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Bipartite entanglement

Entanglement is a fundamental concept in quantum information theory,
considered by many to be a quintessential characteristic that distinguishes
quantum systems from their classical counterparts. Informally speaking, a
state of a collection of registers X1, . . . ,Xn is said to be entangled when it
is not possible to specify the correlations that exist among the registers in
classical terms. When it is possible to describe these correlations in classical
terms, the registers are said to be in a separable state. Entanglement among
two or more registers is therefore synonymous with a lack of separability.

This chapter introduces notions associated with bipartite entanglement,
in which correlations between precisely two registers (or two collections of
registers) are considered. Topics to be discussed include the property of
separability, which is applicable not only to states but also to channels and
measurements; aspects of entanglement manipulation and quantification;
and a discussion of operational phenomena associated with entanglement,
including teleportation, dense coding, and non-classical correlations among
measurements on separated systems.

6.1 Separability
This section introduces the notion of separability, which is applicable to
states, channels, and measurements on bipartite systems. It is possible to
define a multipartite variant of this concept, but only bipartite separability
is considered in this book.

6.1.1 Separable operators and states
The property of separability for operators acting on bipartite tensor product
spaces is defined as follows.
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Definition 6.1 For any choice of complex Euclidean spaces X and Y,
the set Sep(X : Y) is defined as the set containing all positive semidefinite
operators R ∈ Pos(X ⊗ Y) for which there exists an alphabet Σ and two
collections of positive semidefinite operators,

{Pa : a ∈ Σ} ⊂ Pos(X ) and {Qa : a ∈ Σ} ⊂ Pos(Y), (6.1)

such that
R =

∑

a∈Σ
Pa ⊗Qa. (6.2)

Elements of the set Sep(X : Y) are called separable operators.

Remark It must be stressed that separability is defined with respect to
a particular tensor product structure of the underlying complex Euclidean
space of a given operator, as the previous definition reflects. When the term
separable operator is used, one must therefore make this tensor product
structure known (if it is not implicit). An operator R ∈ Pos(X ⊗ Y ⊗ Z)
may, for instance, be an element of Sep(X :Y ⊗Z) but not Sep(X ⊗Y :Z).

By restricting the definition above to density operators, one obtains a
definition of separable states.

Definition 6.2 Let X and Y be complex Euclidean spaces. One defines

SepD(X : Y) = Sep(X : Y) ∩ D(X ⊗ Y). (6.3)

Elements of the set SepD(X : Y) are called separable states (or separable
density operators).

Convex properties of separable operators and states
The sets Sep(X : Y) and SepD(X : Y) possess various properties relating to
convexity, a few of which will now be observed.

Proposition 6.3 For every choice of complex Euclidean spaces X and Y,
the set SepD(X : Y) is convex, and the set Sep(X : Y) is a convex cone.

Proof It will first be proved that Sep(X :Y) is a convex cone. It suffices to
prove that Sep(X : Y) is closed under addition as well as multiplication by
any nonnegative real number. To this end, assume that R0, R1 ∈ Sep(X :Y)
are separable operators and λ ≥ 0 is a nonnegative real number. One may
write

R0 =
∑

a∈Σ0

Pa ⊗Qa and R1 =
∑

a∈Σ1

Pa ⊗Qa (6.4)
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for disjoint alphabets, Σ0 and Σ1, and two collections of positive semidefinite
operators,

{Pa : a ∈ Σ0 ∪ Σ1} ⊂ Pos(X ),
{Qa : a ∈ Σ0 ∪ Σ1} ⊂ Pos(Y).

(6.5)

It holds that
R0 +R1 =

∑

a∈Σ0∪Σ1

Pa ⊗Qa, (6.6)

and therefore R0 +R1 ∈ Sep(X : Y). Moreover, it holds that

λR0 =
∑

a∈Σ0

(λPa)⊗Qa. (6.7)

As λP ∈ Pos(X ) for every positive semidefinite operator P ∈ Pos(X ), it
follows that λR0 ∈ Sep(X : Y).

The fact that SepD(X : Y) is convex follows from the fact that it is equal
to the intersection of two convex sets, Sep(X : Y) and D(X ⊗ Y).

The next proposition, when combined with the previous one, implies that
Sep(X : Y) is equal to the cone generated by SepD(X : Y).

Proposition 6.4 Let Z be a complex Euclidean space, let A ⊆ Pos(Z) be
a cone, and assume that B = A ∩D(Z) is nonempty. It holds that

A = cone(B). (6.8)

Proof Suppose first that ρ ∈ B and λ ≥ 0. It follows that λρ ∈ A by virtue
of the fact that B ⊆ A and A is a cone, and therefore

cone(B) ⊆ A. (6.9)

Now suppose that P ∈ A. If P = 0, then one has that P = λρ for λ = 0
and ρ ∈ B being chosen arbitrarily. If P 6= 0, then consider the density
operator ρ = P/Tr(P ). It holds that ρ ∈ A because 1/Tr(P ) > 0 and A is
a cone, and therefore ρ ∈ B. As P = λρ for λ = Tr(P ) > 0, it follows that
P ∈ cone(B). Therefore,

A ⊆ cone(B), (6.10)

which completes the proof.

Two equivalent ways of specifying separable states are provided by the
next proposition, which is a straightforward consequence of the spectral
theorem.
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Proposition 6.5 Let ξ ∈ D(X ⊗ Y) be a density operator, for complex
Euclidean spaces X and Y. The following statements are equivalent:

1. ξ ∈ SepD(X : Y).
2. There exists an alphabet Σ, collections of states {ρa : a ∈ Σ} ⊆ D(X )

and {σa : a ∈ Σ} ⊆ D(Y), and a probability vector p ∈ P(Σ), such that

ξ =
∑

a∈Σ
p(a) ρa ⊗ σa. (6.11)

3. There exists an alphabet Σ, collections of unit vectors {xa : a ∈ Σ} ⊂ X
and {ya : a ∈ Σ} ⊂ Y, and a probability vector p ∈ P(Σ), such that

ξ =
∑

a∈Σ
p(a)xax∗a ⊗ yay∗a. (6.12)

Proof The third statement trivially implies the second, and it is immediate
that the second statement implies the first, as SepD(X : Y) is convex and
ρa ⊗ σa ∈ SepD(X : Y) for each a ∈ Σ. It remains to prove that the first
statement implies the third.

Let ξ ∈ SepD(X : Y). As ξ ∈ Sep(X : Y), one may write

ξ =
∑

b∈Γ
Pb ⊗Qb (6.13)

for some choice of an alphabet Γ and collections {Pb : b ∈ Γ} ⊂ Pos(X ) and
{Qb : b ∈ Γ} ⊂ Pos(Y) of positive semidefinite operators. Let n = dim(X ),
let m = dim(Y), and consider spectral decompositions of these operators as
follows:

Pb =
n∑

j=1
λj(Pb)ub,ju∗b,j and Qb =

m∑

k=1
λk(Qb)vb,kv∗b,k , (6.14)

for each b ∈ Γ. Define Σ = Γ× {1, . . . , n} × {1, . . . ,m}, and define

p((b, j, k)) = λj(Pb)λk(Qb),
x(b,j,k) = ub,j ,

y(b,j,k) = vb,k ,

(6.15)

for every (b, j, k) ∈ Σ. A straightforward computation reveals that
∑

a∈Σ
p(a)xax∗a ⊗ yay∗a =

∑

b∈Γ
Pb ⊗Qb = ξ. (6.16)

Moreover, each value p(a) is nonnegative, and because
∑

a∈Σ
p(a) = Tr(ξ) = 1, (6.17)
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it follows that p is a probability vector. It has therefore been proved that
statement 1 implies statement 3.

By the equivalence of the first and second statements in the previous
proposition, it holds that a given separable state ξ ∈ SepD(X :Y) represents
a classical probability distribution over independent quantum states of a
pair of registers (X,Y); and in this sense the possible states of the registers
X and Y, when considered in isolation, are classically correlated.

For a separable state ξ ∈ SepD(X : Y), the expression (6.12) is generally
not unique—there may be many inequivalent ways that ξ can be expressed
in this form. It is important to observe that an expression of this form cannot
necessarily be obtained directly from a spectral decomposition of ξ. Indeed,
for some choices of ξ ∈ SepD(X :Y) it may hold that every expression of ξ in
the form (6.12) requires that Σ has cardinality strictly larger than rank(ξ).
An upper bound on the size of the alphabet Σ required for an expression
of the form (6.12) to exist may, however, be obtained from Carathéodory’s
theorem (Theorem 1.9).

Proposition 6.6 Let ξ ∈ SepD(X : Y) be a separable state, for X and
Y being complex Euclidean spaces. There exists an alphabet Σ such that
|Σ| ≤ rank(ξ)2, two collections of unit vectors {xa : a ∈ Σ} ⊂ X and
{ya : a ∈ Σ} ⊂ Y, and a probability vector p ∈ P(Σ) such that

ξ =
∑

a∈Σ
p(a)xax∗a ⊗ yay∗a. (6.18)

Proof By Proposition 6.5 it holds that

SepD(X : Y) = conv
{
xx∗ ⊗ yy∗ : x ∈ S(X ), y ∈ S(Y)

}
, (6.19)

from which it follows that ξ is contained in the set

conv
{
xx∗ ⊗ yy∗ : x ∈ S(X ), y ∈ S(Y), im(xx∗ ⊗ yy∗) ⊆ im(ξ)

}
. (6.20)

Every density operator ρ ∈ D(X ⊗ Y) satisfying im(ρ) ⊆ im(ξ) is contained
in the real affine subspace

{
H ∈ Herm(X ⊗ Y) : im(H) ⊆ im(ξ), Tr(H) = 1

}
(6.21)

of dimension rank(ξ)2−1, and therefore the proposition follows directly from
Carathéodory’s theorem.

By combining the previous proposition with Proposition 6.4, one obtains
the following corollary.



6.1 Separability 315

Corollary 6.7 Let R ∈ Sep(X : Y) be a nonzero separable operator, for
complex Euclidean spaces X and Y. There exists an alphabet Σ such that
|Σ| ≤ rank(R)2, along with two collections of vectors {xa : a ∈ Σ} ⊂ X and
{ya : a ∈ Σ} ⊂ Y, such that

R =
∑

a∈Σ
xax

∗
a ⊗ yay∗a. (6.22)

The last observation to be made about separable operators and states
in this subsection is the following proposition, which establishes a basic
topological property of the sets Sep(X : Y) and SepD(X : Y).

Proposition 6.8 For every choice of complex Euclidean spaces X and Y,
the set SepD(X : Y) is compact and the set Sep(X : Y) is closed.

Proof The unit spheres S(X ) and S(Y) are compact, which implies that
their Cartesian product S(X )× S(Y) is also compact. The function

φ : S(X )× S(Y)→ Pos(X ⊗ Y) : (x, y) 7→ xx∗ ⊗ yy∗ (6.23)

is continuous, and therefore the set

φ(S(X )× S(Y)) =
{
xx∗ ⊗ yy∗ : x ∈ S(X ), y ∈ S(Y)

}
(6.24)

is compact. Because the convex hull of a compact set is necessarily compact,
it follows that SepD(X : Y) is compact.

As SepD(X :Y) is compact, and does not include 0, the cone it generates
is closed, and therefore Sep(X : Y) is closed.

The Horodecki criterion
The next theorem provides an alternative characterization of separability,
demonstrating that the property of separability for operators has a close
connection with the property of positivity for maps.

Theorem 6.9 (Horodecki criterion) Let X and Y be complex Euclidean
spaces and let R ∈ Pos(X ⊗ Y) be a positive semidefinite operator. The
following three statements are equivalent:

1. R ∈ Sep(X : Y).
2. For every choice of a complex Euclidean space Z and a positive map

Φ ∈ T(X ,Z) it holds that
(
Φ⊗ 1L(Y)

)
(R) ∈ Pos(Z ⊗ Y). (6.25)

3. For every positive and unital map Φ ∈ T(X ,Y), it holds that
(
Φ⊗ 1L(Y)

)
(R) ∈ Pos(Y ⊗ Y). (6.26)
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Proof Suppose first that R ∈ Sep(X : Y), so that

R =
∑

a∈Σ
Pa ⊗Qa (6.27)

for some choice of an alphabet Σ and collections {Pa : a ∈ Σ} ⊂ Pos(X )
and {Qa : a ∈ Σ} ⊂ Pos(Y). For every complex Euclidean space Z and
every positive map Φ ∈ T(X ,Z) it holds that

(
Φ⊗ 1L(Y)

)
(R) =

∑

a∈Σ
Φ(Pa)⊗Qa ∈ Pos(Z ⊗ Y), (6.28)

by virtue of the fact that Φ(Pa) is a positive semidefinite operator for each
a ∈ Σ. Statement 1 therefore implies statement 2.

Statement 2 trivially implies statement 3.
Finally, the fact that statement 3 implies statement 1 will be proved in the

contrapositive form. To this end, assume R ∈ Pos(X ⊗Y) is not a separable
operator. As Sep(X :Y) is a closed, convex cone within the real vector space
Herm(X ⊗ Y), the hyperplane separation theorem (Theorem 1.11) implies
that there must exist a Hermitian operator H ∈ Herm(X ⊗ Y) such that
〈H,R〉 < 0 and 〈H,S〉 ≥ 0 for every S ∈ Sep(X : Y). The operator H will
be used to define a positive and unital map Φ ∈ T(X ,Y) for which

(
Φ⊗ 1L(Y)

)
(R) 6∈ Pos(Y ⊗ Y). (6.29)

First, let Ψ ∈ T(Y,X ) be the unique map for which J(Ψ) = H, choose
ε > 0 to be a sufficiently small positive real number so that the inequality

〈H,R〉+ εTr(R) < 0 (6.30)

is satisfied, and define Ξ ∈ T(X ,Y) as

Ξ(X) = Ψ∗(X) + εTr(X)1Y (6.31)

for every X ∈ L(X ). For arbitrarily chosen positive semidefinite operators
P ∈ Pos(X ) and Q ∈ Pos(Y), it is the case that

P ⊗Q ∈ Sep(X : Y), (6.32)

and therefore

0 ≤ 〈H,P ⊗Q〉 =
〈
P ⊗Q, J(Ψ)

〉
=
〈
P,Ψ(Q)

〉
. (6.33)

The fact that this inequality holds for every choice of P ∈ Pos(X ) and
Q ∈ Pos(Y) implies that Ψ(Q) ∈ Pos(X ) for every choice of Q ∈ Pos(Y),
and therefore Ψ is a positive map. It follows from Proposition 2.18 that Ψ∗
is a positive map as well. For every nonzero positive semidefinite operator
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P ∈ Pos(X ), the operator Ξ(P ) is therefore equal to a positive semidefinite
operator Ψ∗(P ) plus a positive multiple of the identity operator.

Now let A = Ξ(1X ), which is necessarily a positive definite operator, and
define Φ ∈ T(X ,Y) as

Φ(X) = A−
1
2 Ξ(X)A−

1
2 (6.34)

for every X ∈ L(X ). It remains to verify that Φ is a positive and unital map
for which (6.29) holds. The positivity of Φ follows from the fact that Ξ is
positive, and it holds that

Φ(1X ) = A−
1
2 Ξ(1X )A−

1
2 = A−

1
2AA−

1
2 = 1Y , (6.35)

establishing that Φ is unital. Finally, through the following computation,
one may verify that the operator

(
Φ⊗1L(Y)

)
(R) is not positive semidefinite:

〈
vec
(√

A
)

vec
(√

A
)∗
,
(
Φ⊗ 1L(Y)

)
(R)

〉

=
〈

vec
(
1Y
)

vec
(
1Y
)∗
,
(
Ξ⊗ 1L(Y)

)
(R)

〉

=
〈
J(Ξ∗), R

〉

=
〈
J(Ψ) + ε1X ⊗ 1Y , R

〉

= 〈H,R〉+ εTr(R)
< 0.

(6.36)

This completes the proof.

One immediate application of Theorem 6.9 is that it provides a method
for proving that certain positive semidefinite operators are not separable.
The following example demonstrates this method for two families of states
known as Werner states and isotropic states.

Example 6.10 Let Σ be an alphabet, and let X and Y be complex
Euclidean spaces of the form X = CΣ and Y = CΣ. The swap operator
W ∈ L(X ⊗ Y) is the unique operator satisfying

W (x⊗ y) = y ⊗ x (6.37)

for all vectors x, y ∈ CΣ. Equivalently, this operator is given by

W =
∑

a,b∈Σ
Ea,b ⊗ Eb,a. (6.38)

The operator W is both unitary and Hermitian, with eigenvalues 1 and −1.
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The eigenspace of W corresponding to the eigenvalue 1 is spanned by the
orthonormal collection

{
ea ⊗ eb + eb ⊗ ea√

2
: a, b ∈ Σ, a < b

}
∪ {ea ⊗ ea : a ∈ Σ

}
, (6.39)

where it has been assumed that a total ordering of the alphabet Σ has been
fixed, while the eigenspace corresponding to the eigenvalue −1 is spanned
by the orthonormal collection

{
ea ⊗ eb − eb ⊗ ea√

2
: a, b ∈ Σ, a < b

}
. (6.40)

Let n = |Σ|, and define projection operators ∆0, ∆1, Π0, Π1 ∈ Proj(X ⊗Y)
as follows:

∆0 = 1
n

∑

a,b∈Σ
Ea,b ⊗ Ea,b , Π0 = 1

21⊗ 1 + 1
2W , (6.41)

∆1 = 1⊗ 1−∆0 , Π1 = 1⊗ 1−Π0 . (6.42)

That these operators are indeed projection operators follows from the fact
that they are Hermitian and square to themselves. Alternatively, one may
observe that ∆0 = uu∗ is the projection onto the one-dimensional subspace
of X ⊗ Y spanned by the unit vector

u = 1√
n

∑

a∈Σ
ea ⊗ ea, (6.43)

∆1 is the projection onto the orthogonal complement of this subspace, and
Π0 and Π1 are the projection operators onto the subspaces spanned by the
collections (6.39) and (6.40), respectively. (The images of Π0 and Π1 are also
known as the symmetric and anti-symmetric subspaces of CΣ⊗CΣ, and are
considered in greater detail and generality in Chapter 7.) It holds that

rank(∆0) = 1, rank(Π0) =
(
n+ 1

2

)
,

rank(∆1) = n2 − 1, rank(Π1) =
(
n

2

)
.

(6.44)

States of the form

λ∆0 + (1− λ) ∆1
n2 − 1 (6.45)
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are known as isotropic states, and states of the form

λ
Π0(n+1
2
) + (1− λ) Π1(n

2
) (6.46)

are known as Werner states (for λ ∈ [0, 1] in both cases).
Now, let T ∈ T(X ) denote the transpose mapping, defined by the action

T(X) = XT for all X ∈ L(X ). The mapping T is a positive map. Using the
observation that

(T⊗ 1L(Y))(∆0) = 1
n
W, (6.47)

which may be verified directly, as well as T(1X ) = 1X and T2 = 1L(X ), the
following relations may be obtained:

(T⊗ 1L(Y))(∆0) = 1
n

Π0 −
1
n

Π1 , (6.48)

(T⊗ 1L(Y))(∆1) = n− 1
n

Π0 + n+ 1
n

Π1 , (6.49)

(T⊗ 1L(Y))(Π0) = n+ 1
2 ∆0 + 1

2∆1 , (6.50)

(T⊗ 1L(Y))(Π1) = −n− 1
2 ∆0 + 1

2∆1 . (6.51)

For λ ∈ [0, 1], the equations

(T⊗ 1L(Y))
(
λ∆0 + (1− λ) ∆1

n2 − 1

)

=
(1 + λn

2

) Π0(n+1
2
) +

(1− λn
2

)Π1(n
2
)

(6.52)

and

(T⊗ 1L(Y)
)
(
λ

Π0(n+1
2
) + (1− λ) Π1(n

2
)
)

=
(2λ− 1

n

)
∆0 +

(
1− 2λ− 1

n

) ∆1
n2 − 1

(6.53)

are implied. It therefore holds that the isotropic state (6.45) is entangled (i.e.,
not separable) for λ ∈ (1/n, 1], while the Werner state (6.46) is entangled
for λ ∈ [0, 1/2).1
1 It does indeed hold that the isotropic state (6.45) is separable for λ ∈ [0, 1/n] and the Werner

state (6.46) is separable for λ ∈ [1/2, 1]. These facts are proved in Chapter 7
(q.v. Example 7.25).
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A separable neighborhood of the identity operator
By means of the Horodecki criterion (Theorem 6.9), it may be proved that
there exists a neighborhood of the identity operator 1X ⊗1Y , for any choice
of complex Euclidean spaces X and Y, in which every positive semidefinite
operator is separable. Consequently, every density operator D(X ⊗ Y) that
is sufficiently close to the completely mixed state is separable. In order to
prove this fact, which is stated in more precise terms in Theorem 6.13 below,
the following lemma will be used.

Lemma 6.11 Let Σ be an alphabet, let X be a complex Euclidean space,
let {Xa,b : a, b ∈ Σ} ⊂ L(X ) be a collection of operators, and let Y = CΣ.
The operator

X =
∑

a,b∈Σ
Xa,b ⊗ Ea,b ∈ L

(X ⊗ Y) (6.54)

satisfies
‖X‖2 ≤

∑

a,b∈Σ

∥∥Xa,b

∥∥2
. (6.55)

Proof For each a ∈ Σ, define an operator Ya ∈ L(X ⊗ Y) as

Ya =
∑

b∈Σ
Xa,b ⊗ Ea,b. (6.56)

By expanding the product YaY ∗a and applying the triangle inequality, the
multiplicativity of the spectral norm under tensor products, and the spectral
norm identity (1.178), one finds that

∥∥YaY ∗a
∥∥ =

∥∥∥∥∥
∑

b∈Σ
Xa,bX

∗
a,b ⊗ Ea,a

∥∥∥∥∥ ≤
∑

b∈Σ

∥∥Xa,bX
∗
a,b

∥∥ =
∑

b∈Σ

∥∥Xa,b

∥∥2
. (6.57)

Also observe that
X∗X =

∑

a∈Σ
Y ∗a Ya. (6.58)

Therefore, by (6.57) together with the triangle inequality and the spectral
norm identity (1.178), it holds that

‖X‖2 = ‖X∗X‖ ≤
∑

a∈Σ

∥∥Y ∗a Ya
∥∥ ≤

∑

a,b∈Σ

∥∥Xa,b

∥∥2
, (6.59)

as required.

In addition, the following theorem (which is equivalent to Theorem 3.39)
will be needed.
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Theorem 6.12 Let Φ ∈ T(X ,Y) be a positive and unital map, for complex
Euclidean spaces X and Y. It holds that

‖Φ(X)‖ ≤ ‖X‖ (6.60)

for every operator X ∈ L(X ).

Proof By the assumption that Φ is positive and unital, Proposition 2.18 and
Theorem 2.26 imply that Φ∗ is positive and trace-preserving. For operators
X ∈ L(X ) and Y ∈ L(Y), one therefore has

∣∣〈Y,Φ(X)
〉∣∣ =

∣∣〈Φ∗(Y ), X
〉∣∣ ≤ ‖X‖

∥∥Φ∗(Y )
∥∥

1
≤ ‖X‖‖Y ‖1‖Φ∗‖1 = ‖X‖‖Y ‖1 ,

(6.61)

where the final equality follows by Corollary 3.40 (to Theorem 3.39). By
maximizing over all operators Y ∈ L(Y) that satisfy ‖Y ‖1 ≤ 1, one finds
that ‖Φ(X)‖ ≤ ‖X‖ for every X ∈ L(X ), as required.

Theorem 6.13 Let H ∈ Herm(X ⊗Y) be a Hermitian operator satisfying
‖H‖2 ≤ 1, for complex Euclidean spaces X and Y. It holds that

1X ⊗ 1Y −H ∈ Sep(X : Y). (6.62)

Proof Let Φ ∈ T(X ,Y) be an arbitrarily chosen positive and unital map.
Let Σ be the alphabet for which Y = CΣ, and write

H =
∑

a,b∈Σ
Ha,b ⊗ Ea,b. (6.63)

It holds that
(
Φ⊗ 1L(Y)

)
(H) =

∑

a,b∈Σ
Φ(Ha,b)⊗ Ea,b, (6.64)

and therefore
∥∥(Φ⊗ 1L(Y))(H)

∥∥2 ≤
∑

a,b∈Σ
‖Φ(Ha,b)‖2

≤
∑

a,b∈Σ
‖Ha,b‖2 ≤

∑

a,b∈Σ
‖Ha,b‖22 = ‖H‖22 ≤ 1.

(6.65)

(The first inequality is implied by Lemma 6.11, and the second inequality is
implied by Theorem 6.12.) The positivity of Φ implies that (Φ⊗ 1L(Y))(H)
is Hermitian, and therefore (Φ⊗ 1L(Y))(H) ≤ 1X ⊗ 1Y . It follows that

(
Φ⊗ 1L(Y)

)
(1X ⊗ 1Y −H) = 1X ⊗ 1Y − (Φ⊗ 1L(Y))(H) ≥ 0. (6.66)

Because (6.66) holds for all positive and unital maps Φ, one concludes from
Theorem 6.9 that 1X ⊗ 1Y −H is separable.
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Bipartite operator entanglement rank
Let X and Y be complex Euclidean spaces, and consider the collection of
all positive semidefinite operators R ∈ Pos(X ⊗Y) for which there exists an
alphabet Σ and a collection of operators {Aa : a ∈ Σ} ⊂ L(Y,X ) such that

R =
∑

a∈Σ
vec(Aa) vec(Aa)∗ (6.67)

and rank(Aa) ≤ 1 for each a ∈ Σ. An operator A ∈ L(Y,X ) has rank
at most 1 if and only if there exist vectors u ∈ X and v ∈ Y such that
vec(A) = u ⊗ v, and from this observation it follows that the collection of
operators R just described coincides with Sep(X : Y).

It is useful to generalize this notion, allowing for arbitrary upper-bounds
on the rank of the operators {Aa : a ∈ Σ}, along the lines of the following
definition.

Definition 6.14 Let X and Y be complex Euclidean spaces and let r ≥ 1
be a positive integer. The set Entr(X : Y) is defined to be the set of all
operators R ∈ Pos(X ⊗ Y) for which there exists an alphabet Σ and a
collection of operators

{Aa : a ∈ Σ} ⊂ L(Y,X ) (6.68)

satisfying rank(Aa) ≤ r for each a ∈ Σ, such that

R =
∑

a∈Σ
vec(Aa) vec(Aa)∗. (6.69)

An element R ∈ Entr(X :Y) is said to have entanglement rank bounded by r.
The entanglement rank of R ∈ Pos(X ⊗ Y), with respect to the bipartition
between X and Y, is the minimum value of r ≥ 1 such that R ∈ Entr(X :Y).

As indicated above, it holds that

Sep(X : Y) = Ent1(X : Y), (6.70)

and from Definition 6.14 it is immediate that

Entr−1(X : Y) ⊆ Entr(X : Y) (6.71)

for every integer r ≥ 2.
The containment (6.71) is proper, provided r ≤ min{dim(X ),dim(Y)}.

To see that this is so, consider any operator B ∈ L(Y,X ) having rank equal
to r, and suppose that

vec(B) vec(B)∗ =
∑

a∈Σ
vec(Aa) vec(Aa)∗ (6.72)
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for some collection of operators {Aa : a ∈ Σ} ⊂ L(Y,X ). As the operator
represented by this equation has rank equal to 1, it must hold that Aa = αaB

for each a ∈ Σ, for {αa : a ∈ Σ} being a collection of complex numbers
satisfying

∑

a∈Σ
|αa|2 = 1. (6.73)

It is therefore not possible that (6.72) holds when each operator Aa has rank
strictly smaller than r, and therefore

vec(B) vec(B)∗ 6∈ Entr−1(X : Y). (6.74)

It is immediate, on the other hand, that vec(B) vec(B)∗ ∈ Entr(X : Y).
Finally, one may observe that

Entn(X : Y) = Pos(X ⊗ Y) (6.75)

for n ≥ min{dim(X ), dim(Y)}, as every operator A ∈ L(Y,X ) has rank
bounded by n in this case.

The following simple proposition concerning entanglement rank will be
useful in subsequent sections of this chapter.

Proposition 6.15 Let B ∈ L(Y,X ) be an operator, for complex Euclidean
spaces X and Y, and assume that ‖B‖ ≤ 1. For every positive integer r and
every operator

P ∈ Entr(X : Y) (6.76)

having entanglement rank bounded by r, it holds that
〈
vec(B) vec(B)∗, P

〉 ≤ rTr(P ). (6.77)

Proof Under the assumption that P has entanglement rank bounded by r,
one may write

P =
∑

a∈Σ
vec(Aa) vec(Aa)∗ (6.78)

for an alphabet Σ and a collection of operators {Aa : a ∈ Σ} ⊂ L(Y,X ) for
which rank(Aa) ≤ r for every a ∈ Σ. For every operator A ∈ L(Y,X ), one
has

∣∣〈B,A
〉∣∣2 ≤ ‖A‖21 ≤ rank(A) ‖A‖22, (6.79)

so that evaluating the inner product in the statement of the proposition
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yields
〈
vec(B) vec(B)∗, P

〉
=
∑

a∈Σ

∣∣〈B,Aa
〉∣∣2

≤
∑

a∈Σ
rank(Aa)

∥∥Aa
∥∥2

2 ≤ r
∑

a∈Σ

∥∥Aa
∥∥2

2 = rTr(P ),
(6.80)

as required.

Example 6.16 Let Σ be an alphabet, let n = |Σ|, let X = CΣ and Y = CΣ,
and define a density operator τ ∈ D(X ⊗ Y) as

τ = 1
n

∑

a,b∈Σ
Ea,b ⊗ Ea,b. (6.81)

The density operator τ , which coincides with the isotropic state ∆0 defined
in Example 6.10, is the canonical example of a maximally entangled state
with respect to the spaces X and Y. One may observe that

τ = 1
n

vec(1) vec(1)∗ (6.82)

for 1 denoting the identity operator on CΣ, which may be viewed as an
element of the set L(Y,X ) in the most straightforward way.

For every positive integer r and every density operator

ρ ∈ D(X ⊗ Y) ∩ Entr(X : Y) (6.83)

having entanglement rank bounded by r, Proposition 6.15 implies that

〈τ, ρ〉 = 1
n

〈
vec(1) vec(1)∗, ρ

〉 ≤ r

n
. (6.84)

One therefore has that every state of bounded entanglement rank must have
a proportionately small inner product with the state τ .

6.1.2 Separable maps and the LOCC paradigm
Separable maps are defined in an analogous way to separable operators,
reflecting the natural correspondence between completely positive maps and
positive semidefinite operators. The resulting notion of separability for maps,
including channels, is algebraic in nature; and it cannot be said that it is
directly motivated from a physical or operational viewpoint.

This notion of separability for channels is, however, closely connected
to the more operationally motivated notion of channels implementable by
local operations and classical communication, or LOCC for short. An LOCC
channel is a channel that can be implemented by two individuals whose
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local actions are unrestricted (corresponding to arbitrary measurements or
channels), but whose communications with one another are restricted to
be classical. This paradigm provides a foundation from which properties
of entanglement are commonly studied, particularly in settings in which
entanglement is viewed as a resource for information processing.

Separable maps and channels
As suggested above, the notion of separability for maps is defined in an
analogous way to separability for operators. The following definition states
this in more precise terms.

Definition 6.17 Let X , Y, Z, and W be complex Euclidean spaces. The
set SepCP(X ,Z :Y,W) is defined as the set of all completely positive maps
of the form

Ξ ∈ CP(X ⊗ Y ,Z ⊗W) (6.85)

for which there exists an alphabet Σ and collections of completely positive
maps {Φa : a ∈ Σ} ⊂ CP(X ,Z) and {Ψa : a ∈ Σ} ⊂ CP(Y,W) such that

Ξ =
∑

a∈Σ
Φa ⊗Ψa. (6.86)

Elements of the set SepCP(X ,Z : Y,W) are called separable maps.

As the following simple proposition states, separable maps are precisely
those completely positive maps having Kraus representations for which the
individual Kraus operators are tensor products of operators. A direct proof
of this proposition is obtained by considering Kraus representations of the
maps Φa and Ψa in Definition 6.17, along the same lines as the proof of
Proposition 6.5.

Proposition 6.18 Let X , Y, Z, and W be complex Euclidean spaces and
let Ξ ∈ CP(X ⊗ Y,Z ⊗W) be a completely positive map. It holds that

Φ ∈ SepCP(X ,Z : Y,W) (6.87)

if and only if there exists an alphabet Σ and collections of operators

{Aa : a ∈ Σ} ⊂ L(X ,Z) and {Ba : a ∈ Σ} ⊂ L(Y,W) (6.88)

such that
Ξ(X) =

∑

a∈Σ
(Aa ⊗Ba)X(Aa ⊗Ba)∗ (6.89)

for every operator X ∈ L(X ⊗ Y).
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Another straightforward proposition regarding separable maps follows,
and like the previous proposition, it may be verified directly. It implies that
the set of all separable maps is closed under composition.

Proposition 6.19 Let X , Y, Z,W, U , and V be complex Euclidean spaces,
and suppose that Φ and Ψ are separable maps of the form

Φ ∈ SepCP(X ,U : Y,V) and Ψ ∈ SepCP(U ,Z : V,W). (6.90)

It holds that the composition ΨΦ is separable:

ΨΦ ∈ SepCP(X ,Z : Y,W). (6.91)

Similar to the analogous case for states, one defines the set of separable
channels by simply restricting the definition of separability for completely
positive maps to channels.

Definition 6.20 For complex Euclidean spaces X , Y, Z, and W, one
defines

SepC(X ,Z : Y,W)
= SepCP(X ,Z : Y,W) ∩ C(X ⊗ Y,Z ⊗W).

(6.92)

Elements of the set SepC(X ,Z :Y,W) are referred to as separable channels.

It should be noted that, unlike the analogous case of states, separable
channels need not be equal to convex combinations of product channels, as
the following example illustrates.

Example 6.21 Let Σ = {0, 1} denote the binary alphabet, let X , Y, Z,
and W all be equal to CΣ, and define a channel Ξ ∈ C(X ⊗ Y,Z ⊗W) by
the equation

Ξ(Ea,b ⊗ Ec,d) =




Ea,a ⊗ Ea,a if a = b and c = d

0 if a 6= b or c 6= d,
(6.93)

holding for all a, b, c, d ∈ Σ. It is the case that Ξ is a separable channel,
meaning that Ξ ∈ SepC(X ,Z : Y,W). Indeed, one may write

Ξ = Φ0 ⊗Ψ0 + Φ1 ⊗Ψ1 (6.94)

for completely positive maps defined as follows:

Φ0(X) = 〈E0,0, X〉E0,0, Ψ0(X) = Tr(X)E0,0,

Φ1(X) = 〈E1,1, X〉E1,1, Ψ1(X) = Tr(X)E1,1,
(6.95)

for every X ∈ L
(
CΣ).
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It is not possible, however, to express the channel Ξ in the form

Ξ =
∑

a∈Γ
p(a)Φa ⊗Ψa (6.96)

for any choice of an alphabet Γ, a probability vector p ∈ P(Γ), and two
collections of channels

{Φa : a ∈ Γ} ⊂ C(X ,Z) and {Ψa : a ∈ Γ} ⊂ C(Y,W). (6.97)

To verify this claim, consider the fact that

Ξ(E0,0 ⊗ ρ) = E0,0 ⊗ E0,0 and Ξ(E1,1 ⊗ ρ) = E1,1 ⊗ E1,1 (6.98)

for every density operator ρ ∈ D(Y). If it were the case that (6.96) were true
for each Φa and Ψa being a channel, then one would necessarily have

∑

a∈Γ
p(a)Φa(E0,0)⊗Ψa(ρ) = E0,0 ⊗ E0,0, (6.99)

and therefore, by tracing over the space Z,
∑

a∈Σ
p(a)Ψa(ρ) = E0,0 (6.100)

for every ρ ∈ D(Y). By similar reasoning, it would simultaneously hold that
∑

a∈Σ
p(a)Φa(E1,1)⊗Ψa(ρ) = E1,1 ⊗ E1,1, (6.101)

and therefore
∑

a∈Σ
p(a)Ψa(ρ) = E1,1 (6.102)

for every ρ ∈ D(Y). The equations (6.100) and (6.102) are in contradiction,
implying that Ξ is not equal to a convex combination of product channels.

Intuitively speaking, the situation represented by the previous example is
quite simple. Channels that can be expressed as a convex combination of
product channels correspond to transformations that may be implemented
by means of local operations and shared randomness—no communication
is needed to implement them, and such channels do not allow for a direct
causal relationship to hold among the input and output systems across the
bipartition with respect to which separability is considered. The channel Ξ,
on the other hand, induces a direct causal relationship of this form.

As the following proposition states, a given completely positive map is
separable if and only if its Choi representation is separable, with respect to
the natural bipartition of the tensor product space over which it is defined.
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Proposition 6.22 Let Ξ ∈ CP(X ⊗ Y,Z ⊗ W) be a completely positive
map, for complex Euclidean spaces X , Y, Z, and W, and define an isometry

V ∈ U(Z ⊗W ⊗X ⊗ Y, Z ⊗ X ⊗W ⊗Y) (6.103)

by the equation
V vec(A⊗B) = vec(A)⊗ vec(B) (6.104)

holding for all operators A ∈ L(X ,Z) and B ∈ L(Y,W). It holds that

Ξ ∈ SepCP(X ,Z : Y,W) (6.105)

if and only if
V J(Ξ)V ∗ ∈ Sep(Z ⊗ X :W ⊗Y). (6.106)

Proof Assume first that Ξ is a separable map. By Proposition 6.18, there
must exist an alphabet Σ and two collections of operators,

{Aa : a ∈ Σ} ⊂ L(X ,Z) and {Ba : a ∈ Σ} ⊂ L(Y,W), (6.107)

such that
Ξ(X) =

∑

a∈Σ
(Aa ⊗Ba)X(Aa ⊗Ba)∗ (6.108)

for every operator X ∈ L(X ⊗Y). The Choi representation of Ξ is therefore
given by

J(Ξ) =
∑

a∈Σ
vec(Aa ⊗Ba) vec(Aa ⊗Ba)∗, (6.109)

so that

V J(Ξ)V ∗ =
∑

a∈Σ
vec(Aa) vec(Aa)∗ ⊗ vec(Ba) vec(Ba)∗, (6.110)

which is evidently contained in Sep(Z ⊗ X :W ⊗Y).
Conversely, if V J(Ξ)V ∗ is separable, then it must be possible to express

this operator in the form (6.110) for some choice of an alphabet Σ and two
collections of operators as in (6.107). It therefore follows that (6.109) is a
Choi representation of Ξ, so that (6.108) holds for all X ∈ L(X ⊗ Y). The
map Ξ is therefore separable, which completes the proof.

Remark The isometry V defined in Proposition 6.22 may alternatively be
defined by the action

V (z ⊗ w ⊗ x⊗ y) = z ⊗ x⊗ w ⊗ y, (6.111)

for every choice of vectors x ∈ X , y ∈ Y, z ∈ Z, and w ∈ W. In words, this
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isometry represents a permutation of tensor factors, allowing a relationship
concerning separability with respect to a particular bipartition to be stated
precisely.

It is not uncommon in the theory of quantum information literature that
statements of this nature are made without an explicit mention of such an
isometry. This can sometimes simplify expressions and generally does not
lead to any confusion—the isometry can usually be taken as being implicit,
particularly in cases when the underlying complex Euclidean spaces have
distinct names. In the interest of clarity and formality, however, this book
will always represent such permutations of tensor factors explicitly.

Separable channels are not capable of creating entanglement: a separable
channel applied to a separable state yields another separable state. More
generally, separable maps cannot cause an increase in entanglement rank, as
the following theorem establishes.

Theorem 6.23 Let X , Y, Z, and W be complex Euclidean spaces and let
Ξ ∈ SepCP(X ,Z : Y,W) be a separable map. For every positive integer r
and every operator P ∈ Entr(X : Y), it holds that Ξ(P ) ∈ Entr(Z :W).

Proof For an operator P ∈ Entr(X :Y) having entanglement rank bounded
by r, there must exist an alphabet Γ and a collection of operators

{Xb : b ∈ Γ} ⊂ L(Y,X ), (6.112)

satisfying rank(Xb) ≤ r for every b ∈ Γ, such that

P =
∑

b∈Γ
vec(Xb) vec(Xb)∗. (6.113)

By Proposition 6.18, it follows that

Ξ(P ) =
∑

a∈Σ

∑

b∈Γ
(Aa ⊗Ba) vec(Xb) vec(Xb)∗(Aa ⊗Ba)∗

=
∑

a∈Σ

∑

b∈Γ
vec
(
AaXbB

T
a

)
vec
(
AaXbB

T
a

)∗ (6.114)

for some choice of an alphabet Σ and two collections of operators

{Aa : a ∈ Σ} ⊂ L(X ,Z) and {Ba : a ∈ Σ} ⊂ L(Y,W). (6.115)

For every a ∈ Σ and b ∈ Γ, it holds that

rank
(
AaXbB

T
a

) ≤ rank(Xb) ≤ r, (6.116)

and therefore Ξ(P ) ∈ Entr(Z :W), as required.
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Corollary 6.24 Let Ξ ∈ SepCP(X ,Z : Y,W) be a separable map, for
complex Euclidean spaces X , Y, Z, and W. For every separable operator
P ∈ Sep(X : Y), it holds that Ξ(P ) is also separable: Ξ(P ) ∈ Sep(Z :W).

LOCC channels
As was stated at the beginning of the present subsection, LOCC channels
represent transformations of quantum states that may be implemented by
two individuals that communicate with one another classically and perform
quantum channels and measurements on registers they hold locally.

For instance, one individual may apply a combination of channels and
measurements to a collection of registers in their possession and then
transmit the measurement outcomes to the other individual. Upon receiving
this transmission, the other individual may apply a combination of channels
and measurements, possibly depending on the communicated measurement
outcomes, to a collection of registers in their possession. In general, LOCC
channels represent the cumulative effect of composing any finite number of
transformations of this sort.2

The following definition formalizes this notion. Naturally, it is possible to
generalize this definition to three or more individuals, although this will not
be done in this book.

Definition 6.25 Let X , Y, Z, and W be complex Euclidean spaces and
let Ξ ∈ C(X ⊗Y,Z ⊗W) be a channel. The channel Ξ is an LOCC channel
under these conditions:

1. If there exists an alphabet Σ and a collection

{Φa : a ∈ Σ} ⊂ CP(X ,Z) (6.117)

of completely positive maps satisfying
∑

a∈Σ
Φa ∈ C(X ,Z), (6.118)

along with a collection

{Ψa : a ∈ Σ} ⊆ C(Y,W) (6.119)

of channels, such that
Ξ =

∑

a∈Σ
Φa ⊗Ψa, (6.120)

then Ξ is a one-way right LOCC channel.
2 One may consider variants of the definition that allow for an unbounded number of classical

transmissions that terminate with probability 1 according to a chosen stopping rule. Only the
finite case is considered in this book for simplicity.
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2. If there exists an alphabet Σ and a collection

{Ψa : a ∈ Σ} ⊂ CP(Y,W) (6.121)

of completely positive maps satisfying
∑

a∈Σ
Ψa ∈ C(Y,W), (6.122)

along with a collection

{Φa : a ∈ Σ} ⊆ C(X ,Z) (6.123)

of channels, such that (6.120) holds, then Ξ is a one-way left LOCC
channel.

3. The channel Ξ is an LOCC channel if it is equal to a finite composition
of one-way left and one-way right LOCC channels. That is, either Ξ is
a one-way left LOCC channel, a one-way right LOCC channel, or there
exists an integer m ≥ 2, complex Euclidean spaces U1, . . . ,Um−1 and
V1, . . . ,Vm−1, and channels

Ξ1 ∈ C(X ⊗ Y,U1 ⊗ V1),
Ξ2 ∈ C(U1 ⊗ V1,U2 ⊗ V2),

...
Ξm ∈ C(Um−1 ⊗ Vm−1,Z ⊗W),

(6.124)

each of which is either a one-way left LOCC channel or a one-way right
LOCC channel, such that Ξ is equal to the composition Ξ = Ξm · · ·Ξ1.

The collection of all such LOCC channels is denoted LOCC(X ,Z : Y,W).

Remark In the definition above, one-way left and one-way right LOCC
channels represent channels that can be implemented by local operations
and one-way classical communication. In both cases, the channel Ξ may
be viewed as having resulted from actions performed by two individuals,
Alice and Bob. Alice begins with a register X and Bob begins with Y, and
as a result of their actions these registers are transformed into Z and W,
respectively.

In the case of a one-way right LOCC channel Ξ, the communication is
from Alice to Bob (moving to the right, assuming Alice is on the left and
Bob is on the right), with the alphabet Σ representing the set of possible
classical messages that may be transmitted. Alice’s actions are described by
a collection of completely positive maps

{Φa : a ∈ Σ} ⊂ CP(X ,Z) (6.125)
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that satisfies the constraint
∑

a∈Σ
Φa ∈ C(X ,Z). (6.126)

In essence, this collection specifies an instrument (q.v. Section 2.3.2).
Assuming the classical communication is represented by a classical register
V having associated complex Euclidean space V = CΣ, Alice’s action would
be described by the channel Φ ∈ C(X ,Z ⊗ V) defined by

Φ(X) =
∑

a∈Σ
Φa(X)⊗ Ea,a (6.127)

for all X ∈ L(X ). The register V is sent to Bob, who observes its classical
state (or, equivalently, measures V with respect to the standard basis) and
transforms his register Y into W according to the channel Ψa ∈ C(Y,W),
for a ∈ Σ being the classical state of V that was observed. Assuming that
the register V is discarded after Bob applies the appropriate channel, the
combined actions of Alice and Bob are described by Ξ.

For a one-way left LOCC channel Ξ, the situation is similar, with the roles
of Alice and Bob switched.

It is apparent from Definition 6.25, together with the fact that separable
channels are closed under composition (Proposition 6.19), that every LOCC
channel is a separable channel.

Proposition 6.26 For every choice of complex Euclidean spaces X , Y, Z,
and W, it holds that

LOCC(X ,Z : Y,W) ⊆ SepC(X ,Z : Y,W). (6.128)

6.1.3 Separable and LOCC measurements
As was explained in Section 2.3.1, one may associate a quantum-to-classical
channel with each measurement, with the classical output of the channel
representing the outcome of the measurement. Through an identification of
this sort, the notions of separable and LOCC channels may be extended to
measurements.

Definitions of separable and LOCC measurements
The following definition of separable and LOCC measurements refers to an
association of quantum-to-classical channels with measurements that has
been adapted to a bipartite setting.
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Definition 6.27 Let Σ be an alphabet, let X and Y be complex Euclidean
spaces, and let µ : Σ → Pos(X ⊗ Y) be a measurement. Define complex
Euclidean spaces Z = CΣ and W = CΣ, and define a channel

Φµ ∈ C(X ⊗ Y,Z ⊗W) (6.129)

as
Φµ(X) =

∑

a∈Σ
〈µ(a), X〉Ea,a ⊗ Ea,a (6.130)

for every X ∈ L(X ⊗Y). The measurement µ is a separable measurement if

Φµ ∈ SepC(X ,Z : Y,W), (6.131)

and µ is an LOCC measurement if

Φµ ∈ LOCC(X ,Z : Y,W). (6.132)

For a given measurement µ, the channel Φµ specified in Definition 6.27
is similar to the quantum-to-classical channel one would normally associate
with µ, except that two copies of the measurement outcome are produced
rather than one. In a bipartite setting, this is a natural way of associating
a quantum-to-classical channel with a measurement. If this measurement is
performed on a pair of registers (X,Y) by two individuals, Alice and Bob,
where it is assumed that Alice holds X and Bob holds Y, the channel Φµ

represents the measurement µ under the assumption that both individuals
learn the measurement outcome after the measurement is performed.

One alternative to Definition 6.27 is to replace the channel Φµ by the
quantum-to-classical channel that would ordinarily be associated with the
measurement µ, along with a specification of which side of the bipartition
the measurement outcome is to fall (requiring this channel to be separable or
LOCC, as in the stated definition). In essence, with respect to a situation in
which Alice and Bob are performing the measurement µ as suggested above,
such a definition specifies which of the individuals obtains the measurement
outcome. This alternative creates an asymmetry in the definition, but is
equivalent to Definition 6.27.

With respect to Definition 6.27, the separability of a given measurement
is equivalent to the constraint that each measurement operator is separable,
as the following proposition states.

Proposition 6.28 Let X and Y be complex Euclidean spaces, let Σ be an
alphabet, and let µ be a measurement of the form µ : Σ → Pos(X ⊗ Y). It
holds that µ is a separable measurement if and only if µ(a) ∈ Sep(X :Y) for
every a ∈ Σ.
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Proof Consider the Choi representation of the mapping Φµ, as specified in
Definition 6.27, which is given by

J(Φµ) =
∑

a∈Σ
Ea,a ⊗ Ea,a ⊗ µ(a). (6.133)

Along similar lines to the statement of Proposition 6.22, let

V ∈ U(Z ⊗W ⊗X ⊗ Y, Z ⊗ X ⊗W ⊗Y) (6.134)

be the isometry defined by the equation

V vec(A⊗B) = vec(A)⊗ vec(B) (6.135)

holding for all operators A ∈ L(X ,Z) and B ∈ L(Y,W). If it is the case
that µ(a) ∈ Sep(X : Y) for every a ∈ Σ, then it follows directly that

V J(Φµ)V ∗ ∈ Sep(Z ⊗ X :W ⊗Y), (6.136)

which implies that µ is a separable measurement by Proposition 6.22.
Now suppose that µ is a separable measurement, so that (6.136) holds.

Define a mapping

Ξa ∈ T(Z ⊗ X ⊗W ⊗Y,X ⊗ Y), (6.137)

for each a ∈ Σ, as

Ξa(X) =
(
(e∗a ⊗ 1X )⊗ (e∗a ⊗ 1Y)

)
X
(
(ea ⊗ 1X )⊗ (ea ⊗ 1Y)

)
(6.138)

for all X ∈ L(Z ⊗ X ⊗W ⊗Y). It is evident from this definition that Ξa is
a separable mapping for each a ∈ Σ, meaning

Ξa ∈ SepCP(Z ⊗ X ,X :W ⊗Y,Y). (6.139)

It holds that
µ(a) = Ξa

(
V J(Φµ)V ∗

)
(6.140)

for each a ∈ Σ, from which it follows that

µ(a) ∈ Sep(X : Y) (6.141)

by Corollary 6.24. This is equivalent to µ(a) ∈ Sep(X : Y) for each a ∈ Σ,
as the entry-wise complex conjugate of every separable operator is evidently
separable, which completes the proof.

For two complex Euclidean spaces X and Y, along with an alphabet Σ, it
is the case that the set of all separable measurements of the form

µ : Σ→ Pos(X ⊗ Y) (6.142)
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is a proper subset of the set of all measurements of the same form (aside
from the trivial cases in which one of dim(X ), dim(Y), or |Σ| equals 1). As
every LOCC channel is separable, it follows that every LOCC measurement
is a separable measurement.

One-way LOCC measurements
An interesting restricted type of LOCC measurement is one in which only
one-way communication is permitted. The following definition formalizes
this type of measurement.

Definition 6.29 Let X and Y be complex Euclidean spaces, let Σ be an
alphabet, and let

µ : Σ→ Pos(X ⊗ Y) (6.143)

be a measurement. The measurement µ is a one-way LOCC measurement if
either of the following two conditions is met:

1. There exists an alphabet Γ and a measurement ν : Γ → Pos(X ), along
with a measurement πb : Σ → Pos(Y) for each b ∈ Γ, such that the
equation

µ(a) =
∑

b∈Γ
ν(b)⊗ πb(a) (6.144)

holds for every a ∈ Σ. In this case the measurement µ is said to be a
one-way right LOCC measurement.

2. There exists an alphabet Γ and a measurement ν : Γ → Pos(Y), along
with a measurement πb : Σ → Pos(X ) for each b ∈ Γ, such that the
equation

µ(a) =
∑

b∈Γ
πb(a)⊗ ν(b) (6.145)

holds for every a ∈ Σ. In this case the measurement µ is said to be a
one-way left LOCC measurement.

Limitations on state discrimination by separable measurements
One may consider the problem of state discrimination, as was discussed in
Chapter 3, in which measurements are restricted to be separable or LOCC
measurements. Many examples of sets of orthogonal pure states are known
that cannot be discriminated by separable or LOCC measurements without
error. The following theorem provides one class of examples, and implies
that there exist relatively small sets of orthogonal pure states having this
characteristic.



336 Bipartite entanglement

Theorem 6.30 Let X and Y be complex Euclidean spaces, let n = dim(Y),
and assume n ≤ dim(X ). Also let

{U1, . . . , Um} ∈ U(Y,X ) (6.146)

be an orthogonal collection of isometries, and let uk ∈ X ⊗ Y be the unit
vector defined as

uk = 1√
n

vec(Uk) (6.147)

for each k ∈ {1, . . . ,m}. For every separable measurement of the form

µ : {1, . . . ,m} → Sep(X : Y) (6.148)

it holds that
m∑

k=1
〈µ(k), uku∗k〉 ≤ dim(X ). (6.149)

Proof Under the assumption that µ is a separable measurement, one may
write

µ(k) =
∑

a∈Σ
Pk,a ⊗Qk,a (6.150)

for each k ∈ {1, . . . ,m}, for some choice of an alphabet Σ and collections of
positive semidefinite operators as follows:

{Pk,a : k ∈ {1, . . . ,m}, a ∈ Σ} ⊂ Pos(X ),

{Qk,a : k ∈ {1, . . . ,m}, a ∈ Σ} ⊂ Pos(Y).
(6.151)

(No generality lost in using the same alphabet Σ in the expressions (6.150)
for each choice of k, as one is free to choose Σ to be as large as is needed,
and to set Pk,a = 0 or Qk,a = 0 for some choices of k and a as necessary.) It
holds that

〈µ(k), vec(Uk) vec(Uk)∗〉 =
∑

a∈Σ
Tr
(
U∗kPk,aUkQ

T
k,a

)

≤
∑

a∈Σ

∥∥U∗kPk,aUk
∥∥

2
∥∥Qk,a

∥∥
2 ≤

∑

a∈Σ

∥∥Pk,a
∥∥

1
∥∥Qk,a

∥∥
1

=
∑

a∈Σ
Tr(Pk,a) Tr(Qk,a) = Tr(µ(k)),

(6.152)

and therefore
m∑

k=1
〈µ(k), vec(Uk) vec(Uk)∗〉 ≤

m∑

k=1
Tr(µ(k)) = n dim(X ). (6.153)

The theorem follows by dividing both sides of this inequality by n.
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For any set of unit vectors {u1, . . . , um} as described by this theorem, for
which m > dim(X ), one therefore has that

1
m

m∑

k=1
〈µ(k), uku∗k〉 ≤

dim(X )
m

< 1. (6.154)

Consequently, for one of the m pure states associated with these vectors
being selected uniformly at random, any separable measurement that aims
to discriminate these states must err with probability strictly greater than 0.

LOCC discrimination of any pair of orthogonal pure states
Although Theorem 6.30 establishes that there exist relatively small sets of
orthogonal pure states that cannot be perfectly discriminated by separable
measurements, the same cannot be said about pairs of orthogonal pure
states. Indeed, every pair of orthogonal pure states can be discriminated
without error by a one-way LOCC measurement. The following lemma is
used to prove this fact.

Lemma 6.31 Let X be a complex Euclidean space of dimension n and let
X ∈ L(X ) be an operator satisfying Tr(X) = 0. There exists an orthonormal
basis {x1, . . . , xn} of X such that x∗kXxk = 0 for all k ∈ {1, . . . , n}.

Proof The proof is by induction on n. The base case n = 1 is immediate,
so it will be assumed that n ≥ 2 for the rest of the proof. It will also be
assumed that X = Cn, which causes no loss of generality.

For every integer k ∈ {1, . . . , n}, it holds that λk(X) ∈ N (X), where
N (X) denotes the numerical range of X. By the Toeplitz–Hausdorff theorem
(Theorem 3.54), the numerical range is convex, and therefore

0 = 1
n

Tr(X) = 1
n

n∑

k=1
λk(X) ∈ N (X). (6.155)

By the definition of the numerical range, there must therefore exist a unit
vector xn ∈ X such that x∗nXxn = 0.

Let V ∈ U(Cn−1,Cn) be any isometry that satisfies xn ⊥ im(V ), which is
equivalent to

V V ∗ = 1− xnx∗n. (6.156)

It holds that

Tr(V ∗XV ) = Tr((1− xnx∗n)X) = Tr(X)− x∗nXxn = 0. (6.157)

As V ∗XV ∈ L(Cn−1), the hypothesis of induction implies that there exists
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an orthonormal basis {u1, . . . , un−1} of Cn−1 such that

u∗k(V ∗XV )uk = 0 (6.158)

for all k ∈ {1, . . . , n− 1}. Define xk = V uk for each k ∈ {1, . . . , n− 1}, and
observe that {x1, . . . , xn−1} is an orthonormal set, with each element xk of
this set satisfying x∗kXxk = 0. As V is an isometry and xn ⊥ im(X), it
follows that {x1, . . . , xn} is an orthonormal basis of X having the property
stated by the lemma.

Theorem 6.32 Let u0, u1 ∈ X⊗Y be orthogonal unit vectors, for X and Y
being complex Euclidean spaces. There exists a one-way LOCC measurement

µ : {0, 1} → Pos(X ⊗ Y) (6.159)

such that
〈
µ(0), u0u

∗
0
〉

= 1 =
〈
µ(1), u1u

∗
1
〉
. (6.160)

Proof Let n = dim(Y) and let A0, A1 ∈ L(Y,X ) be the unique operators
satisfying u0 = vec(A0) and u1 = vec(A1). The orthogonality of the vectors
u0 and u1 is equivalent to the condition Tr(A∗0A1) = 0. By Lemma 6.31,
there exists an orthonormal basis {x1, . . . , xn} of Y with the property that
x∗kA

∗
0A1xk = 0, which is equivalent to the condition that

〈
A0xkx

∗
kA
∗
0, A1xkx

∗
kA
∗
1
〉

= 0, (6.161)

for every k ∈ {1, . . . , n}.
Define a measurement ν : {1, . . . , n} → Pos(Y) as

ν(k) = xkx
T
k (6.162)

for each k ∈ {1, . . . , n}. By the equation (6.161), one has that there must
exist a measurement πk : {0, 1} → Pos(X ), for each k ∈ {1, . . . , n}, such
that

〈
πk(0), A1xkx

∗
kA
∗
1
〉

= 0 =
〈
πk(1), A0xkx

∗
kA
∗
0
〉
. (6.163)

Finally, define µ : {0, 1} → Pos(X ⊗ Y) as

µ(a) =
n∑

k=1
πk(a)⊗ ν(k) (6.164)

for each a ∈ {0, 1}, which is a one-way measurement with respect to the
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second condition of Definition 6.29. It holds that
〈
µ(0), u1u

∗
1
〉

=
n∑

k=1

〈
πk(0), (1⊗ xT

k) vec(A1) vec(A1)∗(1⊗ xk)
〉

=
n∑

k=1

〈
πk(0), A1xkx

∗
kA
∗
1
〉

= 0,
(6.165)

and through a similar calculation one finds that
〈
µ(1), u0u∗0

〉
= 0, which

completes the proof.

Remark The preceding proof may be adapted in a straightforward way to
prove that there exists a one-way LOCC measurement respecting the first
condition of Definition 6.29, as opposed to the second, that satisfies the
requirements of the theorem.

6.2 Manipulation of entanglement
As presented in the previous section, entanglement is defined as a lack of
separability: for two complex Euclidean spaces X and Y, a bipartite state
ρ ∈ D(X ⊗Y) that is not contained in the set SepD(X :Y) is entangled with
respect to the bipartition between X and Y. This definition is qualitative, in
the sense that it does not provide a measure of how much entanglement is
present in a given state or suggest how two entangled states might relate to
one another. The present section discusses such notions, and develops basic
concepts and techniques relating to quantitative aspects of entanglement.

6.2.1 Entanglement transformation
The next theorem establishes a necessary and sufficient condition under
which two individuals may transform one pure state into another by means
of local operations and classical communication. The condition concerns the
reductions of the initial and final pure states to one of the two individuals,
requiring that the reduction of the initial state is majorized by the reduction
of the final state. This condition is not only equivalent to the existence of
an LOCC (or even a separable) channel transforming the initial state to the
final state, but also implies that the transformation can be accomplished
with one-way classical communication, from either of the two individuals to
the other. The theorem offers a tool through which two fundamental ways
of quantifying how much entanglement exists in a given state, called the
entanglement cost and the distillable entanglement, may be analyzed for
pure states.
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Theorem 6.33 (Nielsen’s theorem) Let X and Y be complex Euclidean
spaces and let u, v ∈ X ⊗ Y be unit vectors. The following statements are
equivalent:

1. TrY(uu∗) ≺ TrY(vv∗).
2. There exists an alphabet Σ and collections of operators

{Ua : a ∈ Σ} ⊂ U(X ) and {Ba : a ∈ Σ} ⊂ L(Y) (6.166)

satisfying
∑

a∈Σ
B∗aBa = 1Y (6.167)

and
vv∗ =

∑

a∈Σ
(Ua ⊗Ba)uu∗(Ua ⊗Ba)∗. (6.168)

3. There exists an alphabet Σ and collections of operators

{Aa : a ∈ Σ} ⊂ L(X ) and {Va : a ∈ Σ} ⊂ U(Y) (6.169)

satisfying
∑

a∈Σ
A∗aAa = 1X (6.170)

and
vv∗ =

∑

a∈Σ
(Aa ⊗ Va)uu∗(Aa ⊗ Va)∗. (6.171)

4. There exists a separable channel 3 Φ ∈ SepC(X : Y) such that

vv∗ = Φ(uu∗). (6.172)

Proof Let X,Y ∈ L(Y,X ) be the unique operators for which u = vec(X)
and v = vec(Y ), and let

X =
r∑

k=1
skxky

∗
k (6.173)

be a singular value decomposition of X, for r = rank(X).
Assume first that statement 1 holds, which is equivalent to XX∗ ≺ Y Y ∗.

There must therefore exist an alphabet Σ, a probability vector p ∈ P(Σ),
and a collection of unitary operators {Wa : a ∈ Σ} ⊂ U(X ) such that

XX∗ =
∑

a∈Σ
p(a)WaY Y

∗W ∗a . (6.174)

3 As one may expect, the notation SepC(X : Y) is a shorthand for SepC(X ,X : Y,Y).
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Let Z = CΣ and define an operator Z ∈ L(Y ⊗ Z,X ) as

Z =
∑

a∈Σ

√
p(a)WaY ⊗ e∗a. (6.175)

It holds that

ZZ∗ =
∑

a∈Σ
p(a)WaY Y

∗W ∗a = XX∗, (6.176)

and therefore Z and X agree on their singular values, and on the possible
choices for their left singular vectors. It follows that one may write

Z =
r∑

k=1
skxkw

∗
k (6.177)

for {w1, . . . , wr} ⊂ Y ⊗ Z being an orthonormal collection of vectors. Let
V ∈ U(Y,Y ⊗ Z) be an isometry for which V yk = wk for all k ∈ {1, . . . , r},
so that XV ∗ = Z.

Now, define operators

Ua = W ∗a and Ba = (1Y ⊗ e∗a)V (6.178)

for each a ∈ Σ. As V is an isometry, so too is V , and therefore
∑

a∈Σ
B∗aBa =

∑

a∈Σ
V T(1Y ⊗ Ea,a)V = V TV = 1Y . (6.179)

It holds that

W ∗aXB
T
a = W ∗aXV

∗(1Y ⊗ ea) = W ∗aZ(1Y ⊗ ea) =
√
p(a)Y (6.180)

for each a ∈ Σ, and therefore
∑

a∈Σ
(Ua ⊗Ba)uu∗(Ua ⊗Ba)∗

=
∑

a∈Σ
vec
(
W ∗aXB

T
a

)
vec
(
W ∗aXB

T
a

)∗

=
∑

a∈Σ
p(a) vec(Y ) vec(Y )∗

= vv∗.

(6.181)

It has been established that statement 1 implies statement 2.
The fact that statement 1 implies statement 3 is established by a similar

argument with the roles of X and Y exchanged, along with the observation
that TrY(uu∗) ≺ TrY(vv∗) is equivalent to TrX (uu∗) ≺ TrX (vv∗).
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Statements 2 and 3 each imply statement 4 directly, as the mappings
defined by the actions

uu∗ 7→
∑

a∈Σ
(Ua ⊗Ba)uu∗(Ua ⊗Ba)∗,

uu∗ 7→
∑

a∈Σ
(Aa ⊗ Va)uu∗(Aa ⊗ Va)∗

(6.182)

are both separable channels.
Finally, assume statement 4 holds, letting Φ ∈ SepC(X : Y) be a fixed

separable channel for which Φ(uu∗) = vv∗. It will be proved that

λ(XX∗) ≺ λ(Y Y ∗); (6.183)

by Theorem 4.32, this relation is equivalent to XX∗ ≺ Y Y ∗, which in turn
is equivalent to statement 1. Let n = dim(X ), and observe that

n∑

k=1
λk(XX∗) = Tr(XX∗) = 1 = Tr(Y Y ∗) =

n∑

k=1
λk(Y Y ∗), (6.184)

by the assumption that u and v are unit vectors. By Theorem 4.30, one finds
that the relation (6.183) will therefore follow from the inequality

n∑

k=m
λk(Y Y ∗) ≤

n∑

k=m
λk(XX∗) (6.185)

holding for every choice of m ∈ {1, . . . , n}.
By the separability of the channel Φ, there must exist an alphabet Σ and

two collections of operators

{Aa : a ∈ Σ} ⊂ L(X ) and {Ba : a ∈ Σ} ⊂ L(Y), (6.186)

with {Aa ⊗Ba : a ∈ Σ} being a set of Kraus operators of Φ, for which

vv∗ =
∑

a∈Σ
(Aa ⊗Ba)uu∗(Aa ⊗Ba)∗. (6.187)

As vv∗ is a rank-one operator, it follows that there must exist a probability
vector p ∈ P(Σ) such that

(Aa ⊗Ba)uu∗(Aa ⊗Ba)∗ = p(a)vv∗, (6.188)

which is equivalent to

vec
(
AaXB

T
a

)
vec
(
AaXB

T
a

)∗ = p(a) vec(Y ) vec(Y )∗, (6.189)

for each a ∈ Σ. By taking the partial trace over Y, it follows that

AaXB
T
aBaX

∗A∗a = p(a)Y Y ∗ (6.190)
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for each a ∈ Σ, and therefore
n∑

k=m
λk
(
Y Y ∗

)
=

n∑

k=m

∑

a∈Σ
λk
(
AaXB

T
aBaX

∗A∗a
)

(6.191)

for each m ∈ {1, . . . , n}.
Next, for each choice of a ∈ Σ and m ∈ {1, . . . , n}, let Πa,m ∈ Proj(X ) be

the projection operator onto the orthogonal complement of the subspace of
X spanned by the set

{
Aax1, . . . , Aaxm−1}, where one is to assume xk = 0

for k > r. By the definition of these projection operators, it is evident that
〈

Πa,m, AaXB
T
aBaX

∗A∗a
〉

=
〈

Πa,m, AaXmB
T
aBaX

∗
mA
∗
a

〉
(6.192)

for every a ∈ Σ and m ∈ {1, . . . , n}, where

Xm =
r∑

k=m
skxky

∗
k, (6.193)

and one is to interpret that Xm = 0 for m > r. Because each operator Πa,m

is a projection, and the operator AaXmB
T
aBaX

∗
mA
∗
a is positive semidefinite,

it follows that
〈

Πa,m, AaXmB
T
aBaX

∗
mA
∗
a

〉
≤ Tr

(
AaXmB

T
aBaX

∗
mA
∗
a

)
. (6.194)

Using the fact that Φ is a channel, and therefore preserves trace, one finds
that

∑

a∈Σ
Tr
(
AaXmB

T
aBaX

∗
mA
∗
a

)
= Tr

(
Φ(vec(Xm) vec(Xm)∗)

)

= Tr
(
vec(Xm) vec(Xm)∗

)
= Tr(XmX

∗
m) =

n∑

k=m
λk(XX∗)

(6.195)

for each m ∈ {1, . . . , n}.
Finally, as it necessarily holds that rank(Πa,m) ≥ n − m + 1 for every

a ∈ Σ and m ∈ {1, . . . , n}, it follows that
〈

Πa,m, AaXB
T
aBaX

∗A∗a
〉
≥

n∑

k=m
λk
(
AaXB

T
aBaX

∗A∗a
)
. (6.196)

By combining (6.191), (6.192), (6.194), (6.195), and (6.196), one finds that
n∑

k=m
λk
(
Y Y ∗

) ≤
n∑

k=m
λk(XX∗), (6.197)

which establishes (6.183), and therefore completes the proof.
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Theorem 6.33 implies the following corollary, which characterizes the pure
state transformations, possibly involving different complex Euclidean spaces,
that may be realized by LOCC channels.

Corollary 6.34 Let X , Y, Z, and W be complex Euclidean spaces and let
x ∈ X ⊗ Y and y ∈ Z ⊗ W be unit vectors. The following statements are
equivalent:

1. For ρ = TrY(xx∗), σ = TrW(yy∗), and r = min{rank(ρ), rank(σ)}, it
holds that

λ1(ρ) + · · ·+ λm(ρ) ≤ λ1(σ) + · · ·+ λm(σ) (6.198)

for every m ∈ {1, . . . , r}.
2. There exists a one-way right LOCC channel Φ ∈ LOCC(X ,Z :Y,W) for

which it holds that Φ(xx∗) = yy∗.
3. There exists a one-way left LOCC channel Φ ∈ LOCC(X ,Z : Y,W) for

which it holds that Φ(xx∗) = yy∗.
4. There exists a separable channel Φ ∈ SepC(X ,Z : Y,W) for which it

holds that Φ(xx∗) = yy∗.

Proof Define four isometries, A0 ∈ U(X ,X ⊕ Z), B0 ∈ U(Y,Y ⊕ W),
A1 ∈ U(Z,X ⊕ Z), and B1 ∈ U(W,Y ⊕W), as follows:

A0x = x⊕ 0, A1z = 0⊕ z,
B0y = y ⊕ 0, B1w = 0⊕ w,

(6.199)

for every choice of vectors x ∈ X , y ∈ Y, z ∈ Z, and w ∈ W. Also define
four channels, Ψ0 ∈ C(X ⊕ Z,X ), Λ0 ∈ C(Y ⊕W,Y), Ψ1 ∈ C(X ⊕ Z,Z),
and Λ1 ∈ C(Y ⊕W,W), as

Ψ0(X) = A∗0XA0 +
〈
1X⊕Z −A0A

∗
0, X

〉
τ0,

Λ0(Y ) = B∗0Y B0 +
〈
1Y⊕W −B0B

∗
0 , Y

〉
ξ0,

Ψ1(X) = A∗1XA1 +
〈
1X⊕Z −A1A

∗
1, X

〉
τ1,

Λ1(Y ) = B∗1Y B1 +
〈
1Y⊕W −B1B

∗
1 , Y

〉
ξ1,

(6.200)

for all X ∈ L(X ⊕ Z) and Y ∈ L(Y ⊕ W), where τ0 ∈ D(X ), ξ0 ∈ D(Y),
τ1 ∈ D(Z), and ξ1 ∈ D(W) are fixed, but otherwise arbitrarily selected,
density operators.

Assume first that statement 1 holds. One concludes that

A0ρA
∗
0 ≺ A1σA

∗
1, (6.201)
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and therefore the four equivalent statements of Theorem 6.33 hold for the
vectors

u = (A0 ⊗B0)x and v = (A1 ⊗B1)y. (6.202)

There must therefore exist a one-way right LOCC channel Ξ, of the form
specified in the statement of Theorem 6.33, such that Ξ(uu∗) = vv∗. Define
Φ ∈ C(X ⊗ Y,Z ⊗W) as

Φ(X) =
(
(Ψ1 ⊗ Λ1)Ξ

)(
(A0 ⊗B0)X(A0 ⊗B0)∗

)
(6.203)

for every X ∈ L(X ⊗ Y). It holds that Φ is a one-way right LOCC channel
satisfying Φ(xx∗) = yy∗, and therefore statement 1 implies statement 2. The
fact that statement 1 implies statement 3 is similar.

Statements 2 and 3 trivially imply that statement 4 holds.
Finally, assume statement 4 holds. Define a channel Ξ as

Ξ(X) = (A1 ⊗B1)
(
Φ(Ψ0 ⊗ Λ0)

)
(X)(A1 ⊗B1)∗ (6.204)

for all X ∈ L((X ⊕Z)⊗ (Y ⊕W)). The channel Ξ is separable and satisfies

Ξ(uu∗) = vv∗ (6.205)

for vectors u and v as in (6.202). The four equivalent statements listed in
Theorem 6.33 therefore hold for u and v, which implies

TrY⊕W
(
(A0 ⊗B0)xx∗(A0 ⊗B0)∗

)

≺ TrY⊕W
(
(A1 ⊗B1)yy∗(A1 ⊗B1)∗

)
.

(6.206)

This relation is equivalent to (6.201), which implies that statement 1 holds,
and completes the proof.

6.2.2 Distillable entanglement and entanglement cost
Let ρ ∈ D(X ⊗Y) be a state, for complex Euclidean spaces X and Y. There
are various ways in which one may quantify the amount of entanglement
that is present in ρ, with respect to the bipartition between X and Y. The
distillable entanglement and entanglement cost represent two such measures.
The distillable entanglement concerns the rate at which copies of the state ρ
can be converted into copies of the maximally entangled two-qubit state

τ = 1
2

∑

a,b∈{0,1}
Ea,b ⊗ Ea,b (6.207)

with high accuracy by means of an LOCC channel. The entanglement cost
refers to the reverse process; it is the rate at which approximate copies of ρ
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may be produced from copies of τ by an LOCC channel. In both cases, it is
the asymptotic behavior of these processes, as the number of copies of each
state grows, that is taken as the measure of entanglement.

For every bipartite state, the distillable entanglement is upper-bounded
by the entanglement cost, with the two measures coinciding for pure states.
In general, however, the two quantities may differ, with the entanglement
cost being strictly larger than the distillable entanglement in some cases.

Notation related to distillable entanglement and entanglement cost
The following notation will be useful when discussing both the distillable
entanglement and entanglement cost of a bipartite state ρ ∈ D(X ⊗ Y).

First, for a given positive integer n, representing the number of copies
of the state ρ to be manipulated for either the distillable entanglement or
entanglement cost, one may define an isometry

Un ∈ U
(
(X ⊗ Y)⊗n,X⊗n ⊗ Y⊗n) (6.208)

by the action

Un
(
vec(A1)⊗ · · · ⊗ vec(An)

)
= vec(A1 ⊗ · · · ⊗An) (6.209)

for all operators A1, . . . , An ∈ L(Y,X ). Equivalently, Un is defined by the
action

Un((x1 ⊗ y1)⊗ · · · ⊗ (xn ⊗ yn))
= (x1 ⊗ · · · ⊗ xn)⊗ (y1 ⊗ · · · ⊗ yn)

(6.210)

for all vectors x1, . . . , xn ∈ X and y1, . . . , yn ∈ Y. This isometry has the effect
of re-ordering the tensor factors of the space (X ⊗Y)⊗n so that it takes the
form of a bipartite tensor product space X⊗n⊗Y⊗n that allows for notions
concerning entanglement and separability to be conveniently stated.

Next, the binary alphabet will be denoted Γ = {0, 1}, and the state

τ = 1
2

∑

a,b∈{0,1}
Ea,b ⊗ Ea,b (6.211)

is to be considered as an element of the set D(Z ⊗ W), for Z = CΓ and
W = CΓ. Similar to above, one may define an isometry

Vm ∈ U
(
(Z ⊗W)⊗m,Z⊗m ⊗W⊗m) (6.212)

playing an analogous role to the isometry Un, but for the spaces Z and W
in place of X and Y. This isometry is defined by the action

Vm
(
vec(B1)⊗ · · · ⊗ vec(Bm)

)
= vec(B1 ⊗ · · · ⊗Bm) (6.213)
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for all operators B1, . . . , Bm ∈ L(W,Z). Equivalently, Vm is defined by the
action

Vm
(
(z1 ⊗ w1)⊗ · · · ⊗ (zm ⊗ wm)

)

= (z1 ⊗ · · · ⊗ zm)⊗ (w1 ⊗ · · · ⊗ wm)
(6.214)

for all vectors z1, . . . , zm ∈ Z and w1, . . . , wm ∈ W.

Definitions of distillable entanglement and entanglement cost
With respect to the notation introduced above, the distillable entanglement
and entanglement cost are defined as follows.

Definition 6.35 Let X and Y be registers and let ρ ∈ D(X ⊗Y) be a state
of (X,Y). With respect to the state ρ, the distillable entanglement ED(X : Y)
of the pair (X,Y) is the supremum value of all nonnegative real numbers
α ≥ 0 for which the following statement holds: there exists a sequence of
LOCC channels (Ψ1,Ψ2, . . .), where

Ψn ∈ LOCC
(X⊗n , Z⊗m : Y⊗n , W⊗m) (6.215)

for m = bαnc, such that

lim
n→∞F

(
Vmτ

⊗mV ∗m,Ψn
(
Unρ

⊗nU∗n
))

= 1. (6.216)

Definition 6.36 Let X and Y be registers and let ρ ∈ D(X ⊗Y) be a state
of (X,Y). With respect to the state ρ, the entanglement cost EC(X : Y) of
the pair (X,Y) is the infimum value of all nonnegative real numbers α ≥ 0
for which the following statement holds: there exists a sequence of LOCC
channels (Φ1,Φ2, . . .), where

Φn ∈ LOCC
(Z⊗m,X⊗n :W⊗m,Y⊗n) (6.217)

for m = bαnc, such that

lim
n→∞F

(
Unρ

⊗nU∗n , Φn
(
Vmτ

⊗mV ∗m
))

= 1. (6.218)

It is intuitive that the entanglement cost should be at least as large as the
distillable entanglement, for any choice of ρ ∈ D(X ⊗ Y), for otherwise one
could repeatedly distill copies of the state τ from copies of a given state ρ,
use them to produce more copies of ρ, and repeat this process indefinitely,
eventually producing any desired number of copies of τ from a finite number
of copies of ρ. Such an “entanglement factory” must surely not be possible
through local operations and classical communication alone. The following
proposition confirms this intuition.
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Proposition 6.37 Let X and Y be registers. With respect to every state of
the pair (X,Y) it holds that ED(X : Y) ≤ EC(X : Y).

Proof Suppose that n, m, and k are nonnegative integers, and

Φn ∈ LOCC
(Z⊗m , X⊗n :W⊗m , Y⊗n)

Ψn ∈ LOCC
(X⊗n , Z⊗k : Y⊗n , W⊗k)

(6.219)

are LOCC channels. The composition ΨnΦn is an LOCC, and therefore
separable, channel. It holds that

Vmτ
⊗mV ∗m ∈ Ent2m

(Z⊗m :W⊗m), (6.220)

and Theorem 6.23 implies that

(ΨnΦn)
(
Vmτ

⊗mV ∗m
) ∈ Ent2m

(Z⊗k :W⊗k). (6.221)

By Proposition 6.15, one finds that

F
(
(ΨnΦn)

(
Vmτ

⊗mV ∗m
)
, Vkτ

⊗kV ∗k
)2

=
〈

(ΨnΦn)
(
Vmτ

⊗mV ∗m
)
, Vkτ

⊗kV ∗k
〉
≤ 2m−k.

(6.222)

Now, let ρ ∈ D(X ⊗ Y) be any state of the pair (X,Y), and suppose
α and β are nonnegative real numbers satisfying the requirements of the
definitions of entanglement cost and distillable entanglement, respectively,
for the state ρ. For all ε > 0, there must therefore exist a sufficiently large
positive integer n such that, for m = bαnc and k = bβnc, there exist LOCC
channels of the form (6.219) for which the following bounds hold:

F
(
Φn
(
Vmτ

⊗mV ∗m
)
, Unρ

⊗nU∗n
)
> 1− ε,

F
(
Ψn
(
Unρ

⊗nV ∗n
)
, Vkτ

⊗kV ∗k
)
> 1− ε.

(6.223)

Therefore, by Theorem 3.29, together with the monotonicity of the fidelity
function under the action of channels (Theorem 3.27), one may conclude
that

F
(
(ΨnΦn)

(
Vmτ

⊗mV ∗m
)
, Vkτ

⊗kV ∗k
)
> 1− 4ε. (6.224)

Taking ε < 1/16, one concludes that

F
(
(ΨnΦn)

(
Vmτ

⊗mV ∗m
)
, Vkτ

⊗kV ∗k
)2
>

1
2 , (6.225)

and therefore m ≥ k by (6.222). As this is so for all sufficiently large n, it
follows that β ≤ α. One concludes that ED(X : Y) ≤ EC(X : Y).
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Pure state entanglement
The next theorem demonstrates that the entanglement cost and distillable
entanglement are equal for bipartite pure states; in both cases, the value of
these measures agrees with the von Neumann entropy of the states obtained
by restricting the given pure state to either part of its bipartition.

Theorem 6.38 Let X and Y be registers. With respect to every pure state
of the pair (X,Y), one has

ED(X : Y) = H(X) = H(Y) = EC(X : Y). (6.226)

Proof Let u ∈ X ⊗ Y be a unit vector, and consider the pure state uu∗ of
the pair (X,Y). The equality H(X) = H(Y) was discussed in Section 5.1.2.
Specifically, by means of the Schmidt decomposition, one may write

u =
∑

a∈Σ

√
p(a)xa ⊗ ya (6.227)

for some choice of an alphabet Σ, a probability vector p ∈ P(Σ), and two
orthonormal collections {xa : a ∈ Σ} ⊂ X and {ya : a ∈ Σ} ⊂ Y. It holds
that

TrY(uu∗) =
∑

a∈Σ
p(a)xax∗a and TrX (uu∗) =

∑

a∈Σ
p(a)yay∗a, (6.228)

which implies that H(X) = H(p) = H(Y).
Next, recall that, for every positive integer n and positive real number

ε > 0, the set of ε-typical strings Tn,ε with respect to p contains those
strings a1 · · · an ∈ Σn for which

2−n(H(p)+ε) < p(a1) · · · p(an) < 2−n(H(p)−ε). (6.229)

With this set in mind, one may define a vector vn,ε ∈ X⊗n ⊗Y⊗n, for every
positive integer n and positive real number ε > 0, as

vn,ε =
∑

a1···an∈Tn,ε

√
p(a1) · · · p(an)xa1···an ⊗ ya1···an , (6.230)

where the shorthand notations

xa1···an = xa1 ⊗ · · · ⊗ xan and ya1···an = ya1 ⊗ · · · ⊗ yan (6.231)

have been used for the sake of brevity. Also define a normalized version of
the vector vn,ε as

wn,ε = vn,ε
‖vn,ε‖

. (6.232)



350 Bipartite entanglement

Observe that

2−n(H(p)+ε) < λk
(
TrY⊗n

(
vn,εv

∗
n,ε

))
< 2−n(H(p)−ε), (6.233)

and therefore
2−n(H(p)+ε)

‖vn,ε‖2
< λk

(
TrY⊗n

(
wn,εw

∗
n,ε

))
<

2−n(H(p)−ε)

‖vn,ε‖2
, (6.234)

for k = 1, . . . , |Tn,ε|, while the remaining eigenvalues are zero in both cases.
Now, consider the entanglement cost of the pair (X,Y) with respect to

the state uu∗. Let α be any real number such that α > H(p), let ε > 0 be
sufficiently small so that α > H(p) + 2ε, and consider any choice of n > 1/ε.
For m = bαnc, it holds that m ≥ n(H(p) + ε), and moreover

λk
(
TrW⊗m

(
Vmτ

⊗mV ∗m
))

= 2−m (6.235)

for k = 1, . . . , 2m. As

2−m ≤ 2−n(H(p)+ε) ≤ 2−n(H(p)+ε)

‖vn,ε‖2
, (6.236)

it follows that
k∑

j=1
λj
(
TrW⊗m

(
Vmτ

⊗mV ∗m
)) ≤

k∑

j=1
λj
(
TrY⊗n

(
wn,εw

∗
n,ε

))
(6.237)

for every k ∈ {1, . . . , 2m}. It follows by Corollary 6.34 to Nielsen’s theorem
(Theorem 6.33) that there exists an LOCC channel

Φn ∈ LOCC
(Z⊗m , X⊗n :W⊗m , Y⊗n) (6.238)

such that
Φn(Vmτ⊗mV ∗m) = wn,εw

∗
n,ε. (6.239)

As

F
(
Un(uu∗)⊗nU∗n, wn,εw∗n,ε

)2
=

∑

a1···an∈Tn,ε
p(a1) · · · p(an), (6.240)

which approaches 1 in the limit as n approaches infinity, it follows that
EC(X : Y) ≤ α. As this is so for all α > H(p), the inequality EC(X : Y) ≤ H(p)
follows.

Next, consider the distillable entanglement of (X,Y) with respect to the
state uu∗. If H(p) = 0, then there is nothing to prove, as the distillable
entanglement is trivially nonnegative, so it will be assumed hereafter that
H(p) > 0. Let α be a real number such that α < H(p), and let ε ∈ (0, 1) be
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sufficiently small so that α < H(p) − 2ε. Consider any choice of a positive
integer n ≥ − log(1− ε)/ε, and let m = bαnc. It holds that

m ≤ n(H(p)− ε) + log(1− ε), (6.241)

and therefore
2−n(H(p)−ε)

1− ε ≤ 2−m. (6.242)

As the quantity
‖vn,ε‖2 =

∑

a1···an∈Tn,ε
p(a1) · · · p(an) (6.243)

approaches 1 in the limit as n approaches infinity, it follows that

2−n(H(p)−ε)

‖vn,ε‖2
≤ 2−m (6.244)

for all but finitely many positive integers n.
Now, consider any choice of n for which (6.244) holds (where m = bαnc

as before). One therefore has
k∑

j=1
λj
(
TrY⊗n

(
wn,εw

∗
n,ε

)) ≤
k∑

j=1
λj
(
TrW⊗m

(
Vmτ

⊗mV ∗m
))

(6.245)

for every k ∈ {1, . . . , 2m}. Again using Corollary 6.34, one has that there
must exist an LOCC channel

Φn ∈ LOCC
(X⊗n,Z⊗m : Y⊗n,W⊗m) (6.246)

such that
Φn
(
wn,εw

∗
n,ε

)
= Vmτ

⊗mV ∗m. (6.247)

Making use of the monotonicity of the fidelity function under the action of
any channel (Theorem 3.27), one finds that

F
(
Φn
(
Un(uu∗)⊗nU∗n

)
, Vmτ

⊗mV ∗m
)2

= F
(
Φn
(
Un(uu∗)⊗nU∗n

)
,Φn(wn,εw∗n,ε)

)2

≥ F
(
Un(uu∗)⊗nU∗n , wn,εw∗n,ε

)2

=
∑

a1···an∈Tn,ε
p(a1) · · · p(an).

(6.248)

The quantity on the right-hand side of this inequality approaches 1 in the
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limit as n approaches infinity, from which it follows that ED(X : Y) ≥ α. As
this is so for all α < H(p), one concludes that ED(X : Y) ≥ H(p).

It has been proved that

EC(X : Y) ≤ H(p) ≤ ED(X : Y). (6.249)

The inequality ED(X : Y) ≤ EC(X : Y) holds by Proposition 6.37, so the proof
is complete.

Remark For a given unit vector u ∈ X ⊗ Y, for complex Euclidean spaces
X and Y, the quantity in (6.226) is known as the entanglement entropy of
the pure state uu∗.

6.2.3 Bound entanglement and partial transposition
Informally speaking, Theorem 6.38 implies that all pure state entanglement
is equivalent in the bipartite setting. A bipartite pure state is entangled if
and only if it has positive entanglement entropy. Moreover, given any two
entangled pure states, one necessarily has that an approximate conversion
between a large number of copies of the first state and the second state is
possible through the use of an LOCC channel, at a rate determined by the
ratio of the entanglement entropies of the two states.

The situation is more complex for mixed states. One respect in which this
is so is that there exist entangled states having no distillable entanglement.
The entanglement in such states, which is referred to as bound entanglement,
can never be converted into pure state entanglement through the use of an
LOCC channel. The fact that states of this sort exist may be proved through
the use of properties of the transpose mapping.

The partial transpose and separability
For any complex Euclidean space X , the transpose mapping T ∈ T(X ) is
defined as

T(X) = XT (6.250)

for all X ∈ L(X ). As this is a positive map, it follows by the Horodecki
criterion (Theorem 6.9) that

(
T⊗ 1L(Y)

)
(R) ∈ Pos(X ⊗ Y) (6.251)

for every separable operator R ∈ Sep(X :Y). If P ∈ Pos(X ⊗Y) is a positive
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semidefinite operator for which
(
T⊗ 1L(Y)

)
(P ) 6∈ Pos(X ⊗ Y), (6.252)

then one may therefore conclude that P is not separable.
The converse of this statement does not hold in general. Given a positive

semidefinite operator P ∈ Pos(X ⊗ Y) for which
(
T⊗ 1L(Y)

)
(P ) ∈ Pos(X ⊗ Y), (6.253)

one may not conclude that P is separable; an example of a non-separable
operator possessing the property (6.253) is described below.

It is the case, however, that an operator P ∈ Pos(X ⊗ Y) satisfying the
condition (6.253) is highly constrained, in some sense, with respect to the
way it is entangled. With this idea in mind, one defines the sets of PPT
operators and PPT states (short for positive partial transpose operators and
states) as follows.

Definition 6.39 For any choice of complex Euclidean spaces X and Y,
the set PPT(X : Y) is defined as the set of all operators P ∈ Pos(X ⊗ Y)
that satisfy

(
T⊗ 1L(Y)

)
(P ) ∈ Pos(X ⊗ Y). (6.254)

Elements of the set PPT(X :Y) are called PPT operators, while elements of
the set PPT(X : Y) ∩D(X ⊗ Y) are called PPT states.

Unextendable product sets and non-separable PPT operators
One method by which non-separable PPT operators may be constructed
involves the notion of an unextendable product set. For complex Euclidean
spaces X and Y, an orthonormal collection of vectors of the form

A = {u1 ⊗ v1, . . . , um ⊗ vm}, (6.255)

for unit vectors u1, . . . , um ∈ X and v1, . . . , vm ∈ Y, is an unextendable
product set if two properties hold:

1. A spans a proper subspace of X ⊗ Y. (Equivalently, m < dim(X ⊗ Y).)
2. For every choice of vectors x ∈ X and y ∈ Y satisfying x ⊗ y ⊥ A, it

must hold that x⊗ y = 0.
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Example 6.40 Define unit vectors u1, . . . , u5 ∈ X and v1, . . . , v5 ∈ Y, for
X = C3 and Y = C3, as follows:

u1 = e1 , v1 = 1√
2

(e1 − e2) ,

u2 = e3 , v2 = 1√
2

(e2 − e3) ,

u3 = 1√
2

(e1 − e2) , v3 = e3 ,

u4 = 1√
2

(e2 − e3) , v4 = e1 ,

u5 = 1√
3

(e1 + e2 + e3) , v5 = 1√
3

(e1 + e2 + e3).

(6.256)

It therefore holds, for each k ∈ {1, . . . , 5}, that uk ⊗ vk = vec(Ak) for

A1 = 1√
2




1 −1 0
0 0 0
0 0 0


 , A2 = 1√

2




0 0 0
0 0 0
0 1 −1


 ,

A3 = 1√
2




0 0 1
0 0 −1
0 0 0


 , A4 = 1√

2




0 0 0
1 0 0
−1 0 0


 ,

A5 = 1
3




1 1 1
1 1 1
1 1 1


.

(6.257)

The set

A = {u1 ⊗ v1, . . . , u5 ⊗ v5} (6.258)

is orthonormal by inspection. If x ∈ X and y ∈ Y satisfy

〈x⊗ y, uk ⊗ vk〉 = 〈x, uk〉〈y, vk〉 = 0 (6.259)

for k = 1, . . . , 5, then one must have 〈x, uk〉 = 0 for at least 3 distinct choices
of k ∈ {1, . . . , 5} or 〈y, vk〉 = 0 for at least 3 distinct choices of k ∈ {1, . . . , 5}.
As every 3 distinct choices of uk span all of X and every 3 distinct choices
of vk span all of Y, it follows that x ⊗ y = 0. The set A is therefore an
unextendable product set.

The projection onto the subspace orthogonal to an unextendable product
set must be both PPT and entangled, as the following theorem states.
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Theorem 6.41 Let X and Y be complex Euclidean spaces, let

A = {u1 ⊗ v1, . . . , um ⊗ vm} (6.260)

be an unextendable product set in X ⊗ Y, and define

Π =
m∑

k=1
uku

∗
k ⊗ vkv∗k. (6.261)

It holds that
1X ⊗ 1Y −Π ∈ PPT(X : Y) \ Sep(X : Y). (6.262)

Proof From the assumption thatA is an orthonormal set, one may conclude
that

{
u1 ⊗ v1, . . . , uk ⊗ vk

}
is an orthonormal set as well. It follows that

(
T⊗ 1L(Y)

)
(Π) =

m∑

k=1
uku

T
k ⊗ vkv∗k (6.263)

is a projection operator, and therefore
(
T⊗ 1L(Y)

)
(Π) ≤ 1X ⊗ 1Y . (6.264)

As
(
T⊗ 1L(Y)

)
(1X ⊗ 1Y) = 1X ⊗ 1Y , (6.265)

one obtains the inclusion
(
T⊗ 1L(Y)

)
(1X ⊗ 1Y −Π) ∈ Pos(X ⊗ Y). (6.266)

It therefore holds that

1X ⊗ 1Y −Π ∈ PPT(X : Y). (6.267)

Now, toward a contradiction, assume that

1X ⊗ 1Y −Π ∈ Sep(X : Y), (6.268)

which implies that

1X ⊗ 1Y −Π =
∑

a∈Σ
xax

∗
a ⊗ yay∗a (6.269)

for some choice of an alphabet Σ and collections {xa : a ∈ Σ} ⊂ X and
{ya : a ∈ Σ} ⊂ Y. It holds that

m∑

k=1

∑

a∈Σ
|〈xa ⊗ ya, uk ⊗ vk〉|2

=
m∑

k=1
(uk ⊗ vk)∗(1X ⊗ 1Y −Π)(uk ⊗ vk) = 0,

(6.270)
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and therefore

〈xa ⊗ ya, uk ⊗ vk〉 = 0 (6.271)

for every a ∈ Σ and k ∈ {1, . . . ,m}. As A is an unextendable product set,
it follows that xa ⊗ ya = 0 for every a ∈ Σ, and therefore

1X ⊗ 1Y −Π = 0. (6.272)

This, however, is in contradiction with the assumption m < dim(X ⊗Y). It
follows that

1X ⊗ 1Y −Π 6∈ Sep(X : Y), (6.273)

which completes the proof.

PPT states have no distillable entanglement
PPT states may not always be separable, but they exhibit similar properties
to separable states in some respects. One such respect is that their overlap
with every maximally entangled state is small. The next proposition, which
is reminiscent of Proposition 6.15, is representative of this fact.

Proposition 6.42 Let A ∈ L(Y,X ) be an operator satisfying ‖A‖ ≤ 1,
for X and Y being complex Euclidean spaces. For every P ∈ PPT(X : Y) it
holds that

〈
vec(A) vec(A)∗, P

〉 ≤ Tr(P ). (6.274)

Proof The transpose mapping is its own adjoint and inverse, and therefore
〈
vec(A) vec(A)∗, P

〉

=
〈
(T⊗ 1L(Y))(vec(A) vec(A)∗), (T⊗ 1L(Y))(P )

〉
.

(6.275)

It holds that

vec(A) =
(
1X ⊗AT) vec(1X ), (6.276)

which implies that

(T⊗ 1L(Y))(vec(A) vec(A)∗) =
(
1X ⊗AT)W

(
1X ⊗A

)
(6.277)

for W ∈ U(X ⊗ X ) denoting the swap operator on X ⊗ X . The operator
represented by (6.277) has spectral norm at most 1, and therefore

〈
(T⊗ 1L(Y))(vec(A) vec(A)∗), (T⊗ 1L(Y))(P )

〉

≤
∥∥(T⊗ 1L(Y))(P )

∥∥
1.

(6.278)
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Finally, because P ∈ PPT(X : Y), together with the observation that the
transpose mapping preserves trace, one has

∥∥(T⊗ 1L(Y))(P )
∥∥

1 = Tr(P ). (6.279)

The proposition follows from (6.275), (6.278), and (6.279).

Example 6.43 Similar to Example 6.16, let Σ be an alphabet, let n = |Σ|,
and let X = CΣ and Y = CΣ. Define a density operator τ ∈ D(X ⊗ Y) as

τ = 1
n

∑

a,b∈Σ
Ea,b ⊗ Ea,b = 1

n
vec(1) vec(1)∗, (6.280)

where 1 denotes the identity operator on CΣ, which may be viewed as an
element of the set L(Y,X ). For every PPT state

ρ ∈ D(X ⊗ Y) ∩ PPT(X : Y), (6.281)

it holds that
〈τ, ρ〉 = 1

n

〈
vec(1) vec(1)∗, ρ

〉 ≤ 1
n

(6.282)

by Proposition 6.42. Thus, with respect to their overlap with the maximally
entangled state τ , one has that PPT operators are bounded in a similar way
to separable operators.

Proposition 6.42, when combined with the next proposition stating that
separable maps (and therefore LOCC channels) map PPT operators to PPT
operators, leads to a proof that PPT states have distillable entanglement
equal to zero.

Proposition 6.44 Let X , Y, Z, and W be complex Euclidean spaces, let
P ∈ PPT(X : Y) be a PPT operator, and let Φ ∈ SepCP(X ,Z : Y,W) be a
separable map. It holds that Φ(P ) ∈ PPT(Z :W).

Proof For any choice of operators A ∈ L(X ,Z) and B ∈ L(Y,W), the
assumption P ∈ PPT(X : Y) implies that

(
T⊗ 1L(W)

)(
(A⊗B)P (A⊗B)∗

)

=
(
A⊗B)(T⊗ 1L(Y)

)
(P )

(
A⊗B)∗ ∈ Pos

(Z ⊗W).
(6.283)

(In this equation, T refers to the transpose mapping on Z or X , as the
context dictates.) As Φ is separable, one has

Φ(X) =
∑

a∈Σ
(Aa ⊗Ba)X(Aa ⊗Ba)∗ (6.284)

for all X ∈ L(X ⊗ Y), for some choice of an alphabet Σ and collections
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of operators {Aa : a ∈ Σ} ⊂ L(X ,Z) and {Ba : a ∈ Σ} ⊂ L(Y,W).
Consequently, one has that

(
T⊗ 1L(W)

)
(Φ(P )) =

∑

a∈Σ

(
Aa ⊗Ba

)(
T⊗ 1L(Y)

)
(P )

(
Aa ⊗Ba

)∗ (6.285)

is positive semidefinite, and therefore Φ(P ) ∈ PPT
(Z :W), as required.

Theorem 6.45 Let X and Y be registers and consider a PPT state

ρ ∈ PPT(X : Y) ∩D(X ⊗ Y) (6.286)

of the pair (X,Y). With respect to the state ρ, it holds that ED(X : Y) = 0.

Proof Let Γ = {0, 1}, let Z = CΓ and W = CΓ, and let τ ∈ D(Z ⊗W) be
defined as

τ = 1
2
∑

a,b∈Γ
Ea,b ⊗ Ea,b. (6.287)

Suppose α > 0, let n be any positive integer for which m = bαnc ≥ 1, and
consider any LOCC channel Φ ∈ LOCC

(X⊗n,Z⊗m :Y⊗n,W⊗m). Recall the
operators Un and Vm as defined by (6.210) and (6.213). It holds that

Unρ
⊗nU∗n ∈ PPT

(X⊗n : Y⊗n), (6.288)

and therefore

Φ(Unρ⊗nU∗n) ∈ PPT
(Z⊗m :W⊗m) (6.289)

by Proposition 6.44. One may therefore conclude from Proposition 6.42 that

F
(
Vmτ

⊗mV ∗m,Φ(Unρ⊗nU∗n)
) ≤ 2−

m
2 ≤ 1√

2
. (6.290)

The number α therefore fails to satisfy the requirements of Definition 6.35.
It follows that ED(X : Y) = 0.

6.3 Phenomena associated with entanglement
This section discusses a few notions generally associated with entanglement:
teleportation, dense coding, and non-classical correlations. These notions
serve as representatives of the sorts of operational effects that entanglement
may induce.
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6.3.1 Teleportation and dense coding
In quantum information theory, teleportation has traditionally referred to a
protocol by which a single-qubit quantum channel is implemented through
the use of a maximally entangled pair of qubits along with two classical bits
of communication. Informally speaking, teleportation suggests the following
transformation:

1 pair of maximally entangled qubits
+ 2 bits of classical communication

→ 1 qubit of quantum communication.

The dense coding protocol offers a trade-off of resources that is, in some
sense, complementary to teleportation. Again traditionally speaking, it is a
protocol by which a two-bit classical channel is implemented through the use
of a maximally entangled pair of qubits and a single-qubit quantum channel.
In this case, the suggested transformation is as follows:

1 pair of maximally entangled qubits
+ 1 qubit of quantum communication

→ 2 bits of classical communication.

In both cases, the maximally entangled pair of qubits is consumed by the
conversion between two classical bits and one qubit of communication; in
essence, the entangled pair of qubits functions as a resource allowing for this
conversion.

In the discussion that follows, teleportation and dense coding will be
considered in greater generality. The traditional protocols suggested above
will emerge as specific instances of more general classes of protocols.

Teleportation
Consider the following scenario in which two individuals, Alice and Bob,
aim to implement an ideal quantum channel through the combined use of
entanglement and classical communication.

Scenario 6.46 (Teleportation) Alice holds a register X and Bob holds Y.
Both registers have the same classical state set Σ, and the state of the pair
(X,Y) is given by the maximally entangled state

τ = 1
|Σ|

∑

b,c∈Σ
Eb,c ⊗ Eb,c. (6.291)

Alice obtains a new register Z, whose classical state set is also Σ, and she
wishes to transmit Z to Bob. Alice and Bob attempt to accomplish this task
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using classical communication together with the shared entangled state τ ,
by means of a protocol as follows:

1. Alice performs a measurement µ : Γ → Pos(Z ⊗ X ) on the pair (Z,X),
where Γ is an arbitrarily chosen alphabet, and sends the outcome a ∈ Γ
of this measurement to Bob.

2. For {Ψa : a ∈ Γ} ⊆ C(Y,Z) being a collection of channels indexed by Γ,
Bob applies the channel Ψa to Y, for whichever symbol a ∈ Γ was sent
to him by Alice, transforming this register into a new register Z.

An analysis will reveal that this protocol accomplishes the task at hand for
a suitable choice for Alice’s measurement and Bob’s collection of channels.

Remark One may consider more general scenarios along similar lines to
Scenario 6.46. For instance, X, Y, and Z might not share the same classical
state set, the initial state of the pair (X,Y) might be initialized to a different
state than τ , and Alice and Bob might aim to implement a channel different
from the identity channel. The discussion that follows, however, will focus
on the setting described in Scenario 6.46 in the interest of simplicity.

For any choice of Alice’s measurement µ and Bob’s collection of channels
{Ψa : a ∈ Γ}, the channel Φ ∈ C(Z) that is implemented by the protocol
described in Scenario 6.46 may be expressed as

Φ(Z) = 1
|Σ|

∑

a∈Γ

∑

b,c∈Σ

〈
µ(a), Z ⊗ Eb,c

〉
Ψa(Eb,c) (6.292)

for all Z ∈ L(Z).
The following theorem provides a characterization of those measurements

and collections of channels for which the channel Φ is equal to the identity
channel, which represents an ideal transmission of quantum information from
Alice to Bob. (The statement of the theorem refers to a single complex
Euclidean space X , rather than X , Y, and Z, and includes the assumption
that none of the measurement operators of µ are identically zero, as this
allows for a simpler statement and proof of the characterization.)

Theorem 6.47 Let Σ and Γ be alphabets and let X = CΣ be a complex
Euclidean space. Also let

µ : Γ→ Pos(X ⊗ X ) (6.293)

be a measurement such that µ(a) 6= 0 for every a ∈ Γ, and let

{Ψa : a ∈ Γ} ⊆ C(X ) (6.294)

be a collection of channels. The following two statements are equivalent:
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1. It holds that

X = 1
|Σ|

∑

a∈Γ

∑

b,c∈Σ
〈µ(a), X ⊗ Eb,c〉Ψa(Eb,c) (6.295)

for every X ∈ L(X ).
2. There exists a collection {Ua : a ∈ Γ} ⊂ U(X ) of unitary operators and

a probability vector p ∈ P(Γ) such that

µ(a) = p(a)|Σ| vec(Ua) vec(Ua)∗ and Ψa(X) = UaXU
∗
a (6.296)

for every choice of a ∈ Γ and X ∈ L(X ).

The proof of Theorem 6.47 will make use of the following proposition,
which establishes that a channel of the form Φ ∈ C(X ), for any complex
Euclidean space X , can be the inverse of a completely positive map only if
it is a unitary channel.

Proposition 6.48 Let X be a complex Euclidean space, let Φ ∈ C(X )
be a channel, and let Ψ ∈ CP(X ) be a completely positive map for which
ΦΨ = 1L(X ). There exists a unitary operator U ∈ U(X ) such that

Φ(X) = U∗XU and Ψ(X) = UXU∗ (6.297)

for all X ∈ L(X ).

Proof As Ψ is completely positive, and evidently nonzero, its Choi operator
J(Ψ) is a nonzero positive semidefinite operator. By the spectral theorem
(Corollary 1.4), it is therefore possible to write

J(Ψ) =
r∑

k=1
vec(Ak) vec(Ak)∗ (6.298)

for r = rank(J(Ψ)) and {A1, . . . , Ar} ⊂ L(X ) being an orthogonal collection
of nonzero operators. Consequently, one has

r∑

k=1

(
Φ⊗ 1L(X )

)(
vec(Ak) vec(Ak)∗

)

=
(
Φ⊗ 1L(X )

)
(J(Ψ)) = J(ΦΨ) = vec(1X ) vec(1X )∗.

(6.299)

As vec(1X ) vec(1X )∗ has rank equal to one, and each operator
(
Φ⊗ 1L(X )

)(
vec(Ak) vec(Ak)∗

)
(6.300)

is positive semidefinite (by the complete positivity of Φ), it follows that there
must exist a probability vector (p1, . . . , pr) such that

(
Φ⊗ 1L(X )

)(
vec(Ak) vec(Ak)∗

)
= pk vec(1X ) vec(1X )∗ (6.301)
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for each k ∈ {1, . . . , r}. Because Φ preserves trace, it follows that
(
A∗kAk

)T =
(
Tr⊗ 1L(X )

)(
vec(Ak) vec(Ak)∗

)
= pk1X , (6.302)

and therefore Ak = √pkUk for some choice of a unitary operator Uk ∈ U(X ),
for each k ∈ {1, . . . , r}. This implies that

(
1X ⊗ UT

k

)
J(Φ)

(
1X ⊗ UT

k

)∗ =
(
Φ⊗ 1L(X )

)(
vec(Uk) vec(Uk)∗

)

= vec(1X ) vec(1X )∗,
(6.303)

and therefore

J(Φ) = vec(U∗k ) vec(U∗k )∗, (6.304)

again for each k ∈ {1, . . . , r}. As {A1, . . . , Ar} is a collection of nonzero,
orthogonal operators, and is therefore linearly independent, one concludes
that r = 1 and p1 = 1; and by setting U = U1 the proposition is proved.

Proof of Theorem 6.47 Assume that statement 1 holds. For each a ∈ Γ,
define a map Ξa ∈ T(X ) as

Ξa(X) = 1
|Σ|

∑

b,c∈Σ
〈µ(a), X ⊗ Eb,c〉Eb,c (6.305)

for all X ∈ L(X ). The Choi operator of Ξa is given by

J(Ξa) = 1
|Σ|Wµ(a)W, (6.306)

for W ∈ U(X ⊗ X ) denoting the swap operator. As J(Ξa) ∈ Pos(X ⊗ X )
for each a ∈ Γ, it follows that Ξa is completely positive, and moreover is
nonzero by the assumption that µ(a) is nonzero. Statement 1 may now be
expressed as

∑

a∈Γ
ΨaΞa = 1L(X ), (6.307)

which is equivalent to
∑

a∈Γ
J(ΨaΞa) = vec(1X ) vec(1X )∗. (6.308)

As the composition ΨaΞa is necessarily completely positive and nonzero for
each a ∈ Γ, and the operator vec(1X ) vec(1X )∗ has rank equal to 1, it follows
that there must exist a probability vector p ∈ P(Γ) such that

J(ΨaΞa) = p(a) vec(1X ) vec(1X )∗ (6.309)
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for each a ∈ Γ. Consequently,
(ΨaΞa)(X)

p(a) = X (6.310)

for every X ∈ L(X ). By Proposition 6.48, there must exist a collection of
unitary operators {Ua : a ∈ Γ} ⊂ U(X ) such that

Ψa(X) = UaXU
∗
a and 1

p(a)Ξa(X) = U∗aXUa (6.311)

for every a ∈ Γ and X ∈ L(X ). Thus,
1
|Σ|Wµ(a)W = J(Ξa) = p(a) vec(U∗a ) vec(U∗a )∗, (6.312)

and because W vec(Y ) = vec(Y T) for every Y ∈ L(X ), one therefore has

µ(a) = p(a)|Σ| vec(Ua) vec(Ua)∗ (6.313)

for each a ∈ Γ. Statement 1 therefore implies statement 2.
Now assume statement 2 holds. As µ is assumed to be a measurement, it

must be the case that
∑

a∈Γ
p(a) vec(Ua) vec(Ua)∗ = 1

|Σ|1X ⊗ 1X . (6.314)

The operator represented by the equation (6.314) coincides with the Choi
operator J(Ω) of the completely depolarizing channel Ω ∈ C(X ). It follows
that one may write

Ω(X) =
∑

a∈Γ
p(a)UaXU∗a (6.315)

for every X ∈ L(X ). Because the natural representation of the completely
depolarizing channel is given by

K(Ω) = 1
|Σ|

∑

b,c∈Σ
Eb,c ⊗ Eb,c, (6.316)

one finds that
∑

a∈Γ
p(a)Ua ⊗ Ua = K(Ω) = 1

|Σ|
∑

b,c∈Σ
Eb,c ⊗ Eb,c (6.317)

by Proposition 2.20.
Now consider the channel Φ ∈ C(X ) defined by

Φ(X) = 1
|Σ|

∑

a∈Γ

∑

b,c∈Σ
〈µ(a), X ⊗ Eb,c〉Ψa(Eb,c) (6.318)
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for every X ∈ L(X ). Making use of the expression (6.317), one may write

Φ(X) =
∑

a,b∈Γ
p(b)

〈
µ(a), X ⊗ Ub

〉
Ψa(Ub) (6.319)

for every X ∈ L(X ). By substituting according to (6.296), one obtains

Φ(X) = |Σ|
∑

a,b∈Γ
p(a)p(b) vec(Ua)∗

(
X ⊗ Ub

)
vec(Ua)UaUbU∗a

= |Σ|
∑

a,b∈Γ
p(a)p(b)

〈
UaUbU

∗
a , X

〉
UaUbU

∗
a .

(6.320)

The natural representation K(Φ) of the channel Φ is therefore given by

|Σ|
∑

a,b∈Γ
p(a)p(b) vec(UaUbU∗a ) vec(UaUbU∗a )∗

=
∑

a∈Γ
p(a)

(
Ua ⊗ Ua

)(|Σ|
∑

b∈Γ
p(b) vec(Ub) vec(Ub)∗

)(
Ua ⊗ Ua

)∗

= 1X ⊗ 1X ,

(6.321)

where the last equality has made use of (6.314). It follows that Φ is equal
to the identity channel, and therefore statement 2 implies statement 1.

Theorem 6.47 implies that every mixed-unitary representation of the
completely depolarizing channel gives rise to a teleportation protocol, as
the following corollary makes precise.

Corollary 6.49 Let Σ and Γ be alphabets, let X = CΣ, let

{Ua : a ∈ Γ} ⊂ U(X ) (6.322)

be a collection of unitary operators, let p ∈ P(Γ) be a probability vector, and
assume that

Ω(X) =
∑

a∈Γ
p(a)UaXU∗a (6.323)

for every X ∈ L(X ), where Ω ∈ C(X ) denotes the completely depolarizing
channel with respect to the space X . For µ : Γ→ Pos(X ⊗ X ) defined as

µ(a) = p(a)|Σ| vec(Ua) vec(Ua)∗ (6.324)

for each a ∈ Γ, one has that µ is a measurement, and moreover

X = 1
|Σ|

∑

a∈Γ

∑

b,c∈Σ
〈µ(a), X ⊗ Eb,c〉UaEb,cU∗a (6.325)

for all X ∈ L(X ).
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Proof There is no loss of generality in assuming that p(a) 6= 0 for every
a ∈ Γ, for otherwise one could define an alphabet Γ0 = {a ∈ Γ : p(a) 6= 0},
verify that the corollary holds in this case, and observe that the statement
of the corollary is equivalent when Γ is replaced by Γ0 in this way.

It is evident that µ is a measurement, as each µ(a) is positive semidefinite
and it holds that
∑

a∈Γ
µ(a) =

∑

a∈Γ
p(a)|Σ| vec(Ua) vec(Ua)∗ = |Σ|J(Ω) = 1X ⊗ 1X . (6.326)

By defining Ψa(X) = UaXU
∗
a for every X ∈ L(X ) and a ∈ Γ, one has that

statement 2 of Theorem 6.47 is satisfied. This implies that statement 1 of
that theorem holds, which is equivalent to (6.325), and therefore completes
the proof.

Example 6.50 Let Γ = Σ×Σ, for Σ = {0, 1} denoting the binary alphabet.
Elements of Γ will be viewed as binary strings of length 2 for convenience.
Define p ∈ P(Γ) as

p(00) = p(01) = p(10) = p(11) = 1
4 (6.327)

and define unitary operators U00, U01, U10, U11 ∈ U(CΣ) as follows:

U00 =
(

1 0
0 1

)
, U01 =

(
1 0
0 −1

)
,

U10 =
(

0 1
1 0

)
, U11 =

(
0 −1
1 0

)
.

(6.328)

The operators U00, U01, U10, U11 coincide with the discrete Weyl operators
acting on the space CΣ, and (as explained in Section 4.1.2) provide a mixed-
unitary realization of the completely depolarizing channel Ω ∈ C(CΣ):

1
4
∑

a,b∈Σ
UabXU

∗
ab = Tr(X)

2 1 (6.329)

for every X ∈ L(CΣ). Consequently, by taking µ : Γ→ Pos(CΣ ⊗CΣ) to be
the measurement defined as

µ(00) = vec(U00) vec(U00)∗
2 , µ(01) = vec(U01) vec(U01)∗

2 ,

µ(10) = vec(U10) vec(U10)∗
2 , µ(11) = vec(U11) vec(U11)∗

2 ,

(6.330)
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or equivalently µ(ab) = uabu
∗
ab for

u00 = e00 + e11√
2

, u01 = e00 − e11√
2

,

u10 = e01 + e10√
2

, u11 = e01 − e10√
2

,

(6.331)

and setting Ψab(X) = UabXU
∗
ab for each X ∈ L(CΣ) and a, b ∈ Σ, one

obtains a teleportation protocol as described in Scenario 6.46. Indeed, the
resulting protocol is equivalent to the traditional notion of teleportation
in which an ideal single-qubit channel is implemented using a maximally
entangled pair of qubits along with two classical bits of communication. The
set {u00, u01, u10, u11} is typically called the Bell basis, and µ represents a
measurement with respect to this basis.

Example 6.51 The previous example may be generalized as follows. Let
Σ = Zn for any positive integer n, let Γ = Σ × Σ, and let the collection
{Uab : a, b ∈ Σ} ⊂ U(CΣ) of unitary operators be in correspondence with
the discrete Weyl operators acting on CΣ. By taking µ : Γ→ Pos(CΣ⊗CΣ)
to be the measurement defined as

µ(ab) = vec(Uab) vec(Uab)∗
n

(6.332)

for each a, b ∈ Σ, and setting Ψab(X) = UabXU
∗
ab for each X ∈ L(CΣ), one

again obtains a teleportation protocol as described in Scenario 6.46.

In the teleportation protocols described in the previous two examples, the
number of distinct classical symbols that must be transmitted is equal to
the square of the number of classical states in the quantum system that is
teleported. This is optimal, as the following corollary states.

Corollary 6.52 Let Σ and Γ be alphabets, let µ : Γ → Pos(CΣ ⊗ CΣ) be
a measurement, and let {Ψa : a ∈ Γ} ⊆ C(CΣ) be a collection of channels
such that

X = 1
|Σ|

∑

a∈Γ

∑

b,c∈Σ
〈µ(a), X ⊗ Eb,c〉Ψa(Eb,c) (6.333)

for every X ∈ L(CΣ). It holds that |Γ| ≥ |Σ|2.

Proof By Theorem 6.47, it follows that

µ(a) = p(a)|Σ| vec(Ua) vec(Ua)∗ (6.334)

for each a ∈ Γ, for some choice of a probability vector p ∈ P(Γ) and a
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collection of unitary operators {Ua : a ∈ Γ} ⊂ U(CΣ). Each operator µ(a)
has rank at most one, while

∑

a∈Γ
µ(a) = 1Σ ⊗ 1Σ (6.335)

has rank |Σ|2. It follows that |Γ| ≥ |Σ|2 as required.

Dense coding
Along similar lines to the discussion of teleportation above, a scenario in
which Alice and Bob aim to implement an ideal classical channel through
shared entanglement and quantum communication may be considered.

Scenario 6.53 (Dense coding) Alice holds a register X and Bob holds Y.
Both registers have the same classical state set Σ, and the state of the pair
(X,Y) is given by the maximally entangled state

τ = 1
|Σ|

∑

b,c∈Σ
Eb,c ⊗ Eb,c. (6.336)

Alice obtains a classical register Z having classical state set Γ. She wishes to
transmit the classical state Z to Bob by means of a protocol as follows:

1. Alice applies one of a collection of channels

{Ψa : a ∈ Γ} ⊆ C(X ) (6.337)

to X, with the channel applied being indexed by the classical state a ∈ Γ
of Z. The register X is then sent to Bob.

2. Bob performs a measurement

µ : Γ→ Pos(X ⊗ Y) (6.338)

on the pair (X,Y). The outcome b ∈ Γ is interpreted as the result of the
transmission from Alice.

It is not surprising that protocols of this sort exist that function as desired,
meaning that Bob’s measurement outcome b ∈ Γ corresponds precisely to
the classical state a ∈ Γ of Alice’s register Z. Indeed, when Γ is no larger
than Σ, the task is trivially accomplished. What is more interesting is that
there are protocols of this form that work perfectly in the case that Γ is as
large as Σ× Σ.

The following proposition establishes that a dense coding protocol may
be derived from an arbitrary mixed-unitary realization of the completely
depolarizing channel, provided the unitary operators are drawn uniformly
from a set indexed by Σ× Σ.
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Proposition 6.54 Let Σ be an alphabet, let X = CΣ, and let

τ = 1
|Σ|

∑

c,d∈Σ
Ec,d ⊗ Ec,d. (6.339)

Assume {Uab : ab ∈ Σ × Σ} ⊂ U(X ) is a collection of unitary operators
such that

Ω(X) = 1
|Σ|2

∑

ab∈Σ×Σ
UabXU

∗
ab (6.340)

for all X ∈ L(X ), where Ω ∈ C(X ) is the completely depolarizing channel
with respect to the space X . For {Ψab : ab ∈ Σ × Σ} ⊆ C(X ) being a
collection of channels defined as

Ψab(X) = UabXU
∗
ab (6.341)

for each ab ∈ Σ×Σ and X ∈ L(X ), and for µ : Σ×Σ→ Pos(X ⊗X ) being
defined as

µ(ab) = vec(Uab) vec(Uab)∗
|Σ| (6.342)

for each ab ∈ Σ× Σ, it holds that µ is a measurement and

〈
µ(cd), (Ψab ⊗ 1L(X ))(τ)

〉
=





1 if ab = cd

0 if ab 6= cd
(6.343)

for all a, b, c, d ∈ Σ.

Proof It holds that
∑

ab∈Σ×Σ
µ(ab) = |Σ|J(Ω) = 1X ⊗ 1X . (6.344)

As each operator µ(ab) is evidently positive semidefinite, it follows that µ is
a measurement. For each ab ∈ Σ× Σ, one has

〈
µ(ab), (Ψab ⊗ 1L(X ))(τ)

〉

= 1
|Σ|2

〈
vec(Uab) vec(Uab)∗, vec(Uab) vec(Uab)∗

〉
= 1. (6.345)

Because (Ψab⊗1L(X ))(τ) is a density operator for each ab ∈ Σ×Σ, it follows
that

〈
µ(cd), (Ψab ⊗ 1L(X ))(τ)

〉
= 0 (6.346)

for cd 6= ab, which completes the proof.
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Example 6.55 As in Example 6.50, let Σ = {0, 1} and define unitary
operators U00, U01, U10, U11 ∈ U(CΣ) as follows:

U00 =
(

1 0
0 1

)
, U01 =

(
1 0
0 −1

)
,

U10 =
(

0 1
1 0

)
, U11 =

(
0 −1
1 0

)
.

(6.347)

As the operators U00, U01, U10, U11 provide a mixed-unitary realization of
the completely depolarizing channel, by taking µ : Σ× Σ → Pos(CΣ ⊗ CΣ)
to be the measurement defined as

µ(00) = vec(U00) vec(U00)∗
2 , µ(01) = vec(U01) vec(U01)∗

2 ,

µ(10) = vec(U10) vec(U10)∗
2 , µ(11) = vec(U11) vec(U11)∗

2 ,

(6.348)

and setting Ψab(X) = UabXU
∗
ab for each X ∈ L(CΣ), as in Example 6.50, one

obtains a dense coding protocol as described in Scenario 6.53. The resulting
protocol is equivalent to the traditional notion of dense coding in which an
ideal two-bit classical channel is implemented using a maximally entangled
pair of qubits along with one qubit of quantum communication.

In analogy to the more general type of teleportation protocol described
previously, one may consider the capabilities of dense coding protocols for
arbitrary choices of an alphabet Γ, as opposed to Γ = Σ× Σ. In particular,
suppose Alice’s channels are given by the collection

{Ψa : a ∈ Γ} ⊆ C(X ), (6.349)

for an arbitrary alphabet Γ, and that the symbol a ∈ Γ Alice wishes to send
to Bob is randomly selected according to a probability vector p ∈ P(Γ).
The state of the pair (X,Y) prior to Bob’s measurement is described by the
ensemble η : Γ→ Pos(X ⊗ X ) defined as

η(a) = p(a)
|Σ|

∑

b,c∈Σ
Ψa(Eb,c)⊗ Eb,c (6.350)

for all a ∈ Γ. The following theorem provides a characterization of when
the Holevo information χ(η) of this ensemble attains its maximum possible
value, which is 2 log(|Σ|).
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Theorem 6.56 Let Σ and Γ be alphabets, let p ∈ P(Γ) be a probability
vector such that p(a) 6= 0 for all a ∈ Γ, and let

{Ψa : a ∈ Γ} ⊆ C(CΣ) (6.351)

be a collection of channels. The following two statements are equivalent:

1. For the ensemble η : Γ→ Pos(CΣ ⊗ CΣ) defined as

η(a) = p(a)
|Σ|

∑

b,c∈Σ
Ψa(Eb,c)⊗ Eb,c (6.352)

for all a ∈ Γ, one has that χ(η) = 2 log(|Σ|).
2. There exists a collection {Ua : a ∈ Γ} ⊂ U(CΣ) of unitary operators

such that
Ψa(X) = UaXU

∗
a (6.353)

for every choice of a ∈ Γ and X ∈ L(CΣ), and moreover it holds that

Ω(X) =
∑

a∈Γ
p(a)UaXU∗a (6.354)

for all X ∈ L(CΣ), where Ω ∈ C(CΣ) denotes the completely depolarizing
channel defined with respect to the space CΣ.

Proof The Holevo information of the ensemble η defined by (6.352) is

χ(η) = H
(∑

a∈Γ

p(a)
|Σ|

∑

b,c∈Σ
Ψa(Eb,c)⊗ Eb,c

)

−
∑

a∈Γ
p(a) H

(
1
|Σ|

∑

b,c∈Σ
Ψa(Eb,c)⊗ Eb,c

)
,

(6.355)

which may alternatively be written as

χ(η) = H
(∑

a∈Γ
p(a)J(Ψa)

|Σ|

)
−
∑

a∈Γ
p(a) H

(
J(Ψa)
|Σ|

)
. (6.356)

Under the assumption that χ(η) = 2 log(|Σ|), it must hold that

H
(∑

a∈Γ
p(a)J(Ψa)

|Σ|

)
= 2 log(|Σ|) and H

(
J(Ψa)
|Σ|

)
= 0 (6.357)

for each a ∈ Γ. The rank of J(Ψa) is therefore equal to 1 for each a ∈ Γ,
and as each Ψa is a channel it follows that there must exist a collection of
unitary operators

{Ua : a ∈ Γ} ⊂ U(CΣ) (6.358)
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such that (6.353) holds for each X ∈ L(CΣ) and each a ∈ Γ. The first
equation of (6.357) is equivalent to

∑

a∈Γ
p(a)J(Ψa)

|Σ| = 1⊗ 1
|Σ|2 , (6.359)

which implies
∑

a∈Γ
p(a) vec(Ua) vec(Ua)∗ = 1⊗ 1

|Σ| = J(Ω), (6.360)

and therefore
∑

a∈Γ
p(a)UaXU∗a = Ω(X) (6.361)

for all X ∈ L(CΣ). Statement 1 therefore implies statement 2.
Under the assumption that statement 2 holds, the Holevo information of

η may be calculated directly:

χ(η) = H
(∑

a∈Γ

p(a)
|Σ|

∑

b,c∈Σ
Ψa(Eb,c)⊗ Eb,c

)

−
∑

a∈Γ
p(a) H

(
1
|Σ|

∑

b,c∈Σ
Ψa(Eb,c)⊗ Eb,c

)

= H
(
1⊗ 1
|Σ|2

)
−
∑

a∈Γ
p(a) H

(
vec(Ua) vec(Ua)∗

|Σ|

)

= 2 log(|Σ|).

(6.362)

Statement 2 therefore implies statement 1, which completes the proof.

6.3.2 Non-classical correlations
The definition of entanglement, as the absence of separability, is not directly
related to an observable physical phenomenon. Entanglement is, however,
fundamentally connected with the correlations that may exist among the
outcomes of measurements performed on two or more separate parts of a
physical system. To describe this connection, it is helpful to consider the
following scenario.

Scenario 6.57 Two individuals, Alice and Bob, share a compound register
(X,Y), with Alice holding X and Bob holding Y. Two events occur:

1. Alice receives an input symbol, drawn from a fixed alphabet ΣA, and she
must produce an output symbol from a fixed alphabet ΓA.
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2. Bob receives an input symbol, drawn from a fixed alphabet ΣB, and he
must produce an output symbol from a fixed alphabet ΓB.

Alice and Bob cannot communicate with one another at any point after they
have received their input symbols. The output symbols they produce may,
in general, be probabilistic, possibly resulting from measurements made on
whichever one of the registers X or Y is in the possession of the individual
performing the measurement.

The discussion that follows is primarily concerned with the collections of
output distributions that may be produced by Alice and Bob, as described
in the scenario above, through measurements on a shared entangled state,
as compared with the correlations that may result from the initial state of
(X,Y) being separable.

Correlation operators
The output distributions produced by Alice and Bob in a particular instance
of Scenario 6.57, ranging over all pairs of input symbols, may collectively be
described by a single operator

C ∈ L
(
RΣB×ΓB ,RΣA×ΓA

)
, (6.363)

defined so that C((a, c), (b, d)) is the probability that Alice and Bob output
(c, d) ∈ ΓA × ΓB, assuming they are given the input pair (a, b) ∈ ΣA × ΣB.
Such an operator must satisfy certain constraints. For instance, to carry the
interpretation that C represents a collection of probability distributions,
each entry must be a nonnegative real number, and it must hold that

∑

(c,d)∈ΓA×ΓB

C
(
(a, c), (b, d)

)
= 1 (6.364)

for every pair (a, b) ∈ ΣA × ΣB. Additional constraints are imposed by the
assumption that Alice and Bob are separated and cannot communicate.

Definition 6.58 Let ΣA, ΣB, ΓA, and ΓB be alphabets, and let

C ∈ L
(
RΣB×ΓB ,RΣA×ΓA

)
(6.365)

be an operator.

1. The operator C is a deterministic correlation operator if

C =
∑

(a,b)∈ΣA×ΣB

Ea,b ⊗ Ef(a),g(b), (6.366)
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or equivalently

C
(
(a, c), (b, d)

)
=





1 if c = f(a) and d = g(b)
0 otherwise,

(6.367)

for some choice of functions f : ΣA → ΓA and g : ΣB → ΓB. It is said
that C is a probabilistic correlation operator if C is equal to a convex
combination of deterministic correlation operators.

2. The operator C is a quantum correlation operator if there exist complex
Euclidean spaces X and Y, a state ρ ∈ D(X ⊗Y), and two collections of
measurements {µa : a ∈ ΣA} and {νb : b ∈ ΣB}, taking the form

µa : ΓA → Pos(X ) and νb : ΓB → Pos(Y), (6.368)

such that

C
(
(a, c), (b, d)

)
=
〈
µa(c)⊗ νb(d), ρ

〉
(6.369)

for every a ∈ ΣA, b ∈ ΣB, c ∈ ΓA, and d ∈ ΓB.

Example 6.59 Let ΣA, ΣB, ΓA, and ΓB all be equal to the binary alphabet
Σ = {0, 1}, let X = CΣ and Y = CΣ, define τ ∈ D(X ⊗ Y) to be the
maximally entangled state

τ = 1
2
∑

a,b∈Σ
Ea,b ⊗ Ea,b, (6.370)

and define measurements µ0, µ1 : ΓA → Pos(X ) and ν0, ν1 : ΓB → Pos(Y) as

µ0(0) = Π0, µ0(1) = Ππ/2,

µ1(0) = Ππ/4, µ1(1) = Π3π/4,

ν0(0) = Ππ/8, ν0(1) = Π5π/8,

ν1(0) = Π7π/8, ν1(1) = Π3π/8,

(6.371)

for

Πθ =
(

cos2(θ) cos(θ) sin(θ)
cos(θ) sin(θ) sin2(θ)

)
. (6.372)

Equivalently, these measurement operators are as described in Figure 6.1.
For this choice of τ , and because each of the measurement operators above

have real number entries, it holds that
〈
µa(c)⊗ νb(d), τ

〉
= 1

2
〈
µa(c), νb(d)

〉
(6.373)
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µ0(0) =
(

1 0
0 0

)
, µ0(1) =

(
0 0
0 1

)
,

µ1(0) =
( 1

2
1
2

1
2

1
2

)
, µ1(1) =

( 1
2 − 1

2
− 1

2
1
2

)
,

ν0(0) =
(

2+
√

2
4

√
2

4√
2

4
2−
√

2
4

)
, ν0(1) =

(
2−
√

2
4 −

√
2

4

−
√

2
4

2+
√

2
4

)
,

ν1(0) =
(

2+
√

2
4 −

√
2

4

−
√

2
4

2−
√

2
4

)
, ν1(1) =

(
2−
√

2
4

√
2

4√
2

4
2+
√

2
4

)
.

Figure 6.1 Matrix representations of the measurement operators described
in Example 6.59.

for each a ∈ ΣA, b ∈ ΣB, c ∈ ΓA, and d ∈ ΓB. A calculation reveals that the
quantum correlation operator defined by (6.369) is given by

C =
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√

2
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√

2
8
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√

2
8
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√

2
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√

2
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√

2
8

2−
√

2
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√

2
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√

2
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2−
√

2
8

2−
√

2
8
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√

2
8

2−
√

2
8

2+
√

2
8

2+
√

2
8

2−
√

2
8



. (6.374)

It will be demonstrated shortly that the operator C is not a probabilistic
correlation operator.

Example 6.60 Let ΣA, ΣB, ΓA, and ΓB all be equal to the binary alphabet
Σ = {0, 1}. There are 16 deterministic correlation operators, which are in
correspondence with the 16 possible pairs of functions (f, g) having the form
f : ΣA → ΓA and g : ΣB → ΓB. As matrices, these operators are as described
in Figure 6.2.

Bell inequalities
By its definition, the set of all probabilistic correlation operators of the form

C ∈ L
(
RΣB×ΓB ,RΣA×ΓA

)
(6.375)

is convex. Indeed, this set is given by the convex hull of a finite set, as there
are finitely many deterministic correlation operators of the same form. From
this fact it follows that the set of all probabilistic correlation operators of the
form (6.375) is compact. Therefore, by the separating hyperplane theorem
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1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0


 ,




1 0 0 1
0 0 0 0
1 0 0 1
0 0 0 0


 ,




0 1 1 0
0 0 0 0
0 1 1 0
0 0 0 0


 ,




0 1 0 1
0 0 0 0
0 1 0 1
0 0 0 0


 ,




1 0 1 0
0 0 0 0
0 0 0 0
1 0 1 0


 ,




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 ,




0 1 1 0
0 0 0 0
0 0 0 0
0 1 1 0


 ,




0 1 0 1
0 0 0 0
0 0 0 0
0 1 0 1


 ,




0 0 0 0
1 0 1 0
1 0 1 0
0 0 0 0


 ,




0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0


 ,




0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


 ,




0 0 0 0
0 1 0 1
0 1 0 1
0 0 0 0


 ,




0 0 0 0
1 0 1 0
0 0 0 0
1 0 1 0


 ,




0 0 0 0
1 0 0 1
0 0 0 0
1 0 0 1


 ,




0 0 0 0
0 1 1 0
0 0 0 0
0 1 1 0


 ,




0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1


 .

Figure 6.2 Matrix representations of the correlation operators described in
Example 6.60.

(Theorem 1.11), if an operator

D ∈ L
(
RΣB×ΓB ,RΣA×ΓA

)
(6.376)

is not a probabilistic correlation operator, there must exist an operator

K ∈ L
(
RΣB×ΓB ,RΣA×ΓA

)
(6.377)

and a real number α such that

〈K,D〉 > α and 〈K,C〉 ≤ α (6.378)

for all probabilistic correlation operators C of the form (6.375).
For a fixed choice of an operator K and a real number α, the inequality

〈K,C〉 ≤ α is traditionally called a Bell inequality, assuming it is satisfied
for every probabilistic correlation operator C of the form (6.375). When this
is the case, the inequality 〈K,D〉 > α is called a Bell inequality violation if
it holds for some choice of a quantum correlation operator D.

The illustration of a Bell inequality violation can provide a convenient
way to demonstrate that certain correlation operators are not probabilistic,
as the following example illustrates.
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Example 6.61 (Clauser–Horn–Shimony–Holt inequality) Let ΣA, ΣB, ΓA,
and ΓB all be equal to the binary alphabet Σ = {0, 1}, and define

K ∈ L
(
RΣB×ΓB ,RΣA×ΓA

)
(6.379)

as

K =




1 −1 1 −1
−1 1 −1 1
1 −1 −1 1
−1 1 1 −1



. (6.380)

For every deterministic correlation operator

C ∈ L
(
RΣB×ΓB ,RΣA×ΓA

)
(6.381)

it holds that
〈K,C〉 ≤ 2, (6.382)

which may be verified by an inspection of the 16 deterministic correlation
operators in Example 6.60. It follows by convexity that the same inequality
holds for C being any probabilistic correlation operator. On the other hand,
the quantum correlation operator

D =
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8
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√
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√

2
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√

2
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√
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√

2
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√

2
8

2+
√

2
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√

2
8
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√

2
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√

2
8

2−
√

2
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2+
√

2
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2+
√

2
8

2−
√

2
8




(6.383)

described in Example 6.59 satisfies

〈K,D〉 = 2
√

2. (6.384)

This demonstrates that D is not a probabilistic correlation operator.

Correlations among binary-valued measurements
For a given choice of alphabets ΣA, ΣB, ΓA, and ΓB, and an operator

K ∈ L
(
RΣB×ΓB ,RΣA×ΓA

)
, (6.385)

it may be quite difficult in some cases to determine the supremum value of
〈K,C〉, optimized over all quantum correlation operators of the form

C ∈ L
(
RΣB×ΓB ,RΣA×ΓA

)
. (6.386)
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There is, however, an interesting class of operators K for which this problem
is solvable. This is the class for which the output alphabets ΓA and ΓB are
both equal to the binary alphabet Σ = {0, 1}, and furthermore the operator
K takes the form

K = M ⊗
(

1 −1
−1 1

)
(6.387)

for some choice of an operator

M ∈ L
(
RΣB ,RΣA

)
. (6.388)

Operators of the form (6.387) have a simple interpretation when considered
in the context of Bell inequalities and violations—they effectively assign the
value M(a, b) to the event that Alice and Bob output equal binary-valued
answers, and the value −M(a, b) to the event that their outputs differ, for
each possible input pair (a, b).

The following theorem, known as Tsirelson’s theorem, provides the basis
for a solution to the problem under consideration.

Theorem 6.62 (Tsirelson’s theorem) Let ΣA and ΣB be alphabets and let
X ∈ L

(
RΣB ,RΣA

)
be an operator. The following statements are equivalent:

1. There exist complex Euclidean spaces X and Y, a state ρ ∈ D(X ⊗ Y),
and two collections

{Aa : a ∈ ΣA} ⊂ Herm(X ) and {Bb : b ∈ ΣB} ⊂ Herm(Y) (6.389)

of operators satisfying ‖Aa‖ ≤ 1, ‖Bb‖ ≤ 1, and

X(a, b) =
〈
Aa ⊗Bb, ρ

〉
(6.390)

for every a ∈ ΣA and b ∈ ΣB.
2. Statement 1 holds under the additional requirement that, for some choice

of an alphabet Γ, one has X = CΓ, Y = CΓ, and

ρ = 1
|Γ|

∑

c,d∈Γ
Ec,d ⊗ Ec,d, (6.391)

and furthermore that the operators in the collections

{Aa : a ∈ ΣA} and {Bb : b ∈ ΣB} (6.392)

are unitary (in addition to being Hermitian).
3. There exist operators

P ∈ Pos
(
CΣA

)
and Q ∈ Pos

(
CΣB

)
, (6.393)
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with P (a, a) = 1 and Q(b, b) = 1 for every a ∈ ΣA and b ∈ ΣB, such that
(
P X

X∗ Q

)
∈ Pos

(
CΣA ⊕ CΣB

)
. (6.394)

4. There exist two collections

{ua : a ∈ ΣA}, {vb : b ∈ ΣB} ⊂ RΣA ⊕ RΣB (6.395)

of unit vectors such that

X(a, b) = 〈ua, vb〉 (6.396)

for every a ∈ ΣA and b ∈ ΣB.

The proof of this theorem will make use of a collection of unitary and
Hermitian operators known as Weyl–Brauer operators.

Definition 6.63 Let m be a positive integer, let Γ = {0, 1}, and let
Z = CΓ. The Weyl–Brauer operators

V0, . . . , V2m ∈ L
(Z⊗m) (6.397)

of order m are defined as follows: V0 = σ⊗mz and

V2k−1 = σ⊗(k−1)
z ⊗ σx ⊗ 1⊗(m−k),

V2k = σ⊗(k−1)
z ⊗ σy ⊗ 1⊗(m−k),

(6.398)

for k = 1, . . . ,m, where 1 denotes the identity operator on Z and σx, σy,
and σz are given by the Pauli operators. In matrix form, these operators are
as follows:

1 =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (6.399)

Example 6.64 In the case m = 3, the Weyl–Brauer operators V0, . . . , V6
are

V0 = σz ⊗ σz ⊗ σz
V1 = σx ⊗ 1⊗ 1
V2 = σy ⊗ 1⊗ 1
V3 = σz ⊗ σx ⊗ 1
V4 = σz ⊗ σy ⊗ 1
V5 = σz ⊗ σz ⊗ σx
V6 = σz ⊗ σz ⊗ σy.

(6.400)
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A proposition summarizing the properties of the Weyl–Brauer operators
that are relevant to the proof of Tsirelson’s theorem follows.

Proposition 6.65 Let m be a positive integer, let V0, . . . , V2m denote the
Weyl–Brauer operators of order m, and let

(α0, . . . , α2m), (β0, . . . , β2m) ∈ R2m+1 (6.401)

be vectors of real numbers. It holds that
( 2m∑

k=0
αkVk

)2

=
( 2m∑

k=0
α2
k

)
1⊗m (6.402)

and
1

2m

〈 2m∑

j=0
αjVj ,

2m∑

k=0
βkVk

〉
=

2m∑

k=0
αkβk. (6.403)

Proof The Pauli operators anti-commute in pairs:

σxσy = −σyσx, σxσz = −σzσx, and σyσz = −σzσy. (6.404)

By an inspection of the definition of the Weyl–Brauer operators, it follows
that V0, . . . , V2m also anti-commute in pairs:

VjVk = −VkVj (6.405)

for distinct choices of j, k ∈ {0, . . . , 2m}. Moreover, each Vk is both unitary
and Hermitian, and therefore V 2

k = 1⊗m. It follows that
( 2m∑

k=0
αkVk

)2

=
2m∑

k=0
α2
kV

2
k +

∑

0≤j<k≤2m
αjαk

(
VjVk + VkVj

)

=
( 2m∑

k=0
α2
k

)
1⊗m.

(6.406)

Moreover,

〈Vj , Vk〉 =





2m if j = k

0 if j 6= k,
(6.407)

and therefore

1
2m

〈 2m∑

j=0
αjVj ,

2m∑

k=0
βkVk

〉
= 1

2m
2m∑

j=0

2m∑

k=0
αjβk〈Vj , Vk〉 =

2m∑

k=0
αkβk, (6.408)

as required.
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Proof of Theorem 6.62 The following implications among the statements
will suffice to prove the theorem:

(2)⇒ (1)⇒ (3)⇒ (4)⇒ (2). (6.409)

The first implication, that statement 2 implies statement 1, is trivial.
Assume statement 1 holds, define an operator

K =
∑

a∈ΣA

ea vec
(
(Aa ⊗ 1)√ρ)∗ +

∑

b∈ΣB

eb vec
(
(1⊗Bb)

√
ρ
)∗
, (6.410)

and consider the operator KK∗ ∈ Pos
(
CΣAtΣB

)
, which may be written in a

block form as

KK∗ =
(
P Y

Y ∗ Q

)
(6.411)

for P ∈ Pos
(
CΣA

)
, Q ∈ Pos

(
CΣB

)
, and Y ∈ L

(
CΣB ,CΣA

)
. It holds that

Y (a, b) =
〈
(Aa ⊗ 1)√ρ, (1⊗Bb)

√
ρ
〉

=
〈
Aa ⊗Bb, ρ

〉
= X(a, b) (6.412)

for every a ∈ ΣA and b ∈ ΣB, and therefore Y = X. Moreover, for each
a ∈ ΣA one has

P (a, a) =
〈
(Aa ⊗ 1)√ρ, (Aa ⊗ 1)√ρ〉 =

〈
A2
a ⊗ 1, ρ

〉
, (6.413)

which is necessarily a nonnegative real number in the interval [0, 1]; and
through a similar calculation, one finds that Q(b, b) is also a nonnegative
integer in the interval [0, 1] for each b ∈ ΣB. A nonnegative real number may
be added to each diagonal entry of this operator to yield another positive
semidefinite operator, so one has that statement 3 holds. It has therefore
been proved that statement 1 implies statement 3.

Next, assume statement 3 holds, and observe that

1
2

(
P X

X∗ Q

)
+ 1

2

(
P X

X∗ Q

)T

=
(
P+P

2 X

X∗ Q+Q
2

)
(6.414)

is a positive semidefinite operator having real number entries, and all of its
diagonal entries are equal to 1. Define

ua =
(
P+P

2 X

X∗ Q+Q
2

) 1
2
(
ea
0

)
and vb =

(
P+P

2 X

X∗ Q+Q
2

) 1
2
(

0
eb

)
(6.415)

for each a ∈ ΣA and b ∈ ΣB. As the square root of a positive semidefinite
operator having real number entries also has real number entries, one has
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that ua and vb are unit vectors with real number entries, and moreover it
holds that

〈ua, vb〉 = X(a, b) (6.416)

for all a ∈ ΣA and b ∈ ΣB. It has therefore been proved that statement 3
implies statement 4.

Finally, assume statement 4 holds. Let

m =
⌈
|ΣA|+ |ΣB| − 1

2

⌉
, (6.417)

so that 2m + 1 ≥ |ΣA| + |ΣB|, and let f : ΣA t ΣB → {0, . . . , 2m} be a
fixed but otherwise arbitrarily chosen injective function. Let Γ = {0, 1}, let
Z = CΓ, and define

Aa =
∑

c∈ΣAtΣB

ua(c)Vf(c) and Bb =
∑

c∈ΣAtΣB

vb(c)V T
f(c) (6.418)

for each a ∈ ΣA and b ∈ ΣB, for V0, . . . , V2m being the Weyl–Brauer operators
of order m, regarded as elements of L(Z⊗m). As the vectors {ua : a ∈ ΣA}
and {vb : b ∈ ΣB} are unit vectors having real number entries, it follows
from Proposition 6.65 that the operators {Aa : a ∈ ΣA} and {Bb : b ∈ ΣB}
are unitary, and it is evident that they are Hermitian as well. Define

τ = 1
2m vec

(
1⊗mZ

)
vec
(
1⊗mZ

)∗
. (6.419)

For each choice of a ∈ ΣA and b ∈ ΣB it holds that
〈
Aa ⊗Bb, τ

〉
= 1

2m Tr
(
AaB

T
b

)

= 1
2m

∑

c,d∈ΣAtΣB

〈
ua(c)Vf(c), vb(d)Vf(d)

〉
= 〈ua, vb〉,

(6.420)

again by Proposition 6.65. This is equivalent to statement 2 (taking Γm in
place of Γ). It has therefore been proved that statement 4 implies statement
2, which completes the proof.

As a consequence of Tsirelson’s theorem (Theorem 6.62), there exists a
semidefinite program for the supremum value of the inner product 〈K,C〉,
for K taking the form (6.387) and for C ranging over all quantum correlation
operators of the form

C ∈ L
(
RΣB×ΓB ,RΣA×ΓA

)
, (6.421)

for ΣA and ΣB being arbitrary alphabets and ΓA and ΓB both being equal
to the binary alphabet Γ = {0, 1}.
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To understand why this is so, consider an arbitrary quantum correlation
operator C, which must be given by

C
(
(a, c), (b, d)

)
=
〈
µa(c)⊗ νb(d), ρ

〉
(6.422)

for every a ∈ ΣA, b ∈ ΣB, and c, d ∈ Γ, for some choice of complex Euclidean
spaces X and Y, a state ρ ∈ D(X ⊗Y), and two collections of measurements
{µa : a ∈ ΣA} and {νb : b ∈ ΣB} whose elements take the form

µa : Γ→ Pos(X ) and νb : Γ→ Pos(Y). (6.423)

For an operator K of the form (6.387) for some choice of M ∈ L
(
RΣB ,RΣA

)
,

one has that the value of the inner product 〈K,C〉 is given by
∑

(a,b)∈ΣA×ΣB

M(a, b)
〈
(µa(0)− µa(1))⊗ (νb(0)− νb(1)), ρ

〉
. (6.424)

Now, an operator H, acting on an arbitrary complex Euclidean space,
may be written as

H = µ(0)− µ(1) (6.425)

for some binary-valued measurement µ if and only if H is Hermitian and
satisfies ‖H‖ ≤ 1. Thus, an optimization of the expression (6.424) over all
choices of the measurements {µa : a ∈ ΣA} and {νb : b ∈ ΣB} is equivalent
to an optimization of the expression

∑

(a,b)∈ΣA×ΣB

M(a, b)
〈
Aa ⊗Bb, ρ

〉
(6.426)

over all collections

{Aa : a ∈ ΣA} ⊂ Herm(X ) and {Bb : b ∈ ΣB} ⊂ Herm(Y) (6.427)

of Hermitian operators satisfying ‖Aa‖ ≤ 1 and ‖Bb‖ ≤ 1, for every a ∈ ΣA

and b ∈ ΣB, respectively.
By optimizing over all complex Euclidean spaces X and Y and density

operators ρ ∈ D(X ⊗ Y), one finds (by Theorem 6.62) that the supremum
value of 〈K,C〉 over all quantum correlation operators C is equal to the
supremum value of the inner product 〈M,X〉 over all choices of operators
X ∈ L

(
RΣB ,RΣA

)
for which it holds that

(
P X

X∗ Q

)
∈ Pos

(
CΣA ⊕ CΣB

)
, (6.428)

for P ∈ Pos
(
CΣA

)
and Q ∈ Pos

(
CΣB

)
satisfying P (a, a) = 1 and Q(b, b) = 1

for every a ∈ ΣA and b ∈ ΣB. Such an optimization corresponds directly to
the following primal problem of a semidefinite program:
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Primal problem

maximize: 1
2
〈
M,X

〉
+ 1

2
〈
M∗, X∗

〉

subject to:
(
P X

X∗ Q

)
≥ 0,

∆(P ) = 1, ∆(Q) = 1,

P ∈ Pos
(
CΣA

)
, Q ∈ Pos

(
CΣB

)
,

X ∈ L
(
CΣB ,CΣA

)
.

In this problem, ∆ refers to the completely dephasing channel, defined with
respect to either CΣA or CΣB , and 1 denotes the identity operator on either
of these spaces, as the context dictates without ambiguity.

The dual problem of this semidefinite program is as follows:

Dual problem

minimize: 1
2 Tr(Y ) + 1

2 Tr(Z)

subject to:
(

∆(Y ) −M
−M∗ ∆(Z)

)
≥ 0,

Y ∈ Herm
(
CΣA

)
,

Z ∈ Herm
(
CΣB

)
.

It follows from Slater’s theorem (Theorem 1.18) that strong duality holds
for this semidefinite program—strict feasibility holds for both the primal
and dual problems.

Example 6.66 (Tsirelson’s bound) Consider the operator

K =




1 −1 1 −1
−1 1 −1 1
1 −1 −1 1
−1 1 1 −1




= M ⊗
(

1 −1
−1 1

)
(6.429)

for

M =
(

1 1
1 −1

)
, (6.430)

which was examined in Example 6.61. One has ‖M ‖ =
√

2, so that
(√

21 −M
−M∗

√
21

)
≥ 0. (6.431)
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By taking Y =
√

21 and Z =
√

21 in the dual problem above, a feasible
dual solution achieving the objective value 2

√
2 is obtained. Therefore,

〈K,C〉 ≤ 2
√

2 (6.432)

for every quantum correlation operator C. The Bell inequality violation
exhibited in Example 6.61 is therefore optimal for this choice of K.

6.4 Exercises
Exercise 6.1 Let Φ ∈ C(X ,Y) be a channel, for complex Euclidean spaces
X and Y. Prove that the following three statements are equivalent:

1. For every complex Euclidean space Z and every state ρ ∈ D(X ⊗ Z),
it holds that

(
Φ⊗ 1L(Z)

)
(ρ) ∈ SepD(Y : Z). (6.433)

2. J(Φ) ∈ Sep(Y : X ).
3. There exists an alphabet Σ, a measurement µ : Σ → Pos(X ), and a

collection of states {σa : a ∈ Σ} ⊆ D(Y) such that

Φ(X) =
∑

a∈Σ
〈µ(a), X〉σa (6.434)

for all X ∈ L(X ).

Channels for which these statements hold are called entanglement-breaking
channels.

Exercise 6.2 Let X and Y be complex Euclidean spaces, let n = dim(Y),
and assume n ≤ dim(X ). Also let {U1, . . . , Um} ∈ U(Y,X ) be an orthogonal
collection of isometries, and let uk ∈ X ⊗ Y be the unit vector defined as

uk = 1√
n

vec(Uk) (6.435)

for each k ∈ {1, . . . ,m}. Prove that if µ : {1, . . . ,m} → Pos(X ⊗ Y) is a
measurement satisfying µ(k) ∈ PPT(X : Y) for every k ∈ {1, . . . ,m}, then

m∑

k=1
〈µ(k), uku∗k〉 ≤ dim(X ). (6.436)

(Observe that a correct solution to this exercise generalizes Theorem 6.30.)
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Exercise 6.3 Let X and Y be registers and let ρ ∈ D(X ⊗Y) be a state of
the pair (X,Y). With respect to ρ, one defines the entanglement of formation
between X and Y as

EF(X : Y) = inf
{∑

a∈Σ
p(a) H

(
TrY(uau∗a)

)
:
∑

a∈Σ
p(a)uau∗a = ρ

}
, (6.437)

where the infimum is over all choices of an alphabet Σ, a probability vector
p ∈ P(Σ), and a collection of unit vectors {ua : a ∈ Σ} ⊂ X ⊗ Y for which
it holds that

∑

a∈Σ
p(a)uau∗a = ρ. (6.438)

(a) Prove that the infimum in (6.437) is achieved for some choice of Σ, p,
and {ua : a ∈ Σ} for which |Σ| ≤ dim(X ⊗ Y)2.

(b) Suppose that Z and W are registers and Φ ∈ LOCC(X ,Z : Y,W) is an
LOCC channel. Prove that

EF(Z : W)σ ≤ EF(X : Y)ρ (6.439)

where σ = Φ(ρ) and EF(X :Y)ρ and EF(Z :W)σ denote the entanglement
of formation of the pairs (X,Y) and (Z,W) with respect to the states ρ
and σ, respectively.

(c) Prove a more general statement than the one required of a solution to
part (b), holding not only for all LOCC channels, but for all separable
channels of the form Φ ∈ SepC(X ,Z : Y,W).

Exercise 6.4 Let X and Y be complex Euclidean spaces, and assume that
both spaces have dimension at least 2. Prove that there exist entanglement-
breaking channels Φ0,Φ1 ∈ C(X ,Y), as defined in Exercise 6.1, such that

∣∣∣∣∣∣Φ0 − Φ1
∣∣∣∣∣∣

1 >
∥∥Φ0(ρ)− Φ1(ρ)

∥∥
1 (6.440)

for every ρ ∈ D(X ). Such channels have the seemingly strange property that
they destroy entanglement, and yet evaluating them on an entangled state
helps to discriminate between them.

Exercise 6.5 Let Σ be an alphabet, let X and Y be complex Euclidean
spaces of the form X = CΣ and Y = CΣ, let n = |Σ|, and consider the
projections ∆0, ∆1, Π0, and Π1 defined in Example 6.10. Also define

ρ0 = Π0(n+1
2
) , ρ1 = Π1(n

2
) , σ0 = ∆0, and σ1 = ∆1

n2 − 1 . (6.441)
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The states ρ0 and ρ1 are therefore Werner states, while σ0 and σ1 are
isotropic states.

(a) Prove that if µ : {0, 1} → Pos(X ⊗ Y) is a measurement satisfying
µ(0), µ(1) ∈ PPT(X : Y), then

1
2〈µ(0), ρ0〉+ 1

2〈µ(1), ρ1〉 ≤
1
2 + 1

n+ 1 . (6.442)

Prove that there exists an LOCC measurement µ for which (6.442)
holds with equality.

(b) Prove that if ν : {0, 1} → Pos(X ⊗ Y) is a measurement satisfying
ν(0), ν(1) ∈ PPT(X : Y), then

1
2〈ν(0), σ0〉+ 1

2〈ν(1), σ1〉 ≤ 1− 1
2n+ 2 . (6.443)

Prove that there exists an LOCC measurement ν for which (6.443)
holds with equality.

Exercise 6.6 Let N and m be positive integers, and assume that there
exist unitary and Hermitian operators U0, . . . , U2m ∈ L(CN ) that anti-
commute in pairs: UjUk = −UkUj for distinct choices of j, k ∈ {0, . . . , 2m}.
Prove that the collection

{
Ua0

0 · · ·Ua2m
2m : a0, . . . , a2m ∈ {0, 1}, a0 + · · ·+ a2m is even

}
(6.444)

is an orthogonal collection, and conclude that N ≥ 2m. (Observe that a
correct solution to this exercise implies that the Weyl–Brauer operators
have the minimum possible dimension required to possess the properties
mentioned above.)

6.5 Bibliographic remarks
Although it was not formally defined or called entanglement therein, the
phenomenon of entanglement was first recognized by Einstein, Podolsky, and
Rosen (1935). Einstein, Podolsky, and Rosen’s work inspired Schrödinger to
investigate the phenomenon of entanglement, and to give it its name; he
published a three-part paper in German (Schrödinger, 1935a,b,c), as well as
two related English-language papers (Schrödinger, 1935d, 1936) discussing
entanglement and other issues, as they pertained to the nature of quantum
physics at that time. (An English translation of Schrödinger’s three-part
paper in German was published later (Trimmer, 1980).) The identification of
entanglement with a lack of separability is due to Werner (1989), who used
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the terms classically correlated and EPR correlated rather than separable
and entangled.

The equivalence of the first two statements in Theorem 6.9 was proved by
M. Horodecki, P. Horodecki, and R. Horodecki (1996), and Proposition 6.6
was proved by P. Horodecki (1997). Several elementary analytic facts about
the set of separable states that have been discussed in Section 6.1.1 were
also observed in the papers proving these facts. The equivalence of the third
statement in Theorem 6.9 to the first two was proved a few years later by
P. Horodecki (2001). In general, it is likely to be a computationally difficult
task to test a bipartite density operator for separability, as suggested by the
computational hardness result proved by Gurvits (2003).

The fact that any operator sufficiently close to the identity operator in a
bipartite tensor product space is separable was first proved by Życzkowski,
P. Horodecki, Sanpera, and Lewenstein (1998). Theorem 6.13 is due to
Gurvits and Barnum (2002).

The local operations and classical communication paradigm, also called
the distant labs paradigm, arose naturally in quantum information theory
as various quantum information processing tasks were considered. Among
the first researchers to consider this paradigm were Peres and Wootters
(1991), who compared the capabilities of LOCC measurements to general
measurements in a setting in which information is encoded into bipartite
product states. The teleportation procedure of Bennett, Brassard, Crepéau,
Jozsa, Peres, and Wootters (1993) followed shortly after.

There are natural extensions of the definition of LOCC channels that have
not been discussed in this chapter. In particular, the definition of LOCC
channels in the present chapter requires an LOCC channel to be a finite
composition of one-way LOCC channels, corresponding to a fixed number of
classical message transmissions between two individuals implementing the
channel, but one may also consider channels implemented by a potentially
unbounded number of message transmissions. It is known that the set of
LOCC channels, as they have been defined in this chapter, is generally not
closed for a fixed choice of spaces; this was proved (for bipartite channels) by
Chitambar, Leung, Mančinska, Ozols, and Winter (2014). The definition of
LOCC channels presented in this chapter is based on one of the definitions
considered by these authors.

The class of separable channels was identified by Vedral, Plenio, Rippin,
and Knight (1997), although they did not raise the possibility (first suggested
by Rains (1997)) that some separable channels might not be LOCC channels.
The existence of separable measurements that are not LOCC measurements
(and, in fact, not even approached by a sequence of LOCC measurements
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in the limit) was proved by Bennett, DiVincenzo, Fuchs, Mor, Rains, Shor,
Smolin, and Wootters (1999b). Childs, Leung, Mančinska, and Ozols (2013)
give a simplified proof of this fact, along with some generalizations of it.

The distillable entanglement and entanglement cost measures were defined
by Bennett, Bernstein, Popescu, and Schumacher (1996a). They used the
term entanglement of formation rather than entanglement cost—but that
terminology has since come to refer to the measure of entanglement described
in Exercise 6.3. Theorem 6.38 was proved in the same paper through the
design and analysis of LOCC channels for entanglement distillation and its
reverse for pure states.

Entanglement distillation for general quantum states was considered by
Bennett, Brassard, Popescu, Schumacher, Smolin, and Wootters (1996c) and
Bennett, DiVincenzo, Smolin, and Wootters (1996b) around the same time.
It is known that the entanglement cost of every bipartite entangled state is
nonzero (Yang et al., 2005).

The entanglement rank was first defined by Terhal and P. Horodecki
(2000), who referred to it as the Schmidt number of a density operator
(as it generalizes the number of nonzero terms in a Schmidt decomposition
of the vector representation of a given pure state). They also proved that the
entanglement rank of a state cannot increase under the action of an LOCC
channel, based on related observations by Lo and Popescu (2001) regarding
pure states, and that it is generally not multiplicative with respect to tensor
products.

Theorem 6.30 was proved by Nathanson (2005), and Theorem 6.32 was
proved by Walgate, Short, Hardy, and Vedral (2000).

The equivalence of statements 1, 2, and 3 in Theorem 6.33, as well as
statement 4 for LOCC channels rather than separable channels, was proved
by Nielsen (1999). Nielsen’s proof used the fact that every bipartite pure
state transformation induced by an LOCC channel is also induced by a one-
way LOCC channel, which was proved earlier by Lo and Popescu (2001).
The proof of Theorem 6.38 concerning entanglement distillation and cost
for pure states also appears in the same paper of Nielsen. The equivalence
between statement 4 of Nielsen’s theorem and the first three was proved by
Gheorghiu and Griffiths (2008).

Peres (1996) proposed the computationally efficient partial transpose test
for separability of bipartite density operators; he observed that separable
states are necessarily PPT, and that interesting families of entangled states
were revealed to be entangled through this test. By the Horodecki criterion
(Theorem 6.9) proved shortly after, it follows that the partial transpose test
correctly identifies all entangled state in a tensor product of two complex



6.5 Bibliographic remarks 389

Euclidean spaces, both of dimension 2 or one of dimension 2 and one of
dimension 3, based on work of Størmer (1963) and Woronowicz (1976), but
that entangled PPT states in higher dimensions must exist (Horodecki et al.,
1996). The first explicit examples of entangled PPT states were given by P.
Horodecki (1997); the unextendable product set construction of such states
is due to Bennett, DiVincenzo, Mor, Shor, Smolin, and Terhal (1999c), who
introduced the notion of an unextendable product set as well as the specific
example given in this chapter. Proposition 6.44 and Theorem 6.45 were
proved by M. Horodecki, P. Horodecki, and R. Horodecki (1998).

As was already mentioned above, the teleportation procedure described
in Example 6.50 is due to Bennett, Brassard, Crepéau, Jozsa, Peres, and
Wootters (1993). The dense coding procedure described in Example 6.55 is
due to Bennett and Wiesner (1992). These procedures have been generalized
in various ways. The general presentation of teleportation and dense coding
in this chapter is based on work of Werner (2001).

The fact that entangled states may induce non-classical correlations was
discovered by Bell in a highly influential 1964 paper (Bell, 1964). The Bell
inequality described in Example 6.61 is due to Clauser, Horn, Shimony, and
Holt (1969). Some entangled states fail to induce non-classical correlations—
this was demonstrated for the special case in which projective measurements
are made on the two parts of a bipartite state by Werner (1989), and for
the general case (allowing arbitrary measurements) by Barrett (2002). The
entangled states constructed by Werner that have this property are among
those described in Example 6.10. Theorem 6.62 is due to Tsirelson (1987).

This chapter has presented just a small part of an extensive body of work
on entanglement. Readers interested in learning more about this topic are
referred to the survey of R. Horodecki, P. Horodecki, M. Horodecki, and
K. Horodecki (2009).


