 — H)M*. (2.188)

Because H is Hermitian and satisfies || H|| = 1, one has that the operators
1+ H and 1 — H are both positive semidefinite. The operators M (1+H)M*
and M (1 — H)M* are therefore positive semidefinite as well, implying that
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Uy and W, are completely positive, by Theorem 2.22. It holds that

Try (MHM*) = > H(a,b) (AjAq)"
a,bex

T (2.189)
= < > H(a,b)AZAa) =0

a,bedxs
and therefore the following two equations hold:

Tl"y (J(\Ifo)) = Tl"y (MM*) + Tl"y (MHM*) = Tl"y(J((I))) = ]l/‘y, (2 190)

Try (J(V1)) = Try (MM™) — Try (MHM™) = Try(J(®)) = 1x. '
Thus, ¥y and ¥, are trace preserving by Theorem 2.26, and are therefore
channels.

Finally, given that H # 0 and ker(M) = {0}, it holds that J(¥g) # J(V¥y),
so that Wy # Uy, As

1 1
§J(\Ilo) + §J(\111) =MM* = J(®), (2.191)
one has that
1 1
¢ =_Vy4 U 2.192
5 Yo+ S ¥, ( )
which demonstrates that ® is not an extreme point of C(X,)). 0

Example 2.32 Let X and )Y be complex Euclidean spaces such that
dim(X) < dim(})), let A € U(X,)Y) be an isometry, and let & € C(X,)) be
the isometric channel defined by

B(X) = AXA* (2.193)

for all X € L(&X'). The set {A*A} contains a single nonzero operator, and is
therefore linearly independent. By Theorem 2.31, ® is an extreme point of

the set C(X,)).

Example 2.33 Let ¥ = {0, 1} denote the binary alphabet, and let X = C*
and Y = C>**. Also define operators Ag, A; € L(X,)) as

Ay = —=(2E00,0 + Eo11 + E10,1),

Hg\,i
(@))

(2.194)
Ay = —=(2F111 + Eo1,0 + E10p0).

B

(Elements of the form (a,b) € ¥ x X have been written as ab for the sake of
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clarity.) Expressed as matrices (with respect to the natural orderings of ¥
and X x X)), these operators are as follows:

2 0 0 0
1 10 1 1 |1 0
0 0 0 2
Now, define a channel ® € C(X,)) as
O(X)=AgXA;+ A1 X AT (2.196)
for every X € L(X). It holds that
L. 1(20 .. _1(00
AOAO - g (0 1) 5 AoAl — 3 (1 0) ’
(2.197)
.. _1({01 L. 1(10
A1A0_§<0 0)’ A1A1_3<0 2)'
The set
{Aj Ao, AGA1, ATAg, ATA1} (2.198)

is linearly independent, and therefore Theorem 2.31 implies that & is an
extreme point of C(X,)).

2.3 Measurements

Measurements provide the mechanism through which classical information
may be extracted from quantum states. This section defines measurements,
and various notions connected with measurements, and provides a basic
mathematical development of this concept.

2.3.1 Two equivalent definitions of measurements

When a hypothetical observer measures a register, the observer obtains a
classical measurement outcome (as opposed to a description of the state of
the register, for instance). In general, this measurement outcome is generated
at random, according to a probability distribution that is determined by
the measurement together with the state of the register immediately before
the measurement was performed. In this way, measurements allow one to
associate a meaning to the density operator description of quantum states,
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at least insofar as the density operators determine the probabilities with
which different classical outcomes occur for each possible measurement.

Measurements can be defined in mathematical terms in two different,
but equivalent, ways. Both ways will be described in this section, and their
equivalence will be explained.

Measurements defined by measurement operators

The following definition represents the first formulation of measurements to
be described in this book. The precise mathematical meaning of the term
measurement used throughout this book coincides with this definition.

Definition 2.34 A measurement is a function of the form
w3 — Pos(X), (2.199)

for some choice of an alphabet ¥ and a complex Euclidean space X', satisfying
the constraint
> pla) =1k, (2.200)
a€Y
The set X is the set of measurement outcomes of this measurement, and

each operator p(a) is the measurement operator associated with the outcome
a€ .

When a measurement p is performed on a given register X, it must be
assumed that p takes the form (2.199), for some choice of an alphabet X
and for X’ being the complex Euclidean space associated with X. Two things
happen when such a measurement is performed, assuming the state of X
immediately prior to the measurement is p € D(X):

1. An element of ¥ is selected at random. The probability distribution that
describes this random selection is represented by the probability vector
p € P(X) defined as

p(a) = (u(a), p) (2.201)

for each a € X..
2. The register X ceases to exist, in the sense that it no longer has a defined
state and cannot be considered in further calculations.

It is evident from the first item that the probabilities associated with
the outcomes of a given measurement depend linearly on the state that is
measured. It is also evident that the probability vector p € P(3) defined
by (2.201) is indeed a probability vector: as p and u(a) are both positive



102 Basic notions of quantum information

semidefinite, their inner product (u(a), p) is nonnegative, and summing these
values gives

S opla) = Ylula).p) = (M p) = Te(p) = 1. (2.202)
acy a€eX
The assumption that registers cease to exist after being measured is not
universal within quantum information theory—an alternative definition, in
which the states of registers after they are measured is specified, does not
make this requirement. Measurements of this alternative type, which are
called nondestructive measurements in this book, are discussed in greater
detail in Section 2.3.2. Nondestructive measurements can, however, be
described as compositions of ordinary measurements (as described above)
and channels. For this reason, no generality is lost in making the assumption
that registers cease to exist upon being measured.
It is sometimes convenient to specify a measurement by describing its
measurement operators as a collection indexed by its set of measurement
outcomes. In particular, when one refers to a measurement as a collection

{P, : a € ¥} C Pos(&X), (2.203)

it is to be understood that the measurement is given by u : ¥ — Pos(X),
where p(a) = P, for each a € X.

Measurements as channels
The second formulation of measurements, which is equivalent to the first,
essentially describes measurements as channels whose outputs are stored in

classical registers. The following definition of quantum-to-classical channels
makes this notion precise.

Definition 2.35 Let ® € C(X,)) be a channel, for complex Euclidean
spaces X and ). It is said that ® is a quantum-to-classical channel if

® = AD, (2.204)

for A € C(Y) denoting the completely dephasing channel, defined with
respect to the space ).

An equivalent condition for a channel & € C(X,)) to be a quantum-
to-classical channel is that ®(p) is a diagonal density operator for every
p € D(X). The following simple proposition establishes that this is so.

Proposition 2.36 Let & € C(X,)) be a channel, for complex Fuclidean
spaces X and Y. It holds that ® is a quantum-to-classical channel if and
only if ®(p) is diagonal for every p € D(X).
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Proof If ® is a quantum-to-classical channel, then
D(p) = A®(p)), (2.205)

and therefore ®(p) is diagonal, for every density operator p € D(X).
Conversely, if ®(p) is diagonal, then ®(p) = A(P(p)), and therefore

(D — A®)(p) =0, (2.206)

for every p € D(X). As the density operators D(&X') span all of L(X), it
follows that ® = A®, and therefore ® is a quantum-to-classical channel. [J

The next theorem reveals the equivalence between quantum-to-classical
channels and measurements. In essence, quantum-to-classical channels of the
form ® € C(X,)) represent precisely those channels that can be realized as
a measurement of a register X, according to a measurement p : ¥ — Pos(X),
followed by the measurement outcome being stored in a register Y having
classical state set .

Theorem 2.37 Let X be a complex Fuclidean space, let X2 be an alphabet,
and let Y = C>. The following two complementary facts hold:

1. For every quantum-to-classical channel ® € C(X,)), there exists a
unique measurement p : ¥ — Pos(X') for which the equation

(X) = Z(N(a)v X) FEaa (2.207)
acl

holds for all X € L(X).
2. For every measurement p : 3 — Pos(X), the mapping ® € T(X,))
defined by (2.207) for all X € L(X) is a quantum-to-classical channel.

Proof Assume first that & € C(&X,)) is a quantum-to-classical channel. It
therefore holds that

O(X) = A(®(X)) =D (Faa, ®(X))Eaq=> (P*(Eaa), X)Eqa (2.208)
a€l acl

for all X € L(X). Define a function p: ¥ — L(X) as
p(a) = @*(Eqq) (2.209)

for each a € X. As ® is positive, so too is ®* (by Proposition 2.18), and
therefore p(a) € Pos(X) for each a € ¥. Moreover, as ® preserves trace, it
holds (by Theorem 2.26) that ®* is unital, and therefore

Y la) = 3 9 (Bu) = 7 (1y) = L. (2.210)

a€EX a€Y
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It follows that p is a measurement for which (2.207) holds for all X € L(X).

Toward proving the uniqueness of the measurement p satisfying (2.207)
for all X € L(X), let v : ¥ — Pos(X) be an arbitrary measurement for
which the equation

O(X) =D (v(a),X) Eqgq (2.211)
acX
holds for all X € L(&X'). One then has that
> (ula) = v(a),X) Eqq =0 (2.212)
acX

for all X € L(X), which implies that v(a) = pu(a) for every a € X, and
completes the proof of the first fact.

Now assume that p : ¥ — Pos(&X) is a measurement, and let & € T(X,))
be defined by (2.207). The Choi representation of this map is

J(®) =Y Euq® pla). (2.213)
aeX

This is a positive semidefinite operator, and it holds that

Try(J(®)) = > pla) =Ty = 1x. (2.214)

aex
By Corollary 2.27, it holds that ® is a channel. It is evident from inspection
that ®(p) is diagonal for every p € D(X), and therefore ® is a quantum-
to-classical channel by Proposition 2.36, which completes the proof of the
second statement. L]

As the following proposition establishes, the set of quantum-to-classical
channels of the form ® € C(X,)) is both compact and convex.

Proposition 2.38 Let X and Y be complex Fuclidean spaces. The set of
quantum-to-classical channels having the form ® € C(X,)) is compact and
CONVEL.

Proof 1t will first be observed that the set of quantum-to-classical channels
of the form ® € C(X,)) is given by

(A : ¥ e CX,))}, (2.215)

for A € C()) being the completely dephasing channel defined with respect
to the space ). Indeed, for every channel ¥ € C(X,)), it holds that AW is
a quantum-to-classical channel by virtue of the fact that the channel A is
idempotent (i.e., AA = A). On the other hand, every quantum-to-classical
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channel ® satisfies ® = A® by definition, and is therefore represented in the
set (2.215) by taking ¥ = &.

By Proposition 2.28, the set C(X,)) is compact and convex. The mapping
U — AW defined on C(X,)) is continuous, and therefore it maps C(X,))
to a compact and convex set. The image of C(X,)) under this mapping is
precisely the set (2.215), which coincides with the set of quantum-to-classical
channels of the form ® € C(X,)), so the proof is complete. O

2.3.2 Basic notions concerning measurements

The subsections that follow introduce various notions and facts connected
with measurements.

Product measurements

Suppose X = (Y1,...,Yy) is a compound register. One may then consider a
collection of measurements

JA 21 — POS(yl)
: (2.216)
U Xn — Pos(Yy)

to be performed independently on the registers Yi,...,Y,. Such a process
may be viewed as a single measurement

p: Xy X - X By, — Pos(X) (2.217)

on X that is defined as
plag, ... an) = p1(a1) @ -+ @ ppay) (2.218)
for each tuple (ay,...,a,) € X1 X --+ x X;,. A measurement g of this sort is

said to be a product measurement on X.

It may be verified that when a product measurement is performed on
a product state, the measurement outcomes resulting from the individual
measurements are independently distributed.

Partial measurements

Suppose X = (Y1,...,Yy,) is a compound register, and a measurement
w3 — Pos(Vg) (2.219)
is performed only on the register Yy, for a single choice of k € {1,...,n}.

Such a measurement must not only produce a measurement outcome a € 3,
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but must also determine the resulting state of the register
(Y1, ooy Y1, Yia1, ooy Ya), (2.220)

conditioned on the measurement outcome that was obtained. For a given
state p € D(X) of the register X, the probability for each measurement
outcome to appear, along with the corresponding post-measurement state
of the register (2.220), may be calculated by considering the quantum-to-
classical channel that corresponds to the measurement pu.

Let this quantum-to-classical channel be denoted by ® € C(), Z), for
Z = C*, so that

(I)(Y) = Z <M(a)7 Y>Ea,a (2'221)
acd

for every Y € L())). Consider the state of the compound register
(Z,Y1, o s Y1, Yiat, ooy Yo) (2.222)

obtained by applying the channel ® to Y, followed by the application of a
channel that performs the permutation of registers

(Yl, ce ,Yk_l,Z,Yk_H, N ,Yn) — (Z,Yl, e 7Yk—17Yk+17 N ,Yn) (2.223)

without changing the contents of these individual registers. The state of the
register (2.222) that results may be written explicitly as

Z Eaaa/ ® Tryk ((]1y1®---®yk—1 ® :u(a) ® ﬂyk+1®"'®yn)p>' (2'224)
a€X

The state (2.224) is a classical-quantum state, and is naturally associated
with the ensemble

N:X—=PosV®@ - @Ve1 QY1 @+ @ Vn) (2.225)
defined as

77(&) = Tryk ((]ly1®~~~®yk—1 ® :u(a) ® ]]‘yk+1®"'®yn)p) (2'226)

for each a € ¥. This ensemble describes the distribution of measurement
outcomes of the measurement p and the states of the remaining registers that
result. That is, each measurement outcome a € X appears with probability

Tr(n(a)) = (u(a), p[Yr]), (2.227)

and conditioned on an outcome a € Y that appears with positive probability,
the resulting state of (Y1,...,Yg_1,Yka1,..., Yn) becomes

77(&) _ Tryk ((]1y1®-~®yk—1 ® :UJ(a) ® ]lyk+1®"'®yn)p)

Te(n(a) (@), PV} (2.228)
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Example 2.39 Let X be an alphabet, and let Y and Z be registers whose
classical state sets are given by ¥, so that ) = C*¥ and Z = C*. Define a
state 7 € D(Y ® 2Z) as

1
— _E:EC Ey ., 2.229
,CED

and consider an arbitrary measurement p : I' — Pos()). If this measurement
is performed on Y when the pair (Y, Z) is in the state 7, then each outcome
a € I' appears with probability

Te(ju(a)

p(a) = </J(CL),,O[Y]> - ’2‘ (2'230)
Conditioned on the event that the measurement outcome a appears, the

state of Z becomes

@ Try ((u(a) © 12)7)
B |2| 1 o M(G)T (2.231)
~ T bgf Wbl B = o))

Projective measurements and Naimark’s theorem

A measurement p : 3 — Pos(X) is said to be a projective measurement if
each of its measurement operators is a projection: u(a) € Proj(X) for every
a € .

The following proposition demonstrates that the measurement operators
of a projective measurement must be pairwise orthogonal, and must therefore
project onto orthogonal subspaces. For a projective measurement of the form
p: X — Pos(&X), there can therefore be no more than dim(X') distinct values
of a € ¥ for which p(a) is nonzero.

Proposition 2.40 Let X be an alphabet, let X be a complexr Fuclidean
space, and let p : ¥ — Pos(X) be a projective measurement. The set

{p(a) : a € X} (2.232)
is an orthogonal set.

Proof As p is a measurement, it holds that

> p(a) =1y, (2.233)
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and therefore this sum must square to itself:

> ula)u(b) = (z u(a)> =" ula) (2.234)

a,bexs a€Y a€Xl

Because each operator u(a) is a projection operator, it follows that

> ul@u®) = pa)+ Y pla)ub), (2.235)

a,bex aEX a,beys
a#b

and therefore

> wla)u(b) = 0. (2.236)

a,bex
a#b

Taking the trace of both sides of this equation yields

> {ula), u(b)) = 0. (2.237)

a,bex

a#b
The inner product of any two positive semidefinite operators is nonnegative,
and therefore (u(a), (b)) = 0 for all a,b € ¥ with a # b, which completes
the proof. O

For any orthonormal basis {z, : a € X} of a complex Euclidean space
X = C*, the measurement 1 : ¥ — Pos(X) defined as

pla) = xqx), (2.238)

for each a € ¥ is an example of a projective measurement. A measurement
of this sort is known more specifically as a complete projective measurement.
This is the measurement that is commonly referred to as the measurement
with respect to the basis {xq : a € X}.

Example 2.41 Let ¥ be an alphabet and let X = C*. The measurement
with respect to the standard basis of X is the measurement p : > — Pos(X)
defined as

#(@) = Eua (2.230)

for each a € X. For a given state p € D(X), the probability associated
with each measurement outcome a € >, were this state to be measured
according to p, is equal to the corresponding diagonal entry p(a,a). One
may also observe that the quantum-to-classical channel associated with this
measurement is the completely dephasing channel A € C(&X).
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The following theorem, known as Naimark’s theorem, establishes a link
between arbitrary measurements and projective measurements. It implies
that any measurement can be viewed as a projective measurement on a
compound register that includes the original register as a subregister.

Theorem 2.42 (Naimark’s theorem) Let X' be a complex Euclidean space,
let X be an alphabet, let 1 : X — Pos(X) be a measurement, and let ) = C*.
There exists an isometry A € U(X, X ® V) such that

pla) =A"(1y ® Eqq)A (2.240)
for every a € 3.
Proof Define an operator A € L(X, X ® )) as

A=) /ua) ®eq. (2.241)

acX
It holds that
A*A =) pla) =1y, (2.242)
aEX

and therefore A is an isometry. The required equation (2.240) holds for each
a € Y, so the proof is complete. ]

Corollary 2.43 Let X be a complex Fuclidean space, let 32 be an alphabet,
and let p : X — Pos(X) be a measurement. Also let Y = C* and let u € Y
be a unit vector. There exists a projective measurement v : ¥ — Pos(X ® ))
such that

(v(a), X @ uu*) = (u(a), X) (2.243)
for every X € L(X).

Proof Let A€ U(X,X ®)) be the isometry whose existence is implied by
Theorem 2.42. Choose U € U(X ® )) to be any unitary operator for which
the equation

Ully®u) = A (2.244)
is satisfied, and define v : ¥ — Pos(X ® )) as
v(a) =U"(1x ® Eg0)U (2.245)

for each a € 3. It holds that v is a projective measurement, and moreover

(w(a), X @ uw*) = (Ly @ uw)U*(Ly ® Bao)U(Ly ®u), X)

= (A*(1x ® Eu0)A, X) = (u(a), X) (2.246)

for each a € X, as required. L]
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Information-complete measurements

States of registers are uniquely determined by the measurement statistics
they generate. More precisely, the knowledge of the probability associated
with every outcome of every measurement that could be performed on a
given register is sufficient to obtain a description of that register’s state. In
fact, something stronger may be said, which is that there exist choices of
measurements that uniquely determine every possible state of a register by
the measurement statistics that they alone generate. Such measurements,
which are known as information-complete measurements, are characterized
by the property that their measurement operators span the entire space of
operators from which they are drawn.

In more explicit terms, a measurement g : ¥ — Pos(X’) on a complex
Euclidean space X is said to be an information-complete measurement if it
holds that

span{u(a) : a € ¥} = L(X). (2.247)

For any such measurement, and for any choice of p € D(X), it holds that the
probability vector p € P(X) defined by p(a) = (u(a), p) uniquely determines
the state p. This fact is evident from the following proposition.

Proposition 2.44 Let > be an alphabet, let X be a complexr Fuclidean
space, and let {Ay : a € ¥} C L(X) be a collection of operators for which

span{A, : a € ¥} = L(X). (2.248)
The mapping ¢ : L(X) — C* defined by
(9(X))(a) = (Aq, X), (2.249)
for each X € L(X) and a € ¥, is an injective mapping.
Proof Let X,Y € L(X) satisfy ¢(X) = ¢(Y), so that
(A0, X —Y) =0 (2.250)

for every a € ¥. As {A, : a € X} spans L(X), it follows by the conjugate
linearity of the inner product that

(Z,X-Y)=0 (2.251)

for every Z € L(X), and consequently X —Y = 0, which completes the
proof. L]

The following example provides one way of constructing information-
complete measurements, for any choice of a complex Euclidean space.
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Example 2.45 Let ¥ be an alphabet, let X = C>, and let
{pap : (a,b) € ¥ x X} C D(X) (2.252)

be a collection of density operators that spans all of L(X'). One such set was
constructed in Example 2.7. Also define

Q=Y. pap (2.253)

(a,b)eXXT

and observe that () is necessarily positive definite; if this were not so, there
would exist a nonzero vector u € & satisfying (p,p, uu*) = 0 for each pair
(a,b) € ¥ x ¥, in contradiction with Proposition 2.44. It may be verified
that the function p : ¥ x ¥ — Pos(X), defined by

n(a,b) = Q 2p, Q3 (2.254)

for each (a,b) € 3 x X, is an information-complete measurement.

Nondestructive measurements and instruments

It is convenient in some situations to consider an alternative definition of
measurements that does not dictate that registers are destroyed upon being
measured. Instead, a measured register is left in some particular state that
depends both on its initial state and on the measurement outcome obtained.
More generally, one may consider that the measured register is transformed
into another register as a result of the measurement process.

One specific alternative definition, which is frequently taken as the
definition of a measurement by other authors, describes such a process by a
collection

{M, : a € ¥} C LX), (2.255)

where Y is the alphabet of measurement outcomes and X is the complex
Fuclidean space corresponding to the register being measured, such that the
constraint

z MM, =1y (2.256)
a€Y

is satisfied. When this form of measurement is applied to a register X in a

given state p € D(X), two things happen:

1. An element of ¥ is selected at random, with each outcome a € ¥ being
obtained with probability (M} M,, p).
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2. Conditioned on the measurement outcome a € ¥ having been obtained,
the state of the register X becomes
MapM,

T (2.257)

Measurements of this sort will be referred to as nondestructive measurements
in this book.

A somewhat more general notion of a measurement is described by a
collection

{0, : a €} C CP(X,)), (2.258)

where Y is the measurement outcome alphabet, X is the complex Euclidean
space corresponding to the register that is measured, and ) is an arbitrary
complex Euclidean space. In this case, these mappings must necessarily sum
to a channel:
> @, €C(X,Y). (2.259)
a€eX
When this form of measurement is applied to a register X in a given state
p € D(X), two things happen:

1. An element of ¥ is selected at random, with each outcome a € ¥ being
obtained with probability Tr(®,(p)).

2. Conditioned on the measurement outcome a € ¥ having been obtained,
X is transformed into a new register Y having state

Du(p)
Tr(®a(p))

The generalized notion of a measurement obtained in this way is called

(2.260)

an instrument (or a quantum instrument). Nondestructive measurements of
the form (2.255) may be represented by instruments of the form (2.258) by
defining

Bo(X) = My X M? (2.261)

for each a € X.

Processes that are expressible as instruments, including nondestructive
measurements, can alternatively be described as compositions of channels
and (ordinary) measurements. Specifically, for a given instrument of the form

(2.258), one may introduce a (classical) register Z having classical state set
Y., and define a channel ® € C(X,Z® )Y) as

O(X) =D Eaq® Pe(X) (2.262)
aex
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for every X € L(X). The fact that ® is indeed a channel follows directly
from the constraints placed on a function of the form (2.258) that must be
satisfied for it to be considered an instrument: the complete positivity of the
collection of mappings {®, : a € ¥} implies that ® is completely positive,
while the condition (2.259) implies that ® preserves trace.

Now, if such a channel ® is applied to a register X, and then the register
Z is measured with respect to the standard basis of Z, the distribution of
measurement outcomes, as well as the corresponding state of Y conditioned
on each possible outcome, is identical to the process associated with the
instrument (2.258), as described above.

2.3.3 FExtremal measurements and ensembles

Measurements and ensembles may be regarded as elements of convex sets
in a fairly straightforward way. A characterization of the extreme points of
these sets is obtained below.

Convexr combinations of measurements

For X being a complex Euclidean space and . being an alphabet, one may
take convex combinations of measurements of the form p : 3 — Pos(&) in
the following way. For an alphabet I', a probability vector p € P(I'), and a
collection {py, : b € I'} of measurements taking the form pp : ¥ — Pos(X)
for each b € I', one defines the measurement

p="> pb)m (2.263)

bel

by the equation

p(a) = p(b)u(a) (2.264)
bel’
holding for all a € . Equivalently, such a convex combination is taken with
respect to the most straightforward way of regarding the set of all functions
of the form 0 : ¥ — Herm(X') as a vector space over the real numbers.
An equivalent description of this notion may be obtained through the
identification of each measurement p : ¥ — Pos(X) with its corresponding
quantum-to-classical channel

(I),U(X) = Z<M(a)7X>Ea,a- (2'265)
aeXx

Convex combinations of measurements then correspond to ordinary convex
combinations of their associated channels.
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The measurement described by the convex combination (2.263) may be
viewed as being equivalent to a process whereby b € I' is chosen according
to the probability vector p, and the measurement p; is performed for the
chosen symbol b € T". The outcome of the measurement py; is taken as the
output of the new measurement, while the symbol b € T" is discarded.

Extremal measurements

As was established by Proposition 2.38, the set of all quantum-to-classical
channels is compact and convex. A measurement is said to be an extremal
measurement if its corresponding quantum-to-classical channel corresponds
to an extreme point of this set. The definition below states this condition
in concrete terms. A characterization of extremal measurements is provided
by the theorem that follows.

Definition 2.46 Let X be an alphabet and let X be a complex Euclidean
space. A measurement p : ¥ — Pos(X) is an extremal measurement if, for all
choices of measurements pg, p1 : X — Pos(X) satisfying p = Ao+ (1—A)pq
for some real number A € (0,1), one has g = p1.

Theorem 2.47 Let X be a complex Fuclidean space, let X2 be an alphabet,
and let p : 3 — Pos(X) be a measurement. It holds that p is an extremal
measurement if and only if, for every function 0 : X — Herm(X') satisfying

> 0(a)=0 (2.266)
a€eX

and im(0(a)) C im(u(a)) for every a € X, one necessarily has that 0 is
identically zero: 6(a) =0 for each a € X.

Proof The theorem will be proved in the contrapositive form. Assume first
that p is not an extremal measurement, so there exist distinct measurements
o, p1 = X — Pos(X) and a scalar value A € (0, 1) for which

p = Ao + (1 — \)pus. (2.267)

It follows that distinct measurements v, v : 3 — Pos(X) exist for which

p="2 _g =y (2.268)

In particular, one may set
vo =2 o+ (1 =2\ and vy = g, if A <1/2;

(2.269)
vo=mpo and vy =2A\—1)po+ (2—2N)u1, ifA>1/2.
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Define 0 : ¥ — Herm(X) as 0(a) = vp(a) — v1(a) for each a € . It holds
that

D 0(a) =) wla)— ) wna) =1y —1x=0. (2.270)

a€d aeX aeX
Moreover,

im(f(a)) € im(vy(a)) +im(vi(a)) = im(u(a)) (2.271)

for each a € 3, where the equality is a consequence of the facts that vy(a)
and v (a) are positive semidefinite and p(a) = (vp(a) + v1(a))/2. Finally,
given that vg and 1 are distinct, it is not the case that 6 is identically zero.
Now assume that 6 : ¥ — Herm(X') is a function that is not identically
zero, and that satisfies
> 0(a)=0 (2.272)
acy
and im(f(a)) C im(u(a)) for every a € X. For each a € ¥, there must exist
a positive real number ¢, > 0 for which

p(a) +e4,60(a) >0 and p(a) —eqlf(a) >0, (2.273)

by virtue of the fact that p(a) is positive semidefinite and 6(a) is a Hermitian
operator with im(f(a)) C im(u(a)). Let

e =min{e, : a € ¥} (2.274)

and define
o =p—el and pp = p+e6. (2.275)

It is evident that u = (uog + p1)/2. As 6 is not identically zero and ¢ is
positive, it holds that pg and p; are distinct. Finally, it holds that pg and
(1 are measurements: the assumption (2.272) implies that

> no(a) =Y m(a) =) pla) =1y (2.276)

acy acEX aceX

while the inequalities (2.273) imply that the measurement operators pg(a)
and p1(a) are positive semidefinite for each a € X. It has therefore been
established that p is not an extremal measurement, which completes the
proof. ]

Theorem 2.47 has various implications, including the corollaries below.
The first corollary makes the observation that extremal measurements can
have at most dim(X)? nonzero measurement operators.
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Corollary 2.48 Let X be a complex Fuclidean space, let 32 be an alphabet,
and let p : ¥ — Pos(X) be a measurement. If p is an extremal measurement,
then

[{a € X : p(a) # 0} < dim(X)2. (2.277)
Proof The corollary will be proved in the contrapositive form. Let
I'={ae¥ : ula)# 0}, (2.278)

assume that |I'| > dim(X)?, and consider the collection of measurement
operators {u(a) : a € I'} as a subset of the real vector space Herm(X'). By
the assumption |T'| > dim(X)?, it must hold that the set {u(a) : a € T'}
is linearly dependent, and therefore there exist real numbers {a, : a € '},
not all of which are zero, so that

> agu(a) = 0. (2.279)

acl’

Define a function 6 : ¥ — Herm(X') as

_ Jagu(a) ifael
0(a) = {0 fogr (2.280)

It holds that 6 is not identically zero, and satisfies

> 0(a)=0 (2.281)

acY

and im(f(a)) C im(u(a)) for every a € ¥. By Theorem 2.47, measurement g
is therefore not an extremal measurement, which completes the proof. [

Corollary 2.48, together with Proposition 2.38 and Theorem 1.10, implies
the following corollary.

Corollary 2.49 Let X be a complex Fuclidean space, let 32 be an alphabet,
and let p : X — Pos(X) be a measurement. There exists an alphabet T', a
probability vector p € P(T'), and a collection of measurements {up : b € '},
taking the form uy : 3% — Pos(X) and satisfying

[{a €% : pp(a) # 0} < dim(X)? (2.282)
for each b € T, such that

p="> pb)um. (2.283)
bel
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For measurements whose measurement operators all have rank equal to
one, Theorem 2.47 yields a simple criterion for extremality, as represented
by the following corollary.

Corollary 2.50 Let X be a complex Fuclidean space, let 32 be an alphabet,
and let {xq : a € ¥} C X be a collection of nonzero vectors satisfying

> wawh =1x. (2.284)
acX
The measurement p : ¥ — Pos(X) defined by pu(a) = xqx) for each a € X
is an extremal measurement if and only if {x.x} : a € ¥} C Herm(X) is a
linearly independent set.

Proof The corollary follows from Theorem 2.47, together with the fact that
a Hermitian operator H € Herm(X') and a vector u € X satisfy the condition
im(H) C im(uu*) if and only if H = auu* for some o € C. O

Another implication of Theorem 2.47 is that projective measurements are
necessarily extremal.

Corollary 2.51 Let X be a complex Fuclidean space, let 32 be an alphabet,
and let p : ¥ — Pos(X) be a projective measurement. It holds that p is an
extremal measurement.

Proof Let 6 :% — Herm(X') be a function satisfying

> 6(a) =0 (2.285)
acy
and im(f(a)) C im(u(a)) for every a € 3. For each b € X, it therefore holds
that
> pu(b)b(a) =0. (2.286)
acy
By Proposition 2.40, the collection {u(b) : b € X} is orthogonal. Therefore,
every vector in the image of #(a) must be orthogonal to every vector in the
image of u(b) whenever a # b, so that

{e(a) ifa=b

p(b)f(a) = (2.287)

0 if a # 0.
It follows that #(b) = 0 for every b € X, and therefore the function 6 is

identically zero. As this is so for every choice of 6, as described above, it
follows from Theorem 2.47 that u is an extremal measurement. U
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Convex combinations of ensembles of states

Convex combinations of ensembles of states may be defined in essentially
the same way that convex combinations of measurements are defined. That
is, if X is a complex Euclidean space, ¥ and I" are alphabets, p € P(T') is a
probability vector, and

my : X — Pos(X) (2.288)

is an ensemble of states for each b € I', then the function 7 : ¥ — Pos(X)
defined by

n(a) =>_ p(b)m(a) (2.289)

bel

for every a € X is also an ensemble. One writes

n=>_pbm (2.290)
bel

in this situation. If a density operator p, € D(&X'), representing the average
state of the ensemble 7, is defined as

pp =Y m(a) (2.291)

a€EX

for each b € T', then it must hold that the average state of the ensemble 7 is
given by

> nla) =Y p(b)ps. (2.292)

a€l’ bel

It is straightforward consequence of the spectral theorem (as represented
by Corollary 1.4) that the extreme points of the set of all ensembles of the
form 7 : ¥ — Pos(X) take a simple form; they are the ensembles 1 that are
defined as

* ifa=b
n(a) = wena (2.293)
0 if a # b,

for some choice of a unit vector u € X and a symbol b € 3.

In some situations, however, it is appropriate to consider just the subset
of ensembles of the form 7 : ¥ — Pos(X) that have a particular average
state p. This set possesses essentially the same convex structure as the set of
measurements of the same form. The following proposition establishes one
useful fact along these lines.
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Proposition 2.52 Let n: X — Pos(X) be an ensemble, for X a complex
FEuclidean space and Y an alphabet, and let

p=">Y_nla). (2.294)
acX
There exists an alphabet T' and a collection of ensembles {ny : b € I'} taking
the form ny : X2 — Pos(X) so that the following properties are satisfied:

1. For each b € ', the average state of ny is p:

> mla) = p. (2.295)

aeXx
2. For each b € ', it holds that

[{a € 2 : my(a) # 0}| < rank(p)?. (2.296)

3. The ensemble n is a convex combination of the ensembles {m, : b € I'}.
FEquivalently, it holds that

n=7_ pbm (2.297)
bel’
for some choice of a probability vector p € P(T).
Proof Let ) be a complex Euclidean space satisfying dim()) = rank(p),
and let A € L(), X) be an operator satisfying AA* = p. Such an operator A

must necessarily satisfy ker(A) = {0} and im(A) = im(p). For each a € X,
it holds that

im(n(a)) C im(p) = im(A). (2.298)

By Lemma 2.30, one may therefore conclude that there exists a positive
semidefinite operator @), € Pos()) such that

n(a) = AQ, A", (2.299)

for each a € X..
Now define p: ¥ — Pos()) as p(a) = Q, for each a € X. As

AA* =p = Z n(a) = A(Z ,u(a)) A*, (2.300)

acy® agl

the fact that ker(A) = {0} implies that
3" la) = 1y, (2.301)
acy

and therefore u is a measurement.
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By Corollary 2.49, there exists an alphabet I', a collection of measurements
{mp : b € I'} taking the form pp : ¥ — Pos()) and satisfying

[{a €% : pp(a) # 0} < dim(P)? (2.302)
for each b € T', and a probability vector p € P(I"), such that
p="> p(b)m. (2.303)
bel’

Define a function 7 : ¥ — Pos(X) for each b € T" as
my(a) = App(a)A* (2.304)

for each a € X. It is evident that each 7, is an ensemble whose average state
is p, by virtue of the fact that each puy is a measurement, and the requirement
(2.296) follows directly from (2.302). Finally, one has

> p(b)m(a (ZP fp(a )A* = Ap(a)A™ =n(a) (2.305)

bel’ bell

for each a € X, and therefore (2.297) holds, which completes the proof. [J

2.4 Exercises

Exercise 2.1 Let X be an alphabet, let X be a complex Euclidean space,
and let ¢ : Herm(X) — R* be a linear function. Prove that these two
statements are equivalent:

1. It holds that ¢(p) € P(X) for every density operator p € D(X).
2. There exists a measurement p : ¥ — Pos(X) such that

(¢(H))(a) = (pu(a), H) (2.306)
for every H € Herm(X') and a € X.

Exercise 2.2 Let X and ) be complex Euclidean spaces, let > be an
alphabet, and let 1 : ¥ — Pos(X) be an ensemble of states. Suppose further
that u € X ® Y is a vector such that

Try(uu*) = > n(a (2.307)
a€X

Prove that there exists a measurement p : % — Pos())) such that

n(a) = Try((Ly ® ua))uu”) (2.308)

for all a € X.
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Exercise 2.3 Let ® € CP(X,)) be a nonzero completely positive map,
for X and ) being complex Euclidean spaces, and let r = rank(J(®)) be
the Choi rank of ®. Prove that there exists a complex Euclidean space Z
having dimension r, along with an operator A € L(X ® Z,))), such that

O(X)=A(X @ 1z)A* (2.309)

for all X € L(X). Give a simple equation involving the operator A that is
equivalent to ® preserving trace.

Exercise 2.4 Let X and ) be complex Euclidean spaces, let ® € T(X,))
be a positive map, and let A € C()) denote the completely dephasing
channel with respect to the space ). Prove that A® is completely positive.

Exercise 2.5 Let ® € C(X ® Z,)Y ® W) be a channel, for complex
FEuclidean spaces X', )V, Z, and W. Prove that the following two statements
are equivalent:

1. There exists a channel ¥ € C(X,)) such that
Tryw (J(®)) = J(¥) @ 1 2. (2.310)

2. There exists a complex Euclidean space V with dim(V) < dim(X ® )),
along with channels &5 € C(X,Y®V) and ®; € C(V® Z,W), such that

® = (L) ® B1)(Bo ® Liz)). (2.311)
Exercise 2.6 Let X, ), Z, and W be complex Euclidean spaces.
(a) Prove that every operator P € Pos() ® X) satisfying the equation
(P, J(®)) =1 (2.312)
for every channel ® € C(X,)) must take the form
P=1y®p (2.313)

for some choice of p € D(X).

(b) Let Z € CP(Y®@ X, W® Z) be a completely positive map for which the
following statement holds: for every channel ® € C(X,)), there exists
a channel ¥ € C(Z,W) such that

E(J(P)) = J(P). (2.314)
Prove that there must exist a unital map A € CP(X, Z) such that
Tryy (S(X)) = A(Try(X) (2.315)
forall X e L(Y ® X).
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(c) Let 2 € CP(Y ®@ X, W ® Z) be a completely positive map satisfying
the same requirement as described in part (b). Prove that there exist
channels g € C(Z,XY® V) and E; € C(Y ® V, W), for some choice of a
complex Euclidean space V, for which the following property holds: for
every channel ® € C(X,)), the channel ¥ € C(Z,WW) that is uniquely
determined by (2.314) is given by

2.5 Bibliographic remarks

The theory of quantum information represents a mathematical formulation
of certain aspects of quantum physics, particularly aspects relating to the
storage and processing of information in abstract physical systems. While
the history of quantum physics is not within the scope of this book, it is
appropriate to mention that the mathematical theory discussed in this book
is rooted in the work of the many physicists who first developed that field,
including Planck, Einstein, Bohr, Heisenberg, Schrodinger, Born, Dirac, and
Pauli. Much of this work was placed on a firm mathematical foundation by
von Neumann’s Mathematical Foundations of Quantum Mechanics (1955).

The description of quantum states as density operators was independently
proposed by von Neumann (1927b) and Landau (1927), a notion equivalent
to that of quantum channels was proposed by Haag and Kastler (1964), and
the definition of measurements adopted in this book was proposed by Davies
and Lewis (1970). The importance of this definition of measurements was
articulated by Holevo (1972, 1973b,c,d); earlier formulations of the theory
considered only projective measurements. The books of Helstrom (1976) and
Kraus (1983) further refined these key foundational aspects of the theory of
quantum information.

Further information on the history of quantum information can be found
in the books of Peres (1993), Nielsen and Chuang (2000), and Wilde (2013),
which are also indispensable references on the theory itself. Kitaev, Shen,
and Vyalyi (2002) and Bengtsson and Zyczkowski (2006) also describe the
mathematical formalism that has been presented in this chapter, and include
discussions of some specific topics connected with quantum information and
computation.

The Choi representation is so-named for Choi (1975), who characterized
completely positive maps (as represented by the equivalence of statements
1 and 3 in Theorem 2.22). Theorem 2.31 was proved in the same paper. A
similar representation to the Choi representation was used earlier by de Pillis
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(1967) and Jamiotkowski (1972), and there are arguments to be made for
the claim that the representation may be considered as folklore.

Theorem 2.22 is an amalgamation of results that are generally attributed
to Stinespring (1955), Kraus (1971, 1983), and Choi (1975). Stinespring
and Kraus also proved more general results holding for infinite-dimensional
spaces; Theorem 2.22 presents only the finite-dimensional analogues of the
results they proved. (Several theorems to be presented in this book have
a similar character, often having originally been proved in the setting of
C*-algebras, as compared with the simpler setting of complex Euclidean
spaces.) Theorems 2.25 and 2.26 include equivalences that may be derived
from the work of de Pillis (1967) and Jamiotkowski (1972), respectively.

Theorem 2.42 is a simplified variant of a theorem commonly known as
Naimark’s theorem (or Naimark’s dilation theorem). A more general form of
this theorem, holding for certain infinite-dimensional spaces and measure-
theoretic formulations of measurements having infinitely many outcomes,
was proved by Naimark (1943), whose name is sometimes alternatively
transliterated as Neumark. This theorem is now commonly viewed as
being a direct consequence of the later work of Stinespring mentioned above.

The characterization of extremal measurements given by Theorem 2.47 is
equivalent to one obtained by Parthasarathy (1999). Results equivalent to
Corollaries 2.48, 2.50, and 2.51 were observed in the same paper. The fact
that projective measurements are extremal (Corollary 2.51) was also proved
earlier by Holevo (1973d).

Exercise 2.2 is representative of a fact first proved by Hughston, Jozsa, and
Wootters (1993). The fact represented by Exercise 2.5 is due to Eggeling,
Schlingemann, and Werner (2002), answering a question raised by Beckman,
Gottesman, Nielsen, and Preskill (2001) (who credit DiVincenzo for raising
the question). Gutoski and Watrous (2007) and Chiribella, D’Ariano, and
Perinotti (2009) generalized this result to quantum processes having inputs
and outputs that alternate for multiple steps. Exercise 2.6 is representative
of a related result of Chiribella, D’Ariano, and Perinotti (2008).
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Similarity and distance among states and channels

The main focus of this chapter is on quantifiable notions of similarity and
distance between quantum states, the task of discrimination among two or
more quantum state alternatives, and related notions involving channels.

There are three main sections of the chapter, the first of which discusses
the task of discrimination between pairs of quantum states, its connection
to the trace norm, and generalizations of this task to more than two states.
The second section introduces the fidelity function and describes some of
its basic properties, formulations, and connections to other concepts. The
third section discusses the completely bounded trace norm, which is a natural
analogue of the trace norm for mappings between spaces of operators, and
establishes a connection between this norm and the task of discrimination
between pairs of quantum channels.

3.1 Quantum state discrimination

It is a natural question to ask how well a given collection of quantum states
can be discriminated by means of a measurement. The hypothetical task of
state discrimination serves as an abstraction through which this question
may be considered.

In the simplest formulation of the state discrimination task, one of two
known quantum states is selected at random, and a register prepared in
that state is made available to a hypothetical individual. This individual’s
goal is to determine, by performing a measurement on the given register,
which of the two states was selected. A theorem known as the Holevo—
Helstrom theorem gives a closed-form expression, based on the trace norm
of a weighted difference between the two possible states, for the probability
that an optimally chosen measurement correctly identifies the selected state.
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An explicit description of an optimal measurement may be obtained from
the proof of this theorem.

State discrimination may also be considered in the situation where more
than two states are to be discriminated. An analysis of this task is more
difficult than the two-state case, and a simple, closed-form expression for the
optimal success probability to discriminate three or more given states is not
known in general. It is possible, however, to represent this optimal success
probability through the use of semidefinite programming, which provides a
valuable analytical tool through which state discrimination may be analyzed.
Approximate solutions, together with bounds on their performance, are also
considered.

3.1.1 Discriminating between pairs of quantum states

The task of discriminating between two fixed quantum states pg, p1 € D(X)
of a given register X is the simplest form of the state discrimination task.
A key aspect of the analysis of this task that follows is that it establishes a
close connection between state discrimination and the trace norm. Somewhat
more generally, one finds that the trace norm provides a natural way of
quantifying the “measurable difference” between two quantum states.

Discriminating between pairs of probabilistic states

Before discussing the task of state discrimination between pairs of quantum
states, it is appropriate to consider an analogous problem for probabilistic
states. To this end, consider the following scenario involving two hypothetical
individuals: Alice and Bob.

Scenario 3.1 Let X be a register with classical state set > and let Y be
a register with classical state set {0,1}. Both X and Y are to be viewed
as classical registers in this scenario. Also let pg,p; € P(X) be probability
vectors, representing probabilistic states of X, and let A € [0,1] be a real
number. The vectors pg and pq, as well as the number A\, are assumed to be
known to both Alice and Bob.

Alice prepares the register Y in a probabilistic state, so that its value is 0
with probability A and 1 with probability 1 — A. Conditioned on the classical
state of Y, Alice performs one of the following actions:

1. If Y = 0, Alice prepares X in the probabilistic state pg.
2. If Y =1, Alice prepares X in the probabilistic state pj.

The register X is then given to Bob.
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Bob’s goal is to correctly determine the value of the bit stored in Y, using
only the information he can gather from an observation of X.

An optimal strategy in this scenario for Bob, assuming that he wishes to
maximize the probability of correctly guessing the value stored in Y, may
be derived from Bayes’ theorem, which implies

_ _ . )\po(b)
Pdv_mx_w—gwdm+u—xmﬂm .
Pr(Y = 1|X = b) = (1= A)p1(b)

Apo(b) + (1 = A)p1(b)
for each b € Y. Given the knowledge that X = b, Bob should therefore choose
the more likely value for Y: if it holds that Apg(b) > (1 — \)p1(b), then Bob
should guess that Y = 0, while if Apg(b) < (1 — A)p1(b), then Bob should
guess that Y = 1. In the case that Apg(b) = (1 — A)p1(b), Bob can guess
either Y = 0 or Y = 1 arbitrarily without affecting his probability of being
correct, as the two values are equally likely in this situation.

The probability that Bob correctly identifies the value stored in Y using
this strategy can be understood by first considering the probability he is
correct minus the probability he is incorrect. This difference in probabilities
is represented by the quantity

> [ Apo(b) = (1 = X)p1(d)] = || Apo — (1 = M1 ], (3.2)

bex
It follows that the probability that Bob is correct is given by the quantity
S+ 5 lAn0— (1= Xl (3.3)

This expression makes clear the close connection between probabilistic state
discrimination and the vector 1-norm.
Notice that

0< [[Apo— (1 —=Np |, <1, (3.4)
where the second inequality follows from the triangle inequality. This is

consistent with the interpretation of the expression (3.3) as a probability. In
an extreme case where

|Apo — (1= Npu ], = 0. (3.5)

which requires A = 1/2 and py = p1, Bob is essentially reduced to guessing
arbitrarily and will be correct with probability 1/2. In the other extreme,

[Apo — (1= N)p1 ||, =1, (3.6)
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it must hold that Apg and (1 — \)p; have disjoint supports, and thus Bob can
determine the value of Y without error. Intermediate values, in which both
inequalities in (3.4) hold strictly, correspond to different degrees of certainty
in Bob’s guess.

Discriminating between pairs of quantum states

The task of discriminating between pairs of quantum states is represented
by the following scenario, which is the natural quantum generalization of
Scenario 3.1.

Scenario 3.2 Let X be a register and let Y be a register having classical
state set {0,1}. The register Y is to be viewed as a classical register, while
X is an arbitrary register. Also let pg,p1 € D(X) be states of X, and let
A € [0,1] be a real number. The states pg and p1, as well as the number A,
are assumed to be known to both Alice and Bob.

Alice prepares the register Y in a probabilistic state, so that its value is 0
with probability A and 1 with probability 1 — . Conditioned on the classical
state of Y, Alice performs one of the following actions:

1. If Y = 0, Alice prepares X in the state pg.
2. If Y =1, Alice prepares X in the state p;.

The register X is then given to Bob.
Bob’s goal is to correctly determine the binary value stored in Y, by means
of a measurement of X.

The main goal of the discussion that follows is to establish an analogous
connection between this scenario and the trace norm to the one between
Scenario 3.1 and the vector 1-norm discussed above. The following lemma,
which happens to concern the spectral norm rather than the trace norm,
is useful for establishing this connection. The lemma is stated in greater
generality than is required for the purposes of the present section, but the
more general form will find uses elsewhere in this book.

Lemma 3.3 Let X be a complex Euclidean space, let Y2 be an alphabet,
let u € C* be a vector, and let {P, : a € ¥} C Pos(X) be a collection of
positive semidefinite operators. It holds that

Z u(a)P,

aEX

< Jlufloe . (3.7)

2 Fa

a€Yl
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Proof Define an operator A € L(X, X ® (CE) as
A= VP ®e,. (3.8)
a€eY

The spectral norm is submultiplicative with respect to compositions and
multiplicative with respect to tensor products, and therefore

S u(a) Pl =) u@)A*(1x ® Ea’a)AH
ISPy ac® (3 9)
<A Y- w(@) Eaal|[ 1A = [lullooll Al
acX

By the spectral norm property (1.178), one has
IAI? = A" Al = || >_ P, (3.10)

aeXx
which completes the proof. ]

A direct connection between Scenario 3.2 and the trace norm can now
be established. The next theorem, known as the Holevo—Helstrom theorem,
expresses this connection in mathematical terms.

Theorem 3.4 (Holevo-Helstrom theorem) Let X' be a complex Euclidean
space, let po, p1 € D(X) be density operators, and let A € [0,1]. For every
choice of a measurement p : {0,1} — Pos(X), it holds that

Ap(0), po) + (L= (1), 1) < 5 + 50— (0= N, (311)

Moreover, there exists a projective measurement p : {0,1} — Pos(X) for
which equality is achieved in (3.11).

Proof Define
p=Xpo+ (1—=X)p1 and X = Apg— (1 —A)p1, (3.12)

so that

)\,00 = (313)

and therefore
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By Lemma 3.3, together with the Holder inequality for Schatten norms, it
follows that

S+ 50— u(1), X)
T L (3.15)
< 5+ s lu®) —nIIX I < 5+ 51X

Combining (3.14) and (3.15) yields (3.11).
To show that equality is achieved in (3.11) for a projective measurement
p:{0,1} — Pos(&X'), one may consider the Jordan—-Hahn decomposition

X=P—-Q, (3.16)

for P,Q € Pos(X). Define i : {0,1} — Pos(X) as
1(0) = ipy and  p(l) =1 — Iiy(p), (3.17)

which is a projective measurement. It holds that
(1(0) = u(1), X) = Tr(P) + Tr(Q) = [ X |1, (3.18)

and therefore
1 1

Ap(0), po) + (1= () pr) = 5 + 51X (3.19)
which completes the proof. O

It follows from Theorem 3.4 that an optimal choice of a measurement for
Bob in Scenario 3.2 correctly determines the value of Y with probability

1 1
§+§”)\po— (1—)\)p1H1, (320)

and this optimal probability is achieved by a projective measurement.

One might question the implicit claim that the possible strategies for Bob
in Scenario 3.2 are exhausted by the consideration of measurements having 0
and 1 as the only possible outcomes. For instance, Bob could measure X using
a measurement with three or more outcomes, and then base his guess for the
value of Y on the measurement outcome obtained. However, no generality
is introduced by this type of strategy, or any other strategy having access
to the register X alone. Any process used by Bob to eventually produce a
binary-valued guess for the classical state of Y must define a binary-valued
measurement, and Theorem 3.4 may be applied to this measurement.

The following proposition, whose proof has some overlap with the proof of
the Theorem 3.4, establishes a useful relationship between the trace norm of
an operator and the 1-norm of a vector obtained from that operator’s inner
products with the measurement operators of any measurement.
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Proposition 3.5 Let X be a complex Euclidean space, let ¥ be an alphabet,
let u: ¥ — Pos(X) be a measurement, and let X € L(X) be an operator.
Define a vector v € C* as

v(a) = (i(a), X) (3.21)
for each a € ¥. It holds that ||v|1 < || X]||1-

Proof One has

[l = > [(ula), X) = D u(a){pu(a), X) = <Z U(a)u(a),X> (3.22)

a€EX a€EX aEX

for some choice of a vector u € C* satisfying |u(a)| = 1 for each a € ¥. By
Lemma 3.3, together with Holder’s inequality for Schatten norms, it follows
that

lofly <

> ula)p(a)

acEX

121y < [l (3.23)

as required. O

Discriminating between convex sets of quantum states

The task of state discrimination between pairs of quantum states may be
generalized to one in which two convex sets of quantum states are to be
discriminated. The following scenario describes this task in more precise
terms.

Scenario 3.6 Let X be a register and let Y be a register having classical
state set {0,1}. The register Y is to be viewed as a classical register, while
X is an arbitrary register. Also let Cy,C; C D(X) be nonempty, convex sets
of states, and let A € [0, 1] be a real number. The sets Cy and C;, as well as
the number A, are assumed to be known to both Alice and Bob.

Alice prepares the register Y in a probabilistic state, so that its value is 0
with probability A and 1 with probability 1 — A. Conditioned on the classical
state of Y, Alice performs one of the following actions:

1. If Y = 0, Alice prepares X in any state pg € Cy of her choice.
2. If Y =1, Alice prepares X in any state p; € C; of her choice.

The register X is then given to Bob.
Bob’s goal is to correctly determine the binary value stored in Y, by means
of a measurement of X.
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The description of Scenario 3.6 does not specify how Alice is to choose pg
or pi1, beyond stating the requirement that pg € Cyp and p; € C;. It could
be, for instance, that Alice chooses these states randomly according to fixed
distributions, or she could choose the states adversarially, even based on
a knowledge of the measurement Bob intends to use. What is relevant is
that Bob can make no assumptions regarding Alice’s choices for py and pq,
beyond the requirement that she chooses pg € Cp and p; € Cy.

One may note that Scenario 3.2 represents a special case of Scenario 3.6
in which Cy and C; are the singleton sets {po} and {p1}, respectively.

It follows from the Holevo—Helstrom theorem (Theorem 3.4) that Bob
cannot hope to succeed in his task in Scenario 3.6 with probability higher
than

1 1

5 T 520 ==Xl . (3.24)
for whichever states py € Cp and p; € C; Alice chooses, for this is his optimal
success probability when he has the additional knowledge that Alice chooses
either pg or p1. The following proposition implies that Bob can succeed with
probability at least

1 1
—+ — inf ||[Apg — (1 — A 2
2+2plor,lp1H po = ( )lel’ (3.25)
where the infimum is taken over all choices of pg € Cy and p; € C;. In light of
the limitation imposed by the Holevo—Helstrom theorem, this is necessarily

the optimal probability of success in the worst case.

Theorem 3.7 Let Cy,C; C D(X) be nonempty, convex sets, for X being a
complex Euclidean space, and let A € [0,1]. It holds that

max inf (A(u(0), po) + (1 — A){u(1), p1))

B po,p1
= inf max (A(1(0), po) + (1 = A){p(1), p1)) (3.26)
1 1,
=5t gt A0 = =Nl

where the infima are over all choices of pg € Cy and p1 € C1, and the mazima
are over all choices of binary measurements p : {0,1} — Pos(X).

Proof Define sets A, B C Pos(X @& X)) as

0
A= {(poo p1> D po € Co, pP1 € Cl} (3.27)



132 Similarity and distance among states and channels

and

ey 0 _ _
B = {( 0 (1—)\)P1> : Py, P| € Pos(X), Py+ P, = ]l)(}, (3.28)

as well as a function f: A x B — R as f(A,B) = (A, B). It holds that A
and B are convex, B is compact, and f is bilinear, so that

iR A8 = el S (A B) (3:29)

by Sion’s min-max theorem (Theorem 1.12). Equation (3.29) is equivalent
to the first equality of (3.26), and the second equality in (3.26) follows from
Theorem 3.4. 0

3.1.2 Discriminating quantum states of an ensemble

The remaining variant of quantum state discrimination to be discussed in
this chapter is similar to the one represented by Scenario 3.2, except that
more than two possible states, selected from a given ensemble, are to be
discriminated. The following scenario describes this task in more precise
terms.

Scenario 3.8 Let X be a register, let X be an alphabet, and let Y be a

register having classical state set >. The register Y is to be viewed as a

classical register, while X is an arbitrary register. Also let n : ¥ — Pos(X)

be an ensemble of states, assumed to be known to both Alice and Bob.
Alice prepares the pair (Y, X) in the classical-quantum state

0= FEuq®na) (3.30)
aEX

determined by the ensemble 7. Equivalently, the register Y takes each value
a € 3 with probability p(a) = Tr(n(a)), and conditioned on the event Y = a
the state of X is set to
n(a)
Tr(n(a))’
for each a € . The register X is then given to Bob.
Bob’s goal is to correctly determine the classical state stored in Y, using

(3.31)

only the information he can gather from a measurement of X.

For any measurement p : 3 — Pos(X) chosen by Bob, the probability
that he correctly predicts the classical state of Y is given by the expression

> {u(a), n(a)). (3.32)

a€Yl
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It is therefore natural to consider a maximization of this quantity over all
choices of the measurement .

More generally, one may substitute an arbitrary function of the form
¢ : ¥ — Herm(X') in place of the ensemble 7 : ¥ — Pos(X), and consider a
maximization of the quantity

> (u(a), o(a)) (3.33)

acYs

over all measurements p : 3 — Pos(X'). One situation in which this more
general optimization problem is meaningful is a variant of Scenario 3.8 in
which different payoff values are associated to each pair (a,b), representing
the state a of Alice’s register Y and Bob’s measurement outcome b. If Bob
receives a payoff value of K(a,b) for producing the measurement outcome
b when Alice’s register Y holds the symbol a, for instance, Bob’s expected
gain for a given measurement p : 3 — Pos(X) is given by

S 3 K(ab){ub).na) = 3 {ulb). 6(0)) (3.34)

ac¥ beX bex

for

6(b) = >_ K(a,b)n(a). (3.35)
acd®
This sort of hypothetical situation could be further generalized by allowing
the classical state set of Alice’s register Y and Bob’s set of measurement
outcomes to disagree.

A semidefinite program for optimal measurements

For any choice of a function ¢ : ¥ — Herm(X), for a complex Euclidean
space X and an alphabet X, define

opt(¢) = max > {ula), ¢(a)), (3.36)

acY

where the maximum is over all measurements of the form p : ¥ — Pos(X).
This optimal value is necessarily achieved for some choice of a measurement,
as it is a maximization of a continuous function over a compact set, which
justifies the use of the maximum rather than the supremum. It may also
be said that a particular choice of a measurement u is optimal for ¢ if the
above expression (3.33) coincides with the value opt(¢).

There is no closed-form expression that is known to represent the value
opt(¢) for an arbitrary choice of a function ¢ : ¥ — Herm(X'). However, it
is possible to express the value opt(¢) by a semidefinite program, providing
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a method by which it may be numerically calculated using a computer. A
simplified description of the primal and dual problems associated with such
a semidefinite program are as follows:

Primal problem (simplified)

maximize: ZaGZ(M(a)a ¢(CL)>
subject to:  p: X — Pos(X),
Zaez ILL(CL) = ]IX

Dual problem (simplified)

minimize: Tr(Y)
subject to: Y > ¢(a) (for all a € X)),
Y € Herm(X).

A formal expression of this semidefinite program that conforms to the
definition of semidefinite programs presented in Section 1.2.3 is given by the
triple (®, A, 1x), where the mapping ® € T(Y ® X, X) is defined as the
partial trace ® = Try, for J = C*, and the operator A is defined as

A=) Fuq® ¢(a). (3.37)

acX

The primal and dual problems associated with the triple (®, A, 1y) are as
follows:

Primal problem (formal)

maximize: (A, X)
subject to:  Try(X) =1,
X € Pos(Y ® X).

Dual problem (formal)

minimize: Tr(Y)
subject to: 1y ®Y > A,
Y € Herm(X).

These problems are equivalent to the simplified primal and dual problems
described above. In greater detail, any feasible solution p to the simplified
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primal problem described above gives rise to the feasible solution

X =) Eu.®p(a) (3.38)
aEX

to the formal primal problem, in which the same objective value

(4, X) = (u(a),¢(a)) (3.39)

acy

is achieved. While a feasible solution X to the formal primal problem need
not take the form (3.38) in general, one may nevertheless obtain a feasible
solution p to the simplified primal problem from such an operator X by
setting

pa) = (e ® 1x) X (ea ® 1) (3.40)

for each a € 3. The equality (3.39) again holds, and therefore the two primal
problems have the same optimal value. The fact that the two dual problems
are equivalent is evident from the observation that the inequality

ly®Y > Y Fuq® ¢(a) (3.41)
IS

is equivalent to the inequality Y > ¢(a) holding for every a € X.
Strong duality holds for this semidefinite program. The operator

1
1y ® 1y (3.42)

X ==
2

is a strictly feasible primal solution, while Y = ~1y is a strictly feasible
dual solution for any real value v > A1(A). It follows from Slater’s theorem
for semidefinite programs (Theorem 1.18) that the optimal primal and dual
values for the semidefinite program are equal, and moreover the optimum
value is achieved in both the primal and dual problems.

Criteria for measurement optimality

It may be difficult to obtain an analytic description of a measurement
p = X — Pos(X) that is optimal for a given function ¢ : ¥ — Herm(X),
given the lack of a known closed-form expression for such a measurement.
In contrast, it is straightforward to verify that an optimal measurement is
indeed optimal by means of the following theorem.
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Theorem 3.9 (Holevo—Yuen—Kennedy—Lax) Let ¢ : ¥ — Herm(X) be a
function and let p : 3 — Pos(X) be a measurement, for X being a complex
Euclidean space and Y being an alphabet. The measurement p is optimal for
the function ¢ if and only if the operator

v =Y d(a)u(a) (3.43)

acl

is Hermitian and satisfies Y > ¢(b) for every b € 3.

Proof Let Y = C* and define an operator X € Herm() ® X) as

X =) Eu.®ua) (3.44)
a€eX

Suppose first that p is an optimal measurement for ¢, so that X is an
optimal primal solution to the semidefinite program (®, A, 1y ) representing
opt(¢), as described previously. As the dual optimum of this semidefinite
program is always achieved, one may choose Z € Herm(X') to be such
a dual-optimal solution. By the property of complementary slackness for
semidefinite programs (Proposition 1.19), it necessarily holds that

(]ly &® Z)X = AX. (3.45)
Taking the partial trace of both sides of (3.45) over ), one finds that

Z =ZTry(X) =Try(AX) = > _ ¢(a)u(a) =Y. (3.46)

acEX

The operator Y is therefore dual feasible, and is therefore Hermitian and
satisfies Y > ¢(b) for every b € X.

To prove the reverse implication, one may observe that if Y is Hermitian
and satisfies Y > ¢(b) for every b € 3, then it is a dual-feasible solution
to the semidefinite program (®, A, 1) representing opt(¢). Because p is a
measurement, the operator X defined in (3.44) is primal-feasible for this
semidefinite program. The objective values achieved by X in the primal
problem and Y in the dual problem are both equal to

> _(u(a), ¢(a)). (3.47)

acY

The equality between these values implies that both are optimal by the
property of weak duality of semidefinite programs. The measurement u is
therefore optimal for ¢. 0
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The pretty good measurement

Returning to Bob’s task, as described in Scenario 3.8, suppose an ensemble
n: % — Pos(X) is given, and a measurement p : 3 — Pos(X) maximizing
the probability

> (ula),n(a)) (3.48)

acyl

of a correct determination of the state of Alice’s classical register Y is sought.

In a concrete setting in which an explicit description of 7 is known,
the semidefinite programming formulation of opt(n) allows for an efficient
numerical approximation to a measurement p that is optimal for 7. This
approach may, however, be unsatisfactory in more abstract settings, such
as ones in which it is necessary to view 7 as being indeterminate. Although
Theorem 3.9 allows for a verification that a given optimal measurement is
indeed optimal, it does not provide a method to find a measurement that is
optimal.

One alternative to searching for an optimal measurement is to consider
measurements that are determined from 7 by closed-form expressions, but
that might be sub-optimal. The so-called pretty good measurement is an
example of such a measurement.

To define the pretty good measurement for a given ensemble 7, one first
considers the average state

p=">_ nla) (3.49)
aeX
of n. In the case that p is positive definite, the pretty good measurement
associated with 7 is the measurement p : 3 — Pos(X) defined as

N[

wa) = p~2n(a)p” 2. (3.50)

In general, when p is not necessarily invertible, one may use the Moore—
Penrose pseudo-inverse of p, in place of the inverse of p, to define! the pretty

good measurement associated with 7 as
1
M(a) = p+ 77(@) P+ + Enker(p) (352)
for every a € X..

L Tt should be noted that, although the equation (3.52) is taken here as the definition of the
pretty good measurement, it is somewhat arbitrary in the case that p is not invertible. Any
measurement y : X — Pos(X) satisfying

u(a) > \/pt n(a)/pt (3.51)

for all a € X would be equivalent with respect to the discussion that follows.
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Although the pretty good measurement will generally not be optimal for
a given ensemble, it will always achieve a probability of a correct prediction
that is at least the square of the optimal success probability, as the following
theorem states.

Theorem 3.10 (Barnum—Knill) Let X be a complex Fuclidean space, let
Y be an alphabet, let n : ¥ — Pos(X) be an ensemble of states, and let

p: X — Pos(X) denote the pretty good measurement associated with n. It
holds that

> _{u(a),n(a)) = opt(n)®. (3.53)

acy
Proof Let

p=>_ na) (3.54)

a€l

and let v : ¥ — Pos(X) be a measurement. For every a € ¥ it holds that
im(n(a)) € im(p), and therefore

(v(a), n(@)) = (pir(a)pt, (%) Tn(a) (*)7). (3.55)
By the Cauchy—Schwarz inequality, it follows that
(v(a).n(a)) <| et @,

for each a € X. Applying the Cauchy—Schwarz inequality again, this time
for vectors of real numbers rather than for operators, one finds that

S vla), Jz Jz) T

acy 2

piv(a)pi (3.56)

p4 v(a) (3.57)

The first factor on the right-hand side of (3.57) is at most 1. To verify
that this is so, one may use the definition of the Frobenius norm to obtain
the expression

1 101 1
| (piv(a)ps, piv(a)pi) = (v(a), Vpv(a)y/p)  (3.58)
for each a € ¥, from which it follows that
1 12
(oot | < Tr(a(a)V) (3.59)

by virtue of the fact that v(a) < 1x and /pv(a),/p > 0. Summing over all
a € X yields

2
piv(a)pt =

< 3 Tr(ypv(a)y/p) = Tr(p) = 1. (3.60)
acy
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By the definition of the pretty good measurement, along with a similar
computation to the one expressed by (3.58), one has that

| (") (@) (o) |

2

= (Vo n@p/pt @) < wl@.n@) @)

for each a € X, and therefore

ZH (%) Fn(a) (o) , < 2_(nla),n(a)). (3.62)

a€eX a€EY

2

By (3.57), (3.60), and (3.62) it follows that

2
(Z@(a), n(a)>> < > _{ula),n(a)). (3.63)

a€eX a€EY

As this inequality holds for all measurements v : ¥ — Pos(X), including
those measurements that are optimal for n, the proof is complete. ]

3.2 The fidelity function

This section introduces the fidelity function, which provides a measure of the
similarity, or “overlap,” between quantum states (and positive semidefinite
operators more generally) that will be used extensively throughout this book.
It is defined as follows.

Definition 3.11 Let P,Q € Pos(X) be positive semidefinite operators,
for X a complex Euclidean space. The fidelity F(P, Q) between P and @ is
defined as

F(P,Q) = H\/ﬁ\/@‘jl (3.64)
The function F is called the fidelity function.

The fidelity function is most often considered for density operator inputs,
but there is value in defining it more generally, allowing its arguments to
range over arbitrary positive semidefinite operators. By expanding (3.64)
according to the definition of the trace norm, an alternative expression for
the fidelity function is obtained:

F(P,Q) = Tr( \/@P\/@>. (3.65)
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3.2.1 Elementary properties of the fidelity function

The following proposition establishes several basic properties of the fidelity
function.

Proposition 3.12 Let P,Q € Pos(X) be positive semidefinite operators,
for X a complex Fuclidean space. The following facts hold:

The fidelity function F is continuous at (P, Q).

F(P,Q) =F(Q,P).

F(AP,Q) = VAF(P,Q) = F(P,\Q) for every real number \ > 0.
F(P,Q) = F (i) Plimg), Q) = F (P, Himp)Qimp))-

F(P,Q) > 0, with equality if and only if PQ = 0.

F(P,Q)? < Tr(P) Tr(Q), with equality if and only if P and Q are linearly
dependent.

S v Lo v =

7. For every complex Euclidean space Y with dim()) > dim(X') and every
isometry V€ U(X,)), it holds that F(P,Q) = F(VPV*, VQV™).

Proof Statements 1, 2, and 3 follow immediately from the definition of the
fidelity function (Definition 3.11): the fidelity function is a composition of
continuous functions (the operator square root, operator composition, and
the trace norm), and is therefore continuous at every point in its domain; it
holds that || A||; = ||A*||1 for any choice of an operator A, and therefore

V|, = | ()] = [vevEl e

and by the positive scalability of the trace norm, one has

G N R e B

Moving on to the fourth statement, it follows from the observation

VQ = VOl = Mim) V@ (3.68)
that
VQPVQ = /Ol g) Pllim)V Q- (3.69)
Through the use of the expression (3.65), it follows that
F(P,Q) = F (I () Pl g), Q)- (3.70)

This proves the first equality in statement 4, while the second equality follows
through a combination of the first equality and statement 2.
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Statement 5 follows from the fact that the trace norm is positive definite:
H\/ﬁmHl > 0, (3.71)

with equality if and only if v/Pv/Q = 0, which is equivalent to PQ = 0.
To prove the sixth statement, observe first that, by (1.182), there must
exist a unitary operator U € U(&X") for which

r(ear = VAval =0 vEva)f = (VR

By the Cauchy—Schwarz inequality, it holds that

(vru @) < |vrol Vel =@, e

which establishes the claimed inequality in statement 6. If it is the case
that P and @) are linearly dependent, then it must hold that P = A\Q or
() = AP for some choice of a nonnegative real number A. In either case, it
is straightforward to verify that

F(P,Q)* = Tr(P) Tr(Q). (3.74)

On the other hand, if P and @) are linearly independent, then so too are
Vv PU and /Q for all unitary operators U; for if it holds that

aVPU + 8/Q =0 (3.75)
for scalars a, 8 € C, then it follows that
o]*P = |BI°Q. (3.76)

The assumption that P and @) are linearly independent therefore implies
that a strict inequality occurs in the application of the Cauchy—Schwarz
inequality in (3.73), which completes the proof of statement 6.

Finally, to prove statement 7, one may observe first that

VVPV* =VVPV* and JVQV* =V/QV* (3.77)

for every isometry V € U(X,)). By the isometric invariance of the trace
norm, it follows that

F(VPV*,VQV*) = |VVPV*V/QV* (3.78)

-l

which proves statement 7. L]

)
1



142 Similarity and distance among states and channels

Statements 5 and 6 of Proposition 3.12 imply that
0<F(p,o) <1 (3.79)

for all density operators p,o € D(X). Moreover, F(p,o) = 0 if and only if p
and o have orthogonal images, and F(p,0) = 1 if and only if p = 0.

The output of the fidelity function is given by a simple formula when one
of its input operators has rank equal to 1, as the next proposition states.

Proposition 3.13 Let X be a complex Euclidean space, let v € X be a
vector, and let P € Pos(X) be a positive semidefinite operator. It holds that

F(P,vv*) = Vv*Po. (3.80)
In particular, for every choice of vectors u,v € X, it holds that
F(uu®, vv*) = |(u, v)|. (3.81)

Proof The operator

VP VP (3.82)

is positive semidefinite and has rank at most 1. Its largest eigenvalue is
therefore

A1 (@vv*@) = Tr(@vv*@) = v*Pu, (3.83)

while its remaining eigenvalues are 0. It follows that

F(P,vv*) = Tr(\/ @UU*@) = \/M (\/ﬁvv*\/ﬁ) =Vvouv*Puv, (3.84)

as claimed. O

The following proposition is representative of another case in which the
fidelity function has a simple formula. One corollary of this proposition,
known as Winter’s gentle measurement lemma, is useful in many situations.?
Proposition 3.14 Let P, € Pos(X) be positive semidefinite operators,
for X a complex Fuclidean space. It holds that

F(P,QPQ) = (P,Q). (3.85)

2 The term gentle measurement reflects the observation that if a measurement of a particular
state yields a particular outcome with very high probability, then a non-destructive analogue
of that measurement causes only a small perturbation to the state in the event that the likely
outcome is obtained.
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Proof It holds that

VVPQPQVP =/ (VPQVP)? = VPQVP, (3.86)

and therefore

F(P,QPQ) = Tr(\/ VPQPQVP ) — Tr(\/ﬁczﬁ) =(P,Q), (3.87)

as claimed. O

Corollary 3.15 (Winter’s gentle measurement lemma) Let X' be a complex
Euclidean space, let p € D(X) be a density operator, and let P € Pos(X) be
a positive semidefinite operator satisfying P < 1x and (P,p) > 0. It holds
that

B ) 2 VP (3.88)

Proof By Proposition 3.14, along with statement 3 of Proposition 3.12, one
has

)
, JPorP

F<p, ﬁpﬁ) _ 1 F(p, VPpvVP) = (VP p) (3.89)
(P, p)

(P, p) V{P.p)
Under the assumption 0 < P < 1, it holds that VP > P, and therefore
(V'P,p) > (P, p), from which the corollary follows. O

Another simple, yet very useful, property of the fidelity function is that
it is multiplicative with respect to tensor products.

Proposition 3.16 Let Py, Qg € Pos(Xy) and Py, Q1 € Pos(Xy) be positive
semidefinite operators, for complex FEuclidean spaces Xy and Xp. It holds
that

F(Py® P1,Qo ® Q1) = F(Fy, Qo) F(P1,Q1). (3.90)

Proof Operator square roots and compositions respect tensor products,
and the trace norm is multiplicative with respect to tensor products, so

F(Po® P1,Q0® Q1) = H\/Po ® P1v/Qo ® Q1H1
|V AVl - Vva [V, s

=F(Py, Qo) F(P1,Q1),

as claimed. |
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3.2.2 Characterizations of the fidelity function

Multiple alternative characterizations of the fidelity function are known;
a selection of such alternative characterizations is presented below. Some
of these characterizations will allow for further properties of the fidelity
function to be established, or will find other uses elsewhere in this book.

Block operator characterization

The first alternative characterization of the fidelity function to be presented
is given by the following theorem. This characterization is particularly useful
for establishing relevant properties of the fidelity function, including joint
concavity in its arguments and monotonicity under the actions of channels,
as will be described in the section following this one.

Theorem 3.17 Let X be a complex Fuclidean space and let P, Q € Pos(X)
be positive semidefinite operators. It holds that

F(P,Q) = max{}Tr(X)‘ : X e L(X), <§* g) € POS(XEBX)}. (3.92)

The following lemma, which will find other uses elsewhere in this book,
will be used to prove Theorem 3.17. The lemma is stated in slightly greater
generality than is needed in the present context, in that it does not require
P and @) to act on the same space, but there is no added difficulty in proving
it with this greater generality.

Lemma 3.18 Let X and Y be complex Euclidean spaces, let P € Pos(X)
and Q € Pos()) be positive semidefinite operators, and let X € L(Y,X) be
an operator. It holds that

P X
<X* Q) € Pos(X @ )) (3.93)

if and only if X = VPK+\/Q for some choice of K € L(Y,X) satisfying
1Kl <1

Proof Suppose first that X = VPK+/Q for K € L(), X) being an operator
for which || K|| < 1. It follows that K K* < 1y, and therefore

VPKY\ VPKK*P X P X
() (5 (3
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For the reverse implication, assume

(;; g) € Pos(X @ )), (3.95)
and define
K =VPtXVQ+. (3.96)

It will be proved that X = +/PK+/Q and || K|| < 1. Observe first that, for
every Hermitian operator H € Herm(X'), the block operator

H 0 P X\(H 0\ (HPH HX (3.97)
0 1)\X* @ 0 1) \X*H Q@ '
is positive semidefinite. In particular, for H = Il (p) being the projection
onto the kernel of P, one has that the operator

0 err(P)X
3.98
(X*err(P) Q ( )

is positive semidefinite, which implies that Iy (p)X = 0, and therefore
jy(pyX = X. Through a similar argument, one finds that X1, ) = X.
It therefore follows that

VPE\/Q = Uiy py X i) = X. (3.99)
Next, note that

x*Px x*Xy ¥ 0 P X x 0
— >0 (3.100)
y' Xt yrQy 0 ¥y ) \X" Q) \0 vy
for every choice of vectors x € X and y € ). Setting

r=VPtu and y=vQtv (3.101)

for arbitrarily chosen unit vectors u € X and v € ), one finds that

1 uw*Kv w*II; Uu uw*Kv
> im(P) > .
(v*K*u 1 ) - < v K*u U*Him(Q)v> =0 (3.102)

and therefore |u*Kv| < 1. As this inequality holds for all unit vectors u and
v, it follows that || K| < 1, as required. O

Proof of Theorem 3.17 By Lemma 3.18, the expression on the right-hand
side of the equation (3.92) may be written as

max{]Tr(\/ﬁK@)] : K e L(X), | K| < 1}, (3.103)
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which is equivalent to
maX{KK VPVQ)| : K e L), K| gl}. (3.104)

By the duality of the trace and spectral norms, as expressed by (1.173), one
has

max{(<K \/_\/_>( K € L(X), ||K||§1}
-|vPval, -

which completes the proof. ]

(3.105)

Remark For any choice of operators P, € Pos(X) and X € L(X), and a
scalar « € C satisfying |a| = 1, it holds that

P X
<X* Q) € Pos(X @ X) (3.106)
if and only if
P aX
(aX* 0 ) € Pos(X @ X). (3.107)

This fact follows from Lemma 3.18. Alternatively, one may conclude that
(3.106) implies (3.107) through the equation

1 o\ /P X\ /1 o0 P aX
(0 a]l) (X* Q) (0 an):<ax* Q)’ (3.108)

while the reverse implication is obtained similarly, through the equation

1 0 P aXxX\ /(1 0Y\ P X
(0 a]l) (aX* Q)(O a]l) :<X* Q)' (3.109)

For any two positive semidefinite operators P, () € Pos(X), it therefore holds
that the fidelity F(P, Q) is given by the expression

max{%(Tr(X)) . X € L(X), (;; g) € Pos(XeBX)}, (3.110)

where R(3) denotes the real part of a complex number 8. Moreover, there
must exist an operator X € L(&X") such that

P X
(X* Q) € Pos(X @ X) (3.111)

and F(P,Q) = Tr(X).
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The characterization of the fidelity function established by Theorem 3.17
provides an expression of the fidelity F(P, Q) corresponding to the optimal
value of a semidefinite program, as will now be explained. First, define a

map € T(X ¢ X) as
Xo -\ 1(Xo 0
o )2 2 oy

for every Xo, X; € L(X), where the dots represent elements of L(X) that
have no influence on the output of this map. One may verify that the map
® is self-adjoint: & = ®*. Then, for a given choice of P,Q € Pos(X), define
Hermitian operators A, B € Herm(X @ X) as

10 1 1 (P 0

The primal and dual optimization problems associated with the semidefinite
program (@, A, B), after minor simplifications, are as follows:

Primal problem Dual problem
. 1 1 . L 1 1
maximize: Tr(X) + 5 Tr(X™) minimize: §<P, Yo) + §<Q’ Y1)
subject to: P X >0, subject to: Yo —1 >0,
X" Q -1 Y
X e L(X). Y0, Y1 € Herm(X).

The optimal primal value of this semidefinite program is equal to F(P,Q),
as it is in agreement with the expression (3.110).

The primal problem is evidently feasible, as one may simply take X = 0
to obtain a primal feasible solution. The dual problem is strictly feasible:
for any choice of Yy > 1 and Y7 > 1, one has that the operator

Y, -1
(_% Y1> (3.114)

is positive definite. Strong duality therefore follows by Slater’s theorem for
semidefinite programs (Theorem 1.18).

Alberti’s theorem

As the semidefinite program for the fidelity described above possesses the
property of strong duality, its dual optimum must be equal to the primal
optimum F(P, Q). The next theorem is a consequence of this observation.
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Theorem 3.19 Let X be a complex Fuclidean space and let P, Q € Pos(X)
be positive semidefinite operators. It holds that
1 1
F(P,Q) = inf {§<P, V)4 @Y v e Pd(X)}. (3.115)

Proof Through the use of Lemma 3.18, one may verify that the operator

Y, -1
(—(])1 Y1> (3.116)

is positive semidefinite, for a given choice of Yy, Y7 € Herm(X), if and only
if both Yy and Y7 are positive definite and satisfy Y; > Yo_l. Because @)
is positive semidefinite, it holds that (@, Y7) > (Q,YO_1> provided Yy > 0
and Y; > Yo_l, so the dual problem associated to the semidefinite program
(@, A, B) defined from P and @ as above is equivalent to a minimization of

%(P, ) + %(Q,Y—w (3.117)

over all positive definite operators Y € Pd(X). As the optimum value of the
dual problem is equal to F(P, @), the theorem follows. O

Theorem 3.19 implies the following corollary, which states a fact known
as Alberti’s theorem.?

Corollary 3.20 (Alberti’s theorem) Let X be a complex Fuclidean space
and let P,Q € Pos(X) be positive semidefinite operators. It holds that

F(P,Q)% = inf{<P,Y><Q,Y—1> Y e Pd()()}. (3.118)

Proof 1If either of P or @ is zero, the corollary is trivial, so it may be taken
as an assumption that neither P nor () is zero for the remainder of the proof.
The arithmetic-geometric mean inequality implies that

VIEYH@Y ) < LPY) + QYY) (3.119)

for every operator Y € Pd(X). By Theorem 3.19, one concludes that
nf{(P,Y)(Q,Y™!) : Y € PA(X)} <F(P,Q)% (3.120)
On the other hand, for any choice of Y € Pd(X), it holds that
VIPYNQ, YY) = \/(PaY)(Q, (aY)1) (3.121)

3 One may also prove that Corollary 3.20 implies Theorem 3.19, so the two facts are in fact
equivalent.
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for every nonzero real number o € R. In particular, for

(@ Y~1)

=\ (3.122)
which has been selected so that (P,aY) = (Q, (aY)~1), one has
VIPYNQ Y1) = /(P,aY)(Q, (aY) )
= J(PaY) + Q. (V) ) 2 F(P,Q), o
and therefore
inf {<P, YWQ, YN Ve Pd(X)} >TF(P,Q)? (3.124)
which completes the proof. 0

It is possible to prove Theorem 3.19 directly, without making use of
semidefinite programming duality, as the following proof demonstrates.

Alternative proof of Theorem 3.19 The special case in which P = ) will
be considered first. In this case, one aims to prove

1 1
inf {§<Y, PY 4y P) Y e Pd(X)} — Te(P). (3.125)
As Y =1 is positive definite, it is evident that the infimum in (3.125) is at

most Tr(P), so it suffices to prove

1 1
(V. P+ §<Y—1, P) > Tr(P) (3.126)
for every choice of Y € Pd(X). As the operator
y+Y! L/ 1 _1\2
—2 _]1_§<Y2 -Y 2> (3.127)

is the square of a Hermitian operator, it must be positive semidefinite, and
therefore
1
5<Y +Y 71 P) > (1,P) = Tr(P). (3.128)
This proves that equation (3.125) holds, and therefore proves the theorem
in the special case P = (.
Next, one may consider the case in which P and () are positive definite
operators. Let

R =1\/VPQVP, (3.129)
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and define a mapping ® € CP(X) as
®(X) =R 2vVPXVPR 2 (3.130)
for every X € L(X). For any choice of Y € Pd(X), it holds that
(@(Y),R)=(Y,P) and (®(Y) L, R)=(Y"1Q), (3.131)

and therefore

o WP EOTLQ L (@), R)+ @)L R)

132
YePd(X) 2 Y ePA(X) 2 (3.132)

Observing that, as Y ranges over all positive definite operators, so too does
®(Y'), one has that

e P (L)

YePd(X) 2 =Tr(R) =F(P,Q) (3.133)

by the special case considered in the initial part of the proof.
Finally, in the most general case, the theorem follows from a continuity
argument. In greater detail, for every positive real number € > 0, one has

1 1 1 1
SR+ (L) < p(ViP el + (YL Q) (3130
for every choice of Y € Pd(X'). Taking the infimum over all positive definite

operators Y € Pd(X) yields the inequality

L WPHTLQ)

<FP+el 1 3.135

which holds by virtue of the fact that P + €1 and () + €1 are necessarily
positive definite. As this inequality holds for all € > 0, it follows from the
continuity of the fidelity function that

L WPETLQ)

< . .
YePd(X) 2 PR Q) (3.136)

On the other hand, for each choice of Y € Pd(X), one has
1 1
§<Y,P+s]l>+§<Y_1,Q+s]1> >F(P+¢el,Q +¢l) (3.137)

for all € > 0, and therefore the inequality

%(Y, P) + %(Y‘l, Q) >F(P,Q) (3.138)
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follows from the continuity of the expressions on both the left- and right-
hand sides of (3.137). This is so for all Y € Pd(X), and therefore

Y, P+ 1.Q)

inf > F(P 3.139
YelPrii(X) 9 - ( ) Q)v ( )
which completes the proof. O

Uhlmann’s theorem

Uhlmann’s theorem establishes a link between the fidelity function and the
notion of a purification of a state (or of a positive semidefinite operator
more generally), providing a characterization of the fidelity function that
finds many uses in the theory of quantum information. The lemma that
follows will be used to prove this theorem.

Lemma 3.21 Let A,B € L(Y,X) be operators, for complex Fuclidean
spaces X and Y. It holds that

F(AA*, BB*) = | A*B||, . (3.140)

Proof Using the polar decomposition of operators, one may write

0 A 0 B
(0 0):PU and (o O)zQV, (3.141)

for positive semidefinite operators P, Q) € Pos(X @ )) and unitary operators
U,V € UX @ Y). The following equations may be verified:

AA* 0 BB* 0
2 2 _
P _< 0 O)’ Q _< 0 O)’ (3.142)
and
« (0 0
U*PQV = (0 A*B) ) (3.143)

By the isometric invariance of the trace norm, it follows that
F(AA*, BB*) = H\/AA*\/BB*
1 (3.144)
=[Pl = lUrPQV], = [[A*B],

as required. |

Theorem 3.22 (Uhlmann’s theorem) Let X and Y be complex Euclidean
spaces, let P,Q € Pos(X) be positive semidefinite operators having rank at
most dim()), and let u € X ® Y satisfy Try(uu*) = P. It holds that

F(P,Q) = max{|[(u,v)| : ve X @Y, Try(vw*) = Q}. (3.145)
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Proof Let A € L(Y, X) be the operator for which u = vec(4), let w € X®Y
be a vector satisfying @@ = Try(ww™*), and let B € L(), X') be the operator
for which w = vec(B). It follows by the unitary equivalence of purifications
(Theorem 2.12) that

max{|(u,v)| : v € X ®Y, Try(vv*) = Q}
= max{|(u, (Lxy @ U)w)| : UEU(y)}

= max{| A,BUTH : U eU)} (3.146)
= max{|(U,A*B)| : U € U(Y)}
- HA*BHr
By Lemma 3.21, it holds that
|A*B||, = F(AA*, BB*) = F(P,Q). (3.147)
which completes the proof. L]

It will be convenient later in the chapter to make use of the following
corollary, which is essentially a rephrasing of Lemma 3.21.

Corollary 3.23 Letu,v € X ®Y be vectors, for complex Euclidean spaces
X and Y. It holds that

F(Try(uu®), Try (vo*)) = || Tra (vu”) || (3.148)

L
Proof Let A,B € L(),X) be the operators for which u = vec(A4) and
v = vec(B). By Lemma 3.21, one has

F(Try (uu®), Try(vv*)) = F(AA*, BB")

3.149
_||4*B|, = | (A*B)"||, = || Trx(ou?) (3.149)

Iy

as required. O

Bhattacharyya coefficient characterization

The last characterization of the fidelity function to be described in this
section is based on a quantity known as the Bhattacharyya coefficient. For
any alphabet X, and for vectors u,v € [0,00) having nonnegative real
number entries, the Bhattacharyya coefficient B(u, v) is defined as

=3 Jula)y/v(a). (3.150)
aeXx

The connection between the Bhattacharyya coefficient and the fidelity
function concerns the measurement statistics generated from pairs of states.
To explain this connection, the following notation is helpful: for positive
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semidefinite operators P, € Pos(X) and a measurement p : ¥ — Pos(X),
one defines

B(P,Q|u) =Y /(u(a), P)y/{ula), Q). (3.151)
a€Xl
Equivalently,
B(P,Q| 1) = Blu,v) (3.152)

for u,v € [0,00)> being the vectors defined as

u(a) = (p(a), P) and wv(a) = (u(a), Q) (3.153)
for each a € X..

Theorem 3.24 Let X be a complex Fuclidean space, let X2 be an alphabet,
and let P,Q € Pos(X) be positive semidefinite operators. For every choice
of a measurement p : ¥ — Pos(X), it holds that

F(P,Q) < B(P,Q| ). (3.154)

Moreover, if it holds that |X| > dim(X), then there exists a measurement
w3 — Pos(X) for which equality holds in (3.154).

Proof Assume first that p : 3 — Pos(X) is an arbitrary measurement, and
let U € U(X) be a unitary operator satisfying

F(P,Q) = H\/ﬁ\/@H1 = (U.VPVQ). (3.155)

By the triangle inequality followed by the Cauchy—Schwarz inequality, one
finds that

F(P,Q) = (UVPVQ) = Z<U\/_M()\/_>
<Z<\/7\/_U\/7\/_>‘ (3.156)

acEX

< 3 /(u(a). P)y/{u(a), Q) = BP.Q| ).

a€EX

Next, it will be proved, under the assumption |X| > dim(X’), that there
exists a measurement p : X — Pos(X) for which F(P,Q) = B(P,Q | p). It
suffices to prove that there is a measurement

p:{l,...,n} — Pos(X) (3.157)
for which F(P,Q) = B(P,Q | ), for n = dim(X).
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Consider first the case in which P is invertible. Define
1
R=P:(VPQVP)' Pz, (3.158)
and assume

R = Zn: )\k(R)uku}; (3.159)

is a spectral decomposition of R. One may verify that () = RPR, from which
it follows that

Zn: V {uku, P (ug, Q) = zn: V(g P)/(upu, RPR)
k=1 1

i (3.160)
= 5" M(R)(upuf, P) = (R, P) = Tr( ﬁ@ﬁ) =F(P,Q).
k=1
The measurement p : {1,...,n} — Pos(X’) defined by
p(k) = upuy, (3.161)

for each k € {1,...,n} therefore satisfies F(P,Q) = B(P,Q | n).

Finally, the case in which r = rank(P) < n will be considered. Let
II = Il (py denote the projection onto the image of P. By restricting one’s
attention to this subspace, the argument above may be seen to imply the
existence of an orthonormal basis {u,...,u,} for im(P) that satisfies

F(P,IIQII) = Z \/ (ugut, P \/ (upu, TIQTI). (3.162)

Let {uq,...,u,} be any orthonormal basis of X obtained by completing the
orthonormal set {u1,...,u,}. As (upuj, P) =0 for k > r and

for k < r, it follows that
n
> \/<uku;§, P) \/<ukuz, Q)
k=1

= Z V (ur, P/ {ugu , TIQIT) = F(P,TIQIL) = F(P,Q),
k=1

(3.164)

where the final equality holds by statement 4 of Proposition 3.12. Thus,
the measurement p : {1,...,n} — Pos(X) defined by (3.161) for each
k€ {1,...,n} satisfies F(P, Q) = B(P, Q| 1), which completes the proof. [J
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3.2.3 Further properties of the fidelity function

Various properties of the fidelity function can be established by means of
the alternative characterizations presented in Section 3.2.2.

Joint concavity and monotonicity under the action of channels

The next theorem will be proved using the block operator characterization
of the fidelity function (Theorem 3.17). As a corollary of this theorem, one
finds that the fidelity function is jointly concave in its arguments.

Theorem 3.25 Let Py, P, Qo, Q1 € Pos(X) be positive semidefinite
operators, for X being a complex Euclidean space. It holds that

F(Py+ P1,Qo + Q1) > F(Fy, Qo) + F(P1,Q1). (3.165)

Proof By Theorem 3.17 (together with the remark that follows it), one may
choose operators X, X7 € L(X) such that the block operators

Po XO P Xy
(25) wa (B 5) o160

are both positive semidefinite, and such that
TI‘(X()) = F(PQ, Qo) and TI‘(Xl) = F(Pl, Ql) (3167)

The sum of two positive semidefinite operators is positive semidefinite, and
therefore

( Po+P Xo+ X1> _ (Po Xo) N <P1 X1> (3.168)

(Xo+ X1)* Qo+ Q1 Xy Qo Xi{ @

is positive semidefinite. Applying Theorem 3.17 again, one finds that
F(Py+ P1, Qo+ Q1) = [Tr(Xo + X1)| = F(P, Qo) + F(P1,Q1),  (3.169)

as required. O

Corollary 3.26 (Joint concavity of fidelity) Let X be a complex Euclidean
space, let po,p1,00,01 € D(X) be density operators, and let A € [0,1]. It
holds that

F(Apo + (1 — A)p1, Aog + (1 — N)oq)

> AF(po,00) + (1 = A) F(p1,01). (3.170)
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Proof By Theorem 3.25, together with statement 3 of Proposition 3.12, it
holds that

F(Apo+ (1 = N)p1, Ao+ (1 — N)oy)
> F(Apo, Aoo) + F((1 = A)p1, (1 — A1) (3.171)
= AF(po,00) + (1 = A) F(p1,01),

as claimed. O

The joint concavity of the fidelity function implies that the fidelity function
is concave in each of its arguments individually:

F(Apo+ (1 —X)p1,0) > AF(po,0) + (1 — X) F(p1,0) (3.172)

for all pg, p1,0 € D(X) and X € [0, 1], and similar for concavity in the second
argument rather than the first.

The monotonicity of the fidelity function under the action of channels
is another fundamental property that may be established using the block
operator characterization.

Theorem 3.27 Let X and) be complexr Fuclidean spaces, let ® € C(X,))
be a channel, and let P,Q) € Pos(X) be positive semidefinite operators. It
holds that

F(P,Q) < F(®(P), 8(Q)). (3.173)

Proof By Theorem 3.17, one may choose X € L(X) so that

P X
(5 3) asng

is positive semidefinite and satisfies |Tr(X)| = F(P, Q). By the complete
positivity of @, the block operator

o(P) o(X)\ [®(P) &X)
(@(X*) <I>(Q)>_<<I>(X)* <I>(Q)) (3:175)

is positive semidefinite as well. Invoking Theorem 3.17 again, and using the
fact that ® is trace preserving, it follows that

F(®(P), ®(Q)) = [Tr(®(X))| = [Te(X)[ = F(P,Q), (3.176)

as required. |
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Fidelity between extensions of operators

Suppose, for a given choice of complex Euclidean spaces X and ), that
Py, P1 € Pos(X) and Qp € Pos(X ® )) are positive semidefinite operators
such that Qo extends Py, meaning that Try(Qy) = Py. For every positive
semidefinite operator @)1 € Pos(X ® )) satisfying Try(Q1) = Py, it follows
from Theorem 3.27 that

F(Qo, Ql) S F(Tl“y(Qo), Try(Ql)) = F(P(), Pl). (3177)

It is natural, in some situations, to consider the maximum value that the
fidelity F(Qo, Q1) may take, over all choices of an operator @)1 € Pos(X ®))
extending P;. As the following theorem establishes, this maximum value is
necessarily equal to F(Py, Py), irrespective of the choice of Q.

Theorem 3.28 Let Py, P € Pos(X) and Qo € Pos(X ® V) be positive
semidefinite operators, for X and ) complex Fuclidean spaces, and assume
that Try(Qo) = Py. It holds that

maX{F(Qo,Ql) : Ql € POS(X ®J/), TI‘y(Ql) = Pl} = F(Po,Pl). (3178)

Proof Let Z be a complex Euclidean space with dim(Z) = dim(X ® )),
and choose any vector ug € X ® Y ® Z satisfying

Trg(U()uS) = Qo. (3179)
As Qg is an extension of P, it follows that
Try®g(uou3) = PO. (3180)

By Uhlmann’s theorem (Theorem 3.22), there exists a vector u; € X QYR Z
so that

Trygz(wiui) = P and  |(uo,u1)| = F(Po, P1). (3.181)

By setting
Q1 = Trz(uiuj) (3.182)

and applying Theorem 3.27 (for the channel being the partial trace over Z),
one has
F(Qo, Q1) = F(Trz(uoug), Trz(uiu7))

3.183
> F(uouz‘),uluf) = |<u0,u1>] = F(Po,Pl). ( )

This demonstrates that the maximum in (3.178) is at least F(Py, P;). The
maximum is at most F(FPy, P;) by (3.177), and so the proof is complete. [J
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A sum-of-squares relationship for fidelity

The next theorem states a useful fact relating the fidelity between two fixed
states and the sum of the squared-fidelities between these two states and a
third.

Theorem 3.29 Let pg,p1 € D(X) be density operators, for X a complex
FEuclidean space. It holds that

F 24 F 2) =14+F . 3.184
Ugllga&)/%)( (po, o) + (101,0)> + F(po, p1) ( )

Proof The proof will make use of the fact that, for any two unit vectors ug
and w1, chosen from an arbitrary complex Euclidean space, there is a simple
closed-form expression for the largest eigenvalue of the sum of the rank-one
projections corresponding to these vectors:

A (uoug + wiul) = 14 |(ug, ur)|. (3.185)

There are two steps of the proof, both of which combine the expression
(3.185) with Uhlmann’s theorem (Theorem 3.22).

The first step proves the existence of a density operator o € D(X') such
that

F(po,0)* + F(p1,0)* > 14 F(po, p1). (3.186)

Let Y be any complex Euclidean space such that dim()) = dim(X’), and let
ug, u1 € X ® Y be vectors satisfying the following equations:

Try(uoug) = po,
Try(uiu]) = p1, (3.187)
|[(uo, u1)| = F(po, p1)-

The fact that there exists such a choice of vectors follows from Uhlmann’s
theorem. Let v € X ® Y be a unit eigenvector of the operator ugug + uiuj
that corresponds to its largest eigenvalue, so that

v (uoufy + uiui)v = 1+ [{ug, u1)), (3.188)

and let
o = Try(vv*). (3.189)

Using Uhlmann’s theorem again, one has

F(po,a) > [(uo,v)| and  F(p1,0) > [(u1,v)]; (3.190)
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so that
F(po,0)* + F(p1,0)? > v* (ugug + uuf)v (3.191)
= 1+ |(uo,u1)| = 14 F(po, p1), '
which proves the required inequality.
The second step of the proof is to establish that the inequality
F(po,0)* + F(p1,0)* <14 F(po, p1) (3.192)

holds for every o € D(X). Again, let ) be a complex Euclidean space with
dim()) = dim(X), let ¢ € D(X') be chosen arbitrarily, and choose v € X @Y
to be any unit vector satisfying

o = Try(vv*). (3.193)
Also let ug,u; € X ® Y be unit vectors satisfying the following equations:
Try (uoug) = po,
Try(uluf) = P1,
|(uo, v)| = F(po, ),
|<U1, v>‘ = F(p17 0-)'

(3.194)

As in the first step of the proof, the existence of such vectors is implied by
Uhlmann’s theorem. As v is a unit vector, it holds that

v (upug + urul)v < A (ugug + urul)

3.195
= 1+ (o, )] < 1+ F(po, p1), (3.195)

where the last inequality is, once again, implied by Uhlmann’s theorem.
Therefore, one has

F(po,0)?* + F(p1,0)? = v* (uguf + uyuf)v < 1+ F(po, p1), (3.196)

as required. |

Fidelity between inputs and outputs of completely positive maps

With respect to the storage and transmission of quantum information, the
identity map represents an ideal quantum channel, as this channel causes
no disturbance to the quantum states it acts upon. For this reason, it may
be desirable to measure the similarity between a given channel of the form
¢ € C(X) and the identity channel 1,4, in some settings.

One setting in which such a comparison is made arises in connection
with quantum source coding (to be discussed in Section 5.3.2). Here, one
is interested in the fidelity between the input and output states of a given
channel ® € C(X), under the assumption that the channel acts on a state
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o € D(X ® ) that extends a known fixed state p € D(X). The mapping
fidelity, which is specified by the following definition, is representative of this
situation when o is taken as a purification of the state p.

Definition 3.30 Let X be a complex Euclidean space, let ® € CP(X) be
a completely positive map, and let P € Pos(X) be a positive semidefinite
operator. The mapping fidelity of ® with respect to P is defined as

F(®, P) = F(uu*, (& @ 1y ) (uu®)) (3.197)
for u = Vec(\/]_D).

The mapping fidelity is also called the channel fidelity when ® is a channel
and P = pis a density operator. (It is also commonly called the entanglement
fidelity in this case, although that terminology will not be used in this book.)
An explicit formula for the mapping fidelity F(®, P), from any Kraus
representation of the mapping ®, is given by the following proposition.

Proposition 3.31 Let {A, : a € ¥} C L(X) be a collection of operators,
for X a complex Euclidean space and % an alphabet, and let ® € CP(X) be
the completely positive map defined as

O(X)=> AXA; (3.198)

aceX

for all X € L(X). For every operator P € Pos(X), it holds that

F(®,P) = |3 (P, Al (3.199)

acY

Proof Using Proposition 3.13, one may evaluate the expression (3.197) to
obtain

F(®,P) = \/Z [vec(VP)" (A, @ 1x) vec(VP) ‘2
agl

(3.200)
= S UVPANP) = [ [(P A,

acel acd

as required. |

As the next proposition implies, the purification u = vec(v/P) taken in the
definition of the mapping fidelity is representative of a worst case scenario.
That is, for an arbitrary state o € D(X ® ))) that extends a known fixed
state p € D(X), the fidelity F(o, (® ® 1.3))(c)) can be no smaller than the
mapping fidelity F(®, p).
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Proposition 3.32 Let ® € CP(X) be a completely positive map and let
P € Pos(X) be a positive semidefinite operator, for X a complex Euclidean
space. Suppose further that u € X ® Y is a vector satisfying Try(uu*) = P
and @ € Pos(X ® Z) is an operator satisfying Trz(Q) = P, for complex
FEuclidean spaces Y and Z. It holds that

F(Q, (®©1y5)(Q)) = Fluu”, (2 @ Ty wm)) (uu’)). (3.201)

Proof By Proposition 2.29, there must exist a channel ¥ € C(), Z) such
that

(L) ® W) (ur”) = Q. (3.202)
By Theorem 3.27, one has
F(uu®, (© @ Tyy))(uu”))

< F((Luge, © 0) (wn), (@ © W) (un)) (3.203)
- F(Q7 ((I) ® ]]-L(Z))(Q))a
which completes the proof. ]

It is also evident from this proposition that taking any other purification of
P in place of u = vec(v/P) in Definition 3.30 would yield precisely the same
value.

Fuchs—van de Graaf inequalities

The final property of the fidelity function to be established in this section
concerns its connection to the trace distance between quantum states. This
is an important relationship, as it allows for an approximate conversion
between the more operationally motivated trace distance and the often more
analytically robust fidelity function evaluated on a given pair of states.

Theorem 3.33 (Fuchs—van de Graaf inequalities) Let X be a complex
Euclidean space and let p,o € D(X) be density operators. It holds that

1 1
1—§HP—0H1§F(0,0)§\/1—Z|]p—a\|f. (3.204)

2—-2F(p,0) < ||p—ol, £2¢/1 =F(p,0)2 (3.205)

Proof The proof will establish the two inequalities in (3.205) separately,
beginning with the first. By Theorem 3.24, there exists an alphabet > and
a measurement p : X — Pos(X') such that

F(p,0) =B(p,0o|n). (3.206)

Equivalently,
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Fix such a measurement, and define probability vectors p,q € P(X) as

pla) = {(u(a),p) and g(a) = (u(a),0) (3.207)

for each a € X, so that B(p,q) = F(p, o). By Proposition 3.5, together with
the observation that

(Va—vB) <la—g] (3.208)

for every choice of nonnegative real numbers «, 5 > 0, it follows that

lp—cll, > lp—all, = D_lp(a) — q(a)l

a€Yl

2 (3.209)
> Y (Vola) - vata) ) =2-2B(p.g) =2~ 2F(p.0),

The first inequality in (3.205) is therefore proved.

Next, the second inequality in (3.205) will be proved. Let ) be a complex
Euclidean space with dim()) = dim(X). It follows by Uhlmann’s theorem
(Theorem 3.22) that there exists a choice of unit vectors u,v € X ® Y
satisfying the equations

Try(uu®) = p, Try(vv*) =0, and [(u,v)|=F(p,0). (3.210)

By the identity (1.186), it holds that

Juu® —vv* ||| = 24/1 = [(u,v)|2 = 24/1 = F(p,0)2. (3.211)

Consequently, by the monotonicity of the trace norm under partial tracing
(1.183), one has

lp—o|; < |Juu™ —vv*||, = 2¢/1 = F(p,0)2 (3.212)

The second inequality in (3.205) has been established, which completes the
proof. L]

The use of the Bhattacharyya coefficient characterization of the fidelity
(Theorem 3.24) in the above proof may be substituted by the following
operator norm inequality, which is a useful inequality in its own right.

Lemma 3.34 Let X be a complex Fuclidean space and let Py, P, € Pos(X)
be positive semidefinite operators. It holds that

|Po - Pill, > || VP~ VP Hz (3.213)
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Proof Let

VP = VP =Qo— Q1 (3.214)

for Qo, Q1 € Pos(X), be the Jordan—-Hahn decomposition of /Py — v/ Pi,
and let ITp and IT; be the projections onto im(Qp) and im(Q1), respectively.
The operator IIy — II; has spectral norm at most 1, and therefore

HPO—P1H1 > (Ilp — Iy, Py — P). (3.215)
Through the use of the operator identity
1 1
AQ—BQ:§(A—B)(A+B)+§(A+B)(A—B), (3.216)

one finds that
Iy — I, Py — Py)
- H(00 =1 (v~ V) (V4 V)
- M1 (Vs VD) (VB VL)
(Q0+Q1 (VR +VP))
(VR VR @)
=<Q0+Q1,¢Fo+ﬁl>.

Finally, as Qo, Q1, v Py, and /P, are positive semidefinite, one has

<Q0+Q1,\/Fo+\/ﬁl>
Z<Q0—Q1,\/F—\/F1>—

which completes the proof. ]

(3.217)

(3.218)

2
Po— VP ,
2

Alternative proof of Theorem 3.33 For the first inequality in (3.205), one
has

lo—oll, > Vo~ va|, = (5 - o)’
=2-2Tr (\/pvo) >2—-2F(p,0)

(3.219)

by Lemma 3.34. The second inequality in (3.205) is proved as before.  [J
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3.3 Channel distances and discrimination

The trace norm induces a notion of distance between quantum states that
is closely related to the task of state discrimination, as established by the
Holevo—Helstrom theorem (Theorem 3.4). The present section discusses an
analogous notion of distance for channels, induced by a norm known as the
completely bounded trace norm, along with a similar connection to the task
of channel discrimination.

3.3.1 Channel discrimination

The task of discriminating between pairs of channels is represented by the
scenario that follows.

Scenario 3.35 Let X and Y be registers, and let Z be a register having
classical state set {0, 1}. The register Z is to be viewed as a classical register,
while X and Y are arbitrary. Also &g, ®; € C(X,)) be channels and let
A € [0,1] be a real number. The channels @3 and ®1, as well as the number
A, are assumed to be known to both Alice and Bob.

Alice prepares the register Z in a probabilistic state, so that its state is 0
with probability A and 1 with probability 1 — A. Alice receives the register
X from Bob, and conditioned on the classical state of Z, Alice performs one
of two actions:

1. If Z =0, Alice transforms X into Y according to the action of ®q.
2. If Z =1, Alice transforms X into Y according to the action of ®;.

The register Y is then given to Bob.
Bob’s goal is to determine the classical state of Z, through an interaction
with Alice, as just described.

One approach Bob may choose to take in this scenario is to select a state
o € D(X) that maximizes the quantity

[Ap0 — (1= Mo, - (3.220)

for pg = ®g(0) and p; = ®1(0). If he prepares the register X in the state
o and gives it to Alice, he will get back Y in either of the states pg or pq,
and can then measure Y using an optimal measurement for discriminating
po and p; given with probabilities A and 1 — A, respectively.

This, however, is not the most general approach. More generally, Bob may
make use of an auziliary register W in the following way. First, he prepares
the pair of registers (X, W) in some chosen state ¢ € D(X ® W), and then
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he allows Alice to transform X into Y according to ®g or ®;. This results in
the pair (Y, W) being in one of the two states

po = (B0 ® Luow)(0) and pi = (@1 ® L) (o), (3.221)

with probabilities A and 1 — A, respectively. Finally, he measures the pair
(Y, W) in order to discriminate these two states. This more general approach
can, in some cases, result in a striking improvement in the probability to
correctly discriminate ®y and ®;, as the following example illustrates.

Example 3.36 Let n > 2, let X be an alphabet with |3| = n, and let X be
a register having classical state set 3. Define two channels ®gy, &1 € C(X)
as follows:

1 T
0(X) = —— ((Tr X)1 + X7), o

@1(X) = ——((Tr X)1 - X7,
n—1
for all X € L(X).

The maps ®9 and ®;, which are sometimes called the Werner—Holevo
channels, are indeed channels. These maps are evidently trace preserving,
and the fact that they are completely positive follows from a calculation of
their Choi representations:

I1®1 I®l-—
11+W and J(q)l):®—W
n+1

where W € L(X ® X) is the swap operator, which satisfies W(u®v) = vQu
for every u,v € X. As W is unitary and Hermitian, the operators J(®g) and
J(®1) are both positive semidefinite.

Now, consider the channels &3 and ®, along with the scalar value

J(®g) = : (3.223)

n—1

n—+1
A= ;; : (3.224)
in Scenario 3.35. It holds that
APp(X) — (1= N)P(X) = %XT (3.225)
for every X € L(X), and therefore
[A@o() — (1 - \)dy (o), = % (3.226)

for every choice of a density operator o € D(X'). This quantity is relatively
small when n is large, which is consistent with the observation that ®¢(o)
and ®1(o) are both close to the completely mixed state for any choice of an
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input o € D(X). If Bob prepares X in some state o, and elects not to use an
auxiliary register W, his probability to correctly identify the classical state

of Z is therefore at most
1 1
2 a0’
On the other hand, if Bob makes use of an auxiliary register, the situation
is quite different. In particular, suppose that W is a register sharing the same
classical state set 3 as X, and suppose that Bob prepares the pair (X, W) in

the state 7 € D(X ® W) defined as

(3.227)

1
== Z Eop ® Eqp. (3.228)
L=

The actions of the channels &5 and ®; on this state are as follows:

11+ W
0} 1 =
(Po @ L)) (7) 2
e (3.229)
® —
((I)1®]1L(W))(T):—n2—n :

These are orthogonal density operators, following from the calculation
A@1+W 11 -W)=Tr(1e1+W -W -W?) =0.  (3.230)

It is therefore the case that the states (P ® Lpomy)(7) and (P71 @ Ly )(7)
can be discriminated without error: for every A € [0, 1], one has

A (@0 ® L)) (7) — (1 = A) (@1 @ Liowy) (1), = 1. (3.231)

By making use of an auxiliary register W in this way, Bob can therefore
correctly discriminate the channels ®y3 and ®; without error.

This example makes clear that auxiliary registers must be taken into
account when considering the optimal probability with which channels can
be discriminated.

3.3.2 The completely bounded trace norm

This section defines a norm on the space of mappings T(X,)), for complex
Euclidean spaces X and ), known as the completely bounded trace morm,
and establishes some of its properties. The precise connection between this
norm and the task of channel discrimination will be explained in the section
following this one, but it will be evident from its definition that this norm is
motivated in part by the discussion from the previous section stressing the
importance of auxiliary registers in the task of channel discrimination.
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The induced trace norm

When introducing the completely bounded trace norm, it is appropriate to
begin with the definition of a related norm known as the induced trace norm.

Definition 3.37 Let X and ) be complex Euclidean spaces. The induced
trace norm of a map ® € T(X,)) is defined as

1)1 = max{[|®(X) |1 : X € L(X), | X[ < 1. (3.232)

True to its name, this norm is an example of an induced norm; in general,
one may consider the norm obtained by replacing the two trace norms in this
definition with any other choices of norms defined on L(X) and L(Y). The
use of the maximum, rather than the supremum, is justified in this context
by the observation that the norm defined on L()) is continuous and the unit
ball with respect to the norm defined on L(X) is compact.

Generally speaking, the induced trace norm fails to provide a physically
well-motivated measure of distance between channels. It will, nevertheless,
be useful to consider some basic properties of this norm, for many of these
properties will be inherited by the completely bounded trace norm, to be
defined shortly.

The first property of the induced trace norm to be observed is that the
maximum in Definition 3.37 is always achieved by a rank-one operator X.

Proposition 3.38 Let ® € T(X,)) be a map, for complexr Fuclidean
spaces X and Y. It holds that

b

[l = max [ @], (3.233)

Proof Every operator in X € L(X) satisfying || X ||; < 1 can be written as
a convex combination of operators of the form wv*, for u,v € S(X) being
unit vectors. The equation (3.233) follows from the fact that the trace norm
is a convex function. O

Under the additional assumption that the mapping under consideration
is positive, one has that the maximum in Definition 3.37 is achieved by a
rank-one projection, as the following theorem states.

Theorem 3.39 (Russo-Dye) Let X and Y be complex Euclidean spaces
and let ® € T(X,)) be a positive map. It holds that

| @1 = uIernga(J};() Tr(®(uu")). (3.234)
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Proof Using the duality of the trace and spectral norms, along with the
identity (1.182), one finds that

O = (). .
124 Urg%)ll )| (3.235)

Consider an arbitrary unitary operator U € U(})), and let
U=> N\l (3.236)
k=1

be the spectral decomposition of U. As & is positive, it holds that ®* is also
positive (by Proposition 2.18), and therefore

¢*(Il;) € Pos(X) (3.237)
for each index k € {1,...,m}. By Lemma 3.3, along with the observation
that the eigenvalues A1, ..., \,, all lie on the unit circle, it follows that

m m
[@*(U)]| = || >° M@ (L) || < || > " () ‘ = [[e*(@y)[|.  (3.238)
k=1 k=1

Consequently, as 1y is itself a unitary operator, one has
1fy = [|&*(Ty) | (3.239)

Finally, as ®*(1y) is necessarily positive semidefinite, it follows that

o*(1 = L O¥(1 = Tr(P(uu* .24
[2* ()l = max (uu’, @ (1y)) = max Tr(®(uu")),  (3.240)
which completes the proof. O

Corollary 3.40 Let ® € T(X,)) be a positive and trace-preserving map,
for complex Fuclidean spaces X and Y. It holds that | ®||; = 1.

Remark Observe that the previous corollary establishes that the trace norm
is monotonically decreasing not only under the action of all channels, but
under the action of trace-preserving positive maps more generally:

[@(X)[[1 < [ Xl (3.241)

for all X € L(X) and all positive, trace-preserving maps ® € T(X,)).
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The next proposition establishes three basic properties of the induced
trace norm: submultiplicativity under compositions, additivity of channel
differences under compositions, and unitary invariance.

Proposition 3.41 For every choice of complex Fuclidean spaces X, ),
and Z, the following facts regarding the induced trace norm hold:

1. For all maps ® € T(X,Y) and ¥V € T(Y, Z), it holds that

[W[[y < [Wfy [|@ 1 (3.242)
2. For all channels ®g, ¥y € C(X,)) and @1,V € C(Y, Z), it holds that
(3.243)

[ 01T — @D, D],

3. Let & € T(X,Y) be a map, let Up,Vy € U(X) and Uy, Vi € U(Y) be
unitary operators, and let W € T(X,)) be defined as

U(X) = U1 (Up X Vo)Vi (3.244)
for all X € L(X). It holds that | V|1 = ||®||1-

Proof To prove the first fact, one may observe that || U(Y)|1 < [|¥|1]|Y |1
for every Y € L()), and therefore

@O, < i[O, (3.245)

for every X € L(X). Taking the maximum over all X € L(X) with || X ||; <1
yields the inequality (3.242).

To prove the second fact, one may apply the triangle inequality, the
inequality (3.242), and Corollary 3.40, to obtain

[ U1 — 1P|, < || U100 — U1 D), + || U1Po — 1D
= ||U1(Vg — D + [[(Uy — Dq)P
< [[ @1 ]|, [ ®o = Do |, + [[¥1 — @1 [| Do,
= || o — Do, + || T1 — Py
Finally, by the unitary invariance of the trace norm, it follows that
H\II(X)H1 - HUl(I) Uo X'V VlHl - ”q)(UOXVO)
< [[@f|,[|UoX Vo

< [[Wo = @oll; + [ W1 —

Iy Iy

Iy -

I (3.247)

Iy = @l 1]l

for all X € L(X), and therefore | ¥||; < ||®]|;. By observing that
O(X) = U QUL X V)V (3.248)

for all X € L(X), one finds that ||®|; < ||¥||; through a similar argument,
which proves the third fact. ]
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One undesirable property of the induced trace norm is that it fails to
be multiplicative with respect to tensor products, as the following example
(which is closely related to Example 3.36) illustrates.

Example 3.42 Let n > 2, let ¥ be an alphabet with |X| = n, let X = C*>,
and consider the transpose map T € T(X'), defined as T(X) = X7 for all
X € L(X). It is evident that ||T|; = 1, as || X ||1 = || X "||1 for every operator
X € L(X), and it holds that |11 x)][1 = 1. On the other hand, one has

To verify this claim, one may first consider the density operator
1
T==Y E,,®E,, DX ®X), (3.250)
n a,bex’

which has trace norm equal to 1. It holds that
1
H<T®]IL(X))(7')”1 - EHWH1 =n (3.251)
for W € U(X ® X) denoting the swap operator, and therefore

To prove that | T ® Ly |1 is no larger than n, one may first observe that
the relationship (1.169) between the trace and Frobenius norms implies

(T ® L) (X)), < nl(T@ L) (X)), (3.253)

for every operator X € L(X ® X). As the entries of the operators X and
(T®1yx))(X) are equal, up to being shuffled by the transposition mapping,
one has that

T ® T (X) [y = (1K, (3.254)
Finally, by (1.168) it holds that || X ||2 < || X1, from which it follows that
IT® Lo ||, < n. (3.255)

Definition of the completely bounded trace norm

The completely bounded trace norm is defined below. In words, its value for
a given map is simply the induced trace norm of that map tensored with
the identity map on the same input space as the mapping itself.

Definition 3.43 For any choice of complex Euclidean spaces X and ),
the completely bounded trace norm of a mapping ® € T(X,)) is defined as

[[®][[x = Hq)®]lL(X)H1' (3.256)
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As the discussion in Section 3.3.1 has suggested, this is the more relevant
norm, when compared with the induced trace norm, within the context of
the channel discrimination task. In essence, the completely bounded trace
norm quantifies the effect that a map may have when it acts on just one
tensor factor of a tensor product space (or, in more physical terms, just one
part of a compound system), as opposed to the action of that map on its
input space alone. As it turns out, this definition not only yields a norm that
is more relevant to the channel discrimination task, but also one possessing
many interesting and desirable properties (including multiplicativity with
respect to tensor products).

The specific choice to take the identity mapping on L(X'), as opposed to
L(Y), or L(Z) for some other complex Euclidean space Z, is explained in
greater detail below. In simple terms, the space X is sufficiently large, and
just large enough in the worst case, that the value (3.256) does not change if
the identity mapping on L(X) is replaced by the identity mapping on L(Z),
for any complex Euclidean space Z having dimension at least as large as the
dimension of X.

Basic properties of the completely bounded trace norm

The proposition that follows, which is immediate from Proposition 3.38,
Corollary 3.40, and the third statement of Proposition 3.41, summarizes a
few basic properties that the completely bounded trace norm inherits from
the induced trace norm.

Proposition 3.44 The following facts regarding the completely bounded
trace norm hold, for every choice of complex Euclidean spaces X and Y :

1. For all maps ® € T(X,)), it holds that
2l = max{][(® © Luee) (@), - uveSEox)).  (3257)

2. For all channels ® € C(X,)), it holds that |||®]||; = 1.

3. Let ® € T(X,Y) be a map, let Up,Vy € U(X) and Uy, Vi € U(Y) be
unitary operators, and let W € T(X,)) be defined as

U(X) = U1 ®(UgX Vp)Vi (3.258)
for all X € L(X). It holds that |||¥|||1 = |||P]]|1-

The next lemma will allow further properties of the completely bounded
trace norm to be established.
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Lemma 3.45 Let ® € T(X,)) be a map, for complex Euclidean spaces X
and Y. For every choice of a complex Euclidean space Z and unit vectors
x,y € X ® Z, there exist unit vectors u,v € X ® X such that the following
equalities hold:

[(@ @1z (2y") ||, = [[(P @ L)) (wo™) ||,
(@ @ Lpez)(za")]]; = [[(2 @ L)) (uu®) ||, -

Proof In the case that dim(Z) < dim(&’), the lemma is straightforward:
for any choice of an isometry U € U(Z, X)), the vectors u = (1x ® U)x and
v = (1x ® U)y satisfy the required conditions.

If dim(2Z) > dim(X), one may consider Schmidt decompositions

(3.259)

x:Z\/ﬁxk@)zk and y:Z\/q_kyk@)wk (3.260)
k=1 k=1

of x and y, for n = dim(&’), from which a suitable choice for the vectors u
and v is given by

u:Zw/pkxk@)xk and v:Z\/q_kyk@)yk. (3.261)
k=1 k=1

For linear isometries U,V € U(X, Z) defined as
n n
U= Z zrxy, and V= Z WEYf » (3.262)
k=1 k=1
it holds that x = (1y ® U)u and y = (1x ® V)v, and therefore
[(@ @ Tyz)(zy™) |, = [[(2 @ Tyz) (1@ UV)uww™ (1@ V)|,
(@ U)® 6 L)) AV, (3263
= [(@ @ Ty (w?)]]

and
(@@ Liz) (@), = [(2® Luz) (1 @ V)uu™ (1 & UT))|,
@@ V)@ L) @) A& U, (3.264)
= [(2 & Loa)) (wu) ||,
as required. O

With Lemma 3.45 in hand, the following theorem may be proved. The
theorem implies a claim that was made earlier: the identity map on L(X) in
Definition 3.43 can be replaced by the identity map on L(Z), for any space
Z having dimension at least that of X', without changing the value of the
norm.
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Theorem 3.46 Let X and Y be complex Fuclidean spaces, let ® € T(X,))
be a map, and let Z be a complex Fuclidean space. It holds that

12 @ Tz [l < Il (3.265)
with equality holding under the assumption that dim(Z) > dim(X').
Proof By Proposition 3.38, there exist unit vectors z,y € X ® Z such that
1@ @ Te |, = (2@ Tez) (zy™) ;- (3.266)
Therefore, by Lemma 3.45, there exist unit vectors u,v € X ® X such that
1@ @ Teez)ll) = [[(® @ Ty (wor)]], , (3.267)
which implies
|® @ Loz |, < [I]]L- (3.268)

Under the assumption that dim(Z) > dim(X'), there exists an isometry
V € U(X, Z). For every operator X € L(X ® X) with || X |1 < 1, the
isometric invariance of the trace norm implies

[(2 @ L) (X) ]|, = [[(Ly @ V)(® @ L) ) (X)(1y @ V)™,
=[[(2@ 1) ((Tx @ V)X (1x @ V)|
<@L |, [|(Tx @ V)X (T @ V)|, (3.269)
= |2® Lio ||, 1 X 1L
<[ @@tz

It therefore holds that
|||(I)|||1 < H(I) & ]lL(Z)”l ) (3-270)
which completes the proof. ]

Corollary 3.47 Let X, Y, and Z be compler Fuclidean spaces and let
¢ € T(X,Y) be a map. It holds that

19 @ Lozl = M- (3.271)

By means of Theorem 3.46, one may prove that the completely bounded
trace norm possesses properties analogous to ones established for the induced
trace norm by statements 1 and 2 of Proposition 3.41.
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Proposition 3.48 For every choice of complex Fuclidean spaces X, ),

and Z, the following facts regarding the completely bounded trace norm
hold:

1. For all maps ® € T(X,Y) and ¥ € T(Y, Z), it holds that

1l < Il ([l (3.272)
2. For all channels ®g, ¥y € C(X,)) and 1,V € C(Y, 2), it holds that
Ilwrwo — @,@oll, < %0 — @0, + |02 - @il (3279
Proof By Proposition 3.41, one concludes that
EP[h = |0 ® Lo [|; < [|¥ @ Liay [l |2 @ ey ] (3.274)
and
[[01%0 — @1 P[], = [[¥1W0 @ Liiw) — P1Po @ i) [ (3.275)
<[P0 ® Loy = Po ® Lo ||y + [ U1 ® Ly = 21 @ Ly [y
The proposition follows by Theorem 3.46. L]

The fact that the completely bounded trace norm is multiplicative with
respect to tensor products may also be proved.

Theorem 3.49 Let &y € T(Xp, o) and @1 € T(X1, V1) be maps, for Xy,
X1, Vo, and Yq being complex FEuclidean spaces. It holds that

10 @ ®al], = [[[oll] ll®1ll],- (3.276)
Proof By Proposition 3.48 and Corollary 3.47, it follows that
[[@0 @ @1fl|, = [[[(Po ® Liy)) (Liixy ® P1)]];
< |[|20 @ Lo [, [IMecxgy © @allly = [[[oll], [[[@]l;-

It remains to prove the reverse inequality.
First, choose operators Xg € L(Xy ® Xy) and X; € L(X; ® &A1) such that
| Xo]l1 =1 and || X1]|1 = 1, and such that these equalities hold:

lIolll, = [[(®o & L)) (Xo) [
Ll = [[(P1 & Loy ) (X0 -

As the trace norm is multiplicative with respect to tensor products, it follows
that ||X0 & X1||1 = 1.
Next, observe that

(3.277)

(3.278)

[P0 @ @1fll; = [[Po @ ®1 @ Lrcpern

(3.279)
= [| @0 @ Ty ixy) ® 1 @ Tygay | ;-
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The second equality follows from the unitary invariance of the induced trace
norm (the third statement of Proposition 3.41), which implies that this norm
is invariant under permuting the ordering of tensor factors of maps. Again
using the multiplicativity of the trace norm with respect to tensor products,
it follows that

10 @ @1l]; = [[(Po @ Tuay) @ P2 @ Tuay)) (Ko @ X1) [
= [| (@0 ® Ly ixp)) (X0) ||, | (@1® L)) (X)), (3.280)
= [l[@olll, [1®1]l]; -
which completes the proof. O

3.3.83 Distances between channels

This section explains the connection between the completely bounded trace
norm and the task of channel discrimination that was alluded to above, and
discusses other aspects of the notion of distance between channels induced
by the completely bounded trace norm.

The completely bounded trace norm of Hermitian-preserving maps

For a given map ® € T(X,)), one has that
12l = (P @ L)) (wr™) | (3.281)
for some choice of unit vectors u,v € X ® X. The stronger condition that

@[l = [[(® @ Dre)) (uu®)|], (3.282)

for a single unit vector u € X ® X does not generally hold; without any
restrictions on ®, this could not reasonably be expected.

When the map ® is Hermitian preserving, however, there will always exist
a unit vector v € X ® X for which (3.282) holds. This fact is stated as
Theorem 3.51 below, whose proof makes use of the following lemma.

Lemma 3.50 Let X and ) be complexr Euclidean spaces, let ® € T(X,))
be a Hermitian-preserving map, and let Z be any complexr Fuclidean space
with dim(Z) > 2. There exists a unit vector u € X @ Z such that

(@ ® Lugz)) (wu) |, =[] (3.283)

Proof Let X € L(X) be an operator for which it holds that || X|; = 1 and
|2(X) |1 = ||®]|1. Let 20,21 € Z be any two orthogonal unit vectors, define
a Hermitian operator H € Herm(X ® Z) as

1 1
H= EX ® 2027 + §X* ® 212, (3.284)
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and observe that ||H||;1 = || X ||1 = 1. Moreover, one has
1 * 1 * *
(@ ® Lz (H) = 5@()() ® z021 + §®(X ) ® 212
. (3.285)

1
= 5CI)(X) ® zpz] + §<I>(X)* ® 212p,

where the second equality follows from Theorem 2.25, together with the
assumption that ® is a Hermitian-preserving map. It is therefore the case
that

1@ @ Tuz) (H)], = [2(X) ], = [[@];- (3.286)

Now consider a spectral decomposition

H =) \Nupui (3.287)
k=1

for n = dim(X ® Z). By the triangle inequality, one has

(@ @ Lpizy) (H)|], < DI [(@ @ Loez)) (upuf) |- (3.288)
f—1

As ||H||1 = 1, the expression on the right-hand side of the inequality (3.288)
is a convex combination of the values

(2 @ Luz)) (wnup) ||, (3.289)
ranging over k € {1,...,n}. There must therefore exist k € {1,...,n} for
which the inequality

(@ @ Tuz) (upui) ||, = [(@ @ Loz (H) |, = ([ @]}, (3.290)
is satisfied. Setting u = u; completes the proof. ]

Theorem 3.51 Let & € T(X,)) be a Hermitian-preserving map, for X
and ) being complex Fuclidean spaces. It holds that

1@l = ueg(%x)\l (@ ® Loy (ua”) |- (3.291)

Proof For every unit vector u € X ® X, it holds that
(2@ i) (uu®) ||y < |2 @ Lo ||, = Il (3.292)
so it suffices to prove that there exists a unit vector u € X ® X for which

(@ @ Loy (wu) ||} = [|@ @ Loy [|; = (11 (3.293)
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Let Z = C2. By Lemma 3.50 there exists a unit vector z € X ® X ® Z such
that

(@ ® Li) ® Liz) (z2™) ||, = |2 © Lo |y » (3.294)
and by Lemma 3.45 there must exists a unit vector u € X ® X such that
[(® & L) ), = (@0 Lo © L) o). (3295)

For such a choice of u, one has (3.293), which completes the proof. O

A channel analogue of the Holevo—Helstrom theorem

The next theorem represents an analogue of the Holevo—Helstrom theorem
(Theorem 3.4) for channels rather than states, with the completely bounded
trace norm replacing the trace norm accordingly.

Theorem 3.52 Let &g, P € C(X,)) be channels, for complex Euclidean
spaces X and Y, and let A € [0,1]. For any choice of a complex Fuclidean
space Z, a measurement u : {0,1} — Pos(Y ® Z), and a density operator
o€ DX ® Z), it holds that

A(p(0), (Po @ Lz))(0)) + (1 = A){u(1), (P1 ® 11L<z>)(0)>
_11 (3.296)

Moreover, for any choice of Z satisfying dim(Z) > dim(X), equality is
achieved in (3.296) for some choice of a projective measurement | and a
pure state o.

Proof By the Holevo—Helstrom theorem (Theorem 3.4), the quantity on
the left-hand side of (3.296) is at most

% + %HA(@O ® 1iz)(0) = (1= A)(@1 ® Luz)(9) - (3.297)

This value is upper-bounded by

1 1
5 + 5” ()‘(I)O - (1 - /\)(I)l) X ]lL(Z) Hl ) (3.298)
which is at most
1 1
5+ 5llIA%o = (1 = V)4, (3.299)

by Theorem 3.46.
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The mapping A®y — (1 — A\)®; is Hermitian preserving, by virtue of the
fact that &y and ®; are completely positive and A is a real number. By
Theorem 3.51, there must therefore exist a unit vector u € X ® X for which

H)\((I)o Y ﬂL(X))(UU*) —(1=XN)(P1® ]lL(X))(UU*) ”1

(Y P
Under the assumption that dim(Z) > dim(X), one therefore has
7@ @ 1u2)(0) — (1~ (@1 @ 1)) a0
= [[A®0 — (1 = )24l
for the pure state
o= 1y ®Vyuu(ly @ V*), (3.302)

for an arbitrary choice of an isometry V € U(X, Z).
Finally, by the Holevo—Helstrom theorem (Theorem 3.4), there must exist
a projective measurement p : {0,1} — Pos() ® Z) such that
A{p(0), (0 @ Tiz))(0)) + (1 = A)(p(1), (P21 © Tiz))(9))
1 1
=5+ 51M@0 @ 1uz)(0) = (1= X) (@1 @ Luez)) (o), (3.303)
1

1
=5t §|||>\‘I’0 — (1 =XN4]||,,

which completes the proof. ]

Distances between networks of channels

Many computations and interactions that arise in the study of quantum
information and computation can be represented as networks of channels.
Here, one supposes that a collection of channels ®1,..., ®yx having varying
input and output spaces are arranged in an acyclic network, as suggested by
the example depicted in Figure 3.1. The completely bounded trace norm is
well-suited to analyses concerning errors, inaccuracies, and noise that may
occur in such networks.

By composing the channels ®q,...,®y in a manner consistent with the
network, a single channel ® is obtained. Assuming the registers Xi,..., X,
are treated as inputs to the network and registers Yq,...,Y,, are output,
the channel ® representing the composition of the channels ®4, ..., ®y takes
the form

PeC(X @ @X, V1@ R V). (3.304)
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o
2‘\_’ =Y1

X1 — ™ @1 q)4
\‘ / b
X ] o )
3 >
X3 > ——/ \» > > Y2

Figure 3.1 A hypothetical example of an acyclic network of channels. The
arrows represent registers, and one assumes the input and output spaces of
the channels (represented by rectangles) are compatible with the registers
represented by the arrows. For instance, the channel ®; transforms the
register X; into some other register (not explicitly named in the figure),
which is the second of three inputs to the channel ®,. By composing the
channels @1, ..., P45 in the manner suggested by the figure, one obtains a
single channel ® € C(X] ® Xy ® X3,)1 @ Vs).

Now suppose that Wy, ..., ¥y are channels whose input spaces and output
spaces agree with ®1,..., ®y, respectively, and that W, is substituted for ®y
foreach k € {1,..., N}. Equivalently, the channels ¥y, ..., ¥y are composed
in a manner that is consistent with the description of the network, yielding
a channel

VeCX®@ @X, N ® @ Vm) (3.305)

in place of ®. It could be, for instance, that ®q,..., Py represent ideal
channels that are specified by a protocol or algorithm while ¥q,..., Uy
represent slightly noisy or corrupted variants of ®q,...,®y.

It is natural to ask how much ® and ¥ may differ, as a function of the
differences between ®; and Vg, for £ € {1,...,N}. An upper bound on
the completely bounded trace norm of the difference between ® and ¥ is
obtained by induction from Proposition 3.48 along with Corollary 3.47:

19— Wy < |y — W, + -+ [ — vl (3.306)

Therefore, irrespective of the properties of the network under consideration,
the differences between the channels ®; and Vg, for k € {1,..., N}, only
accumulate additively when composed in a network.

Discrimination between pairs of isometric channels

As Example 3.36 illustrates, it is necessary in some instances of Scenario 3.35
for Bob to use an auxiliary register W in order to optimally discriminate a
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given pair of channels. One interesting case in which it is not necessary for
Bob to make use of an auxiliary register in this scenario is when the two
channels are isometric channels, defined as

Oo(X) = VoXVy and &y(X) =WV XV} (3.307)

for all X € L(X), for some choice of isometries Vy, V1 € U(X,)). The fact
that an auxiliary register is not needed for an optimal discrimination in this
case is proved below. The proof makes use of the notion of the numerical
range of an operator.

Definition 3.53 Let X’ be a complex Euclidean space and let X € L(X)
be an operator. The numerical range of X is the set N (X) C C defined as
follows:

N(X)={u"Xu : ueSX)}. (3.308)

In general, every eigenvalue of a given operator X is contained in N (X),
and one may prove that A(X) is equal to the convex hull of the eigenvalues
of X in the case that X is normal. For non-normal operators, however, this
will not generally be the case. It is, however, always the case that N (X) is
compact and convex, which is the content of the following theorem.

Theorem 3.54 (Toeplitz—Hausdorff theorem) For any complex Euclidean
space X and any operator X € L(X), the set N(X) is compact and conver.

Proof The function f : S(X) — C defined by f(u) = v*Xwu is continuous,
and the unit sphere S(X') is compact. Continuous functions map compact
sets to compact sets, implying that N (X) = f(S(X)) is compact.

It remains to prove that N (X) is convex. Fix any choice of «, 8 € N (X)
and a real number A € [0, 1]. It will be proved that

A+ (1—N)B eN(X), (3.309)

which suffices to prove the theorem. It will be assumed hereafter that o # 3,
as the assertion is trivial in the case that a = f.

By the definition of the numerical range, one may choose unit vectors
u,v € S(X) such that u*Xu = a and v*Xv = . By the assumption that
« # 3, one has that the vectors u and v are linearly independent.

Next, define

—8 1
Y = 1 —X 3.310
a—f v a—p ( )
so that v*Yu =1 and v*Yv = 0. Let H, K € Herm(X') be defined as
Y +Y* Yy -Y*
H = i and K = (3.311)

2
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so that Y = H + ¢K. It follows that
uHu=1, v*Hv =0,

(3.312)
uKu=0, v*Kv = 0.

Without loss of generality, it may be assumed that «* Kv is purely imaginary
(i.e., has real part equal to 0), for otherwise v may be replaced by ey for
an appropriate choice of 8 without changing any of the previously observed
properties.

As w and v are linearly independent, the vector tu+ (1 —t)v is nonzero for
every choice of ¢t € R. Thus, for each ¢ € [0, 1], one may define a unit vector

o tu+ (1 -t
W= Ty a =l

(3.313)

Because v*Ku = v*Kv = 0 and v*Kwv is purely imaginary, it follows that
2(t)*Kz(t) = 0 for every t € [0, 1], and therefore

P+l —t)(v*Hu+ u*Hv)
B |tu+ (1 — t)v]|?

(1) Y 2(t) = 2(8) Hz(t) (3.314)

The expression on the right-hand side of (3.314) is a continuous real-valued
function mapping 0 to 0 and 1 to 1. Consequently, there must exist at least
one choice of t € [0, 1] such that z(¢)*Y z(t) = A. Let w = 2(t) for such choice
of t, so that w*Yw = \. It holds that w is a unit vector, and

w*Xw = (a— f) (aLiﬁ + w*Yw) =AXa+ (1 —-X)g. (3.315)

It has therefore been shown that Aa + (1 — \)38 € N(X) as required. O

Theorem 3.55 Let X and Y be complex Fuclidean spaces for which it
holds that dim(X) < dim(Y), let Vo, Vi € U(X, ) be isometries, and define
channels ®q, ®; € C(X,)) as

Bo(X) = VoXVy and ®1(X) = ViXV} (3.316)
for all X € L(X). There exists a unit vector u € X such that
[A®o (uu™) — (1 = X) @1 (uw?)|[; = [[[A®o — (1 = )4, (3.317)
for every X € 10,1].
Proof Using the identity (1.184), one finds that
o) — (1 — A (e

g (3.318)
=1 =201 =) [u Vg Vyuf,
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for every unit vector u € X', and similarly
A (@0 & Tu) (00") = (1= ) (@1 & Tz (007)
= 1= a1 =) [ (VW @ 1z)0]?

(3.319)

for every complex Euclidean space Z and unit vector v € X® Z. Taking Z be
a complex Euclidean space with dim(Z) = dim(&’), it follows from (3.319)
together with Theorem 3.51 that there exists a unit vector v € X ® Z such
that

Ao — (1 — A)CI)lml = \/1 — A1 =) o (Vg V, @ ]lg-)v}2 (3.320)
Now, one may observe that

for p = Trz(vv*). By considering a spectral decomposition of p, one finds
that the value represented by (3.321) is a convex combination of values of
the form

where w € X ranges over a set of unit eigenvectors of p. Each of these values
is contained in the numerical range of V'V, so by the Toeplitz—Hausdorff
theorem (Theorem 3.54) there must exist a unit vector u € X such that

By (3.318), it follows that
7o) — (1 - N (), = [ABo — (1 - N[l (3320

Observing that the vector u does not depend on A, the proof is complete. [

The completely bounded trace distance from a channel to the identity

Returning once again to Example 3.36, one has that the Werner—Holevo
channels can be perfectly discriminated through the use of a sufficiently
large auxiliary register, but are nearly indistinguishable without the use of
an auxiliary register (assuming the space with respect to which the channels
are defined has large dimension). The Werner—Holevo channels have another
feature that is relevant to the discussion that follows, which is that they are
highly noisy channels; their outputs are close to the completely mixed state
for every possible input state.

One may ask if a similar phenomenon, in which an auxiliary register has
a dramatic effect on the optimal probability of successfully discriminating
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channels, occurs when one of the channels is the identity channel. This is a
natural question, as the closeness of a given channel to the identity channel
may be a relevant figure of merit of that channel in some situations. The
following theorem demonstrates that the phenomenon suggested above is
limited in this setting. In particular, the theorem demonstrates that the
potential advantage of using an auxiliary register in discriminating a given
channel from the identity channel is dimension-independent.

Theorem 3.56 Let X be a complex Euclidean space, let ® € C(X) be a
channel, let ¢ € [0, 2], and suppose that

9() o, <« (3.525)
for every density operator p € D(X). It holds that
[[@ — Lo |||, < V2e. (3.326)

Proof 1t is evident from the assumptions of the theorem that, for every
unit vector u € X, one has

| ®(uu™) —uu*||, <e, (3.327)
and therefore

[(uu®, ®(uu*) —uu™)| < . (3.328)

N ™

The first main step of the proof will be to establish a bound of a similar
nature:

[(uv™, ®(uv™) — uwv*)| < =, (3.329)

Do ™

for every pair of orthogonal unit vectors u,v € X'. Toward this goal, assume
that u,v € X are orthogonal unit vectors, and define a unit vector

u~+ iFv
wg = 3.330
K NG (3.330)
for each k € {0,1,2,3}. From the observation that
13
uv* = 3 > i*wgwk, (3.331)
k=0
it follows that
13
O (uv*) —uwv* = 3 > i* (D (wpw)) — wrw)). (3.332)
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Because the spectral norm of a traceless Hermitian operator is at most one-
half of its trace norm, it follows that

* * 1 * *
| @ (uv*) — uv*|| < 3 ZH@(wkwk) — wiwg |
(3.333)

3 . c
Z wkwk, wkwsz1 < 5

»Jkli—‘

This implies the desired bound (3.329).
Now, let z € X ® X be a unit vector, expressed in the form of a Schmidt
decomposition

z = Z \Vp(a)xg ® ya, (3.334)

acyl

for ¥ being an alphabet, {z, : a € ¥} and {y, : a € X} being orthonormal
subsets of X', and p € P(X) being a probability vector. It holds that

(22", (D@ L) (22")) = z p(a)p(b){zaz}, P(xexl)), (3.335)
a,bex

and therefore, by the triangle inequality and the bounds (3.328) and (3.329)
from above,

1= (227, (P @ Lp)) (227)) = [(22", (2 ® Ly ) (227) — 227)]

)
< bZ p(a)p(b)[(zaz, ®(203]) — Taz)| < g (3.336)
a,bex

Using the expression of the fidelity function when one of its arguments has
rank equal to one, as given by Proposition 3.13, it follows that

F((®© Lyn)(257), 227 > 1 -

(3.337)

Do M

Therefore, by one of the Fuchs—van de Graaf inequalities (Theorem 3.33), it
follows that

(2 ® L) (227) — 227,
< 2\/1 —F((® ® Lya)) (22%), zz*)2 < V2.

(3.338)

Because ® — 1;,y) is a Hermitian preserving map, the theorem follows by
Theorem 3.51. L]
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3.3.4 Characterizations of the completely bounded trace norm

Two alternative characterizations of the completely bounded trace norm are
presented below, along with a theorem concerning the completely bounded
trace norm of maps having bounded Choi rank.

The mazimum output fidelity between completely positive maps

It is possible to characterize the completely bounded trace norm of a map
in terms of the maximum output fidelity between two completely positive
maps derived from the given map. The maximum output fidelity is defined
as follows.

Definition 3.57 Let ¥y, ¥; € CP(X,)) be positive maps, for X and )
being complex Euclidean spaces. The maximum output fidelity between ¥y
and Wy is defined as

Frax(Po,¥1) = max F(V¥ .U . 3.339
(o, ¥y) o max (To(po), ¥1(p1)) (3.339)

For any choice of vectors of the form u,v € X ® Y, for X and ) being
arbitrary complex Euclidean spaces, Corollary 3.23 states that

| Try (vu®) ||, = F(Tra (uu”), Trx (vv™)). (3.340)

An extension of this fact provides a link between the completely bounded
trace norm and the maximum output fidelity. In considering this extension,
it is convenient to isolate the fact represented by the lemma that follows.

Lemma 3.58 Let Ay, A1 € L(X,Y ® Z) be operators, for X, Y, and Z
being complexr Fuclidean spaces, and define maps Vo, ¥ € CP(X,Z) and
¢ € T(X,)) as follows:
\I/()(X) = TI‘y (A()XAS),
\Ill(X) = TI‘y (AlXAT), (3341)
P(X)=Trz(ApXA}),

for every X € L(X). Also let up,u; € X ® W be vectors, for W being a
complex Fuclidean space. It holds that

(@ & Trom) (woui) ||, = F(To(Trw (uoug)), U1 (Trw (wiui))).  (3.342)

Proof Let W e U(Y®Z®W,Z®)Y ®W) be the operator defined by the
equation

WyRzw)=2QyQ w, (3.343)

holding for all y € Y, z € Z, and w € W. In other words, W represents a
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reordering of tensor factors, from Y ® Z® W to Z ® Y ® W. It is evident
that one has

(® @ Luow) (wouf) = Trz (Ao ® Tw)uouf (4] @ Tw))

(3.344)
=Trz (W(Ao ® Ty)uoui(A] @ ]lW)W*).

Applying Corollary 3.23, one has
(2 ® Lrowy) (uoud) |,
= F<T1“y®w(W(Ao ® Tyy)ugug(Ag @ Lyy) W),
Tryew (W (A1 @ Tyy)uiui (A7 @ ﬂW)W*)) (3.345)
= F(Try (Ao Trw (uou) A5), Try (A1 Tryy (w1 A7)
= F(Wo(Trw (uoup)), Vi (Trw (w1u7))),
as required. ]

Theorem 3.59 Let Ay, A1 € L(X,Y ® Z) be operators, for X, Y, and Z
being complex Fuclidean spaces, and define maps Wy, ¥ € CP(X,Z) and
d € T(X,Y) as follows:

\I/()(X) = TI‘y (A()XAS),
\Ifl(X) TI‘y (AlXAT), (3346)
O(X) = Trz(AgX A7),

for every X € L(X). It holds that
H|(I)|||1 :Fmax(\Ijo,\Pl)- (3347)

Proof Let W be a complex Euclidean space with dim(W) = dim(X). By
Proposition 3.44 and Lemma 3.58, one has

ol =, max (@@ Luow) (uoui)

- F(Uo(T 5)), ¥ (T 1
o B gy T (0T (woss)), T (T (e ) (3.348)

—  max F(Ug(py), U
o maX (To(po), ¥1(p1))

- Fmax(‘ym ‘Ill)a

as required. |
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Remark The proof of Theorem 3.59 establishes a connection between those
choices of density operators pg, p1 € D(X') achieving the maximal value in
the expression

Fmax(\I}Oa \Ijl) = max F(\Ifo(po), \Ifl(pl)) (3349)
p0,p1€D(X)
and the choices of vectors ug,u; € S(X ® W) achieving the maximal value
in the expression

Pl = P 1 .. 3.350
1Rl uo,ulé%%}zi@W)H( ® Trom) (uoud) || ( )

Specifically, for any choice of unit vectors ug, u; € S(X @ W), one may take
po = Tryy(uoug) and  p; = Tryy(ugul), (3.351)

and conversely, for any choice of density operators pg, p1 € D(X'), one may
take ug, u; € S(X ® W) to be arbitrary purifications of pg, p1, respectively,
with equal values being obtained in the above expressions in both cases.

By combining Theorem 3.59 with the multiplicativity of the completely
bounded trace norm with respect to tensor products (Theorem 3.49), one
finds that the maximum output fidelity is also multiplicative with respect
to tensor products.

Corollary 3.60 Let Xy, X1, Vo, and V1 be complex Fuclidean spaces and
let g, Vo € CP(Xp,My) and ®1,V; € CP(X1,V1) be completely positive
maps. It holds that

Frax(®o ® @1, Vo @ U1) = Fnax(Po, Yo) Frmax(P1, ¥1). (3.352)

This corollary implies a simple but not necessarily obvious fact, which is that
the maximum output fidelity between two completely positive product maps
is achieved for product state inputs. It may be contrasted with some other
quantities of interest (such as the minimum output entropy of a quantum
channel, to be discussed in Chapter 7) that fail to respect tensor products
in this way.

A semidefinite program for mazimum output fidelity

It is natural to ask if the value |||®]||; of the completely bounded trace norm
of a given map ® € T(X,)) can be efficiently calculated. While there is no
closed-form expression that is known to represent this value, it is equal to
the optimal value of a semidefinite program that has a simple description in
terms of the mapping ®. In particular, when Theorem 3.59 is combined with
the semidefinite program for the fidelity function discussed in Section 3.2.2,
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a semidefinite program for the completely bounded trace norm is obtained.
This allows for an efficient calculation of the value |||®|||; using a computer,
as well as an efficient method of verification through the use of semidefinite
programming duality.

In greater detail, let ® € T(X,)) be a map, for complex Euclidean spaces
X and )Y, and assume that a Stinespring representation of ® is known:

O(X) = Trz(AgX AY) (3.353)

for all X € L(X), for Ag, A1 € L(X,Y® Z) being operators for some complex
Euclidean space Z. Define completely positive maps ¥y, W1 € CP(X, Z) as
follows:

\Ifl(X) = TI‘y(AlXAik),

for all X € L(X). Next, consider the semidefinite program whose primal
problem is as follows:

Primal problem

1 1
maximize: 5 Tr(Y) + 5 Tr(Y™)
v Y
subject to: ( 0(60) ) >0
Y= Wi(m)

po,p1 € D(X), Y € L(Z).

Such a semidefinite program may be expressed with greater formality, with
respect to the definition of semidefinite programs presented in Section 1.2.3,
in the following way.

First, one defines a Hermitian-preserving map

ELXOXDPDZDE) > LCOCHZEDZ) (3.355)
as
Xy -
- . Xl .
- - Zy -
. Zl
(3.356)
TI'(X()) 0 0 0
! 0  Tr(X)) 0 0
2 0 0  Zy— Wy(Xo) 0



3.8 Channel distances and discrimination 189

for all Xy, X; € L(X) and Zy,Z; € L(Z), and where the dots represent
operators on appropriately chosen spaces upon which = does not depend.

Next, one defines Hermitian operators A € Herm(X & X @ Z @ Z) and
BeHerm(CaCh Zd 2) as

00 0 O 1 0 0 0
110 0 0 O 01 00

A= slo 0 0 1 and B = - 00 0 0 (3.357)
0O 01 O 0 0 00

It is evident that the primal problem specified above is equivalent to the
maximization of the quantity (A, X) over all choices of
Xo -
Xy, - :
€EPos( XX B Za 2) (3.358)
Zy Y
Y* 7
obeying the constraint Z(X) = B.
The adjoint mapping to = is given by

Ao -
T B S
- . Zy -
. Z1
(3.359)
Xolx — T%(Zo) 0 0 0
1 0 My —U%(Z) 0 0
2 0 0 Zo 0|’
0 0 0 7

so the dual problem corresponding to the semidefinite program (=, A, B) is
to minimize the quantity (Ao + A1)/2 subject to the conditions

)\()]l)( Z \Ifg(Z()) and )\1]1)( Z \I/T(Zl), (3360)

for Zy, Z1 € Herm(Z) being Hermitian operators satisfying

Zy 0 0 1
(00 Z1>Z<]1 o)' (3.361)

Observing that Zy and Z; must be positive definite in order for (3.361) to
be satisfied, along with the fact that W{§ and W7 are positive, one obtains
the following statement of the dual problem:
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Dual problem

1 1
minimize: 5‘}\118(20)” + 5"\111((21)"

Zyp —1z
subject to: >0
1z Z;

Zy, 71 € Pd(Z).
To prove that strong duality holds for this semidefinite program, one may
observe that the primal problem is feasible and the dual problem is strictly

feasible. In particular, with respect to the semidefinite program’s formal
specification, as just described, one has that the operator

o 00 0
0 p 0 0

3.362
0 0 Wo(pp) O ( )

00 0  Up)

is primal feasible, for an arbitrary choice of density operators pg, p1 € D(X).
The strict feasibility of the dual problem may be verified by observing, for
instance, that the operator

2 o O 0 0
0 2\ O 0
0 0 21z 0 (3.363)
0 0 0 21z

is strictly dual feasible, provided that A\g > |[|¥§(1z)|| and Ay > ||¥](1z)]-
It follows by Slater’s theorem (Theorem 1.18) that the primal and dual
optimal values are equal, and moreover the primal optimal value is achieved
for some choice of a primal feasible operator.

The fact that the optimal value of the semidefinite program is in agree-
ment with the completely bounded norm |||®[||; follows from Theorem 3.59
together with Theorem 3.17.

The dual problem stated above may be further simplified as follows:

Dual problem (simplified)

minimize: §H\IJO(Z) |+ 5”‘1’1(2 1) I
subject to: Z € Pd(Z).

To verify that this problem has the same optimal value as the dual problem
stated above, one may first observe that the inequality (3.361) holds if and
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only if Zy and Z; are both positive definite and satisfy Z1 > Z; 1 For any
such choice of 7y and 77, the inequality

13 (201l = 197 (Z6 )l (3.364)

holds by the positivity of W7, implying that no generality is lost in restricting
one’s attention to operators Zg = Z and Z; = Z~ ! for Z € Pd(Z). The
following theorem is a consequence of this observation.

Theorem 3.61 Let Ag, A} € L(X,Y ® Z) be operators, for X, Y, and Z
being complex Fuclidean spaces, and define maps Vo, ¥; € CP(X,Z) and
¢ c T(X,)) as follows:
\I/()(X) = TI‘y (A()XAS),
\Ill(X) TI‘y(AlXAD, (3365)
(I)(X) = Trg(AoXAT),

for every X € L(X). It holds that

- . 1 * 1 * -1
ol =, int (G190 + 5192 1) (3360

Spectral norm characterization of the completely bounded trace norm

Consider a map ® € T(X,)), for complex Euclidean spaces X and ). One
has, by Theorem 2.22, that a given complex Euclidean space Z admits a
Stinespring representation

O(X) = Trz (Ao X A}) (3.367)

of ®, for some choice of operators Ay, A; € L(X,)Y ® Z), if and only if the
dimension of Z is at least as large as the Choi rank of ®. An equivalent
condition to (3.367) holding for all operators X € L(X) is that

J(®) = Trz(vec(Ap) vec(A1)). (3.368)

As the next theorem states, the completely bounded trace norm of @ is equal

to the infimum value of the product || Ag|||| A1 ||, ranging over all such choices
of AO and Al.

Theorem 3.62 (Smith) Let ® € T(X,)) be a map, fo