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Quantum entropy and source coding

The von Neumann entropy of a quantum state is an information-theoretic
measure of the amount of randomness or uncertainty that is inherent to that
state, and the quantum relative entropy of one quantum state with respect
to another is a related measure of the degree to which the first state differs
from the second. This chapter defines these function, establishes some of
their fundamental properties, and explains their connections to the task of
source coding.

5.1 Classical entropy
The von Neumann entropy and quantum relative entropy functions are
quantum analogues of classical information-theoretic notions: the Shannon
entropy and (classical) relative entropy functions. It is appropriate to begin
the chapter with a discussion of these classical notions, as an investigation
of the mathematical properties of the von Neumann entropy and quantum
relative entropy functions builds naturally on their classical counterparts.

5.1.1 Definitions of classical entropic functions
With respect to the definition that follows, the Shannon entropy is specified
for every vector with nonnegative entries, over any real Euclidean space.
Although it is most common that this function is considered in the case
that its argument is a probability vector, it is convenient nevertheless to
extend its domain in this way.

Definition 5.1 Let Σ be an alphabet and let u ∈ [0,∞)Σ be a vector of
nonnegative real numbers indexed by Σ. One defines the Shannon entropy
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of the vector u as
H(u) = −

∑

a∈Σ
u(a)>0

u(a) log(u(a)). (5.1)

(Here, and throughout this book, log(α) refers to the base-2 logarithm of α.
The natural logarithm of α is written ln(α).)

The Shannon entropy H(p) of a probability vector p ∈ P(Σ) is often
described as the amount of randomness, measured in bits, inherent to the
distribution represented by p. Alternatively, H(p) may be described as the
number of bits of uncertainty one has regarding the outcome of a random
process described by p before the outcome is learned, or as the number of
bits of information one gains as a result of learning which element a ∈ Σ
has been produced by such a process.

In the simple case that Σ = {0, 1} and p(0) = p(1) = 1/2, for instance, it
holds that H(p) = 1. This is natural, as one would expect that the amount of
uncertainty of a uniformly generated random bit, measured in bits, would be
1 bit of uncertainty. In contrast, for a deterministic process, meaning one in
which p is an elementary unit vector, there is no randomness or uncertainty,
and no information gain when the selection is learned. Correspondingly, one
has that the entropy H(p) is zero in this case.

It is important to recognize, however, that intuitive descriptions of the
Shannon entropy, as a measure of randomness, uncertainty, or information
gain, must be viewed as representing expectations rather than absolute or
definitive measures. The following example illustrates this point.

Example 5.2 Let m be a positive integer, let

Σ =
{

0, 1, . . . , 2m2}
, (5.2)

and define a probability vector p ∈ P(Σ) as follows:

p(a) =





1− 1
m if a = 0

1
m2−m2 if 1 ≤ a ≤ 2m2

.
(5.3)

A calculation reveals that H(p) > m, and yet the outcome 0 appears with
probability 1 − 1/m in a random selection described by p. So, as m grows,
one becomes more and more “certain” that the outcome will be 0, and yet
the “uncertainty” (as measured by the entropy) increases.

This example does not represent a paradox or suggest that the Shannon
entropy is not reasonably viewed as a measure of uncertainty. If one considers
an experiment in which a very large number of elements of Σ are selected
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independently, each according to the probability vector p, then the value
H(p) indeed does correspond more intuitively to the average or expected
amount of uncertainty of each random selection.

Sometimes one speaks of the Shannon entropy of a classical register X,
with the notation H(X) being used for this purpose. This is a convenient
shorthand to be interpreted as meaning H(p), for the probability vector p
describing the probabilistic state of X at the moment under consideration.
Notations such as H(X,Y) and H(X1, . . . ,Xn) are used in place of H((X,Y))
and H((X1, . . . ,Xn)) when referring to the Shannon entropy of compound
registers. Along similar lines, the notation H(α1, . . . , αn) will be used in
place of H((α1, . . . , αn)) when it is convenient to refer to the entropy of a
vector written as (α1, . . . , αn).

The relative entropy function, which is also known as the Kullback–Leibler
divergence, is closely related to the Shannon entropy. For the purposes of
this book, the primary motivation for its introduction is that it serves as a
useful analytic tool for reasoning about the Shannon entropy.

Definition 5.3 Let Σ be an alphabet and let u, v ∈ [0,∞)Σ be vectors of
nonnegative real numbers indexed by Σ. The relative entropy D(u‖v) of u
with respect to v is defined as follows. If it is the case that the support of
u is contained in the support of v (i.e., u(a) > 0 implies v(a) > 0 for all
a ∈ Σ), then D(u‖v) is defined as

D(u‖v) =
∑

a∈Σ
u(a)>0

u(a) log
(
u(a)
v(a)

)
. (5.4)

For all other choices of u and v, one defines D(u‖v) =∞.

Like the Shannon entropy function, the relative entropy is most typically
considered in cases where its arguments are probability vectors, but again
it is convenient to extend its domain to arbitrary nonnegative real vectors.

For a given pair of probability vectors p, q ∈ P(Σ), the relative entropy
D(p‖q) may be viewed as a measure of how much p differs from q in a
certain information-theoretic sense. Analytically speaking, it fails to satisfy
the requirements of being a true metric: it is not symmetric, it takes infinite
values for some pairs of inputs, and it does not satisfy the triangle inequality.
When extended to arbitrary vectors of the form u, v ∈ [0,∞)Σ, it may
also take negative values. Despite these apparent shortcomings, the relative
entropy is an indispensable information-theoretic tool.

Two additional functions derived from the Shannon entropy function are
the conditional Shannon entropy and the mutual information. Both concern
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correlations between two classical registers X and Y, and are functions of the
joint probabilistic state of the pair (X,Y). The conditional Shannon entropy
of X given Y is defined as

H(X |Y) = H(X,Y)−H(Y). (5.5)

Intuitively speaking, this quantity is a measure of the expected uncertainty
regarding the classical state of X one would have upon learning the classical
state of Y. The mutual information between X and Y is defined as

I(X : Y) = H(X) + H(Y)−H(X,Y). (5.6)

This quantity can alternately be expressed as

I(X : Y) = H(Y)−H(Y|X) = H(X)−H(X|Y). (5.7)

One typically views this quantity as representing the expected amount of
information about X that one gains by learning the classical state of Y, or
(equivalently) that one gains about Y by learning the classical state of X.

5.1.2 Properties of classical entropic functions
The Shannon and relative entropy functions possess a variety of useful and
interesting properties. This section establishes several basic properties of
these functions.

Scalar analogues of Shannon entropy and relative entropy
For the purposes of establishing basic analytic properties of the Shannon
and relative entropy functions, it is helpful to define functions representing
scalar analogues of these functions. These scalar functions are to be defined
with respect to the natural logarithm rather than the base-2 logarithm, as
this will simplify some of the calculations to follow, particularly when they
make use of differential calculus.

The first function η : [0,∞) → R, which represents a scalar analogue of
the Shannon entropy, is defined as follows:

η(α) =




−α ln(α) α > 0
0 α = 0.

(5.8)

The function η is continuous everywhere on its domain, and derivatives of η
of all orders exist for all positive real numbers. In particular,

η′(α) = −(1 + ln(α)) (5.9)
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Figure 5.1 Plots of the functions η and η′.

and

η(n+1)(α) = (−1)n(n− 1)!
αn

(5.10)

for n ≥ 1, for all α > 0. Plots of the function η and its first derivative η′ are
shown in Figure 5.1. As the second derivative of η is negative for all α > 0,
one has that η is a concave function:

η(λα+ (1− λ)β) ≥ λη(α) + (1− λ)η(β) (5.11)

for all α, β ≥ 0 and λ ∈ [0, 1].
The second function θ : [0,∞)2 → (−∞,∞], which represents a scalar

analogue of the relative entropy, is defined as follows:

θ(α, β) =





0 if α = 0
∞ if α > 0 and β = 0
α ln(α/β) if α > 0 and β > 0.

(5.12)
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It is evident from this definition that, when restricted to positive real number
arguments α, β > 0, the value θ(α, β) is negative when α < β, zero when
α = β, and positive when α > β.

It is useful to note that the functions θ and η are related by the identity

θ(α, β) = −β η
(
α

β

)
, (5.13)

which holds for all α ∈ [0,∞) and β ∈ (0,∞). The function θ is continuous
at every point (α, β) for which β > 0. It is not continuous at any point
(α, 0), however, as every neighborhood of such a point contains both finite
and infinite values.

The following useful lemma regarding the function θ is equivalent to a
fact commonly known as the log-sum inequality.

Lemma 5.4 Let α0, α1, β0, β1 ∈ [0,∞) be nonnegative real numbers. It
holds that

θ(α0 + α1, β0 + β1) ≤ θ(α0, β0) + θ(α1, β1). (5.14)

Proof If either of β0 or β1 is zero, the inequality is straightforward. More
specifically, if β0 = 0 and α0 = 0, the inequality is equivalent to

θ(α1, β1) ≤ θ(α1, β1), (5.15)

which is trivial, while if β0 = 0 and α0 > 0, the right-hand side of (5.14) is
infinite. A similar argument holds when β1 = 0 by symmetry.

In the case that both β0 and β1 are positive, the inequality may be proved
by combining the identity (5.13) with the concavity of η:

θ(α0, β0) + θ(α1, β1)

= −(β0 + β1)
[

β0
β0 + β1

η

(
α0
β0

)
+ β1
β0 + β1

η

(
α1
β1

)]

≥ −(β0 + β1) η
(
α0 + α1
β0 + β1

)

= θ(α0 + α1, β0 + β1),

(5.16)

as claimed.

Elementary properties of Shannon entropy and relative entropy
The Shannon entropy function may be expressed in terms of the η-function
as follows:

H(u) = 1
ln(2)

∑

a∈Σ
η(u(a)), (5.17)

for every choice of an alphabet Σ and a vector u ∈ [0,∞)Σ. As the function
η is continuous everywhere on its domain, the Shannon entropy function is
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continuous everywhere on its domain as well. The concavity of η implies the
concavity of the Shannon entropy, as the following proposition states.

Proposition 5.5 (Concavity of Shannon entropy) Let Σ be an alphabet,
let u, v ∈ [0,∞)Σ be vectors, and let λ ∈ [0, 1]. It holds that

H(λu+ (1− λ)v) ≥ λH(u) + (1− λ) H(v). (5.18)

Proof By the concavity of the function η, one has

H(λu+ (1− λ)v) = 1
ln(2)

∑

a∈Σ
η(λu(a) + (1− λ)v(a))

≥ λ

ln(2)
∑

a∈Σ
η(u(a)) + 1− λ

ln(2)
∑

a∈Σ
η(v(a))

= λH(u) + (1− λ) H(v),

(5.19)

as required.

The next proposition states two identities that involve the Shannon
entropy of direct sums and tensor products of vectors. Both identities may
be verified through direct calculations.

Proposition 5.6 Let u ∈ [0,∞)Σ and v ∈ [0,∞)Γ be vectors, for alphabets
Σ and Γ. It holds that

H(u⊕ v) = H(u) + H(v) (5.20)

and
H(u⊗ v) = H(u)

∑

b∈Γ
v(b) + H(v)

∑

a∈Σ
u(a). (5.21)

One may observe that, for any choice of probability vectors p ∈ P(Σ) and
q ∈ P(Γ), the identity (5.21) implies that

H(p⊗ q) = H(p) + H(q). (5.22)

As a special case of the same identity, one finds that

H(αp) = αH(p)− α log(α) (5.23)

for every scalar α > 0 and every probability vector p ∈ P(Σ).
The relative entropy function may be expressed using the θ-function as

follows:
D(u‖v) = 1

ln(2)
∑

a∈Σ
θ(u(a), v(a)), (5.24)

for every choice of an alphabet Σ and vectors u, v ∈ [0,∞)Σ. It therefore
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holds that the relative entropy function is continuous when its domain is
restricted to choices of v having only positive entries, but is not continuous
at any point (u, v) for which v has one or more zero entries.

The next proposition, which implies that the relative entropy between
any two probability vectors is nonnegative, represents one application of
Lemma 5.4.

Proposition 5.7 Let Σ be an alphabet, let u, v ∈ [0,∞)Σ be vectors, and
assume that

∑

a∈Σ
u(a) ≥

∑

a∈Σ
v(a). (5.25)

It holds that D(u‖v) ≥ 0. In particular, D(p‖q) ≥ 0 for all choices of
probability vectors p, q ∈ P(Σ).

Proof By Lemma 5.4, it holds that

D(u‖v) = 1
ln(2)

∑

a∈Σ
θ(u(a), v(a)) ≥ 1

ln(2) θ
(∑

a∈Σ
u(a),

∑

a∈Σ
v(a)

)
. (5.26)

The proposition follows from the fact that θ(α, β) ≥ 0 for every choice of
nonnegative real numbers α, β ∈ [0,∞) satisfying α ≥ β.

Remark Theorem 5.15, proved later in the present chapter, establishes a
quantitative lower-bound on the relative entropy D(p‖q) in terms of the
1-norm distance ‖p− q‖1 between any two probability vectors p and q.

Proposition 5.7 may be used to prove upper and lower bounds on the
Shannon entropy, as in the proof of the following proposition.

Proposition 5.8 Let Σ be an alphabet, let u ∈ [0,∞)Σ be a nonzero vector,
and let

α =
∑

a∈Σ
u(a). (5.27)

It holds that
0 ≤ H(u) + α log(α) ≤ α log(|Σ|). (5.28)

In particular, it holds that 0 ≤ H(p) ≤ log(|Σ|) for every probability vector
p ∈ P(Σ).

Proof First, suppose p ∈ P(Σ) is a probability vector. The Shannon entropy
H(p) may be written as

H(p) =
∑

a∈Σ
p(a)>0

p(a) log
( 1
p(a)

)
, (5.29)
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which is a convex combination of nonnegative real numbers, by virtue of the
fact that p(a) ≤ 1 for each a ∈ Σ. It follows that H(p) ≥ 0.

Next, let q ∈ P(Σ) be the probability vector defined by q(a) = 1/|Σ| for
each a ∈ Σ. One may evaluate the relative entropy D(p‖q) directly from its
definition, obtaining

D(p‖q) = −H(p) + log(|Σ|). (5.30)

As p and q are probability vectors, Proposition 5.7 implies that the relative
entropy D(p‖q) is nonnegative, and therefore H(p) ≤ log(|Σ|).

Now consider u ∈ [0,∞)Σ and α, as in the statement of the proposition.
Let p ∈ P(Σ) be the probability vector defined by the equation αp = u. By
(5.23), one has

H(u) = H(αp) = αH(p)− α log(α). (5.31)

Given that 0 ≤ H(p) ≤ log(|Σ|), it follows that

−α log(α) ≤ H(u) ≤ α log(|Σ|)− α log(α), (5.32)

which completes the proof.

Remark Proposition 5.8 assumes that u is a nonzero vector, which implies
that α > 0. The inequalities stated by the proposition are trivially satisfied
for u = 0, provided one makes the interpretation 0 log(0) = 0.

Proposition 5.7 may also be used to prove that the Shannon entropy
is subadditive, in the sense described by the next proposition. Intuitively
speaking, this property reflects the idea that the amount of uncertainty one
has about a compound register cannot be greater than the total uncertainty
one has about its individual registers.

Proposition 5.9 (Subadditivity of Shannon entropy) Let X and Y be
classical registers. With respect to an arbitrary probabilistic state of these
registers, it holds that

H(X,Y) ≤ H(X) + H(Y). (5.33)

Proof Let p ∈ P(Σ× Γ) denote an arbitrary probabilistic state of the pair
(X,Y), for Σ and Γ being the classical state sets of X and Y, respectively.
A calculation based on the definition of the relative entropy and elementary
properties of logarithms reveals the equality

D
(
p
∥∥p[X]⊗ p[Y]

)
= H(X) + H(Y)−H(X,Y). (5.34)

As the relative entropy of one probability vector with respect to another is
nonnegative by Proposition 5.7, the required inequality follows.
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One may observe that Proposition 5.9 is equivalent to the statement that the
mutual information I(X :Y) between two registers is necessarily nonnegative,
or equivalently that the conditional Shannon entropy H(Y|X) of one register
Y given another register X is no larger than the (unconditional) Shannon
entropy H(Y) of the register Y alone: H(Y|X) ≤ H(Y).

The next proposition establishes a related fact: the Shannon entropy of
a pair of classical registers (X,Y) cannot be less than the Shannon entropy
of either of the registers viewed in isolation. Equivalently, the conditional
Shannon entropy H(X|Y) is nonnegative for all probabilistic states of the
pair (X,Y).

Proposition 5.10 Let X and Y be classical registers. With respect to an
arbitrary probabilistic state of these registers, it holds that

H(X) ≤ H(X,Y). (5.35)

Proof Let Σ and Γ denote the classical state sets of X and Y, respectively,
and let p ∈ P(Σ × Γ) be an arbitrary probabilistic state of (X,Y). The
logarithm is an increasing function, and therefore

log(p(a, b)) ≤ log
(∑

c∈Γ
p(a, c)

)
(5.36)

for every pair (a, b) ∈ Σ× Γ. It follows that

H(X,Y) = −
∑

a∈Σ

∑

b∈Γ
p(a, b) log(p(a, b))

≥ −
∑

a∈Σ

(∑

b∈Γ
p(a, b)

)
log
(∑

c∈Γ
p(a, c)

)
= H(X),

(5.37)

as required.

Remark It should be noted that Proposition 5.10 does not carry over to
the von Neumann entropy of quantum states (cf. Theorem 5.25).

The next theorem represents a direct and straightforward application of
Lemma 5.4. A quantum analogue of this theorem, which is stated and proved
in Section 5.2.3, is not known to have nearly so straightforward a proof.

Theorem 5.11 Let Σ be an alphabet and let u0, u1, v0, v1 ∈ [0,∞)Σ be
vectors of nonnegative real numbers indexed by Σ. It holds that

D(u0 + u1‖v0 + v1) ≤ D(u0‖v0) + D(u1‖v1). (5.38)
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Proof By Lemma 5.4 it holds that

D(u0 + u1‖v0 + v1)

= 1
ln(2)

∑

a∈Σ
θ(u0(a) + u1(a), v0(a) + v1(a))

≤ 1
ln(2)

∑

a∈Σ

(
θ(u0(a), v0(a)) + θ(u1(a), v1(a))

)

= D(u0‖v0) + D(u1‖v1),

(5.39)

as claimed.

For all vectors u, v ∈ [0,∞)Σ and scalars α, β ∈ [0,∞) it holds that

D(αu‖βv) = αD(u‖v) + 1
ln(2)θ(α, β)

∑

a∈Σ
u(a), (5.40)

provided one makes the interpretation 0 · ∞ = 0 in the case that α = 0
and D(u‖v) = ∞, or in the case that θ(α, β) = ∞ and u = 0. This can be
verified through a direct calculation. As θ(α, α) = 0 for all α ∈ [0,∞), one
obtains the identity

D(αu‖αv) = αD(u‖v), (5.41)

where again it is to be interpreted that 0 · ∞ = 0. Alternately, one may
verify that this identity holds by observing

θ(αβ, αγ) = α θ(β, γ) (5.42)

for all nonnegative real numbers α, β, γ ∈ [0,∞). Through this identity, one
obtains the following corollary to Theorem 5.11.

Corollary 5.12 (Joint convexity of relative entropy) Let Σ be an alphabet,
let u0, u1, v0, v1 ∈ [0,∞)Σ be vectors of nonnegative real numbers indexed
by Σ, and let λ ∈ [0, 1]. It holds that

D(λu0 + (1− λ)u1‖λv0 + (1− λ)v1)
≤ λD(u0‖v0) + (1− λ) D(u1‖v1).

(5.43)

Through a similar argument, one may prove that the relative entropy of
one vector with respect to another cannot increase under the action of any
stochastic operation performed simultaneously on the two vectors.

Theorem 5.13 Let Σ and Γ be alphabets, let u, v ∈ [0,∞)Σ be vectors,
and let A ∈ L

(
RΣ,RΓ) be a stochastic operator. It holds that

D(Au‖Av) ≤ D(u‖v). (5.44)



5.1 Classical entropy 261

Proof By Lemma 5.4 along with the identity (5.42), it holds that

D(Au‖Av) = 1
ln(2)

∑

a∈Γ
θ

(∑

b∈Σ
A(a, b)u(b),

∑

b∈Σ
A(a, b)v(b)

)

≤ 1
ln(2)

∑

a∈Γ

∑

b∈Σ
A(a, b) θ(u(b), v(b))

= 1
ln(2)

∑

b∈Σ
θ(u(b), v(b))

= D(u‖v),

(5.45)

as required.

Quantitative bounds on Shannon entropy and relative entropy
Two bounds, one concerning the Shannon entropy and one concerning the
relative entropy, will now be proved. The first bound is a quantitative form
of the statement that the Shannon entropy function is continuous on the set
of all probability vectors.

Theorem 5.14 (Audenaert) Let p0, p1 ∈ P(Σ) be probability vectors, for
Σ being an alphabet with |Σ| ≥ 2. It holds that

|H(p0)−H(p1)| ≤ λ log(|Σ| − 1) + H(λ, 1− λ) (5.46)

for λ = 1
2‖p0 − p1‖1.

Proof The theorem holds trivially when p0 = p1, so it will be assumed that
this is not the case. Let Σ0,Σ1 ⊆ Σ be disjoint sets defined as

Σ0 =
{
a ∈ Σ : p0(a) > p1(a)

}
,

Σ1 =
{
a ∈ Σ : p0(a) < p1(a)

}
,

(5.47)

and let vectors u0, u1 ∈ [0, 1]Σ be defined as

u0(a) =
{
p0(a)− p1(a) if a ∈ Σ0
0 otherwise, (5.48)

u1(a) =
{
p1(a)− p0(a) if a ∈ Σ1
0 otherwise. (5.49)

for every a ∈ Σ. It holds that p0 − p1 = u0 − u1 and u0(a)u1(a) = 0 for all
a ∈ Σ, and moreover

∑

a∈Σ
u0(a) = λ =

∑

a∈Σ
u1(a). (5.50)
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Taking w ∈ [0, 1]Σ to be defined as

w(a) = min{p0(a), p1(a)} (5.51)

for every a ∈ Σ, one finds that p0 = u0 + w, p1 = u1 + w, and
∑

a∈Σ
w(a) = 1− λ. (5.52)

Next, observe that the identity

(α+ β) log(α+ β)− α log(α)− β log(β)

= (α+ β) H
(

α

α+ β
,

β

α+ β

) (5.53)

holds for every choice of nonnegative real numbers α and β, assuming at
least one of them is positive (and, as is to be expected, interpreting 0 log(0)
as 0 if either α or β is 0). Through this identity, the following two expressions
are obtained:

H(u0) + H(w)−H(p0) =
∑

a∈Σ0

p0(a) H
(
u0(a)
p0(a) ,

w(a)
p0(a)

)
, (5.54)

H(u1) + H(w)−H(p1) =
∑

a∈Σ1

p1(a) H
(
u1(a)
p1(a) ,

w(a)
p1(a)

)
. (5.55)

In both cases, the restriction of the sums to the sets Σ0 and Σ1 reflects the
exclusion of 0 summands. Both sums include only nonnegative summands,
and therefore

H(p0) ≤ H(u0) + H(w) and H(p1) ≤ H(u1) + H(w). (5.56)

By setting
α0 =

∑

a∈Σ0

p0(a) and α1 =
∑

a∈Σ1

p1(a), (5.57)

one has that
∑

a∈Σ0

w(a) = α0 − λ and
∑

a∈Σ1

w(a) = α1 − λ, (5.58)

which implies that α0, α1 ∈ [λ, 1]. By the concavity of the Shannon entropy
(Proposition 5.5), the following two inequalities are obtained:

H(u0) + H(w)−H(p0) ≤ α0 H
(
λ

α0
, 1− λ

α0

)
, (5.59)

H(u1) + H(w)−H(p1) ≤ α1 H
(
λ

α1
, 1− λ

α1

)
. (5.60)
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Given that the function

fλ(α) = α H
(
λ

α
, 1− λ

α

)
(5.61)

is strictly increasing on the interval [λ, 1], it follows that

0 ≤ H(u0) + H(w)−H(p0) ≤ H(λ, 1− λ),
0 ≤ H(u1) + H(w)−H(p1) ≤ H(λ, 1− λ).

(5.62)

By the triangle inequality together with (5.62), one may therefore conclude
that

|H(p0)−H(p1)| − |H(u0)−H(u1)|
≤ |(H(p0)−H(u0)−H(w))− (H(p1)−H(u1)−H(w))|
≤ H(λ, 1− λ).

(5.63)

To complete the proof, it suffices to prove

|H(u0)−H(u1)| ≤ λ log(|Σ| − 1). (5.64)

For any alphabet Γ and any vector v ∈ [0,∞)Γ with
∑

b∈Γ
v(b) = λ, (5.65)

it holds that
−λ log(λ) ≤ H(v) ≤ λ log(|Γ|)− λ log(λ), (5.66)

as was demonstrated in Proposition 5.8. Given that u0 and u1 are supported
on disjoint subsets of Σ and have entries summing to the same value λ, it
follows that

|H(u0)−H(u1)| ≤ λ log(|Γ|), (5.67)

for Γ being a proper subset of Σ. The largest value obtained for the upper
bound occurs when Γ has one fewer element than Σ, yielding the required
inequality (5.64), which completes the proof.

The second bound, which concerns the relative entropy function, is a
quantitative form of Proposition 5.7. It lower-bounds the relative entropy
D(p0‖p1), for probability vectors p0 and p1, by a quantity determined by
their 1-norm distance ‖p0 − p1‖1.

Theorem 5.15 (Pinsker’s inequality) Let p0, p1 ∈ P(Σ) be probability
vectors, for Σ being an alphabet. It holds that

D(p0‖p1) ≥ 1
2 ln(2)

∥∥p0 − p1
∥∥2

1. (5.68)
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The proof of Theorem 5.15 will make use of the following lemma, which
is equivalent to a special case of the theorem in which |Σ| = 2.

Lemma 5.16 For all choices of real numbers α, β ∈ [0, 1] it holds that

θ(α, β) + θ(1− α, 1− β) ≥ 2(α− β)2. (5.69)

Proof The inequality in the statement of the lemma is immediate in the
case that β ∈ {0, 1}. In the case that α ∈ {0, 1} and β ∈ (0, 1), the inequality
in the statement of the lemma is equivalent to

− ln(β) ≥ 2(1− β)2, (5.70)

which can be verified using elementary calculus. It remains to consider the
case where α, β ∈ (0, 1). Under this assumption it may be verified that

θ(α, β) + θ(1− α, 1− β)
= (η(β) + η(1− β))− (η(α) + η(1− α))

+ (α− β)(η′(β)− η′(1− β))
= f(β)− f(α) + (α− β)f ′(β)

(5.71)

for f : [0, 1] → R defined as f(γ) = η(γ) + η(1 − γ) for all γ ∈ [0, 1]. By
Taylor’s theorem it holds that

f(α) = f(β) + (α− β)f ′(β) + 1
2(α− β)2f ′′(γ) (5.72)

for some choice of γ being a convex combination of α and β. Equation (5.72)
therefore holds for some choice of γ ∈ (0, 1). Evaluating the second derivative
of f yields

f ′′(γ) = −
(1
γ

+ 1
1− γ

)
, (5.73)

whereby it follows that f ′′(γ) ≤ −4 for all γ ∈ (0, 1). This implies the
inequality (5.69), which completes the proof.

Proof of Theorem 5.15 Define disjoint sets Σ0,Σ1,Γ ⊆ Σ as

Σ0 = {a ∈ Σ : p0(a) > p1(a)} , (5.74)
Σ1 = {a ∈ Σ : p0(a) < p1(a)} , (5.75)
Γ = {a ∈ Σ : p0(a) = p1(a)} , (5.76)

and define a stochastic operator A ∈ L
(
RΣ,R{0,1}

)
as

A =
∑

a∈Σ0

E0,a +
∑

a∈Σ1

E1,a + 1
2
∑

a∈Γ
(E0,a + E1,a). (5.77)



5.2 Quantum entropy 265

Let
α = (Ap0)(0) and β = (Ap1)(0), (5.78)

and note that

(Ap0)(1) = 1− α and (Ap1)(1) = 1− β, (5.79)

as p0 and p1 are probability vectors and A is stochastic. It holds that

α− β =
∑

a∈Σ0

(p0(a)− p1(a)) =
∑

a∈Σ1

(p1(a)− p0(a)) = 1
2
∥∥p0 − p1

∥∥
1. (5.80)

By Theorem 5.13 and Lemma 5.16, one finds that

D(p0‖p1) ≥ D(Ap0‖Ap1) = 1
ln(2) (θ(α, β) + θ(1− α, 1− β))

≥ 2
ln(2)(α− β)2 = 1

2 ln(2)
∥∥p0 − p1

∥∥2
1,

(5.81)

as required.

5.2 Quantum entropy
The von Neumann entropy and quantum relative entropy functions, which
may be viewed as extensions of the Shannon entropy and relative entropy
functions from nonnegative vectors to positive semidefinite operators, are
defined in this section. Fundamental properties of these functions, including
the key properties of joint convexity of the quantum relative entropy and
strong subadditivity of the von Neumann entropy, are established.

5.2.1 Definitions of quantum entropic functions
The von Neumann entropy function represents a natural extension of the
Shannon entropy function from nonnegative vectors to positive semidefinite
operators; as the following definition states, the von Neumann entropy is
defined as the Shannon entropy of a given positive semidefinite operator’s
vector of eigenvalues.

Definition 5.17 Let P ∈ Pos(X ) be a positive semidefinite operator, for
X a complex Euclidean space. The von Neumann entropy of P is defined as

H(P ) = H(λ(P )), (5.82)

for λ(P ) being the vector of eigenvalues of P .
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The von Neumann entropy may also be expressed as

H(P ) = −Tr (P log(P )) . (5.83)

Formally speaking, this expression assumes that the operator P log(P ) is
defined for all positive semidefinite operators P ∈ Pos(X ), despite the fact
that log(P ) is only defined for positive definite operators P . The natural
interpretation is that P log(P ) refers to the operator obtained by extending
the scalar function

α 7→



α log(α) if α > 0
0 if α = 0

(5.84)

to positive semidefinite operators in the usual way (q.v. Section 1.1.3).
Similar to the Shannon entropy usually being considered for probability

vectors, it is most common that one considers the von Neumann entropy
function on density operator inputs. Also similar to the Shannon entropy,
it is convenient to speak of the von Neumann entropy H(X) of a register X,
which means the quantity H(ρ) for ρ ∈ D(X ) representing the state of X at
the moment being considered. Once again, the notation H(X,Y) is taken to
mean H((X,Y)), and likewise for other forms of compound registers.

The study of the von Neumann entropy is aided by the consideration of
the quantum relative entropy, which is an extension of the ordinary relative
entropy from vectors to positive semidefinite operators.

Definition 5.18 Let P,Q ∈ Pos(X ) be positive semidefinite operators,
for a complex Euclidean space X . The quantum relative entropy of P with
respect to Q is defined as

D(P ‖Q) =





Tr(P log(P ))− Tr(P log(Q)) if im(P ) ⊆ im(Q)
∞ otherwise.

(5.85)

This definition is deserving of a short explanation because, as before, the
logarithm is really only defined for positive definite operators. However,
the operator P log(Q) has a natural interpretation for positive semidefinite
operators P and Q that satisfy im(P ) ⊆ im(Q). The action of this operator
on the subspace im(Q) is well-defined, as Q is a positive definite operator
when restricted to this subspace, while its action on the subspace ker(Q) is
taken to be the zero operator. This interpretation is equivalent to identifying
0 log(0) with 0, as the condition im(P ) ⊆ im(Q) implies that P acts as the
zero operator on ker(Q). The operator P log(P ) is defined for all positive
semidefinite operators P , as was discussed previously.
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It will be convenient to make note of a concrete expression for the value
D(P ‖Q), assuming im(P ) ⊆ im(Q). Let n = dim(X ) and suppose that

P =
n∑

j=1
λj(P )xjx∗j and Q =

n∑

k=1
λk(Q) yky∗k (5.86)

are spectral decompositions of P and Q. Let r = rank(P ) and s = rank(Q),
and observe that the expressions of P and Q in (5.86) may be truncated to
r and s terms, respectively. It then holds that

D(P ‖Q) =
r∑

j=1

s∑

k=1
|〈xj , yk〉|2 λj(P )

(
log(λj(P ))− log(λk(Q))

)
. (5.87)

The omission of the indices j ∈ {r + 1, . . . , n} and k ∈ {s+ 1, . . . , n} in the
sums is consistent with the identification 0 log(0) = 0 suggested above. In
particular, if k is such that λk(Q) = 0, then it must hold that

|〈xj , yk〉|2λj(P ) = 0 (5.88)

for all j ∈ {1, . . . , n} by the assumption im(P ) ⊆ im(Q). An alternative
expression for the quantum relative entropy D(P ‖Q), for P and Q having
spectral decompositions (5.86), which is valid for all choices of P and Q, is
given by

D(P ‖Q) = 1
ln(2)

n∑

j=1

n∑

k=1
θ
(
|〈xj , yk〉|2λj(P ), |〈xj , yk〉|2λk(Q)

)
. (5.89)

The conditional von Neumann entropy and quantum mutual information
are defined in an analogous manner to the conditional Shannon entropy and
mutual information. More precisely, for two registers X and Y in a given state
of interest, one defines the conditional von Neumann entropy of X given Y
as

H(X|Y) = H(X,Y)−H(Y), (5.90)

and one defines the quantum mutual information between X and Y as

I(X : Y) = H(X) + H(Y)−H(X,Y). (5.91)

5.2.2 Elementary properties of quantum entropic functions
This section discusses elementary properties of the von Neumann entropy
and quantum relative entropy functions. Specifically, these are properties
that may be established without making essential use of the joint convexity
of the quantum relative entropy, which is proved in the section following this
one, or other equivalent statements.
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Continuity of the von Neumann entropy
The von Neumann entropy function is continuous, owing to the fact that it
is a composition of continuous functions: the Shannon entropy function is
continuous at every point in its domain, as is the function

λ : Herm(X )→ Rn, (5.92)

for n = dim(X ).

Simple identities concerning quantum entropy
The three propositions that follow are stated as propositions for the sake
of convenience. They may be verified directly through the definitions of the
von Neumann entropy and quantum relative entropy functions.

Proposition 5.19 Let X and Y be complex Euclidean spaces for which
it holds that dim(X ) ≤ dim(Y), let P,Q ∈ Pos(X ) be positive semidefinite
operators, and let V ∈ U(X ,Y) be an isometry. It holds that

H
(
V PV ∗

)
= H(P ) and D

(
V PV ∗

∥∥V QV ∗
)

= D(P ‖Q). (5.93)

Proposition 5.20 Let X and Y be complex Euclidean spaces and let
P ∈ Pos(X ) and Q ∈ Pos(Y) be positive semidefinite operators. It holds
that

H
((

P 0
0 Q

))
= H(P ) + H(Q) (5.94)

and

H(P ⊗Q) = Tr(Q) H(P ) + Tr(P ) H(Q). (5.95)

In particular, it holds that

H(ρ⊗ σ) = H(ρ) + H(σ) (5.96)

for all choices of density operators ρ ∈ D(X ) and σ ∈ D(Y).

Proposition 5.21 Let P0, Q0 ∈ Pos(X ) and P1, Q1 ∈ Pos(Y) be positive
semidefinite operators, for complex Euclidean spaces X and Y, and assume
that P0 and P1 are nonzero. It holds that

D(P0 ⊗ P1‖Q0 ⊗Q1) = Tr(P1) D(P0‖Q0) + Tr(P0) D(P1‖Q1). (5.97)

As a consequence of the tensor product identities in the second and third
of these propositions, one finds that the following two identities hold for
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all choices of a complex Euclidean space X , positive semidefinite operators
P,Q ∈ Pos(X ), and scalars α, β ∈ (0,∞):

H(αP ) = αH(P )− α log(α) Tr(P ), (5.98)
D(αP ‖βQ) = αD(P ‖Q) + α log(α/β) Tr(P ). (5.99)

Klein’s inequality
An analogous statement to Proposition 5.7 in the quantum setting is known
as Klein’s inequality. It implies that the quantum relative entropy function
is nonnegative for density operator inputs.

Proposition 5.22 (Klein’s inequality) Let X be a complex Euclidean
space, let P,Q ∈ Pos(X ) be positive semidefinite operators, and assume
that Tr(P ) ≥ Tr(Q). It holds that D(P ‖Q) ≥ 0. In particular, it holds that
D(ρ‖σ) ≥ 0 for every choice of density operators ρ, σ ∈ D(X ).

Proof Let n = dim(X ) and let

P =
n∑

j=1
λj(P )xjx∗j and Q =

n∑

k=1
λk(Q) yky∗k (5.100)

be spectral decompositions of P and Q. By Lemma 5.4, it holds that

D(P ‖Q) = 1
ln(2)

∑

j,k

θ
(
|〈xj , yk〉|2λj(P ), |〈xj , yk〉|2λk(Q)

)

≥ 1
ln(2) θ

(∑

j,k

|〈xj , yk〉|2 λj(P ),
∑

j,k

|〈xj , yk〉|2 λk(Q)
)

= 1
ln(2) θ(Tr(P ),Tr(Q)),

(5.101)

where the sums are over all j, k ∈ {1, . . . , n}. By the assumption that
Tr(P ) ≥ Tr(Q), one concludes that θ(Tr(P ),Tr(Q)) ≥ 0, which completes
the proof.

Concavity and subadditivity of von Neumann entropy
Similar to the Shannon entropy, the von Neumann entropy is concave and
subadditive, as the following two theorems establish.

Theorem 5.23 (Concavity of von Neumann entropy) Let X be a complex
Euclidean space, let P,Q ∈ Pos(X ) be positive semidefinite operators, and
let λ ∈ [0, 1]. It holds that

H(λP + (1− λ)Q) ≥ λH(P ) + (1− λ) H(Q). (5.102)
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Proof A straightforward computation reveals that

D
((

P 0
0 Q

)∥∥∥∥∥

(
P+Q

2 0
0 P+Q

2

))
= 2 H

(
P +Q

2

)
−H(P )−H(Q). (5.103)

As the operators
(
P 0
0 Q

)
and

(
P+Q

2 0
0 P+Q

2

)
(5.104)

have the same trace, the quantity represented by (5.103) is nonnegative by
Klein’s inequality (Proposition 5.22). It therefore holds that

H
(
P +Q

2

)
≥ 1

2 H(P ) + 1
2 H(Q), (5.105)

which implies that the von Neumann entropy is midpoint concave on the
domain Pos(X ). As the von Neumann entropy function is continuous on all
of Pos(X ), it follows that it is in fact a concave function on this domain,
which completes the proof.

Theorem 5.24 (Subadditivity of von Neumann entropy) Let X and Y be
registers. For every state of the register (X,Y), it holds that

H(X,Y) ≤ H(X) + H(Y). (5.106)

Proof The inequality in the statement of the proposition may equivalently
be written

H(ρ) ≤ H(ρ[X]) + H(ρ[Y]) (5.107)

for ρ ∈ D(X ⊗ Y) denoting an arbitrary state of the pair (X,Y). Using the
formula

log(P ⊗Q) = log(P )⊗ 1 + 1⊗ log(Q), (5.108)

together with the fact that

im(ρ) ⊆ im(ρ[X]⊗ ρ[Y]), (5.109)

it may be observed that

D
(
ρ
∥∥ρ[X]⊗ ρ[Y]

)
= −H(ρ) + H(ρ[X]) + H(ρ[Y]). (5.110)

It holds that (5.110) is nonnegative by Klein’s inequality (Proposition 5.22),
and therefore the inequality (5.107) follows.
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Von Neumann entropy and purifications
Let X and Y be registers, and assume the compound register (X,Y) is in a
pure state uu∗, for u ∈ X ⊗Y being a unit vector. By means of the Schmidt
decomposition, one may write

u =
∑

a∈Σ

√
p(a)xa ⊗ ya (5.111)

for some alphabet Σ, a probability vector p ∈ P(Σ), and orthonormal sets
{xa : a ∈ Σ} ⊂ X and {ya : a ∈ Σ} ⊂ Y. It holds that

(uu∗)[X] =
∑

a∈Σ
p(a)xax∗a and (uu∗)[Y] =

∑

a∈Σ
p(a)yay∗a, (5.112)

and therefore
H(X) = H(p) = H(Y). (5.113)

This simple observation, when combined with the notion of purifications of
states, provides a useful tool for reasoning about the von Neumann entropy
of collections of registers. The proof of the following theorem offers one
example along these lines.

Theorem 5.25 Let X and Y be registers. For every state of the register
(X,Y), it holds that

H(X) ≤ H(Y) + H(X,Y). (5.114)

Proof Let ρ ∈ D(X ⊗Y) be a state of the pair (X,Y), and introduce a new
register Z whose associated complex Euclidean space Z has dimension at
least rank(ρ). By Theorem 2.10, there must exist a unit vector u ∈ X⊗Y⊗Z
such that

ρ = TrZ(uu∗). (5.115)

Now, consider the situation in which the compound register (X,Y,Z) is in
the pure state uu∗, which is consistent with the state of (X,Y) being ρ by
the requirement (5.115). By the argument suggested above, one finds that

H(X) = H(Y,Z) and H(X,Y) = H(Z). (5.116)

By the subadditivity of the von Neumann entropy (Theorem 5.24), one has

H(Y,Z) ≤ H(Y) + H(Z), (5.117)

and therefore (5.114) holds. The required inequality has been established for
all choices of the state ρ, which completes the proof.
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The Fannes–Audenaert inequality
The next theorem establishes an upper bound on the difference between the
values of the von Neumann entropy function of two density operators. It
may be seen as a quantitative form of the statement that the von Neumann
entropy is continuous, restricted to density operator inputs. It is essentially
a quantum generalization of Theorem 5.14, and its proof is based on that
theorem.

Theorem 5.26 (Fannes–Audenaert inequality) Let ρ0, ρ1 ∈ D(X ) be
density operators, for X a complex Euclidean space of dimension n ≥ 2,
and let

δ = 1
2
∥∥ρ0 − ρ1

∥∥
1. (5.118)

It holds that

|H(ρ0)−H(ρ1)| ≤ δ log(n− 1) + H(δ, 1− δ). (5.119)

The following lemma relating the trace distance between two Hermitian
operators to the 1-norm distance between vectors of their eigenvalues is used
to reduce Theorem 5.26 to Theorem 5.14.

Lemma 5.27 Let X,Y ∈ Herm(X ) be Hermitian operators, for X being
a complex Euclidean space of dimension n. It holds that

n∑

k=1
|λk(X)− λk(Y )| ≤ ‖X − Y ‖1 ≤

n∑

k=1
|λk(X)− λn−k+1(Y )|. (5.120)

Proof Consider first a Jordan–Hahn decomposition of X − Y . Explicitly,
let P,Q ∈ Pos(X ) be orthogonal positive semidefinite operators such that

X − Y = P −Q. (5.121)

Also let Z = P +Y , which is equivalent to Z = Q+X. As Z ≥ X, it follows
from the Courant–Fischer theorem (Theorem 1.2) that λk(Z) ≥ λk(X) for
all k ∈ {1, . . . , n}. Thus,

λk(X)− λk(Y ) ≤ (λk(X)− λk(Y )
)

+ 2
(
λk(Z)− λk(X)

)

= 2λk(Z)− (λk(X) + λk(Y )
)
.

(5.122)

By similar reasoning it follows that

λk(Y )− λk(X) ≤ 2λk(Z)− (λk(X) + λk(Y )) , (5.123)

and therefore

|λk(X)− λk(Y )| ≤ 2λk(Z)− (λk(X) + λk(Y )) . (5.124)
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Consequently, one has
n∑

k=1
|λk(X)− λk(Y )| ≤

n∑

k=1

(
2λk(Z)− (λk(X) + λk(Y )

))

= 2 Tr(Z)− Tr(X)− Tr(Y ) = Tr(P ) + Tr(Q) = ‖X − Y ‖1.
(5.125)

This proves the first inequality.
To prove the second inequality, observe that

‖X − Y ‖1 = 〈2Π− 1, X − Y 〉 (5.126)

for some choice of a projection operator Π, owing to the fact that X − Y is
Hermitian. Let r = rank(Π), and note the following two inequalities:

〈Π, X〉 ≤ λ1(X) + · · ·+ λr(X),
〈Π, Y 〉 ≥ λn−r+1(Y ) + · · ·+ λn(Y ).

(5.127)

It follows that
‖X − Y ‖1
≤ 2

(
λ1(X) + · · ·+ λr(X)

)− 2
(
λn−r+1(Y ) + · · ·+ λn(Y )

)

− Tr(X) + Tr(Y )

=
r∑

k=1
(λk(X)− λn−k+1(Y )) +

n∑

k=r+1
(λn−k+1(Y )− λk(X))

≤
n∑

k=1
|λk(X)− λn−k+1(Y )|,

(5.128)

as required.

Proof of Theorem 5.26 Define δ0, δ1 ∈ [0, 1] as follows:

δ0 = 1
2

n∑

k=1
|λk(ρ0)− λk(ρ1)|,

δ1 = 1
2

n∑

k=1
|λk(ρ0)− λn−k+1(ρ1)|.

(5.129)

By Lemma 5.27 it holds that δ0 ≤ δ ≤ δ1, and therefore δ = αδ0 + (1−α)δ1
for some choice of α ∈ [0, 1]. By Theorem 5.14 it holds that

|H(ρ0)−H(ρ1)|
= |H(λ1(ρ0), . . . , λn(ρ0))−H(λ1(ρ1), . . . , λn(ρ1))|
≤ δ0 log(n− 1) + H(δ0, 1− δ0)

(5.130)
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and
|H(ρ0)−H(ρ1)|

= |H(λ1(ρ0), . . . , λn(ρ0))−H(λn(ρ1), . . . , λ1(ρ1))|
≤ δ1 log(n− 1) + H(δ1, 1− δ1).

(5.131)

Thus, by the concavity of the Shannon entropy function (Proposition 5.5),
it follows that
|H(ρ0)−H(ρ1)| ≤ (αδ0 + (1− α)δ1) log(n− 1)

+ αH(δ0, 1− δ0) + (1− α) H(δ1, 1− δ1)
≤ δ log(n− 1) + H(δ, 1− δ),

(5.132)

as required.

The Fannes–Audenaert inequality is saturated for all values of δ ∈ [0, 1]
and n ≥ 2. For instance, for any choice of n ≥ 2 and Σ = {1, . . . , n}, one
may consider the density operators

ρ0 = E1,1 and ρ1 = (1− δ)E1,1 + δ

n− 1

n∑

k=2
Ek,k. (5.133)

It holds that

δ = 1
2
∥∥ρ0 − ρ1

∥∥
1 (5.134)

and

|H(ρ0)−H(ρ1)| = H(ρ1) = H(δ, 1− δ) + δ log(n− 1). (5.135)

The quantum relative entropy as a limit of difference quotients
As the following proposition states, the quantum relative entropy can be
expressed as the limit of a simple expression of its arguments. This fact will
be useful in Section 5.2.3, for the task of proving that the quantum relative
entropy is jointly convex.

Proposition 5.28 Let P,Q ∈ Pos(X ) be positive semidefinite operators,
for X a complex Euclidean space. It holds that

D(P ‖Q) = 1
ln(2) lim

ε ↓ 0

Tr(P )− 〈P 1−ε, Qε〉
ε

. (5.136)

Proof The proposition is immediate in the case that im(P ) 6⊆ im(Q), for
in this case

lim
ε ↓ 0

(
Tr(P )− 〈P 1−ε, Qε〉

)
=
〈
P,1−Πim(Q)

〉
(5.137)
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is a positive real number. This implies that the limit in (5.136) evaluates to
positive infinity, which is in agreement with the quantum relative entropy.
The proposition is also immediate when P = 0. It therefore remains to
consider the case that P is a nonzero operator and im(P ) ⊆ im(Q), which
is taken as an assumption for the remainder of the proof.

Let r = rank(P ) and s = rank(Q). By the spectral theorem (as stated by
Corollary 1.4), one may write

P =
r∑

j=1
λj(P )xjx∗j and Q =

s∑

k=1
λk(Q) yky∗k (5.138)

for orthonormal collections of vectors {x1, . . . , xr} and {y1, . . . , ys}. Define
a function f : R→ R as

f(α) =
r∑

j=1

s∑

k=1
|〈xj , yk〉|2 λj(P )1−α λk(Q)α (5.139)

for all α ∈ R. This function is differentiable at every point α ∈ R, with its
derivative given by

f ′(α) = −
r∑

j=1

s∑

k=1
|〈xj , yk〉|2 λj(P )1−α λk(Q)α ln

(
λj(P )
λk(Q)

)
. (5.140)

Now, it holds that

f(α) =
〈
P 1−α, Qα

〉
(5.141)

for every α ∈ (0, 1), while

f(0) =
〈
P,Πim(Q)

〉
= Tr(P ). (5.142)

Evaluating the derivative of f at 0 yields

f ′(0) = − ln(2) D(P ‖Q), (5.143)

while the definition of the derivative, as the limit of difference quotients,
yields

f ′(0) = lim
ε ↓ 0

f(ε)− f(0)
ε

= lim
ε ↓ 0

〈P 1−ε, Qε〉 − Tr(P )
ε

. (5.144)

The proposition follows by combining equations (5.144) and (5.143).
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5.2.3 Joint convexity of quantum relative entropy
This section contains a proof of a fundamental fact concerning the quantum
relative entropy, which is that it is a jointly convex function. By making use
of this key fact, one may prove that several other important properties of
the von Neumann entropy and quantum relative entropy functions hold.

Proof of the joint convexity of the quantum relative entropy
Multiple proofs of the joint convexity of the quantum relative entropy are
known. The proof to be presented below will make use of the following
technical lemma relating the diagonal and off-diagonal blocks of any 2-by-2
positive semidefinite block operator, under the assumption that the blocks
are Hermitian and the diagonal blocks commute.

Lemma 5.29 Let X be a complex Euclidean space, let P,Q ∈ Pos(X ) be
positive semidefinite operators such that [P,Q] = 0, and let H ∈ Herm(X )
be a Hermitian operator for which

(
P H

H Q

)
∈ Pos(X ⊕ X ). (5.145)

It holds that H ≤
√
P
√
Q.

Proof The lemma will first be proved for P and Q being positive definite
operators. By Lemma 3.18 it follows that

∥∥∥P−
1
2HQ−

1
2
∥∥∥ ≤ 1, (5.146)

which implies that every eigenvalue of the operator P− 1
2HQ−

1
2 is bounded

by 1 in absolute value. As P and Q commute, it holds that the eigenvalues
of P− 1

4Q−
1
4HQ−

1
4P−

1
4 agree with those of P− 1

2HQ−
1
2 , and therefore

λ1
(
P−

1
4Q−

1
4HQ−

1
4P−

1
4
)
≤ 1. (5.147)

The inequality (5.147) is equivalent to

P−
1
4Q−

1
4HQ−

1
4P−

1
4 ≤ 1, (5.148)

which, again by the commutativity of P and Q, implies H ≤
√
P
√
Q.

In the general case where P and Q are not necessarily positive definite,
the argument above may be applied to P + ε1 and Q+ ε1 in place of P and
Q, respectively, to obtain

H ≤
√
P + ε1

√
Q+ ε1 (5.149)

for all ε > 0. The function ε 7→
√
P + ε1

√
Q+ ε1 − H is continuous on
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the domain [0,∞), and so the preimage of the closed set Pos(X ) under this
function is closed. Given that every ε > 0 is contained in this preimage, it
follows that 0 is contained in the preimage as well:

√
P
√
Q −H is positive

semidefinite, which proves the lemma.

The next step toward the joint convexity of the quantum relative entropy
is to prove the following theorem. It is one formulation of a fact known as
Lieb’s concavity theorem.

Theorem 5.30 (Lieb’s concavity theorem) Let A0, A1 ∈ Pos(X ) and
B0, B1 ∈ Pos(Y) be positive semidefinite operators, for complex Euclidean
spaces X and Y. For every choice of a real number α ∈ [0, 1] it holds that

(A0 +A1)α ⊗ (B0 +B1)1−α ≥ Aα0 ⊗B1−α
0 +Aα1 ⊗B1−α

1 . (5.150)

Remark Within the context of this theorem and its proof, one should make
the interpretation P 0 = Πim(P ) for every positive semidefinite operator P .

Proof of Theorem 5.30 For every real number α ∈ [0, 1], define operators
as follows:

X(α) = Aα0 ⊗B1−α
0 ,

Y (α) = Aα1 ⊗B1−α
1 ,

Z(α) = (A0 +A1)α ⊗ (B0 +B1)1−α.

(5.151)

The operators within these three individual collections commute, meaning

[X(α), X(β)] = 0, [Y (α), Y (β)] = 0, and [Z(α), Z(β)] = 0 (5.152)

for every choice of α, β ∈ [0, 1], and moreover it holds that
√
X(α)

√
X(β) = X

(
α+ β

2

)
, (5.153)

√
Y (α)

√
Y (β) = Y

(
α+ β

2

)
, (5.154)

√
Z(α)

√
Z(β) = Z

(
α+ β

2

)
. (5.155)

With respect to these operators, the statement of the theorem is equivalent
to the claim that

Z(α) ≥ X(α) + Y (α) (5.156)

for every α ∈ [0, 1]. The function

α 7→ Z(α)− (X(α) + Y (α)) (5.157)
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defined on the interval [0, 1] is continuous, and therefore the preimage of the
closed set Pos(X ⊗ Y) under this function is closed. It therefore suffices to
prove that the set of all α ∈ [0, 1] for which (5.156) holds is dense in [0, 1].

Now, suppose it has been proved that

Z(α) ≥ X(α) + Y (α) and Z(β) ≥ X(β) + Y (β) (5.158)

for some particular choice of real numbers α, β ∈ [0, 1]. It holds that


√
X(α)

√
X(β)



(√

X(α)
√
X(β)

)
=


 X(α) X

(
α+β

2

)

X
(
α+β

2

)
X(β)


 (5.159)

is positive semidefinite, and likewise


√
Y (α)

√
Y (β)



(√

Y (α)
√
Y (β)

)
=


 Y (α) Y

(
α+β

2

)

Y
(
α+β

2

)
Y (β)


 (5.160)

is positive semidefinite. The sum of these two matrices is therefore positive
semidefinite, and given the inequalities (5.158) it therefore follows that


 Z(α) X

(
α+β

2

)
+ Y

(
α+β

2

)

X
(
α+β

2

)
+ Y

(
α+β

2

)
Z(β)


 (5.161)

is positive semidefinite. Invoking Lemma 5.29, one finds that

X

(
α+ β

2

)
+ Y

(
α+ β

2

)
≤
√
Z(α)

√
Z(β) = Z

(
α+ β

2

)
. (5.162)

It trivially holds that Z(0) ≥ X(0) + Y (0) and Z(1) ≥ X(1) + Y (1). For
any choice of α, β ∈ [0, 1], one has that the inequalities (5.158) together
imply that

Z

(
α+ β

2

)
≥ X

(
α+ β

2

)
+ Y

(
α+ β

2

)
. (5.163)

The inequality (5.156) must therefore hold for every α ∈ [0, 1] taking the
form α = k/2n for nonnegative integers k and n with k ≤ 2n. The set of all
such α is dense in [0, 1], so the theorem is proved.

Corollary 5.31 Let P0, P1, Q0, Q1 ∈ Pos(X ) be positive semidefinite
operators, for X a complex Euclidean space. It holds that

〈
(P0 + P1)α, (Q0 +Q1)1−α〉 ≥ 〈Pα0 , Q1−α

0
〉

+
〈
Pα1 , Q

1−α
1

〉
(5.164)

for every α ∈ [0, 1].
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Proof By making the substitution A0 = P0, A1 = P1, B0 = QT
0, and

B1 = QT
1 in Theorem 5.30, one finds that

(P0 + P1)α ⊗ (QT
0 +QT

1)1−α ≥ Pα0 ⊗ (QT
0)1−α + Pα1 ⊗ (QT

1)1−α, (5.165)

and therefore
vec(1X )∗

(
(P0 + P1)α ⊗ (QT

0 +QT
1)1−α) vec(1X )

≥ vec(1X )∗
(
Pα0 ⊗ (QT

0)1−α + Pα1 ⊗ (QT
1)1−α) vec(1X ).

(5.166)

Simplifying the two sides of this inequality yields (5.164), as required.

The joint convexity of the quantum relative entropy now follows from a
combination of Corollary 5.31 with Proposition 5.28.

Theorem 5.32 Let X be a complex Euclidean space and let P0, P1, Q0,
Q1 ∈ Pos(X ) be positive semidefinite operators. It holds that

D(P0 + P1‖Q0 +Q1) ≤ D(P0‖Q0) + D(P1‖Q1). (5.167)

Proof By Proposition 5.28 together with Corollary 5.31 it holds that

D(P0 + P1‖Q0 +Q1)

= 1
ln(2) lim

ε ↓ 0

Tr(P0 + P1)− 〈(P0 + P1)1−ε, (Q0 +Q1)ε〉
ε

≤ 1
ln(2)

(
lim
ε ↓ 0

Tr(P0)− 〈P 1−ε
0 , Qε0〉

ε
+ lim
ε ↓ 0

Tr(P1)− 〈P 1−ε
1 , Qε1〉

ε

)

= D(P0‖Q0) + D(P1‖Q1),

(5.168)

which proves the theorem.

Corollary 5.33 (Joint convexity of quantum relative entropy) Let X be
a complex Euclidean space, let P0, P1, Q0, Q1 ∈ Pos(X ) be positive semi-
definite operators, and let λ ∈ [0, 1]. It holds that

D(λP0 + (1− λ)P1‖λQ0 + (1− λ)Q1)
≤ λ D(P0‖Q0) + (1− λ) D(P1‖Q1).

(5.169)

Proof The corollary is trivial in case λ = 0 or λ = 1. Otherwise, combining
Theorem 5.32 with the identity (5.99) yields

D(λP0 + (1− λ)P1‖λQ0 + (1− λ)Q1)
≤ D(λP0‖λQ0) + D((1− λ)P1‖(1− λ)Q1)
= λD(P0‖Q0) + (1− λ) D(P1‖Q1),

(5.170)

as required.
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Monotonicity of quantum relative entropy
As was suggested above, the fact that the quantum relative entropy function
is jointly convex has several interesting implications. One such implication
is that the quantum relative entropy function is monotonically decreasing
under the action of any channel. The next proposition establishes that this
is so for mixed-unitary channels, and the theorem that follows establishes
that the same is true for all channels.

Proposition 5.34 Let X be a complex Euclidean space, let Φ ∈ C(X )
be a mixed-unitary channel, and let P,Q ∈ Pos(X ) be positive semidefinite
operators. It holds that

D
(
Φ(P )

∥∥Φ(Q)
) ≤ D(P ‖Q). (5.171)

Proof As Φ is a mixed-unitary channel, there must exist an alphabet Σ,
a collection of unitary operators {Ua : a ∈ Σ} ⊂ U(X ), and a probability
vector p ∈ P(Σ), such that

Φ(X) =
∑

a∈Σ
p(a)UaXU∗a (5.172)

for all X ∈ L(X ). Applying Corollary 5.33, along with Proposition 5.19, one
has

D(Φ(P )‖Φ(Q)) = D
(∑

a∈Σ
p(a)UaPU∗a

∥∥∥∥
∑

a∈Σ
p(a)UaQU∗a

)

≤
∑

a∈Σ
p(a) D

(
UaPU

∗
a

∥∥UaQU∗a
)

=
∑

a∈Σ
p(a) D(P ‖Q) = D(P ‖Q),

(5.173)

as required.

Theorem 5.35 (Monotonicity of quantum relative entropy) Let X and
Y be complex Euclidean spaces, let P,Q ∈ Pos(X ) be positive semidefinite
operators, and let Φ ∈ C(X ,Y) be a channel. It holds that

D(Φ(P )‖Φ(Q)) ≤ D(P ‖Q). (5.174)

Proof By Corollary 2.27 there must exist a complex Euclidean space Z and
a linear isometry A ∈ U(X ,Y ⊗ Z) for which

Φ(X) = TrZ
(
AXA∗

)
(5.175)

for all X ∈ L(X ). Let Ω ∈ C(Z) denote the completely depolarizing channel,
defined by Ω(Z) = Tr(Z)ω for all Z ∈ L(Z), where

ω = 1Z
dim(Z) (5.176)
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denotes the completely mixed state with respect to the space Z. As was
demonstrated in Section 4.1.2, the channel Ω is a mixed-unitary channel,
from which it follows that 1L(Y) ⊗ Ω is also a mixed-unitary channel. By
Proposition 5.34, together with Proposition 5.19, it therefore holds that

D
(
(1L(Y) ⊗ Ω)(APA∗)

∥∥(1L(Y) ⊗ Ω)(AQA∗)
)

≤ D(APA∗‖AQA∗) = D(P ‖Q).
(5.177)

As
(1L(Y) ⊗ Ω)(AXA∗) = TrZ(AXA∗)⊗ ω = Φ(X)⊗ ω (5.178)

for all X ∈ L(X ), it follows by Proposition 5.21 that

D(Φ(P )‖Φ(Q)) = D
(
Φ(P )⊗ ω

∥∥Φ(Q)⊗ ω) ≤ D(P ‖Q), (5.179)

which completes the proof.

Strong subadditivity of von Neumann entropy
Another implication of the joint convexity of quantum relative entropy is
the following theorem, stating that the von Neumann entropy possesses a
property known as strong subadditivity.

Theorem 5.36 (Strong subadditivity of von Neumann entropy) Let X, Y,
and Z be registers. For every state of the register (X,Y,Z) it holds that

H(X,Y,Z) + H(Z) ≤ H(X,Z) + H(Y,Z). (5.180)

Proof Let ρ ∈ D(X ⊗ Y ⊗ Z) be chosen arbitrarily and let

ω = 1X
dim(X ) (5.181)

denote the completely mixed state with respect to the space X . The following
two equalities may be verified directly:

D
(
ρ[X,Y,Z]

∥∥ ω ⊗ ρ[Y,Z]
)

= −H
(
ρ[X,Y,Z]

)
+ H

(
ρ[Y,Z]

)
+ log(dim(X ))

(5.182)

and
D
(
ρ[X,Z]

∥∥ ω ⊗ ρ[Z]
)

= −H
(
ρ[X,Z]

)
+ H

(
ρ[Z]

)
+ log(dim(X )).

(5.183)

Taking the channel Φ ∈ C(X ⊗ Y ⊗ Z,X ⊗ Z) to be the partial trace over
Y in Theorem 5.35, one finds that

D
(
ρ[X,Z]

∥∥ ω ⊗ ρ[Z]
) ≤ D

(
ρ[X,Y,Z]

∥∥ ω ⊗ ρ[Y,Z]
)
, (5.184)
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and therefore

H(ρ[X,Y,Z]) + H(ρ[Z]) ≤ H(ρ[X,Z]) + H(ρ[Y,Z]), (5.185)

which proves the theorem.

The corollary that follows gives an equivalent statement to the strong
subadditivity of von Neumann entropy, stated in terms of the quantum
mutual information.

Corollary 5.37 Let X, Y, and Z be registers. For every state of the register
(X,Y,Z) it holds that

I(X : Z) ≤ I(X : Y,Z). (5.186)

Proof By Theorem 5.36 it holds that

H(X,Y,Z) + H(Z) ≤ H(X,Z) + H(Y,Z), (5.187)

which is equivalent to

H(Z)−H(X,Z) ≤ H(Y,Z)−H(X,Y,Z). (5.188)

Adding H(X) to both sides gives

H(X) + H(Z)−H(X,Z) ≤ H(X) + H(Y,Z)−H(X,Y,Z). (5.189)

This inequality is equivalent to (5.186), which completes the proof.

The quantum Pinsker inequality
The final implication of the joint convexity of quantum relative entropy to
be presented in this section is a quantum analogue of Theorem 5.15 that
establishes a lower bound on the quantum relative entropy between two
density operators in terms of their trace distance.

Theorem 5.38 (Quantum Pinsker inequality) Let ρ0, ρ1 ∈ D(X ) be
density operators, for X a complex Euclidean space. It holds that

D(ρ0‖ρ1) ≥ 1
2 ln(2)

∥∥ρ0 − ρ1
∥∥2

1. (5.190)

Proof Let Σ = {0, 1} and let µ : Σ → Pos(X ) be a measurement that
optimally discriminates between the states ρ0 and ρ1, assuming they are
given with equal probability, as discussed in Section 3.1.1. For probability
vectors p0, p1 ∈ P(Σ) defined as p0(a) = 〈µ(a), ρ0〉 and p1(a) = 〈µ(a), ρ1〉
for each a ∈ Σ, one concludes that

∥∥p0 − p1
∥∥

1 =
∥∥ρ0 − ρ1

∥∥
1. (5.191)
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Now let Φ ∈ C(X ,CΣ) be the quantum-to-classical channel associated
with µ, which satisfies

Φ(X) = 〈µ(0), X〉E0,0 + 〈µ(1), X〉E1,1 (5.192)

for each X ∈ L(X ). By Theorem 5.35, it holds that

D(ρ0‖ρ1) ≥ D(Φ(ρ0)‖Φ(ρ1)) = D(p0‖p1), (5.193)

and by Theorem 5.15 it holds that

D(p0‖p1) ≥ 1
2 ln(2)

∥∥p0 − p1
∥∥2

1. (5.194)

The theorem follows from (5.191), (5.193), and (5.194).

5.3 Source coding
This section discusses the notion of source coding, as it relates to quantum
information, and to the von Neumann entropy function in particular. The
term source coding, as it is interpreted here, refers to the process of encoding
information produced by given source in such a way that it may later be
decoded. One natural goal of such a process is to compress the information
produced by the source, in order to reduce costs of storage or transmission.
Three principal variants of source coding will be discussed.

The first is a purely classical variant in which information from a given
classical source is encoded into a fixed-length binary string in such a way
that the information produced by the source can be decoded with high
probability. Shannon’s source coding theorem establishes asymptotic bounds
on compression rates that are achievable for this task, given a standard
assumption on the source.

The second variant of source coding to be discussed is a quantum
analogue to the first; a source produces quantum information that is to
be encoded into a sequence of qubits and then decoded. A theorem due to
Schumacher, representing a quantum analogue of Shannon’s source coding
theorem, establishes asymptotic bounds on the rates of compression that are
achievable for this task.

The third variant of source coding to be considered is one in which a
source produces classical information, which is encoded into the quantum
state of a collection of registers, and then decoded through a measurement
performed on these registers. Theorems due to Holevo and Nayak establish
fundamental limitations on two specific formulations of this task.
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5.3.1 Classical source coding
In the first variant of source coding to be considered in the present section,
a classical source produces a sequence of symbols, chosen independently
from a known probability distribution. This sequence is to be encoded into
a binary string in such a way that it may later be decoded, revealing the
original sequence produced by the source with high probability.

The main purpose of this discussion, as it pertains to this book, is to
introduce basic concepts and techniques regarding classical source coding
that will carry over to the analogous quantum variant of this task. With
this purpose in mind, the discussion is limited to fixed-length coding schemes.
These are schemes in which the length of each encoding is determined only
by the number of symbols produced by the source, and not by the symbols
themselves. A typical goal when designing such a scheme is to minimize the
length of the binary string encodings while allowing for a recovery of the
original sequence with high probability.

Shannon’s source coding theorem1 establishes a fundamental connection
between the rates of compression that can be achieved by such schemes and
the Shannon entropy of the probability vector describing the source.

Coding schemes and the statement of Shannon’s source coding theorem
Let Σ be an alphabet, let p ∈ P(Σ) be a probability vector, and let Γ = {0, 1}
denote the binary alphabet. For any choice of a positive integer n and real
numbers α > 0 and δ ∈ (0, 1), and for m = bαnc, a pair of mappings

f : Σn → Γm

g : Γm → Σn
(5.195)

is said to be an (n, α, δ)-coding scheme for p if it holds that
∑

a1···an∈G
p(a1) · · · p(an) > 1− δ, (5.196)

for
G =

{
a1 · · · an ∈ Σn : g(f(a1 · · · an)) = a1 · · · an

}
. (5.197)

(Here, and throughout the remainder of this chapter, elements of sets of the
form Σn are written as strings a1 · · · an rather than n-tuples (a1, . . . , an),
and likewise for Cartesian products of other alphabets.)
1 It is a fixed-length coding scheme variant of this theorem that is presented in this chapter, as

this variant translates more directly to the quantum setting. Shannon’s source coding
theorem is often stated in terms of variable-length coding schemes, with which one aims for a
perfect recovery of the symbols produced by the source while minimizing the expected length
of the binary string encodings.
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The expression on the left-hand side of (5.196) represents the probability
that a random choice of symbols a1, . . . , an ∈ Σ, with each symbol chosen
independently according to the probability vector p, results in a sequence
satisfying

g(f(a1 · · · an)) = a1 · · · an. (5.198)

The following scenario describes an abstract setting in which such coding
schemes may be considered.

Scenario 5.39 Alice has a device (the source) that sequentially generates
symbols chosen at random from an alphabet Σ. Each randomly generated
symbol is independently distributed according to a probability vector p.
Alice allows the device to produce a string of n symbols a1 · · · an, and aims
to communicate this string to Bob using as few bits of communication as
possible.

To do this, Alice and Bob will use a coding scheme taking the form (5.195),
which is assumed to have been agreed upon before the random generation of
the symbols a1 · · · an. Alice encodes a1 · · · an into a string of m = bαnc bits
by computing f(a1 · · · an), and sends the resulting string f(a1 · · · an) to Bob.
Bob decodes the string by applying the function g, obtaining g(f(a1 · · · an)).
The coding scheme is said to be correct in the event that (5.198) holds,
which is equivalent to a1 · · · an ∈ G, for then Bob will have obtained the
correct string a1 · · · an.

If it is the case that the pair (f, g) is an (n, α, δ)-coding scheme for p, then
the number δ is an upper bound on the probability that the coding scheme
fails to be correct, so that Bob does not recover the string Alice obtained
from the source, while α represents the average number of bits (as the value
of n increases) needed to encode each symbol.

For a given probability vector p, it is evident that an (n, α, δ)-coding
scheme will exist for some choices of the parameters n, α, and δ, and not
others. The range of values of α for which coding schemes exist is closely
related to the Shannon entropy H(p), as the following theorem establishes.

Theorem 5.40 (Shannon’s source coding theorem) Let Σ be an alphabet,
let p ∈ P(Σ) be a probability vector, and let α > 0 and δ ∈ (0, 1) be real
numbers. The following statements hold:

1. If α > H(p), then there exists an (n, α, δ)-coding scheme for p for all but
finitely many positive integers n.

2. If α < H(p), then there exists an (n, α, δ)-coding scheme for p for at
most finitely many positive integers n.



286 Quantum entropy and source coding

A proof of this theorem is presented below, following a discussion of the
notion of a typical string, which is central to the proof. The general notion
of typicality, which can be formalized in various specific ways, will also play
a major role in Chapter 8, which is devoted to the topic of quantum channel
capacities.

Typical strings
The notion of a typical string, for a given distribution of symbols, a string
length, and an error parameter, is defined as follows.

Definition 5.41 Let Σ be an alphabet, let p ∈ P(Σ) be a probability
vector, let n be a positive integer, and let ε > 0 be a positive real number.
A string a1 · · · an ∈ Σn is said to be ε-typical with respect to p if

2−n(H(p)+ε) < p(a1) · · · p(an) < 2−n(H(p)−ε). (5.199)

The notation Tn,ε(p) refers to the set of all strings a1 · · · an ∈ Σn for which
the inequalities (5.199) hold, and when the probability vector p can safely
be taken as being implicit, one may write Tn,ε rather than Tn,ε(p).

A random selection of a string a1 · · · an ∈ Σn, with each symbol being
independently distributed according to p ∈ P(Σ), is increasingly likely to be
ε-typical as n grows, as the following proposition demonstrates.

Proposition 5.42 Let Σ be an alphabet, let p ∈ P(Σ) be a probability
vector, and let ε > 0. It holds that

lim
n→∞

∑

a1···an∈Tn,ε(p)
p(a1) · · · p(an) = 1. (5.200)

Proof Define a random variable X : Σ→ [0,∞) as

X(a) =




− log(p(a)) if p(a) > 0
0 if p(a) = 0

(5.201)

and distributed according to the probability vector p. The expected value of
this random variable is given by E(X) = H(p).

Now, for any positive integer n, and for X1, . . . , Xn being independent
random variables, each identically distributed to X, one has

Pr
(∣∣∣∣
X1 + · · ·+Xn

n
−H(p)

∣∣∣∣ < ε

)
=

∑

a1···an∈Tn,ε(p)
p(a1) · · · p(an). (5.202)

The conclusion of the proposition therefore follows from the weak law of
large numbers (Theorem 1.15).
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The proposition that follows establishes an upper bound on the number
of ε-typical strings of a given length.

Proposition 5.43 Let Σ be an alphabet, let p ∈ P(Σ) be a probability
vector, let ε > 0 be a positive real number, and let n be a positive integer. It
holds that

∣∣Tn,ε(p)
∣∣ < 2n(H(p)+ε). (5.203)

Proof By the definition of ε-typicality, one has

1 ≥
∑

a1···an∈Tn,ε(p)
p(a1) · · · p(an) > 2−n(H(p)+ε) |Tn,ε(p)|, (5.204)

and therefore |Tn,ε(p)| < 2n(H(p)+ε).

Proof of Shannon’s source coding theorem
Shannon’s source coding theorem (Theorem 5.40) can be proved through a
conceptually simple argument: a suitable coding scheme may be obtained
for sufficiently large values of n by assigning a unique binary string to each
typical string, with every other string encoded arbitrarily; and conversely,
any coding scheme that fails to account for a large fraction of the typical
strings can be shown to fail with high probability.

Proof of Theorem 5.40 Assume first that α > H(p), and choose ε > 0 so
that α > H(p) + 2ε. A coding scheme of the form

fn : Σn → Γm

gn : Γm → Σn,
(5.205)

for m = bαnc, will be defined for every integer n satisfying n > 1/ε. Observe,
for each n > 1/ε, that the assumption α > H(p) + 2ε implies that

m = bαnc > n(H(p) + ε). (5.206)

By Proposition 5.43 it holds that

|Tn,ε| < 2n(H(p)+ε) < 2m, (5.207)

and one may therefore define a function fn : Σn → Γm that is injective when
restricted to Tn,ε, together with a function gn : Γm → Σn that is chosen so
that

gn(fn(a1 · · · an)) = a1 · · · an (5.208)
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for every a1 · · · an ∈ Tn,ε. Thus, for

Gn =
{
a1 · · · an ∈ Σn : gn(fn(a1 · · · an)) = a1 · · · an

}
, (5.209)

it holds that Tn,ε ⊆ Gn, and therefore
∑

a1···an∈Gn
p(a1) · · · p(an) ≥

∑

a1···an∈Tn,ε
p(a1) · · · p(an). (5.210)

It follows by Proposition 5.42 that the quantity on the right-hand side of
(5.210) is greater than 1− δ for sufficiently large values of n. Therefore, for
sufficiently large values of n it holds that the coding scheme (fn, gn) is an
(n, α, δ)-coding scheme, which proves the first statement of the theorem.

Now assume that α < H(p), let a coding scheme of the form (5.205) be
fixed for each n, and let Gn ⊆ Σn be as defined in (5.209). It must hold that

|Gn| ≤ 2m = 2bαnc (5.211)

for each n, as the coding scheme cannot be correct for two or more distinct
strings that map to the same encoding. To complete the proof, it suffices to
prove that

lim
n→∞

∑

a1···an∈Gn
p(a1) · · · p(an) = 0. (5.212)

Toward this goal, observe that for every positive integer n and real number
ε > 0 it holds that

Gn ⊆ (Σn\Tn,ε) ∪ (Gn ∩ Tn,ε), (5.213)

and therefore
∑

a1···an∈Gn
p(a1) · · · p(an)

≤
(

1−
∑

a1···an∈Tn,ε
p(a1) · · · p(an)

)
+ 2−n(H(p)−ε) |Gn|.

(5.214)

Choosing ε > 0 so that α < H(p)− ε, one has

lim
n→∞ 2−n(H(p)−ε)|Gn| = 0. (5.215)

As Proposition 5.42 implies that

lim
n→∞

∑

a1···an∈Tn,ε
p(a1) · · · p(an) = 1, (5.216)

it follows that (5.212) holds, which completes the proof.
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5.3.2 Quantum source coding
There is a natural way to formulate a quantum analogue of classical source
coding, which is as follows. It is assumed that a source produces a sequence
of registers X1, . . . ,Xn, for some choice of a positive integer n, with all of
these registers sharing the same classical state set Σ. The complex Euclidean
spaces associated with these registers are therefore given by Xk = CΣ, for
k = 1, . . . , n, and one may therefore make the identification

X⊗n = X1 ⊗ · · · ⊗ Xn (5.217)

for X = CΣ. The state of the compound register (X1, . . . ,Xn) produced by
the source is assumed to be given by ρ⊗n. That is, for some choice of a state
ρ ∈ D(X ), the registers X1, . . . ,Xn are independent, and each in the state ρ.
The quantum information stored in these registers is to be encoded and
decoded in a similar way to the classical setting, through the use of quantum
channels rather than deterministic encoding and decoding functions.

Quantum coding schemes
A quantum coding scheme consists of a pair of channels (Φ,Ψ); the channel
Φ represents the encoding process and Ψ represents the decoding process.
The encoding channel Φ transforms (X1, . . . ,Xn) into (Y1, . . . ,Ym), for some
choice of an integer m, where Y1, . . . ,Ym are registers having classical sets
equal to the binary alphabet Γ = {0, 1}. In other words, each register Yk
represents a qubit. The decoding channel Ψ transforms (Y1, . . . ,Ym) back
into (X1, . . . ,Xn).

The desired property of such a scheme is for the composition ΨΦ to act
trivially, or nearly trivially, on the compound register (X1, . . . ,Xn), under
the assumption that the registers X1, . . . ,Xn are independent and each in
the state ρ as suggested above. It must be stressed that it is not sufficient
to require that the state of (X1, . . . ,Xn) be close to ρ⊗n after the decoding
channel is applied—this would be a trivial requirement failing to recognize
that there might initially be correlations among X1, . . . ,Xn and one or more
other registers that must be respected by coding process. Indeed, for any
complex Euclidean space Z and a state σ ∈ D(X1⊗ · · · ⊗Xn⊗Z) satisfying

σ[X1, . . . ,Xn] = ρ⊗n, (5.218)

it is required of a good coding scheme that the state
(
ΨΦ ⊗ 1L(Z)

)
(σ) is

approximately equal to σ.
The particular notion of approximate equality that will be considered is

based on the fidelity function. This is a convenient choice, as it allows for
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the utilization of the closed-form expression of the channel fidelity given by
Proposition 3.31. One could alternatively use the trace distance in place of
the fidelity function, but this would not change the asymptotic behavior
of the sorts of quantum coding schemes considered in this section, as the
Fuchs–van de Graaf inequalities (Theorem 3.33) directly imply.

In accordance with the discussion above, quantum coding schemes are to
be defined more precisely as follows. Let Σ be an alphabet, let ρ ∈ D(X )
be a density operator, for X = CΣ, and let n be a positive integer. Also let
Γ = {0, 1} denote the binary alphabet, let Y = CΓ, let α > 0 and δ ∈ (0, 1)
be real numbers, and let m = bαnc. A pair of channels

Φ ∈ C
(X⊗n,Y⊗m) and Ψ ∈ C

(Y⊗m,X⊗n) (5.219)

is an (n, α, δ)-quantum coding scheme for ρ if it holds that

F
(
ΨΦ, ρ⊗n

)
> 1− δ, (5.220)

for F
(
ΨΦ, ρ⊗n

)
denoting the channel fidelity of ΨΦ with respect to ρ⊗n

(q.v. Section 3.2.3).

Schumacher’s quantum source coding theorem
The following theorem is a quantum analogue to Shannon’s source coding
theorem (Theorem 5.40), establishing conditions under which quantum
coding schemes exist.

Theorem 5.44 (Schumacher) Let Σ be an alphabet, let ρ ∈ D(CΣ) be a
density operator, and let α > 0 and δ ∈ (0, 1) be real numbers. The following
statements hold:

1. If α > H(ρ), then there exists an (n, α, δ)-quantum coding scheme for ρ
for all but finitely many positive integers n.

2. If α < H(ρ), then there exists an (n, α, δ)-quantum coding scheme for ρ
for at most finitely many positive integers n.

Proof By the spectral theorem (as stated by Corollary 1.4), one may write

ρ =
∑

a∈Σ
p(a)uau∗a, (5.221)

for some choice of a probability vector p ∈ P(Σ) and an orthonormal basis
{ua : a ∈ Σ} of CΣ. The association of the eigenvectors and eigenvalues of
ρ with the elements of Σ may be chosen arbitrarily, and is assumed to be
fixed for the remainder of the proof. By the definition of the von Neumann
entropy, it holds that H(ρ) = H(p).
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Assume first that α > H(ρ), and choose ε > 0 to be sufficiently small
so that α > H(ρ) + 2ε. Along similar lines to the proof of Theorem 5.40, a
quantum coding scheme (Φn,Ψn) of the form

Φn ∈ C
(X⊗n,Y⊗m) and Ψn ∈ C

(Y⊗m,X⊗n) (5.222)

will be defined for every n > 1/ε, where m = bαnc. It will then be shown
that (Φn,Ψn) is an (n, α, δ)-quantum coding scheme for sufficiently large
values of n.

For a given choice of n > 1/ε, the quantum coding scheme (Φn,Ψn) is
defined as follows. First, consider the set of ε-typical strings

Tn,ε = Tn,ε(p) ⊆ Σn (5.223)

associated with the probability vector p, and define a projection operator
Πn,ε ∈ Proj(X⊗n) as follows:

Πn,ε =
∑

a1···an∈Tn,ε
ua1u

∗
a1 ⊗ · · · ⊗ uanu∗an . (5.224)

The subspace upon which this operator projects is the ε-typical subspace of
X⊗n with respect to ρ. Notice that

〈
Πn,ε, ρ

⊗n〉 =
∑

a1···an∈Tn,ε
p(a1) · · · p(an). (5.225)

Now, by Shannon’s source coding theorem (or, to be more precise, the proof
of that theorem given in the previous subsection), there exists a classical
coding scheme (fn, gn) for p that satisfies

gn(fn(a1 · · · an)) = a1 · · · an (5.226)

for every ε-typical string a1 · · · an ∈ Tn,ε. Define a linear operator of the
form

An ∈ L
(X⊗n,Y⊗m) (5.227)

as follows:
An =

∑

a1···an∈Tn,ε
efn(a1···an)(ua1 ⊗ · · · ⊗ uan)∗. (5.228)

Finally, define channels Φn and Ψn of the form (5.222) as

Φn(X) = AnXA
∗
n + 〈1−A∗nAn, X〉σ (5.229)

Ψn(Y ) = A∗nY An + 〈1−AnA∗n, Y 〉 ξ (5.230)

for all X ∈ L(X⊗n) and Y ∈ L(Y⊗m), for density operators σ ∈ D(Y⊗m)
and ξ ∈ D(X⊗n) chosen arbitrarily.



292 Quantum entropy and source coding

It remains to prove that (Φn,Ψn) is an (n, α, δ)-quantum coding scheme
for sufficiently large values of n. From the expressions (5.229) and (5.230)
it follows that there must exist a Kraus representation of the channel ΨnΦn

having the form

(ΨnΦn)(X) = (A∗nAn)X(A∗nAn)∗ +
N∑

k=1
Cn,kXC

∗
n,k (5.231)

for some choice of an integer N and a collection of operators Cn,1, . . . , Cn,N ,
which will have no effect on the analysis that follows. By Proposition 3.31,
it therefore holds that

F
(
ΨnΦn, ρ

⊗n) ≥ 〈ρ⊗n, A∗nAn
〉

=
〈
ρ⊗n,Πn,ε

〉
. (5.232)

As
lim
n→∞

〈
Πn,ε, ρ

⊗n〉 = 1, (5.233)

it follows that (Φn,Ψn) is an (n, α, δ)-quantum coding scheme for all
sufficiently large n, which proves the first statement in the theorem.

Now assume that α < H(ρ), and suppose that Φn and Ψn are arbitrary
channels of the form (5.222) for each positive integer n. It will be proved
that, for any choice of δ ∈ (0, 1), the pair (Φn,Ψn) fails to be an (n, α, δ)
quantum coding scheme for all sufficiently large values of n.

Fix any choice of a positive integer n, and let

Φn(X) =
N∑

k=1
AkXA

∗
k and Ψn(Y ) =

N∑

k=1
BkY B

∗
k (5.234)

be Kraus representations of Φn and Ψn, where

A1, . . . , AN ∈ L
(X⊗n,Y⊗m),

B1, . . . , BN ∈ L
(Y⊗m,X⊗n).

(5.235)

(The assumption that both representations have the same number of Kraus
operators is made only for notational convenience. This assumption causes
no loss of generality; one may include the zero operator as a Kraus operator
for either channel any desired number of times.) It follows that

(ΨnΦn)(X) =
∑

1≤j,k≤N
(BkAj)X(BkAj)∗ (5.236)

is a Kraus representation of the composition ΨnΦn. For the purposes of this
analysis, the key aspect of this Kraus representation is that

rank(BkAj) ≤ dim(Y⊗m) = 2m (5.237)



5.3 Source coding 293

for all choices of j, k ∈ {1, . . . , N}. Indeed, for each k ∈ {1, . . . , N}, one may
choose a projection operator Πk ∈ Proj(X⊗n) with rank(Πk) ≤ 2m such that
ΠkBk = Bk. Therefore,

F
(
ΨnΦn, ρ

⊗n)2 =
∑

1≤j,k≤N

∣∣〈BkAj , ρ⊗n
〉∣∣2

=
∑

1≤j,k≤N

∣∣〈ΠkBkAj , ρ
⊗n〉∣∣2

=
∑

1≤j,k≤N

∣∣∣
〈
BkAj

√
ρ⊗n,Πk

√
ρ⊗n

〉∣∣∣
2

≤
∑

1≤j,k≤N
Tr
(
BkAjρ

⊗nA∗jB
∗
k

)〈
Πk, ρ

⊗n〉,

(5.238)

where the inequality follows from the Cauchy–Schwarz inequality. As each
Πk has rank bounded by 2m, it follows that

〈
Πk, ρ

⊗n〉 ≤
2m∑

i=1
λi(ρ⊗n) =

∑

a1···an∈Gn
p(a1) · · · p(an) (5.239)

for some subset Gn ⊆ Σn having size at most 2m. As the channel ΨnΦn is
trace preserving, it holds that

∑

1≤j,k≤N
Tr
(
BkAjρ

⊗nA∗jB
∗
k

)
= 1, (5.240)

and, moreover, one has that each term in this sum is nonnegative. The final
expression of (5.238) is therefore equal to a convex combination of values,
each of which is bounded as in (5.239), which implies that

F
(
ΨnΦn, ρ

⊗n)2 ≤
∑

a1···an∈Gn
p(a1) · · · p(an). (5.241)

Finally, reasoning precisely as in the proof of Theorem 5.40, one has that
the assumption α < H(ρ) = H(p) implies that

lim
n→∞

∑

a1···an∈Gn
p(a1) · · · p(an) = 0 (5.242)

by the fact that Gn has size bounded by 2m. This implies that, for any fixed
choice of δ ∈ (0, 1), the pair (Φn,Ψn) fails to be a (n, α, δ) quantum coding
scheme for all but finitely many values of n.
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5.3.3 Encoding classical information into quantum states
The final type of source coding to be discussed in this section is one in which
classical information is encoded into a quantum state, and then decoded by
means of a measurement. The following scenario represents one abstraction
of this task.

Scenario 5.45 Let X and Z be classical registers having classical state
sets Σ and Γ, respectively, and let Y be a register. Also let p ∈ P(Σ) be a
probability vector, let

{ρa : a ∈ Σ} ⊂ D(Y) (5.243)

be a collection states, and let µ : Γ→ Pos(Y) be a measurement.
Alice obtains an element a ∈ Σ, stored in the register X, that has been

randomly generated by a source according to the probability vector p. She
prepares Y in the state ρa and sends Y to Bob. Bob measures Y with respect
to the measurement µ, and stores the outcome of this measurement in the
classical register Z. This measurement outcome represents information that
Bob has obtained regarding the classical state of X.

It is natural to consider the situation in which Γ = Σ in this scenario, and to
imagine that Bob aims to recover the symbol stored in Alice’s register X; this
is essentially the state discrimination problem discussed in Section 3.1.2. In
the discussion that follows, however, it will not be taken as an assumption
that this is necessarily Bob’s strategy.

Assuming that Alice and Bob operate as described in Scenario 5.45, the
pair (X,Z) will be left in the probabilistic state q ∈ P(Σ× Γ) defined by

q(a, b) = p(a)〈µ(b), ρa〉 (5.244)

for every pair (a, b) ∈ Σ× Γ. For an ensemble η : Σ→ Pos(Y) defined as

η(a) = p(a) ρa (5.245)

for each a ∈ Σ, the probability vector q may equivalently be expressed as

q(a, b) = 〈µ(b), η(a)〉 (5.246)

for each (a, b) ∈ Σ× Γ.
A fundamental question regarding this scenario is the following: How much

information can Bob’s register Z contain about the state of Alice’s register X?
A theorem known as Holevo’s theorem establishes an upper bound on this
amount of information, as represented by the mutual information between
Alice’s register X and Bob’s register Z. Holevo’s theorem is phrased in terms
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of two functions of the ensemble η, the accessible information and the Holevo
information, which are introduced below.

Accessible information
With Scenario 5.45 and the discussion above in mind, let η : Σ→ Pos(Y) be
an ensemble, let µ : Γ → Pos(Y) be a measurement, and let q ∈ P(Σ × Γ)
be the probability vector defined as in (5.246), representing a probabilistic
state of the pair of classical registers (X,Z). The notation Iµ(η) will denote
the mutual information between X and Z, with respect to a probabilistic
state defined in this way, so that

Iµ(η) = H(q[X]) + H(q[Z])−H(q) = D
(
q
∥∥q[X]⊗ q[Z]

)
. (5.247)

Now assume the ensemble η is fixed, while no constraints are placed on
the measurement µ. The accessible information Iacc(η) of the ensemble η
is defined as the supremum value, ranging over all possible choices of a
measurement µ, that may be obtained in this way. That is,

Iacc(η) = sup
µ

Iµ(η), (5.248)

where the supremum is over all choices of an alphabet Γ and a measurement
µ : Γ→ Pos(Y).

Although it is not necessarily apparent from its definition, the accessible
information Iacc(η) of an ensemble η : Σ → Pos(Y) is indeed achieved by
some choice of an alphabet Γ and a measurement µ : Γ → Pos(Y). The
following lemma is useful for establishing this fact.

Lemma 5.46 Let Σ and Γ be alphabets, let Y be a complex Euclidean space,
and let η : Σ→ Pos(Y) be an ensemble of states. Also let µ0, µ1 : Γ→ Pos(Y)
be measurements and let λ ∈ [0, 1] be a real number. It holds that

Iλµ0+(1−λ)µ1(η) ≤ λ Iµ0(η) + (1− λ) Iµ1(η). (5.249)

Proof Let X and Z be classical registers having classical state sets Σ and Γ,
respectively. Define a probability vector p ∈ P(Σ) as

p(a) = Tr(η(a)) (5.250)

for all a ∈ Σ. Also define probability vectors q0, q1 ∈ P(Σ×Γ), representing
probabilistic states of the pair (X,Z), as

q0(a, b) = 〈µ0(b), η(a)〉 and q1(a, b) = 〈µ1(b), η(a)〉 (5.251)

for all (a, b) ∈ Σ×Γ. By the joint convexity of the relative entropy function,
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it holds that

Iλµ0+(1−λ)µ1(η)
= D

(
λq0 + (1− λ)q1

∥∥p⊗ (λq0[Z] + (1− λ)q1[Z])
)

≤ λD
(
q0
∥∥p⊗ q0[Z]

)
+ (1− λ) D

(
q1
∥∥p⊗ q1[Z]

)

= λ Iµ0(η) + (1− λ) Iµ1(η) ,

(5.252)

as required.

Theorem 5.47 Let Σ be an alphabet, let Y be a complex Euclidean space,
and let η : Σ→ Pos(Y) be an ensemble of states. There exists an alphabet Γ
with |Γ| ≤ dim(Y)2 and a measurement µ : Γ→ Pos(Y) such that

Iµ(η) = Iacc(η). (5.253)

Proof Let ν : Λ→ Pos(Y) be a measurement, for an arbitrary choice of an
alphabet Λ. By Lemma 5.46, the function

µ 7→ Iµ(η) (5.254)

is convex on the set of all measurements of the form µ : Λ → Pos(Y). As
every measurement of this form can be written as a convex combination
of extremal measurements of the same form, one has that there must exist
an extremal measurement µ : Λ → Pos(Y) satisfying Iµ(η) ≥ Iν(η). By
Corollary 2.48, the assumption that µ : Λ → Pos(Y) is extremal implies
that

∣∣{a ∈ Λ : µ(a) 6= 0
}∣∣ ≤ dim(Y)2. (5.255)

The value Iµ(η) does not change if µ is restricted to the alphabet

Γ =
{
a ∈ Λ : µ(a) 6= 0

}
, (5.256)

and therefore one has that there must exist a measurement µ : Γ→ Pos(Y),
for Γ satisfying |Γ| ≤ dim(Y)2, such that Iµ(η) ≥ Iν(η).

It follows that Iacc(η) is equal to the supremum value of Iµ(η), ranging
over all measurements µ having at most dim(Y)2 measurement outcomes.
The quantity Iµ(η) is invariant under renaming the measurement outcomes
of µ, so there is no loss of generality in restricting this supremum to the set
of measurements having a single set Γ of measurement outcomes satisfying
|Γ| = dim(Y)2. The supremum is therefore taken over a compact set, from
which it follows that there exists a measurement µ : Γ → Pos(Y) for which
the supremum value is achieved, which completes the proof.
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The Holevo information
Again with Scenario 5.45 in mind, let X be a classical register, let Σ be the
classical state set of X, let Y be a register, and let η : Σ → Pos(Y) be an
ensemble. As described in Section 2.2.3, one associates the classical-quantum
state

σ =
∑

a∈Σ
Ea,a ⊗ η(a) (5.257)

of the pair (X,Y) with the ensemble η. The Holevo information (also called
the Holevo χ-quantity) of the ensemble η, which is denoted χ(η), is defined
as the quantum mutual information I(X : Y) between the registers X and Y
with respect to the state σ.

Under the assumption that the ensemble η is written as

η(a) = p(a) ρa (5.258)

for each a ∈ Σ, for a probability vector p ∈ P(Σ) and a collection

{ρa : a ∈ Σ} ⊆ D(Y) (5.259)

of states, the Holevo information of η may be calculated as follows:

χ(η) = I(X : Y)
= H(X) + H(Y)−H(X,Y)

= H(p) + H
(∑

a∈Σ
p(a) ρa

)
−H

(∑

a∈Σ
p(a)Ea,a ⊗ ρa

)

= H
(∑

a∈Σ
p(a) ρa

)
−
∑

a∈Σ
p(a) H

(
ρa
)
,

(5.260)

where the last equality has made use of the identity (5.98). Alternatively,
one may write

χ(η) = H
(∑

a∈Σ
η(a)

)
−

∑

a∈Σ
η(a)6=0

Tr(η(a)) H
(

η(a)
Tr(η(a))

)
, (5.261)

or, equivalently,

χ(η) = H
(∑

a∈Σ
η(a)

)
−
∑

a∈Σ
H(η(a)) + H(p). (5.262)

It follows from the concavity of the von Neumann entropy (Theorem 5.23),
or by the subadditivity of von Neumann entropy (Theorem 5.24), that the
Holevo information χ(η) is nonnegative for every ensemble η.
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At an intuitive level, the Holevo information may be interpreted in the
following way. When the pair of registers (X,Y) is in the classical-quantum
state σ as described above, and the register Y is considered in isolation, its
von Neumann entropy is given by

H(Y) = H
(∑

a∈Σ
p(a)ρa

)
. (5.263)

If one learns the classical state a ∈ Σ of X, then from their perspective
the von Neumann entropy of Y drops to H(ρa). The Holevo information
χ(η) may therefore be viewed as representing the average decrease in the
von Neumann entropy of Y that is expected when one learns the classical
state of X.

It cannot be said that the Holevo information is convex in general, but the
following proposition provides two conditions under which it is. The proof
follows a similar argument to the proof of Lemma 5.46.

Proposition 5.48 Let η0 : Σ→ Pos(Y) and η1 : Σ→ Pos(Y) be ensembles
of states, for Y a complex Euclidean space and Σ an alphabet, and suppose
further that at least one of the following two conditions is satisfied:

1. The ensembles η0 and η1 have the same average state:
∑

a∈Σ
η0(a) = ρ =

∑

a∈Σ
η1(a), (5.264)

for some choice of ρ ∈ D(Y).
2. The ensembles η0 and η1 correspond to the same probability distribution,

over possibly different states:

Tr(η0(a)) = p(a) = Tr(η1(a)) (5.265)

for each a ∈ Σ, for some choice of a probability vector p ∈ P(Σ).

For every real number λ ∈ [0, 1], it holds that

χ(λη0 + (1− λ)η1) ≤ λχ(η0) + (1− λ)χ(η1). (5.266)

Proof Let X = CΣ, let X and Y be registers corresponding to the spaces X
and Y, and define classical-quantum states σ0, σ1 ∈ D(X ⊗ Y) as

σ0 =
∑

a∈Σ
Ea,a ⊗ η0(a) and σ1 =

∑

a∈Σ
Ea,a ⊗ η1(a). (5.267)

For a given choice of λ ∈ [0, 1], define σ = λσ0 + (1 − λ)σ1. The Holevo
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information of the ensembles η0, η1, and λη0 + (1− λ)η1 may be expressed
as follows:

χ(η0) = D
(
σ0
∥∥σ0[X]⊗ σ0[Y]

)
,

χ(η1) = D
(
σ1
∥∥σ1[X]⊗ σ1[Y]

)
,

(5.268)

and
χ(λη0 + (1− λ)η1) = D

(
σ
∥∥σ[X]⊗ σ[Y]

)
. (5.269)

Under the first condition in the statement of the proposition, it holds that
σ0[Y] = σ1[Y] = σ[Y] = ρ. In this case, the inequality (5.266) is equivalent
to

D
(
σ
∥∥σ[X]⊗ ρ) ≤ λD

(
σ0
∥∥σ0[X]⊗ ρ)+ (1− λ) D

(
σ1
∥∥σ1[X]⊗ ρ), (5.270)

which holds by the joint convexity of the quantum relative entropy function
(Corollary 5.33).

Under the second condition in the statement of the proposition, one has
σ0[X] = σ1[X] = σ[X] = Diag(p). Exchanging the roles of X and Y from the
first condition, one has that the the proof follows by similar reasoning.

Holevo’s theorem
The next theorem, known as Holevo’s theorem, establishes that the accessible
information is upper-bounded by the Holevo information, for all ensembles
of states.

Theorem 5.49 (Holevo’s theorem) Let η : Σ → Pos(Y) be an ensemble
of states, for Σ an alphabet and Y a complex Euclidean space. It holds that
Iacc(η) ≤ χ(η).

Proof Let X be a classical register having classical state set Σ and let Y
be a register whose associated complex Euclidean space is Y. Define a state
σ ∈ D(X ⊗ Y) as

σ =
∑

a∈Σ
Ea,a ⊗ η(a), (5.271)

and suppose that the pair (X,Y) is in the state σ. It holds that

χ(η) = D
(
σ
∥∥σ[X]⊗ σ[Y]

)
. (5.272)

Next, let Γ be an alphabet, let Z be a classical register having classical
state set Γ, and let µ : Γ → Pos(Y) be a measurement. Define a channel
Φ ∈ C(Y,Z) as

Φ(Y ) =
∑

b∈Γ
〈µ(b), Y 〉Eb,b (5.273)
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for all Y ∈ L(Y), which is the quantum-to-classical channel associated with
the measurement µ, and consider the situation in which Y is transformed
into Z by means of Φ. One has that

(1L(X ) ⊗ Φ)(σ) =
∑

a∈Σ

∑

b∈Γ

〈
µ(b), η(a)

〉
Ea,a ⊗ Eb,b = Diag(q), (5.274)

for q ∈ P(Σ× Γ) being the probability vector defined as

q(a, b) =
〈
µ(b), η(a)

〉
(5.275)

for all a ∈ Σ and b ∈ Γ. It follows that

Iµ(η) = D(q‖q[X]⊗ q[Z])
= D

(
(1L(X ) ⊗ Φ)(σ)

∥∥(1L(X ) ⊗ Φ)(σ[X]⊗ σ[Y])
)
,

(5.276)

and therefore Iµ(η) ≤ χ(η), as the quantum relative entropy does not
increase under the action of a channel (by Theorem 5.35). As this bound
holds for all measurements µ, the theorem follows.

For every collection of density operators {ρa : a ∈ Σ} ⊆ D(Y) and every
probability vector p ∈ P(Σ), it holds that

H
(∑

a∈Σ
p(a)ρa

)
−
∑

a∈Σ
p(a) H(ρa)

≤ H
(∑

a∈Σ
p(a)ρa

)
≤ log(dim(Y)),

(5.277)

and therefore the Holevo information of every ensemble η : Σ → Pos(Y) is
upper-bounded by log(dim(Y)). The following corollary of Theorem 5.49 is
a consequence of this observation.

Corollary 5.50 Let Σ be an alphabet, let Y be a complex Euclidean space,
and let η : Σ→ Pos(Y) be an ensemble of states. It holds that

Iacc(η) ≤ log(dim(Y)). (5.278)

Although this is indeed a simple corollary to Theorem 5.49, it nevertheless
establishes the following conceptually important fact: if two individuals share
no prior correlations or shared resources, and one individual sends the other
a quantum register of a given dimension n, then no more than log(n) bits
of classical information will have been transmitted through this process.



5.3 Source coding 301

Quantum random access codes
An interesting variation of source coding involves the notion of a quantum
random access code. This is a coding scheme in which a sequence of classical
symbols is encoded into a quantum state in such a way that one may obtain
information about just one of the encoded symbols, chosen arbitrarily by
the individual performing the decoding operation. The following scenario
provides an abstraction of this type of scheme.

Scenario 5.51 Let Σ and Γ be alphabets, let n be a positive integer, let
X1, . . . ,Xn be classical registers, each having classical state set Σ, let Z be
a classical register having classical state set Γ, and let Y be a register. Also
let p ∈ P(Σ) be a probability vector, let

{
ρa1···an : a1 · · · an ∈ Σn} ⊆ D(Y) (5.279)

be a collection of states indexed by Σn, and let µ1, . . . , µn : Γ→ Pos(Y) be
measurements.

Alice obtains the registers X1, . . . ,Xn, which have been independently
prepared by a source, with p being the probabilistic state of each of these
registers. She observes the classical state a1 · · · an ∈ Σn of (X1, . . . ,Xn), and
prepares the register Y in the state ρa1···an , which is then sent to Bob. Bob
selects an index k ∈ {1, . . . , n} of his choice, measures Y with respect to
the measurement µk, and stores the outcome in the classical register Z. The
classical state of Z represents the information Bob has obtained regarding
the classical state of Xk.

The following example describes an instance of this scenario in which Alice
encodes two classical bits into one qubit in such a way that Bob can recover
the encoded bit of his choice with a reasonably high probability of success.

Example 5.52 Let Σ = {0, 1} denote the binary alphabet. For every real
number θ, define a density operator σ(θ) ∈ D(CΣ) as

σ(θ) =
(

cos2(θ) cos(θ) sin(θ)
cos(θ) sin(θ) sin2(θ)

)
, (5.280)

and observe that each of these operators is a rank one projection.
Alice obtains two classical registers X1 and X2, both having classical state

set Σ. It is to be assumed that the probabilistic states of these registers
are independent and uniformly distributed. She encodes the classical state
(a1, a2) ∈ Σ× Σ of the pair (X1,X2) into the quantum state ρa1a2 ∈ D(CΣ)
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defined as
ρ00 = σ(π/8), ρ10 = σ(3π/8),
ρ01 = σ(7π/8), ρ11 = σ(5π/8).

(5.281)

Bob receives the qubit ρa1a2 from Alice, and decides whether he wishes to
learn the classical state a1 of X1 or the classical state a2 of X2. If Bob wishes
to learn a1, he measures the qubit with respect to the measurement µ1
defined as

µ1(0) = σ(0) and µ1(1) = σ(π/2). (5.282)

If instead Bob wishes to learn a2, he measures the qubit with respect to the
measurement µ2 defined as

µ2(0) = σ(π/4) and µ2(1) = σ(3π/4). (5.283)

Using the formula
〈σ(φ), σ(θ)〉 = cos2(φ− θ), (5.284)

one concludes from a case analysis that, if Bob measures ρa1a2 with respect
to the measurement µk, he will obtain the measurement outcome ak with
probability cos2(π/8) ≈ 0.85 in all cases.

With Scenario 5.51 in mind, one may define a quantum random access code
for a given choice of a positive integer n and a probability vector p ∈ P(Σ)
as consisting of two objects: the first is the collection of density operators

{ρa1···an : a1 · · · an ∈ Σn} ⊆ D(Y) (5.285)

representing the encodings of the possible sequences a1 · · · an ∈ Σn, and the
second is the sequence of measurements

µ1, . . . , µn : Γ→ Pos(Y) (5.286)

that reveal information concerning one of the initial registers X1, . . . ,Xn.
The amount of information revealed by such a quantum random access

code may be represented by a vector (α1, . . . , αn), where αk represents the
mutual information between Xk and Z, conditioned on the measurement µk
having been performed and the outcome of that measurement stored in Z.
The vector (α1, . . . , αn) may be defined in more precise terms as follows.
First, one defines an ensemble η : Σn → Pos(Y) as

η(a1 · · · an) = p(a1) · · · p(an) ρa1···an (5.287)

for each a1 · · · an ∈ Σn. Then, for each k ∈ {1, . . . , n}, one defines

αk = I(Xk : Z), (5.288)
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where the mutual information is defined with respect to the probabilistic
state qk ∈ P(Σn × Γ) of the compound register (X1, . . . ,Xn,Z) given by

qk(a1 · · · an, b) = 〈µk(b), η(a1 · · · an)〉 (5.289)

for each a1 · · · an ∈ Σn and b ∈ Γ.

Nayak’s theorem
Although Example 5.52 suggests a potential for quantum random access
codes to provide significant advantages over classical coding schemes, it is a
false impression. The following theorem demonstrates that quantum random
access codes are strongly limited in their capabilities.

Theorem 5.53 (Nayak’s theorem) Let Σ be an alphabet, let p ∈ P(Σ) be
a probability vector, and let n be a positive integer. Also let Y be a complex
Euclidean space, let Γ be an alphabet, and let

{ρa1···an : a1 · · · an ∈ Σn} ⊆ D(Y) and µ1, . . . , µn : Γ→ Pos(Y) (5.290)

be a quantum random access code for p. Assuming that (α1, . . . , αn) is a
vector representing the amount of information revealed by this code for the
distribution p, in the manner defined above, it must hold that

n∑

k=1
αk ≤ χ(η) (5.291)

for η : Σn → Pos(Y) being the ensemble defined by

η(a1 · · · an) = p(a1) · · · p(an)ρa1···an (5.292)

for each a1 · · · an ∈ Σn.

Proof Let X1, . . . ,Xn be classical registers, each having classical state set
Σ, and let Y be a register whose associated complex Euclidean space is Y
(as in Scenario 5.51). Let

σ =
∑

a1···an∈Σn
p(a1) · · · p(an)Ea1,a1 ⊗ · · · ⊗ Ean,an ⊗ ρa1···an (5.293)

be the classical-quantum state of the compound register (X1, . . . ,Xn,Y)
corresponding to the ensemble η. With respect to the state σ, one has that

I(X1, . . . ,Xn : Y) = χ(η). (5.294)

Now, it holds that

I(X1, . . . ,Xn : Y)
= I(Xn : Y) + I(X1, . . . ,Xn−1 : Xn,Y)− I(X1, . . . ,Xn−1 : Xn).

(5.295)
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This identity (which is equivalent to an identity commonly known as the
chain rule for quantum mutual information) holds independent of the state
of these registers, and may be verified by expanding the definition of the
quantum mutual information. In the particular case of the state σ, one has
that

I(X1, . . . ,Xn−1 : Xn) = 0, (5.296)

as the registers X1, . . . ,Xn are independent with respect to this state. Thus,

I(X1, . . . ,Xn : Y) = I(Xn : Y) + I(X1, . . . ,Xn−1 : Xn,Y)
≥ I(Xn : Y) + I(X1, . . . ,Xn−1 : Y),

(5.297)

where the inequality holds by Corollary 5.37. By applying this inequality
recursively, one finds that

I(X1, . . . ,Xn : Y) ≥
n∑

k=1
I(Xk : Y). (5.298)

Finally, one may observe that αk ≤ I(Xk : Y) for each k ∈ {1, . . . , n}, as a
consequence of Holevo’s theorem (Theorem 5.49). Thus,

n∑

k=1
αk ≤ I(X1, . . . ,Xn : Y) = χ(η), (5.299)

as required.

One interesting type of quantum random access code, which includes the
code suggested by Example 5.52, is one in which Σ and Γ are equal to the
binary alphabet, and one aims for the classical state of the register Z to agree
with Xk for whichever index k ∈ {1, . . . , n} was measured. Theorem 5.53
implies a strong limitation on schemes of this sort. The following lemma,
which is a special case of an inequality known as Fano’s inequality, is useful
for analyzing this special case.

Lemma 5.54 Let X and Y be classical registers sharing the same classical
state set Σ = {0, 1}, and assume the pair (X,Y) is in a probabilistic state
q ∈ P(Σ× Σ) for which q[X](0) = q[X](1) = 1/2 and

q(0, 0) + q(1, 1) = λ (5.300)

for λ ∈ [0, 1]. (In words, the state of X is uniformly distributed and Y and
X agree with probability λ.) It holds that I(X : Y) ≥ 1−H(λ, 1− λ).
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Proof Define Z to be a classical register having classical state set Σ, and
let p ∈ P(Σ× Σ× Σ) be the probability vector defined as

p(a, b, c) =




q(a, b) if c = a⊕ b
0 otherwise,

(5.301)

where a⊕b denotes the exclusive-OR of the binary values a and b. In words,
p describes the probabilistic state of (X,Y,Z) for which (X,Y) is distributed
according to q and Z is set to the exclusive-OR of X and Y. With respect to
this state, one has

H(Z) = H(λ, 1− λ). (5.302)

Moreover, it holds that
H(X|Y) = H(Z|Y), (5.303)

as the classical states of X and Z uniquely determine one another for each
fixed classical state of Y. Finally, by the subadditivity of Shannon entropy
(Proposition 5.9), one has that

H(Z|Y) ≤ H(Z). (5.304)

Consequently,

I(X : Y) = H(X)−H(X|Y) = 1−H(Z|Y)
≥ 1−H(Z) = 1−H(λ, 1− λ),

(5.305)

as required.

Corollary 5.55 Let Σ = {0, 1} denote the binary alphabet, let n be a
positive integer, let Y be a complex Euclidean space, and let λ ∈ [1/2, 1] be
a real number. Also let

{ρa1···an : a1 · · · an ∈ Σn} ⊆ D(Y) (5.306)

be a collection of density operators, and let

µ1, . . . , µn : Σ→ Pos(Y) (5.307)

be measurements. If it holds that

〈µk(ak), ρa1···an〉 ≥ λ (5.308)

for every choice of k ∈ {1, . . . , n} and a1 . . . an ∈ Σn, then

log(dim(Y)) ≥ (1−H(λ, 1− λ))n. (5.309)



306 Quantum entropy and source coding

Proof Let p ∈ P(Σ) be the uniform distribution and define an ensemble
η : Σn → Pos(Y) as

η(a1 · · · an) = p(a1) · · · p(an)ρa1···an = 1
2n ρa1···an (5.310)

for each string a1 · · · an ∈ Σn. Let (α1, . . . , αn) be the vector representing
the amount of information revealed by the quantum random access code
defined by the collection {ρa1···an : a1 · · · an ∈ Σn} and the measurements
µ1, . . . , µn for the distribution p. By combining Lemma 5.54 with the fact
that H(α, 1 − α) is a decreasing function of α on the interval [1/2, 1], one
finds that

αk ≥ 1−H(λ, 1− λ) (5.311)

for every k ∈ {1, . . . , n}. Therefore, by Theorem 5.53, it holds that

χ(η) ≥ (1−H(λ, 1− λ))n. (5.312)

As the Holevo information of η is upper-bounded by log(dim(Y)), the proof
is complete.

Thus, for the special type of random access code under consideration, the
number of qubits required to encode a binary string of length n is linear in
n, with the constant of proportionality tending to 1 as the error tolerance
decreases.

5.4 Exercises
Exercise 5.1 Let X, Y and Z be registers. Prove that the following two
inequalities hold for all states ρ ∈ D(X ⊗ Y ⊗ Z) of these registers:

(a) I(X,Y : Z) + I(Y : Z) ≥ I(X : Z).
(b) H(X,Y|Z) + H(Y|Z) ≥ H(X|Z)− 2 H(Z)

Exercise 5.2 Let Σ be an alphabet, let X , Y, and Z be complex Euclidean
spaces, let ρ ∈ D(X⊗Z) be a density operator, let p ∈ P(Σ) be a probability
vector, and let {Φa : a ∈ Σ} ⊆ C(X ,Y) be a collection of channels. Define
an ensemble η : Σ→ Pos(Y ⊗ Z) as

η(a) = p(a)
(
Φa ⊗ 1L(Z)

)
(ρ) (5.313)

for each a ∈ Σ. Prove that

χ(η) ≤ H
(∑

a∈Σ
p(a)Φa

(
TrZ(ρ)

)
)

+
∑

a∈Σ
p(a) H

(
Φa
(
TrZ(ρ)

))
. (5.314)
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Exercise 5.3 Let X, Y, and Z be registers.

(a) Prove that, for every state ρ ∈ D(X ⊗Y⊗Z) of these registers, it holds
that

I(X,Y : Z) ≤ I(Y : X,Z) + 2 H(X). (5.315)

(b) Let Σ be the classical state set of X, let {σa : a ∈ Σ} ⊆ D(Y ⊗ Z) be
a collection of density operators, let p ∈ P(Σ) be a probability vector,
and let

ρ =
∑

a∈Σ
p(a)Ea,a ⊗ σa (5.316)

be a state of (X,Y,Z). Prove that, with respect to the state ρ, one has

I(X,Y : Z) ≤ I(Y : X,Z) + H(X). (5.317)

Exercise 5.4 Let Σ be an alphabet and let X and Y be complex Euclidean
spaces. Also let Φ ∈ C(X ,Y) be a channel, let η : Σ → Pos(X ) be an
ensemble, and define an ensemble Φ(η) : Σ→ Pos(Y) as

(Φ(η))(a) = Φ(η(a)) (5.318)

for each a ∈ Σ. Prove that χ(Φ(η)) ≤ χ(η).

Exercise 5.5 Let X and Y be registers and let ρ0, ρ1 ∈ D(X ⊗Y) be states
of these registers. Prove that, for every choice of λ ∈ [0, 1], it holds that

H
(
λρ0 + (1− λ)ρ1

)−H
(
λρ0[Y] + (1− λ)ρ1[Y]

)

≥ λ(H(ρ0)−H(ρ0[Y])
)

+ (1− λ)
(
H(ρ1)−H(ρ1[Y])

)
.

(5.319)

(Equivalently, prove that the conditional von Neumann entropy of X given
Y is a concave function of the state of these registers.)

Exercise 5.6 Let X and Y be registers and let ρ ∈ D(X ⊗ Y) be a state
of these registers for which it holds that

ρ =
∑

a∈Σ
p(a)σa ⊗ ξa,

for some choice of an alphabet Σ, a probability vector p ∈ P(Σ), and two
collections of states {σa : a ∈ Σ} ⊆ D(X ) and {ξa : a ∈ Σ} ⊆ D(Y).

(a) Prove that, with respect to the state ρ, it holds that I(X : Y) ≤ H(p).
(b) Prove that

H(ρ) ≥
∑

a∈Σ
p(a) H(σa) + H

(∑

a∈Σ
p(a)ξa

)
. (5.320)
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5.5 Bibliographic remarks
The Shannon entropy was defined in Shannon’s 1948 paper (Shannon, 1948),
which is generally viewed as representing the birth of information theory.
Several fundamental facts were proved in that paper, including Shannon’s
source coding theorem (of which Theorem 5.40 is a variant) and Shannon’s
channel coding theorem. Shannon also defined the conditional entropy in
the same paper, considered the mutual information (although not under
that name), and proved that the entropy function now bearing his name is
the unique function of a probability vector, up to a normalization, satisfying
a few simple axioms that a measure of information and uncertainty should
naturally possess. Shannon observed the similarity in form of his entropy
function to the notion of entropy in statistical mechanics in his 1948 paper,
and was later quoted as saying that he used the name “entropy” on the advice
of von Neumann (Tribus and McIrvine, 1971). More substantive connections
between these different notions of entropy have been considered by several
researchers. (See, for instance, Rosenkrantz (1989).)

The relative entropy function was defined by Kullback and Leibler in 1951
(Kullback and Leibler, 1951). Theorem 5.14 is due to Audenaert (2007). A
variant of Pinsker’s inequality (Theorem 5.15, but with a smaller constant
factor) was proved by Pinsker (1964) and later refined by others, including
Csiszár and Kullback. Further information on classical information theory
can be found in books on the subject, including the books of Ash (1990) and
Cover and Thomas (2006), among many others.

The von Neumann entropy was first defined by von Neumann in a 1927
paper (von Neumann, 1927a) and then investigated in greater detail in
his 1932 book (von Neumann, 1955), in both cases within the context of
quantum statistical mechanics. Despite Shannon’s reported discussion with
von Neumann regarding the Shannon entropy, there is no evidence known to
suggest that von Neumann ever considered the information-theoretic aspects
of the von Neumann entropy function.

The quantum relative entropy was defined by Umegaki (1962). A fact
from which Klein’s inequality (as stated in Proposition 5.22) may be derived
was proved many years earlier by Klein (1931). Theorem 5.25 was proved by
Araki and Lieb (1970), who also introduced the purification method through
which it is proved in the same paper. A weaker version of the Fannes–
Audenaert inequality (Theorem 5.26) was proved by Fannes (1973), and was
later strengthened by Audenaert (2007) (through a reduction to the classical
result stated in Theorem 5.14, which was proved in the same paper).

Lieb’s concavity theorem was proved by Lieb (1973). The statement of this
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theorem represented by Theorem 5.30 is due to Ando (1979). Multiple proofs
of this theorem are known; the proof presented in this book is an adaptation
of one appearing in the book of Simon (1979) with simplifications inspired
by Ando’s methodology (Ando, 1979). Simon attributes the central idea of
his proof to Uhlmann (1977). The strong subadditivity of von Neumann
entropy was first conjectured by Lanford and Robinson (1968) and proved
by Lieb and Ruskai (1973) using Lieb’s concavity theorem. Lindblad (1974)
proved the joint convexity of quantum relative entropy, also using Lieb’s
concavity theorem. The quantum Pinsker inequality (Theorem 5.38) appears
in a paper of Hiai, Ohya, and Tsukada (1981), and may be obtained as a
special case of a more general theorem due to Uhlmann (1977).

Theorem 5.44 was proved by Schumacher (1995). Holevo (1973a) proved
his eponymous theorem (Theorem 5.49) through a different proof than the
one presented in this chapter—Holevo’s proof did not make use of the strong
subadditivity of von Neumann entropy or Lieb’s concavity theorem.

Quantum random access codes were proposed by Ambainis, Nayak,
Ta-Shma, and Vazirani (1999); they proved a somewhat weaker limitation
on quantum random access codes than what is established by Corollary 5.55,
which was proved by Nayak (1999b) a short time later. (The two previously
referenced papers appeared in conference proceedings, and were consolidated
as a journal paper (Ambainis et al., 2002).) Nayak’s theorem, as stated
in Theorem 5.53, follows from the proof of a closely related theorem that
appears in Nayak’s PhD thesis (Nayak, 1999a).


