Theory of Quantum Information

John Watrous

Institute for Quantum Computing
University of Waterloo

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. Visit http://creativecommons.org/licenses/by-sa/3.0/ to view a copy of this license.
Contents

1 Mathematical preliminaries 1
 1.1 Linear algebra ... 1
 1.1.1 Complex Euclidean spaces 1
 1.1.2 Linear operators .. 8
 1.1.3 Operator decompositions and norms 26
 1.2 Analysis, convexity, and probability theory 37
 1.2.1 Analysis and convexity ... 37
 1.2.2 Semidefinite programming 50
 1.2.3 Probability theory .. 54
 1.3 Suggested references .. 62

2 Basic notions of quantum information 63
 2.1 Registers and states .. 63
 2.1.1 Registers and classical state sets 63
 2.1.2 Quantum states of registers 66
 2.1.3 Reductions and purifications of quantum states 73
 2.2 Quantum channels .. 79
 2.2.1 Definitions and basic notions concerning channels 79
 2.2.2 Representations and characterizations of channels 84
 2.2.3 Examples of channels and other mappings 99
 2.2.4 Extremal channels ... 105
 2.3 Measurements .. 109
 2.3.1 Two equivalent definitions of measurements 109
 2.3.2 Basic notions concerning measurements 114
 2.3.3 Extremal measurements and ensembles 122
 2.4 Exercises .. 130
 2.5 Bibliographic remarks ... 132
3 Similarity and distance among states and channels

3.1 Quantum state discrimination 135
- 3.1.1 Discriminating between pairs of quantum states 136
- 3.1.2 Discriminating quantum states of an ensemble 144

3.2 The fidelity function ... 151
- 3.2.1 Elementary properties of the fidelity function 152
- 3.2.2 Alternative characterizations of the fidelity function ... 156
- 3.2.3 Further properties of the fidelity function 168

3.3 Channel distances and discrimination 178
- 3.3.1 Channel discrimination 178
- 3.3.2 The completely bounded trace norm 181
- 3.3.3 Distances between channels 190
- 3.3.4 Properties of the completely bounded trace norm 200

3.4 Exercises .. 213

3.5 Bibliographic remarks ... 214

4 Unital channels and majorization

4.1 Subclasses of unital channels 219
- 4.1.1 Mixed-unitary channels 220
- 4.1.2 Weyl-covariant channels 231
- 4.1.3 Schur channels ... 239

4.2 General properties of unital channels 243
- 4.2.1 Extreme points of the set of unital channels 243
- 4.2.2 Fixed-points, spectra, and norms of unital channels .. 249

4.3 Majorization .. 254
- 4.3.1 Majorization for real vectors 254
- 4.3.2 Majorization for Hermitian operators 263

4.4 Exercises .. 268

4.5 Bibliographic remarks ... 270

5 Quantum entropy and source coding

5.1 Classical entropy .. 273
- 5.1.1 Definitions of classical entropic functions 273
- 5.1.2 Properties of classical entropic functions 276

5.2 Quantum entropy .. 289
- 5.2.1 Definitions of quantum entropic functions 289
- 5.2.2 Elementary properties of quantum entropic functions .. 292
8 Quantum channel capacities

8.1 Classical information over quantum channels

8.1.1 Classical capacities of quantum channels

8.1.2 The Holevo–Schumacher–Westmoreland theorem

8.1.3 The entanglement-assisted classical capacity theorem

8.2 Quantum information over quantum channels

8.2.1 Definitions of quantum capacity and related notions

8.2.2 The quantum capacity theorem

8.3 Non-additivity and super-activation

8.3.1 Non-additivity of the Holevo capacity

8.3.2 Super-activation of quantum channel capacity

8.4 Exercises

8.5 Bibliographic remarks
Preface

This is a draft of a book that began as a set of course notes for a graduate course on the theory of quantum information that I have taught several times at the University of Waterloo.

The book is primarily intended for graduate students and researchers having some familiarity with quantum information and computation, such as would be covered in an introductory-level undergraduate or graduate course on the subject. The focus of the book is on the mathematical aspects of quantum information, with an emphasis on proofs. No attention is paid to motives for studying the theory of quantum information, as it is assumed that the reader has already been motivated—and is perhaps interested in proving new theorems on quantum information of his or her own. It should also be said that this is not a physics book: the Schrödinger equation will not be found herein, and the difficult technological challenge of building quantum information processing devices is blissfully ignored.

The selection of topics covered in this book is not intended to be fully representative of the diverse subject of quantum information science. There is, for example, no discussion of quantum cryptography, quantum error correcting codes and fault-tolerance, quantum algorithms and complexity theory, or topological quantum computing, which are among the topics within the theoretical branches of quantum information science having fundamental importance. Nevertheless, one is likely to encounter some of the core mathematical notions discussed in this book when studying these and other topics.

As the students who have taken my course on the theory of quantum information will attest, I sometimes choose to deviate from the standard conventions of quantum information and computation, particularly with respect to notation and terminology. I have exhibited this behavior once again when writing this book. For example, I have avoided the use of the
commonly used Dirac notation, and in some cases I have changed the names and symbols associated with concepts as I have seen fit. I hope that readers who have previously grown familiar with the notation and conventions of quantum information that I have chosen not to follow will excuse me for this, and hope that they will find value in this book nevertheless.

Each chapter aside from the first includes a collection of exercises, some of which can reasonably be viewed as straightforward, and some of which are much more difficult. In some cases, these exercises have been derived from research papers that clearly reveal their solutions, and I have not attempted to disguise this fact or hide their source. While the exercises may potentially be useful to course instructors, their true purpose is to be useful to students of the subject; there is no substitute for the learning experience to be found in wrestling with (and ideally solving) a difficult problem.

I thank Debbie Leung, Ashwin Nayak, Marco Piani, and Patrick Hayden for helpful discussions on some of the topics covered in this book, and I thank Sascha Agne for assisting me with German translations. I also thank the following people for comments, corrections, and suggestions on my course notes and previous versions of this book:

The Institute for Quantum Computing and the School of Computer Science at the University of Waterloo have provided me with both the opportunity to write this book and with an environment in which it was possible, for which I am grateful. I am also grateful to the Natural Sciences and Engineering Research Council of Canada and the Canadian Institute for Advanced Research for their financial support of my research program.

Finally, I thank Christiane Lemieux for encouraging my efforts to write this book on too many occasions to count.

John Watrous

john.watrous@uwaterloo.ca

Waterloo, September 2016