

References

Chitambar, E., Leung, D., Mančinska, L., Ozols, M., and Winter, A. 2014. Everything you always wanted to know about LOCC (but were afraid to ask). Communications in Mathematical Physics, 328(1), 303–326.

Dyson, F. 1962a. Statistical theory of the energy levels of complex systems. I. *Journal of Mathematical Physics*, 3(1), 140–156.

Dyson, F. 1962b. Statistical theory of the energy levels of complex systems. II. *Journal of Mathematical Physics*, 3(1), 157–165.

Dyson, F. 1962c. Statistical theory of the energy levels of complex systems. III. *Journal of Mathematical Physics*, 3(1), 166–175.

von Neumann, J. 1930. Zur algebra der funktionaloperationen und theorie der

von Neumann, J. 1933. Die einfuhrung analytischer parameter in topologischen

University Press. Originally published in German in 1932 as *Mathematische
Grundlagen der Quantenmechanik*.

Walgate, J., Short, A., Hardy, L., and Vedral, V. 2000. Local distinguishability
4972–4975.

Quantum Information and Computation, **5**(1), 58–68.

Quantum Information and Computation, **8**(9), 819–833.

Watrous, J. 2009a. Mixing doubly stochastic quantum channels with the completely
depolarizing channel. *Quantum Information and Computation*, **9**(5/6), 406–
413.

of Computing*, **5**(11).

Watrous, J. 2013. Simpler semidefinite programs for completely bounded norms.

Werner, R. 1989. Quantum states with Einstein–Podolsky–Rosen correlations ad-

1832.

A: Mathematical and General*, **34**(35), 7081–7094.

Originally published in German in 1929.

Publishers.

299, 802–803.

in quantum detection theory. *IEEE Transactions on Information Theory*,
21(2), 125–134.

List of Symbols and Notations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ, Γ, Λ</td>
<td>Typical names for alphabets (finite and nonempty sets whose elements are viewed as symbols).</td>
</tr>
<tr>
<td>\mathbb{C}^Σ</td>
<td>The complex Euclidean space of functions from an alphabet Σ to the complex numbers. (Equivalently, the complex Euclidean space of vectors having entries indexed by Σ.)</td>
</tr>
<tr>
<td>$\mathcal{W}, \mathcal{X}, \mathcal{Y}, \mathcal{Z}$</td>
<td>Typical names for complex Euclidean spaces.</td>
</tr>
<tr>
<td>$\langle u, v \rangle$</td>
<td>The inner product between vectors u and v.</td>
</tr>
<tr>
<td>$|u|$</td>
<td>The Euclidean norm of a vector u.</td>
</tr>
<tr>
<td>$S(\mathcal{X})$</td>
<td>The unit sphere in a complex Euclidean space \mathcal{X}.</td>
</tr>
<tr>
<td>$|u|_p$</td>
<td>The p-norm of a vector u.</td>
</tr>
<tr>
<td>$|u|_\infty$</td>
<td>The ∞-norm of a vector u.</td>
</tr>
<tr>
<td>$u \perp v, u \perp A$</td>
<td>Indicates that a vector u is orthogonal to a vector v, or to every element of a set of vectors A.</td>
</tr>
<tr>
<td>e_a</td>
<td>An element of the vector standard basis, corresponding to a symbol (or index) a.</td>
</tr>
</tbody>
</table>
List of Symbols and Notations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma_1 \sqcup \cdots \sqcup \Sigma_n)</td>
<td>The disjoint union of alphabets (\Sigma_1, \ldots, \Sigma_n).</td>
<td>5</td>
</tr>
<tr>
<td>(\mathcal{X}_1 \oplus \cdots \oplus \mathcal{X}_n)</td>
<td>The direct sum of complex Euclidean spaces (\mathcal{X}_1, \ldots, \mathcal{X}_n).</td>
<td>5</td>
</tr>
<tr>
<td>(u_1 \oplus \cdots \oplus u_n)</td>
<td>The direct sum of vectors (u_1, \ldots, u_n).</td>
<td>5</td>
</tr>
<tr>
<td>(\mathcal{X}_1 \otimes \cdots \otimes \mathcal{X}_n)</td>
<td>The tensor product of complex Euclidean spaces (\mathcal{X}_1, \ldots, \mathcal{X}_n).</td>
<td>6</td>
</tr>
<tr>
<td>(u_1 \otimes \cdots \otimes u_n)</td>
<td>The tensor product of vectors (u_1, \ldots, u_n).</td>
<td>6</td>
</tr>
<tr>
<td>(\mathcal{X}^{\otimes n})</td>
<td>The (n)-fold tensor product of a complex Euclidean space (\mathcal{X}) with itself.</td>
<td>7</td>
</tr>
<tr>
<td>(u^{\otimes n})</td>
<td>The (n)-fold tensor product of a vector (u) with itself.</td>
<td>7</td>
</tr>
<tr>
<td>(\mathbb{R}^\Sigma)</td>
<td>The real Euclidean space of functions from an alphabet (\Sigma) to the real numbers. (Equivalently, the real Euclidean space of vectors having entries indexed by (\Sigma).)</td>
<td>7</td>
</tr>
<tr>
<td>(L(\mathcal{X}, \mathcal{Y}))</td>
<td>Space of all linear operators mapping a complex Euclidean space (\mathcal{X}) to a complex Euclidean space (\mathcal{Y}).</td>
<td>7</td>
</tr>
<tr>
<td>(E_{a,b})</td>
<td>An element of the operator standard basis, corresponding to symbols (or indices) (a) and (b).</td>
<td>9</td>
</tr>
<tr>
<td>(\overline{A}, \overline{u})</td>
<td>The entry-wise complex conjugate of an operator (A) or a vector (u).</td>
<td>10</td>
</tr>
<tr>
<td>(A^\top, u^\top)</td>
<td>The transpose of an operator (A) or a vector (u).</td>
<td>10</td>
</tr>
<tr>
<td>(A^, u^)</td>
<td>The adjoint of an operator (A) or a vector (u).</td>
<td>10</td>
</tr>
<tr>
<td>(\ker(A))</td>
<td>The kernel of an operator (A).</td>
<td>11</td>
</tr>
<tr>
<td>(\text{im}(A))</td>
<td>The image of an operator (A).</td>
<td>11</td>
</tr>
<tr>
<td>(\text{rank}(A))</td>
<td>The rank of an operator (A).</td>
<td>11</td>
</tr>
</tbody>
</table>
List of Symbols and Notations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_1 \otimes \cdots \otimes A_n$</td>
<td>The tensor product of operators A_1, \ldots, A_n.</td>
</tr>
<tr>
<td>$A^\otimes n$</td>
<td>The n-fold tensor product of an operator A with itself.</td>
</tr>
<tr>
<td>$L(\mathcal{X})$</td>
<td>Space of linear operators mapping a complex Euclidean space \mathcal{X} to itself.</td>
</tr>
<tr>
<td>$\mathbb{1}$</td>
<td>The identity operator; denoted $\mathbb{1}_\mathcal{X}$ when it is helpful to indicate that it acts on a complex Euclidean space \mathcal{X}.</td>
</tr>
<tr>
<td>X^{-1}</td>
<td>The inverse of an invertible square operator $X \in L(\mathcal{X})$.</td>
</tr>
<tr>
<td>$\text{Tr}(X)$</td>
<td>The trace of a square operator $X \in L(\mathcal{X})$.</td>
</tr>
<tr>
<td>$\langle A, B \rangle$</td>
<td>The inner product of operators A and B.</td>
</tr>
<tr>
<td>$\text{Det}(X)$</td>
<td>The determinant of a square operator X.</td>
</tr>
<tr>
<td>$\text{Sym}(\Sigma)$</td>
<td>The set of permutations, or bijective functions, of the form $\pi : \Sigma \to \Sigma$.</td>
</tr>
<tr>
<td>$\text{sign}(\pi)$</td>
<td>The sign, or parity, of a permutation π.</td>
</tr>
<tr>
<td>$\text{spec}(X)$</td>
<td>The spectrum of a square operator X.</td>
</tr>
<tr>
<td>$[X, Y]$</td>
<td>The Lie bracket of square operators X and Y.</td>
</tr>
<tr>
<td>$\text{comm}(\mathcal{A})$</td>
<td>The commutant of a set \mathcal{A} of square operators.</td>
</tr>
<tr>
<td>$\text{Herm}(\mathcal{X})$</td>
<td>The set of Hermitian operators acting on a complex Euclidean space \mathcal{X}.</td>
</tr>
<tr>
<td>$\text{Pos}(\mathcal{X})$</td>
<td>The set of positive semidefinite operators acting on a complex Euclidean space \mathcal{X}.</td>
</tr>
<tr>
<td>$\text{Pd}(\mathcal{X})$</td>
<td>The set of positive definite operators acting on a complex Euclidean space \mathcal{X}.</td>
</tr>
</tbody>
</table>
List of Symbols and Notations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D(\mathcal{X})$</td>
<td>The set of density operators acting on a complex Euclidean space \mathcal{X}.</td>
</tr>
<tr>
<td>$\text{Proj}(\mathcal{X})$</td>
<td>The set of projection operators acting on a complex Euclidean space \mathcal{X}.</td>
</tr>
<tr>
<td>$\Pi_\mathcal{V}$</td>
<td>The projection operator whose image is \mathcal{V}.</td>
</tr>
<tr>
<td>$U(\mathcal{X}, \mathcal{Y})$</td>
<td>The set of isometries mapping a complex Euclidean space \mathcal{X} to a complex Euclidean space \mathcal{Y}.</td>
</tr>
<tr>
<td>$U(\mathcal{X})$</td>
<td>The set of unitary operators acting on a complex Euclidean space \mathcal{X}.</td>
</tr>
<tr>
<td>$\text{Diag}(u)$</td>
<td>The diagonal square operator whose diagonal entries are described by the vector u.</td>
</tr>
<tr>
<td>$\lambda(H)$</td>
<td>The vector of eigenvalues of a Hermitian operator H.</td>
</tr>
<tr>
<td>$\lambda_k(H)$</td>
<td>The k-th largest eigenvalue of a Hermitian operator H.</td>
</tr>
<tr>
<td>$X \geq Y$ or $Y \leq X$</td>
<td>Indicates that $X - Y$ is positive semidefinite, for Hermitian operators X and Y.</td>
</tr>
<tr>
<td>$X > Y$ or $Y < X$</td>
<td>Indicates that $X - Y$ is positive definite, for Hermitian operators X and Y.</td>
</tr>
<tr>
<td>$T(\mathcal{X}, \mathcal{Y})$</td>
<td>The space of linear maps from $L(\mathcal{X})$ to $L(\mathcal{Y})$, for complex Euclidean spaces \mathcal{X} and \mathcal{Y}.</td>
</tr>
<tr>
<td>Φ^*</td>
<td>The adjoint of a map $\Phi \in T(\mathcal{X}, \mathcal{Y})$.</td>
</tr>
<tr>
<td>$\Phi_1 \otimes \cdots \otimes \Phi_n$</td>
<td>The tensor product of maps Φ_1, \ldots, Φ_n.</td>
</tr>
<tr>
<td>$\Phi^\otimes n$</td>
<td>The n-fold tensor product of a map Φ with itself.</td>
</tr>
<tr>
<td>$1_{L(\mathcal{X})}$</td>
<td>The identity map acting on $L(\mathcal{X})$.</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Tr\mathcal{X}</td>
<td>The partial trace over a complex Euclidean space \mathcal{X}.</td>
</tr>
<tr>
<td>CP(\mathcal{X}, \mathcal{Y})</td>
<td>The set of completely positive maps of the form $\Phi \in T(\mathcal{X}, \mathcal{Y})$.</td>
</tr>
<tr>
<td>vec(A)</td>
<td>The vec mapping applied to an operator A.</td>
</tr>
<tr>
<td>\sqrt{P}</td>
<td>The square root of a positive semidefinite operator P.</td>
</tr>
<tr>
<td>$s(A)$</td>
<td>The vector of singular values of an operator A.</td>
</tr>
<tr>
<td>$s_k(A)$</td>
<td>The k-th largest singular value of an operator A.</td>
</tr>
<tr>
<td>A^+</td>
<td>The Moore–Penrose pseudo-inverse of an operator A.</td>
</tr>
<tr>
<td>$|A|p, |A|\infty$</td>
<td>The Schatten p-norm or ∞-norm of an operator A.</td>
</tr>
<tr>
<td>$|A|$</td>
<td>The spectral norm of an operator A. Equivalent to the Schatten ∞-norm of A.</td>
</tr>
<tr>
<td>$|A|_2$</td>
<td>The Frobenius norm of an operator A. Equivalent to the Schatten 2-norm of A.</td>
</tr>
<tr>
<td>$|A|_1$</td>
<td>The trace norm of an operator A. Equivalent to the Schatten 1-norm of A.</td>
</tr>
<tr>
<td>$\nabla f(x)$</td>
<td>The gradient vector of a function $f : \mathbb{R}^n \to \mathbb{R}$ at a vector $x \in \mathbb{R}^n$.</td>
</tr>
<tr>
<td>$(Df)(x)$</td>
<td>The derivative of a (differentiable) function $f : \mathbb{R}^n \to \mathbb{R}$ at a vector $x \in \mathbb{R}^n$.</td>
</tr>
<tr>
<td>$\mathcal{B}(\mathcal{X})$</td>
<td>The unit ball in a complex Euclidean space \mathcal{X}.</td>
</tr>
<tr>
<td>Borel(\mathcal{A})</td>
<td>The collection of all Borel subsets of a subset \mathcal{A} of a real or complex vector space.</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>(\int f(x) , d\mu(x))</td>
<td>The integral of a function (f) with respect to a Borel measure (\mu).</td>
</tr>
<tr>
<td>(\text{cone}(A))</td>
<td>The cone generated by a subset (A) of a real or complex vector space.</td>
</tr>
<tr>
<td>(\mathcal{P}(\Sigma))</td>
<td>The set of probability vectors with entries indexed by an alphabet (\Sigma).</td>
</tr>
<tr>
<td>(\text{conv}(A))</td>
<td>The convex hull of a subset (A) of a real or complex vector space.</td>
</tr>
<tr>
<td>(E(X))</td>
<td>The expected value of a random variable (X).</td>
</tr>
<tr>
<td>(\Gamma(\alpha))</td>
<td>The value of the (\Gamma)-function at (\alpha).</td>
</tr>
<tr>
<td>(\gamma_n)</td>
<td>The standard Gaussian measure on (\mathbb{R}^n).</td>
</tr>
<tr>
<td>(X, Y, Z)</td>
<td>Typical names for registers.</td>
</tr>
<tr>
<td>((X_1, \ldots, X_n))</td>
<td>The compound register formed from registers (X_1, \ldots, X_n).</td>
</tr>
<tr>
<td>(\omega_{\mathcal{V}})</td>
<td>The flat state proportional to the projection onto the subspace (\mathcal{V}).</td>
</tr>
<tr>
<td>(\rho[X_1, \ldots, X_n])</td>
<td>The reduction of a state (\rho) to registers (X_1, \ldots, X_n).</td>
</tr>
<tr>
<td>(C(\mathcal{X}, \mathcal{Y}))</td>
<td>The set of all channels mapping (L(\mathcal{X})) to (L(\mathcal{Y})).</td>
</tr>
<tr>
<td>(C(\mathcal{X}))</td>
<td>The set of channels mapping (L(\mathcal{X})) to itself.</td>
</tr>
<tr>
<td>(K(\Phi))</td>
<td>The natural representation of a map (\Phi).</td>
</tr>
<tr>
<td>(J(\Phi))</td>
<td>The Choi representation of a map (\Phi).</td>
</tr>
<tr>
<td>(\Omega) or (\Omega_{\mathcal{X}})</td>
<td>Typical name for the completely depolarizing channel acting on (L(\mathcal{X})).</td>
</tr>
<tr>
<td>(\Delta) or (\Delta_{\mathcal{X}})</td>
<td>Typical name for the completely dephasing channel acting on (L(\mathcal{X})).</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>F(P, Q)</td>
<td>The fidelity between positive semidefinite operators P and Q.</td>
</tr>
<tr>
<td>B(P, Q</td>
<td>μ)</td>
</tr>
<tr>
<td>F(Φ, P)</td>
<td>The mapping fidelity of a map Φ with respect to a positive semidefinite operator P.</td>
</tr>
<tr>
<td>W or Wₙ</td>
<td>Typical name used to refer to the swap operator acting on a bipartite tensor product space X ⊗ X.</td>
</tr>
<tr>
<td>∥Φ∥₁</td>
<td>The induced trace norm of a map Φ.</td>
</tr>
<tr>
<td>∥Φ∥₁</td>
<td>The completely bounded trace norm of a map Φ.</td>
</tr>
<tr>
<td>N(X)</td>
<td>The numerical range of a square operator X.</td>
</tr>
<tr>
<td>Fₘₐₓ(Ψ₀, Ψ₁)</td>
<td>The maximum output fidelity of positive maps Ψ₀ and Ψ₁.</td>
</tr>
<tr>
<td>Zₙ</td>
<td>The ring of integers modulo n.</td>
</tr>
<tr>
<td>Wₐ,ₘₐ</td>
<td>A discrete Weyl operator acting on ℂ^{Zₙ}, for a, b ∈ ℤₙ.</td>
</tr>
<tr>
<td>σₓ, σᵧ, and σz</td>
<td>The Pauli operators.</td>
</tr>
<tr>
<td>A ⊙ B</td>
<td>The entry-wise product of operators A and B.</td>
</tr>
<tr>
<td>Vₚ</td>
<td>Permutation operator corresponding to the permutation π.</td>
</tr>
<tr>
<td>v ≺ u</td>
<td>Indicates that u majorizes v, for real vectors u and v.</td>
</tr>
</tbody>
</table>
List of Symbols and Notations

\[r(u) \] The vector obtained by sorting the entries of a real vector \(u \) from largest to smallest. 236

\[r_k(u) \] The \(k \)-th largest entry of a real vector \(u \). 236

\(Y \prec X \) Indicates that \(X \) majorizes \(Y \), for Hermitian operators \(X \) and \(Y \). 241

\(S_n \) The symmetric group on \(n \) symbols, equivalent to \(\text{Sym} \{1,\ldots,n\} \). 243

\(H(u) \) The Shannon entropy of a vector \(u \) with nonnegative real number entries. 251

\(H(X) \) The Shannon entropy of the probabilistic state of a classical register \(X \), or the von Neumann entropy of the quantum state of a register \(X \). 252, 266

\(H(X_1,\ldots,X_n) \) Refers to the Shannon entropy or von Neumann entropy of the compound register \((X_1,\ldots,X_n) \). 252, 266

\(D(u\|v) \) The relative entropy of \(u \) with respect to \(v \), for vectors \(u \) and \(v \) with nonnegative real number entries. 252

\(H(X|Y) \) The conditional Shannon entropy or von Neumann entropy of a register \(X \) with respect to a register \(Y \). 252, 267

\(I(X : Y) \) The mutual information or quantum mutual information between registers \(X \) and \(Y \). 253, 267

\(H(P) \) The von Neumann entropy of a positive semidefinite operator \(P \). 265

\(D(P\|Q) \) The quantum relative entropy of \(P \) with respect to \(Q \), for positive semidefinite operators \(P \) and \(Q \). 266
$T_{n,\varepsilon}(p)$ The set of ε-typical strings of length n with respect to the probability vector p.

$\Pi_{n,\varepsilon}$ Projection operator corresponding to the ε-typical subspace of $\mathcal{X}^\otimes n$ with respect to a given state.

$I_{\text{acc}}(\eta)$ The accessible information of an ensemble η.

$\chi(\eta)$ The Holevo information of an ensemble η.

$\text{Sep}(\mathcal{X} : \mathcal{Y})$ The set of separable operators acting on the tensor product space $\mathcal{X} \otimes \mathcal{Y}$, respecting the bipartition between \mathcal{X} and \mathcal{Y}.

$\text{SepD}(\mathcal{X} : \mathcal{Y})$ The set of separable density operators acting on the tensor product space $\mathcal{X} \otimes \mathcal{Y}$, respecting the bipartition between \mathcal{X} and \mathcal{Y}.

$\text{Ent}_r(\mathcal{X} : \mathcal{Y})$ The set of operators acting on the tensor product space $\mathcal{X} \otimes \mathcal{Y}$ having entanglement rank bounded by r, with respect to the bipartition between \mathcal{X} and \mathcal{Y}.

$\text{SepCP}(\mathcal{X}, \mathcal{Z} : \mathcal{Y}, \mathcal{W})$ The set of separable maps from $\text{L}(\mathcal{X} \otimes \mathcal{Y})$ to $\text{L}(\mathcal{Z} \otimes \mathcal{W})$, respecting the bipartition between \mathcal{X} and \mathcal{Y} and between \mathcal{Z} and \mathcal{W}.

$\text{SepC}(\mathcal{X}, \mathcal{Z} : \mathcal{Y}, \mathcal{W})$ The set of separable channels from $\text{L}(\mathcal{X} \otimes \mathcal{Y})$ to $\text{L}(\mathcal{Z} \otimes \mathcal{W})$, respecting the bipartition between \mathcal{X} and \mathcal{Y} and between \mathcal{Z} and \mathcal{W}.

$\text{LOCC}(\mathcal{X}, \mathcal{Z} : \mathcal{Y}, \mathcal{W})$ The set of LOCC channels from $\text{L}(\mathcal{X} \otimes \mathcal{Y})$ to $\text{L}(\mathcal{Z} \otimes \mathcal{W})$, respecting the bipartition between \mathcal{X} and \mathcal{Y} and between \mathcal{Z} and \mathcal{W}.

$E_D(\mathcal{X} : \mathcal{Y})$ The distillable entanglement of the state of a pair of registers $(\mathcal{X}, \mathcal{Y})$.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_C(X:Y)$</td>
<td>The entanglement cost of the state of a pair of registers (X, Y).</td>
<td>347</td>
</tr>
<tr>
<td>$\text{PPT}(X:Y)$</td>
<td>The set of PPT operators acting on $X \otimes Y$, respecting the bipartition between X and Y.</td>
<td>353</td>
</tr>
<tr>
<td>$E_F(X:Y)$</td>
<td>The entanglement of formation of the state of a pair of registers (X, Y).</td>
<td>385</td>
</tr>
<tr>
<td>W_π</td>
<td>A unitary operator acting on $X \otimes n$, for a complex Euclidean space X, that permutes tensor factors according to the permutation π.</td>
<td>391</td>
</tr>
<tr>
<td>$\mathcal{X}^\otimes n$</td>
<td>The symmetric subspace of $\mathcal{X}^\otimes n$, for \mathcal{X} a complex Euclidean space. Also denoted $\mathcal{X}_1 \otimes \cdots \otimes \mathcal{X}_n$ when $\mathcal{X}_1, \ldots, \mathcal{X}_n$ are identical copies of \mathcal{X}.</td>
<td>392</td>
</tr>
<tr>
<td>$\text{Bag}(n, \Sigma)$</td>
<td>The set of functions describing a bag of n items, each labeled by an element of an alphabet Σ.</td>
<td>393</td>
</tr>
<tr>
<td>\mathbb{N}</td>
<td>The set of nonnegative integers ${0, 1, 2, \ldots}$.</td>
<td>393</td>
</tr>
<tr>
<td>$\Sigma^\otimes n_\phi$</td>
<td>The subset of $\Sigma^\otimes n$ consistent with a given function $\phi \in \text{Bag}(n, \Sigma)$.</td>
<td>393</td>
</tr>
<tr>
<td>$\mathcal{X}^\otimes n$</td>
<td>The anti-symmetric subspace of $\mathcal{X}^\otimes n$, for \mathcal{X} a complex Euclidean space.</td>
<td>398</td>
</tr>
<tr>
<td>$L(\mathcal{X})^\otimes n$</td>
<td>The algebra of permutation-invariant operators acting on $\mathcal{X}^\otimes n$, for \mathcal{X} a complex Euclidean space.</td>
<td>400</td>
</tr>
<tr>
<td>μ</td>
<td>Symbol used to denote uniform spherical measure.</td>
<td>408</td>
</tr>
<tr>
<td>η</td>
<td>Symbol used to denote Haar measure.</td>
<td>411</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>$H_{\text{min}}(\Phi)$</td>
<td>The minimum output entropy of a channel Φ.</td>
<td></td>
</tr>
<tr>
<td>$C(\Phi)$</td>
<td>The classical capacity of a channel Φ.</td>
<td></td>
</tr>
<tr>
<td>$C_E(\Phi)$</td>
<td>The entanglement-assisted classical capacity of a channel Φ.</td>
<td></td>
</tr>
<tr>
<td>$\chi(\Phi)$</td>
<td>The Holevo capacity of a channel Φ.</td>
<td></td>
</tr>
<tr>
<td>$\chi_E(\Phi)$</td>
<td>The entanglement-assisted Holevo capacity of a channel Φ.</td>
<td></td>
</tr>
<tr>
<td>$I_c(\rho; \Phi)$</td>
<td>The coherent information of a state ρ through a channel Φ.</td>
<td></td>
</tr>
<tr>
<td>$I_c(\Phi)$</td>
<td>The maximum coherent information of a channel Φ.</td>
<td></td>
</tr>
<tr>
<td>$K_{a_1 \cdots a_n, \varepsilon}(p)$</td>
<td>The set of ε-typical strings of length n, conditioned on a string $a_1 \cdots a_n$, with respect to the probability vector p.</td>
<td></td>
</tr>
<tr>
<td>$\Lambda_{a_1 \cdots a_n, \varepsilon}$</td>
<td>Projection onto the ε-typical subspace of $\mathcal{X}^\otimes n$, for \mathcal{X} a complex Euclidean space, conditioned on a string $a_1 \cdots a_n$.</td>
<td></td>
</tr>
<tr>
<td>$S_{n, \varepsilon}(p)$</td>
<td>The set of ε-strongly typical strings of length n with respect to the probability vector p.</td>
<td></td>
</tr>
<tr>
<td>$Q(\Phi)$</td>
<td>The quantum capacity of a channel Φ.</td>
<td></td>
</tr>
<tr>
<td>$Q_{\text{EG}}(\Phi)$</td>
<td>The entanglement generation capacity of a channel Φ.</td>
<td></td>
</tr>
<tr>
<td>$Q_E(\Phi)$</td>
<td>The entanglement-assisted quantum capacity of a channel Φ.</td>
<td></td>
</tr>
<tr>
<td>$\Phi_0 \oplus \Phi_1$</td>
<td>The direct sum of maps Φ_0 and Φ_1.</td>
<td></td>
</tr>
</tbody>
</table>
Index

Abeyesinghe, A., 559
accessible information, 295–296
achievable rate, 466, 469, 513, 519
Adami, C., 558
Adami–Cerf lemma, 505–506
additivity conjecture, 539
adjoint, 10–11
affine subspace, 44
Aharonov, D., 199
Alber, G., 248
Alberti’s theorem, 147–151
Alberti, P., 198, 249
algebra of permutation-invariant operators, 400–401, 407–408
alphabet, 1
Ambainis, A., 309
Ando, T., 309
anti-degradable channel, 547
anti-symmetric subspace, 318, 398–400
Apostol, T., 57
Araki, H., 308
Arias, A., 248
Arveson, W., 199
Ash, R., 308
associative algebra, 14
Aubrun, G., 463
Audenaert, K., 248, 308
auxiliary register, 164–166, 179–184
Axler, S., 57
bag, 393
Barnum, H., 198, 387, 558
Barrett, J., 389
Bartle, R., 57
Ben-Aroya, A., 200
Bengtsson, I., 122
Bennett, C., 387–389, 463, 558, 559
Bernstein, E., 388
Beth, T., 248
Bhatia, R., 57
Bhattacharyya coefficient, 152
binary alphabet, 2
Birkhoff–von Neumann theorem, 234
Borel function, 38
Borel measure, 39
Borel set, 38
Brassard, G., 387–389
Bratteli, O., 248
Buscemi, F., 248
Carathéodory’s theorem, 44
Cauchy–Schwarz inequality, 4
Caves, C., 198, 462
Cerf, N., 558
chain rule for differentiation, 37
channel, 72–100
representations of, 77–82
channel approximation, 466
channel code, 478
channel discrimination, 164–166, 175–182
isometric channels, 179–182
channel fidelity, see mapping fidelity
Charnes, C., 248
χ-distribution, 52
Childs, A., 199, 388
Chiribella, G., 123
Chitambar, E., 387
Choi operator, 78
Choi rank, 78
Choi representation, 78
Choi, M.-D., 122, 123
Christandl, M., 463
Chuang, I., 122
classical capacity, 465–468
classical channel, 94
classical communication, 94, 331–332, 466
classical register, 65, 95–96
Index

classical state, 60
classical-quantum state, 96
classical-to-quantum channel code, 477–478, 484–490
Clauser, J., 389
Clauser–Horn–Shimony–Holt inequality, 375
cloning of pure states, 424–426
closed set, 35
closure of a set, 35
coherent information, 474–476
commutant, 16
compact set, 36
complementary channels, 476
complementary slackness, 54
completely bounded trace norm, 166–196
basic properties, 171–175
of Hermitian-preserving maps, 175–177
of tensor product maps, 174–175
semidefinite program, 187–191
spectral norm characterization, 191–193
completely dephasing channel, 94–96, 218–219
completely depolarizing channel, 93, 218, 426–429
completely mixed state, 64
completely positive map, 23, 82
complex Euclidean space, 1–7, 62
compound register, 59
correlation operator, 372–374
Cover, T., 308
Crepéau, C., 387, 389
Csiszár, I., 308
D'Ariano, G., 123
Davies, E., 248
de Finetti, B., 462
de Pillis, J., 123
decoding channel, 465, 468
decoupling, 521–524
degradable channel, 556
Deiks, D., 462
Delgado, A., 248
dense coding, 359, 367–371
dense set, 35
density operator, 17
determinant, 15, 16
Devetak, I., 558, 559
Diaconis, P., 462, 463
diagonal operator, 18
differentiable function, 36
direct sum, 5–6
discrete Fourier transform, 214
discrete Weyl operators, 212–214
discrimination
among channels, see channel discrimination
among states, see state discrimination
distillable entanglement, 345–358
DiVincenzo, D., 123, 388, 389, 559
double commutant theorem, 405–407
doubly stochastic operator, 233–235
Dupuis, F., 559
Dvoretzky’s theorem, 440–446
Dvoretzky, A., 463
Dye, H., 199
Dyson, F., 462
Eggeling, T., 123
eigenvalue, 15–16
eigenvector, 15–16
Einstein, A., 386
Eldar, Y., 198
emulation of a channel, 465
with the assistance of entanglement, 468
encoding channel, 465, 468
ensemble of states, 63
entangled state, 310
entanglement, 66, 310, 339–372
entanglement cost, 345–352
entanglement distillation, see distillable entanglement
entanglement entropy, 352, 449–451
entanglement fidelity, see mapping fidelity
entanglement generation capacity, 513–518
entanglement manipulation, 339–358
entanglement of formation, 385
entanglement rank, 322–324, 329–330
entanglement transformation, 339–345
entanglement-assisted classical capacity, 468–469
entanglement-assisted classical capacity theorem, 493–511
entanglement-assisted Holevo capacity, 472–474, 508–510
entanglement-assisted quantum capacity, 519–520
entanglement-breaking channel, 384
entropy of entanglement, see entanglement entropy
environment-assisted channel correction, 205–208
ε-net, 37
erasure channel, 548
Euclidean norm, 3
exchangeable state, 400, 403–404
expected value, 47
extremal channel, 96–100
extremal measurement, 113–117
extreme point, 44–45
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hölder inequality, 32</td>
</tr>
<tr>
<td>Holevo capacity, 469–472</td>
</tr>
<tr>
<td>non-additivity, 539–545</td>
</tr>
<tr>
<td>Holevo information, 297–298, 369</td>
</tr>
<tr>
<td>Holevo’s theorem, 299–300</td>
</tr>
<tr>
<td>Holevo, A., 122, 123, 198, 248, 309, 558</td>
</tr>
<tr>
<td>Holevo–Helstrom theorem, 128–129</td>
</tr>
<tr>
<td>Holevo–Schumacher–Westmoreland theorem, 476–493</td>
</tr>
<tr>
<td>entanglement-assisted form, 494–497</td>
</tr>
<tr>
<td>Holt, R., 389</td>
</tr>
<tr>
<td>Horn, A., 248, 249</td>
</tr>
<tr>
<td>Horn, R., 57</td>
</tr>
<tr>
<td>Horne, M., 389</td>
</tr>
<tr>
<td>Horodecki criterion, 315–319</td>
</tr>
<tr>
<td>Horodecki, K., 389, 559</td>
</tr>
<tr>
<td>Horodecki, M., 387–389, 559</td>
</tr>
<tr>
<td>Horodecki, P., 387–389, 559</td>
</tr>
<tr>
<td>Horodecki, R., 387–389</td>
</tr>
<tr>
<td>Hudson, R., 462</td>
</tr>
<tr>
<td>Hughston, L., 123</td>
</tr>
<tr>
<td>hyperplane separation theorem, 45</td>
</tr>
<tr>
<td>identically distributed random variables, 49</td>
</tr>
<tr>
<td>identity channel, 73</td>
</tr>
<tr>
<td>identity operator, 14</td>
</tr>
<tr>
<td>image, 11</td>
</tr>
<tr>
<td>independent random variables, 48</td>
</tr>
<tr>
<td>induced trace norm, 167–170</td>
</tr>
<tr>
<td>information-complete measurement, 110–111</td>
</tr>
<tr>
<td>inner product</td>
</tr>
<tr>
<td>operator, 14–15</td>
</tr>
<tr>
<td>vector, 3</td>
</tr>
<tr>
<td>instrument, 112</td>
</tr>
<tr>
<td>integration, 40–42</td>
</tr>
<tr>
<td>invertible operator, 14</td>
</tr>
<tr>
<td>isometric channel, 91</td>
</tr>
<tr>
<td>isometry, 18</td>
</tr>
<tr>
<td>isotropic state, 317–319, 417–420</td>
</tr>
<tr>
<td>isotropic twirling channel, 419</td>
</tr>
<tr>
<td>Jain, J., 198</td>
</tr>
<tr>
<td>Jamiołkowski, A., 123</td>
</tr>
<tr>
<td>Jaynes, E., 308</td>
</tr>
<tr>
<td>Jensen’s inequality, 50</td>
</tr>
<tr>
<td>Johnson, C., 57</td>
</tr>
<tr>
<td>Johnston, N., 200</td>
</tr>
<tr>
<td>Jordan–Hahn decomposition, 26</td>
</tr>
<tr>
<td>Jorgensen, P., 248</td>
</tr>
<tr>
<td>Jozsa, R., 123, 198, 387, 389, 558</td>
</tr>
<tr>
<td>König, R., 463</td>
</tr>
<tr>
<td>Kümmerer, B., 248</td>
</tr>
<tr>
<td>Kastler, D., 122</td>
</tr>
<tr>
<td>Kennedy, M., 198</td>
</tr>
<tr>
<td>kernel, 11</td>
</tr>
<tr>
<td>Killoran, N., 199</td>
</tr>
<tr>
<td>Kishimoto, A., 248</td>
</tr>
<tr>
<td>Kitaev, A., 122, 199</td>
</tr>
<tr>
<td>Klein’s inequality, 269</td>
</tr>
</tbody>
</table>

| Fannes’ inequality, see Fannes–Audenaert inequality |
| Fannes, M., 308 |
| Fannes–Audenaert inequality, 272–274 |
| Fano’s inequality, 304 |
| Feller, W., 57 |
| fidelity, 139–163 |
| between extensions, 157 |
| Bhattacharyya coefficient characterization, 152–154 |
| block operator characterization, 144–147 |
| characterizations, 144–154 |
| joint convexity, 155–156 |
| monotonicity, 156 |
| semidefinite program, 147 |
| sum-of-squares, 158–159 |
| flat state, 64 |
| Forney, D., 198 |
| Freedman, D., 463 |
| Frobenius norm, 24, 33 |
| Fubini’s theorem, 42 |
| Fuchs, C., 198, 388, 462 |
| Fuchs–van de Graaf inequalities, 161–163 |
| Fukuda, M., 559 |
| gentle measurement lemma, see Winter’s gentle measurement lemma |
| Gheondea, A., 248 |
| Gheorghiu, V., 388 |
| Gilchrist, A., 199, 200 |
| Goodman, R., 462 |
| Gottesman, D., 123 |
| gradient vector, 36 |
| Grassl, M., 248 |
| Gregoratti, M., 248 |
| Greub, W., 462 |
| Griffiths, R., 388 |
| Gurvits, L., 387 |
| Gutoski, G., 123, 198 |
| Gutter, S., 248 |
| Haag, R., 122 |
| Haar measure, 411–415 |
| Haar, A., 462 |
| Halmos, P., 57 |
| Hardy, L., 388 |
| Harrow, A., 463 |
| Hastings, M., 463 |
| Hausholden, P., 198, 558 |
| Hayashi, M., 558 |
| Hayashi–Nagaoka operator inequality, 483–484 |
| Hayden, P., 463, 558, 559 |
| Helstrom, C., 122, 198 |
| Hermitian operator, 17–20 |
| Hermitian-preserving map, 22, 86 |
| Hiai, F., 309 |
| Hilbert space, 2 |
| Hoeffding’s inequality, 50 |
| Hoffman, K., 57 |
Index

Klein, O., 308
Klesse, R., 559
Knight, P., 387
Knill, E., 198, 558
Kraus representation, 79
unitary equivalence of, 84
Kraus, K., 122, 123
Kretschmann, D., 199
Kribs, D., 200, 248
Kullback, S., 308
Kullback–Leibler divergence, see relative entropy
Kunze, R., 57
Lévy's lemma, 435–440
Lévy, P., 463
Landau, L., 122, 247
Lanford, O., 309
Langford, N., 199, 200
law of large numbers, 50
Lax, M., 198
Ledoux, M., 463
Leibler, R., 308
Leung, D., 387, 388, 463
Lewenstein, M., 387
Lie Bracket, 16
Lieb's concavity theorem, 277
Lieb, E., 308, 309
Lindblad, G., 248, 309
Lipschitz function, 35
Lloyd, S., 558
Lo, H.-K., 388
local operations and classical communication, see LOCC
LOCC, 324–325, 330–335, 337–352
channel, 324, 330–332
measurement, 332–335, 337–339
majorization, 233–246
Mančinska, L., 387, 388
map, 21–23
mapping fidelity, 159–161
Marcus, M., 462
Markov's inequality, 49
Massen, H., 248
matrix representation of an operator, 8–9
Maurey, B., 463
maximally entangled state, 69
maximum output fidelity, 185–191
semidefinite program, 187–191
McIrvine, E., 308
mean value, 47
measurement, 100–117
operator, 101
with respect to a basis, 108
Megretski, A., 198
Mehta, M., 462
midpoint concave function, 43
midpoint convex function, 43
Milman, V., 463
minimum output entropy, 451–459
Mitchison, G., 463
mixed-unitary channel, 202–211, 426–429
mixture of states, 63
Moody, G., 462
Moore–Penrose pseudo-inverse, 30–31
Mor, T., 388, 389
Mussinger, M., 248
mutual information, 252
Nagaoka, H., 558
Naimark's theorem, 109
Naimark, M., 123
Nathanson, M., 388
natural representation, 77–78
Nayak's theorem, 303–306
Nayak, A., 309
networks of channels, 178–179
Neumark, M., see Naimark, M.
Nielsen's theorem, 339–345
Nielsen, M., 122, 123, 199, 200, 249, 388, 558
Nisan, N., 199
no cloning theorem, 425
non-classical correlations, 371–384
nondestructive measurement, 102, 111–113
normal operator, 17
numerical range, 180
Ohya, M., 309
one-way LOCC channel, 330–332
one-way LOCC measurement, 335, 337–339
open set, 35
operator, 7–34
operator square root, 27
operator-vector root, 23–24
Oppenheim, J., 559
optimal measurement, 129, 132–136
criteria, 135–136
semidefinite program, 133–135
orthogonal, 4
orthogonal set, 5
orthonormal basis, 5
orthonormal set, 5
Ozols, M., 387, 388
p-norm, 4
Pérez-García, D., 248
Pólya, G., 248
Pankowski, L., 559
Park, J., 462
Parthasarathy, K., 123
partial measurement, 105–107
partial trace, 22, 68
Pauli operators, 213, 378
Paulsen, V., 199, 200
Peres, A., 122, 387–389
Perinotti, P., 123
permutation-invariant operator, 400–404, 407–408
permutation-invariant state, 390–397, 403–404
Petz, D., 248
phase-invariant function, 440
pinching channel, 203–205
Pinsker’s inequality, 263–265
Pinsker, M., 308
Pisier, G., 463
Plenio, M., 387
Podolsky, B., 386
polar decomposition, 29
Popescu, S., 388
positive definite operator, 17
positive map, 22
positive semidefinite operator, 17, 20–21
PPT operator, 353–358
PPT state, 353–358
Preskill, J., 123, 199
pretty good measurement, 137–139
probabilistic state, 61
probability measure, 39
probability vector, 44
product channel, 74
product measure, 39
product state, 65
projection operator, 18
projective measurement, 107–109
pure state, 64
purification, 69–72
unitary equivalence of, 71
quantum capacity, 512–518
quantum capacity theorem, 521–538
quantum channel, see channel
quantum communication, 73, 512–513
quantum de Finetti theorem, 420–424
quantum instrument, 112
quantum mutual information, 267
quantum Pinsker inequality, 282–283
quantum random access code, 301–306
quantum relative entropy, 266–269, 274–283
joint convexity, 276–283
monotonicity, 280–281
quantum state, 61–72
quantum-to-classical channel, 102–105
qubit, 65
Radó, T., 248
Rains, E., 388
random variable, 46–53
rank, 11
real Euclidean space, 7
reduction of a state, 67–72
register, 58–62
relative entropy, 252–265
joint convexity, 260
Renes, J., 199
Renner, R., 463
replacement channel, 73, 93
Rippin, M., 387
Robinson, D., 309
Rockafellar, R., 57
Rosen, N., 386
Rosgen, B., 199
Rudin, W., 57
Rudolph, T., 198
Ruskai, M., 248, 309
Russo, B., 199
Saigal, R., 57
Sanpera, A., 387
Schack, R., 462
Schatten norm, 24, 31–34
Schechtman, G., 463
Scheel, S., 248
Schlingemann, D., 123, 199
Schmidt decomposition, 30
Schrödinger, E., 386
Schumacher’s quantum source coding theorem, 290–293
Schumacher, B., 199, 309, 388, 558
Schur channel, 219–222
Schur map, 219–222
Schur, I., 248, 249
Schwartz–Zippel lemma, 395
self-complementary channel, 547
semidefinite programming, 53–56
duality, 54
separable channel, 324–330
separable map, 324–330, 332
separable measurement, 332–337
separable operator, 310–321
separable state, 310–315
Shahshahani, M., 462
Shannon entropy, 250–265
concavity, 255–256
conditional, 252
subadditivity, 258
Shannon’s source coding theorem, 285–288
Shannon, C., 308, 558
shared state, 468
Shen, A., 122, 199
Shimony, A., 389
Shor, P., 388, 389, 463, 558, 559
Short, A., 388
Simon, B., 309
simple register, 59
singular value decomposition, 28–29
singular value theorem, 28–29
Sion’s min-max theorem, 46
Smith, G., 559
Smith, R., 199
Smolin, J., 388, 389, 558, 559
source coding, 283–306
classical, 284–288
classical into quantum, 294–306
quantum, 289–293
source coding scheme
classical, 284
quantum, 289
spectral norm, 24, 33
spectral radius, 16
spectral theorem, 24–26
Spekkens, R., 198
square operator, 14
standard basis
for operators, 9
for vectors, 5
standard Borel measure, 39
standard Gaussian measure, 50–53
standard normal random variable, 51
state, see quantum state; classical state; probabilistic state
state discrimination, 124–139
by LOCC measurements, 337–339
by separable measurements, 335–337
convex sets of states, 130–132
ensembles of states, 132–139
pairs of states, 127–130
probabilistic states, 125–127
Stinespring representation, 79–80
unitary equivalence of, 85
Stinespring, W., 123
stochastic operator, 233
Streater, R., 247
strong subadditivity, see von Neumann entropy, strong subadditivity
strongly typical string, 497–501
Størmer, E., 389
subalgebra, 16
super-activation, 538–539, 545–556
swap operator, 94, 317
symmetric subspace, 318, 391–397
Synak-Radtke, B., 388
Szafer, S., 463
Ta-Shma, A., 200, 309
Talagrand, M., 463
teleportation, 359–367
tensor product
of maps, 21–22
of operators, 13
of vectors, 6–7
Terhal, B., 388, 389
Thapliyal, A., 558
Thomas, J., 308
Timoney, R., 200
Toeplitz–Hausdorff theorem, 180–181
trace, 14–16
trace distance, 33
trace norm, 24, 33–34
trace-preserving map, 23, 87–89
transpose, 10–11, 93, 170
Tregub, S., 247
Tribus, M., 308
trivial register, 60, 75–76
Tsirelson’s bound, 383
Tsirelson’s theorem, 377–384
Tsirelson, B., 389
Tsukada, M., 309
twirling, see Werner twirling channel; isotropic twirling channel
typical string, 286
joint distribution, 479–481
typical subspace, 291, 481
Uhlmann’s theorem, 151–152
Uhlmann, A., 198, 249, 309
Umegaki, H., 308
unextendable product set, 353–356
uniform spherical measure, 408–410, 414–415
union bound, 47
unit sphere, 4
unital channel, 201–232, 426–429
unital map, 23, 87
unitary channel, 73, 91
unitary operator, 18
van de Graaf, J., 199
Vandenberghe, L., 57
Vazirani, U., 309
vec mapping, see operator-vector correspondence
Vedral, V., 387, 388
Verghese, G., 198
von Neumann entropy, 265–274, 281–282
concavity, 269–270
conditional, 267
continuity, 268
purification technique, 271
strong subadditivity, 281–282
subadditivity, 270
von Neumann, J., 122, 308, 462
Vyalyi, M., 122, 199
Walgate, J., 388
Wallach, N., 462
Watrous, J., 123, 198–200, 463
weak law of large numbers, 50
Weil, A., 462
Werner state, 317–319, 417–420
Werner twirling channel, 418
Werner, E., 463
Werner, R., 123, 199, 248, 387, 389, 462
Werner–Holevo channels, 165–166
Westmoreland, M., 558
Weyl, H., 248
Weyl–Brauer operators, 378
Weyl-covariant channel, 212–219
Weyl-covariant map, 212–219
Wiesner, S., 389, 462
Wilde, M., 122
Winter’s gentle measurement lemma, 142–143
Winter, A., 198, 387, 463, 558, 559
Wolf, M., 248, 559
Wolkowicz, H., 57
Wootters, W., 123, 198, 387–389, 462, 558
Woronowicz, S., 389
Yang, D., 388
Yard, J., 559
Yuen, H., 198
Zarikian, V., 200
Zurek, W., 462
˙Zyczkowski, K., 122, 387