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Mathematical preliminaries

This chapter is intended to serve as a review of mathematical concepts to
be used throughout this book, and also as a reference to be consulted as
subsequent chapters are studied, if the need should arise. The first section
focuses on linear algebra, and the second on analysis and related topics.
Unlike the other chapters in this book, the present chapter does not include
proofs, and is not intended to serve as a primary source for the material it
reviews—a collection of references provided at the end of the chapter may
be consulted by readers interested in a proper development of this material.

1.1 Linear algebra
The theory of quantum information relies heavily on linear algebra in finite-
dimensional spaces. The subsections that follow present an overview of the
aspects of this subject that are most relevant within the theory of quantum
information. It is assumed that the reader is already familiar with the most
basic notions of linear algebra, including those of linear dependence and
independence, subspaces, spanning sets, bases, and dimension.

1.1.1 Complex Euclidean spaces
The notion of a complex Euclidean space is used throughout this book. One
associates a complex Euclidean space with every discrete and finite system;
and fundamental notions such as states and measurements of systems are
represented in linear-algebraic terms that refer to these spaces.

Definition of complex Euclidean spaces
An alphabet is a finite and nonempty set, whose elements may be considered
to be symbols. Alphabets will generally be denoted by capital Greek letters,
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including Σ, Γ, and Λ, while lower case Roman letters near the beginning
of the alphabet, including a, b, c, and d, will be used to denote symbols
in alphabets. Examples of alphabets include the binary alphabet {0, 1}, the
n-fold Cartesian product {0, 1}n of the binary alphabet with itself, and the
alphabet {1, . . . , n}, for n being a fixed positive integer.

For any alphabet Σ, one denotes by CΣ the set of all functions from Σ
to the complex numbers C. The set CΣ forms a vector space of dimension
|Σ| over the complex numbers when addition and scalar multiplication are
defined in the following standard way:

1. Addition: for vectors u, v ∈ CΣ, the vector u+ v ∈ CΣ is defined by the
equation (u+ v)(a) = u(a) + v(a) for all a ∈ Σ.

2. Scalar multiplication: for a vector u ∈ CΣ and a scalar α ∈ C, the vector
αu ∈ CΣ is defined by the equation (αu)(a) = αu(a) for all a ∈ Σ.

A vector space defined in this way will be called a complex Euclidean space.1
The value u(a) is referred to as the entry of u indexed by a, for each u ∈ CΣ

and a ∈ Σ. The vector whose entries are all zero is simply denoted 0.
Complex Euclidean spaces will be denoted by scripted capital letters near

the end of the alphabet, such as W, X , Y, and Z. Subsets of these spaces
will also be denoted by scripted letters, and when possible this book will
follow a convention to use letters such as A, B, and C near the beginning of
the alphabet when these subsets are not necessarily vector spaces. Vectors
will be denoted by lowercase Roman letters, again near the end of the
alphabet, such as u, v, w, x, y, and z.

When n is a positive integer, one typically writes Cn rather than C{1,...,n},
and it is also typical that one views a vector u ∈ Cn as an n-tuple of the
form u = (α1, . . . , αn), or as a column vector of the form

u =




α1
...
αn


 , (1.1)

for complex numbers α1, . . . , αn.
For an arbitrary alphabet Σ, the complex Euclidean space CΣ may be

viewed as being equivalent to Cn for n = |Σ|; one simply fixes a bijection

f : {1, . . . , n} → Σ (1.2)

and associates each vector u ∈ CΣ with the vector in Cn whose k-th entry
1 Many quantum information theorists prefer to use the term Hilbert space. The term complex

Euclidean space will be preferred in this book, however, as the term Hilbert space refers to a
more general notion that allows the possibility of infinite index sets.
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is u(f(k)), for each k ∈ {1, . . . , n}. This may be done implicitly when there
is a natural or obviously preferred choice for the bijection f . For example,
the elements of the alphabet Σ = {0, 1}2 are naturally ordered 00, 01, 10,
11. Each vector u ∈ CΣ may therefore be associated with the 4-tuple

(u(00), u(01), u(10), u(11)), (1.3)

or with the column vector



u(00)
u(01)
u(10)
u(11)



, (1.4)

when it is convenient to do this. While little or no generality would be
lost in restricting one’s attention to complex Euclidean spaces of the form
Cn for this reason, it is both natural and convenient within computational
and information-theoretic settings to allow complex Euclidean spaces to be
indexed by arbitrary alphabets.

Inner products and norms of vectors
The inner product 〈u, v〉 of two vectors u, v ∈ CΣ is defined as

〈u, v〉 =
∑

a∈Σ
u(a) v(a). (1.5)

It may be verified that the inner product satisfies the following properties:

1. Linearity in the second argument:

〈u, αv + βw〉 = α〈u, v〉+ β〈u,w〉 (1.6)

for all u, v, w ∈ CΣ and α, β ∈ C.
2. Conjugate symmetry:

〈u, v〉 = 〈v, u〉 (1.7)

for all u, v ∈ CΣ.
3. Positive definiteness:

〈u, u〉 ≥ 0 (1.8)

for all u ∈ CΣ, with equality if and only if u = 0.

It is typical that any function satisfying these three properties is referred to
as an inner product, but this is the only inner product for vectors in complex
Euclidean spaces that is considered in this book.
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The Euclidean norm of a vector u ∈ CΣ is defined as

‖u‖ =
√
〈u, u〉 =

√∑

a∈Σ
|u(a)|2. (1.9)

The Euclidean norm possesses the following properties, which define the
more general notion of a norm:

1. Positive definiteness: ‖u‖ ≥ 0 for all u ∈ CΣ, with ‖u‖ = 0 if and only if
u = 0.

2. Positive scalability: ‖αu‖ = |α|‖u‖ for all u ∈ CΣ and α ∈ C.
3. The triangle inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ CΣ.

The Cauchy–Schwarz inequality states that

|〈u, v〉| ≤ ‖u‖ ‖v‖ (1.10)

for all u, v ∈ CΣ, with equality if and only if u and v are linearly dependent.
The collection of all unit vectors in a complex Euclidean space X is called
the unit sphere in that space, and is denoted

S(X ) =
{
u ∈ X : ‖u‖ = 1

}
. (1.11)

The Euclidean norm represents the case p = 2 of the class of p-norms,
defined for each u ∈ CΣ as

‖u‖p =
(∑

a∈Σ
|u(a)|p

) 1
p

(1.12)

for p <∞, and
‖u‖∞ = max

{|u(a)| : a ∈ Σ
}
. (1.13)

The above three norm properties (positive definiteness, positive scalability,
and the triangle inequality) hold for ‖·‖ replaced by ‖·‖p for any choice of
p ∈ [1,∞].

Orthogonality and orthonormality
Two vectors u, v ∈ CΣ are said to be orthogonal if 〈u, v〉 = 0. The notation
u ⊥ v is also used to indicate that u and v are orthogonal. More generally,
for any set A ⊆ CΣ, the notation u ⊥ A indicates that 〈u, v〉 = 0 for all
vectors v ∈ A.

A collection of vectors

{ua : a ∈ Γ} ⊂ CΣ, (1.14)

indexed by an alphabet Γ, is said to be an orthogonal set if it holds that
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〈ua, ub〉 = 0 for all choices of a, b ∈ Γ with a 6= b. A collection of nonzero
orthogonal vectors is necessarily linearly independent.

An orthogonal set of unit vectors is called an orthonormal set, and when
such a set forms a basis it is called an orthonormal basis. It holds that an
orthonormal set of the form (1.14) is an orthonormal basis of CΣ if and only
if |Γ| = |Σ|. The standard basis of CΣ is the orthonormal basis given by
{ea : a ∈ Σ}, where

ea(b) =





1 if a = b

0 if a 6= b
(1.15)

for all a, b ∈ Σ.

Direct sums of complex Euclidean spaces
The direct sum of n complex Euclidean spaces X1 = CΣ1 , . . . ,Xn = CΣn is
the complex Euclidean space

X1 ⊕ · · · ⊕ Xn = CΣ1 t ··· tΣn , (1.16)

where Σ1 t · · · t Σn denotes the disjoint union of the alphabets Σ1, . . . ,Σn,
defined as

Σ1 t · · · t Σn =
⋃

k∈{1,...,n}

{
(k, a) : a ∈ Σk

}
. (1.17)

For vectors u1 ∈ X1, . . . , un ∈ Xn, the notation u1⊕· · ·⊕un ∈ X1⊕· · ·⊕Xn
refers to the vector for which

(u1 ⊕ · · · ⊕ un)(k, a) = uk(a), (1.18)

for each k ∈ {1, . . . , n} and a ∈ Σk. If each uk is viewed as a column vector
of dimension |Σk|, the vector u1⊕· · ·⊕un may be viewed as a column vector




u1
...
un


 (1.19)

having dimension |Σ1|+ · · ·+ |Σn|.
Every element of the space X1 ⊕ · · · ⊕ Xn can be written as u1 ⊕ · · · ⊕ un

for a unique choice of vectors u1, . . . , un. The following identities hold for
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every choice of u1, v1 ∈ X1, . . . , un, vn ∈ Xn, and α ∈ C:

u1 ⊕ · · · ⊕ un + v1 ⊕ · · · ⊕ vn = (u1 + v1)⊕ · · · ⊕ (un + vn), (1.20)

α(u1 ⊕ · · · ⊕ un) = (αu1)⊕ · · · ⊕ (αun), (1.21)

〈u1 ⊕ · · · ⊕ un, v1 ⊕ · · · ⊕ vn〉 = 〈u1, v1〉+ · · ·+ 〈un, vn〉. (1.22)

Tensor products of complex Euclidean spaces
The tensor product of n complex Euclidean spaces X1 = CΣ1 , . . . ,Xn = CΣn

is the complex Euclidean space

X1 ⊗ · · · ⊗ Xn = CΣ1×···×Σn . (1.23)

For vectors u1 ∈ X1, . . . , un ∈ Xn, the notation u1⊗· · ·⊗un ∈ X1⊗· · ·⊗Xn
refers to the vector for which

(u1 ⊗ · · · ⊗ un)(a1, . . . , an) = u1(a1) · · · un(an). (1.24)

Vectors of the form u1⊗· · ·⊗un are called elementary tensors. They span the
space X1⊗· · ·⊗Xn, but not every element of X1⊗· · ·⊗Xn is an elementary
tensor.

The following identities hold for all vectors u1, v1 ∈ X1, . . . , un, vn ∈ Xn,
scalars α, β ∈ C, and indices k ∈ {1, . . . , n}:

u1 ⊗ · · · ⊗ uk−1 ⊗ (αuk + βvk)⊗ uk+1 ⊗ · · · ⊗ un
= α (u1 ⊗ · · · ⊗ uk−1 ⊗ uk ⊗ uk+1 ⊗ · · · ⊗ un)
+ β (u1 ⊗ · · · ⊗ uk−1 ⊗ vk ⊗ uk+1 ⊗ · · · ⊗ un),

(1.25)

〈u1 ⊗ · · · ⊗ un, v1 ⊗ · · · ⊗ vn〉 = 〈u1, v1〉 · · · 〈un, vn〉. (1.26)

Tensor products are often defined in a way that is more abstract (and more
generally applicable) than the definition above, which is sometimes known
more specifically as the Kronecker product. The following proposition is a
reflection of the more abstract definition.

Proposition 1.1 Let X1, . . . ,Xn and Y be complex Euclidean spaces and
let

φ : X1 × · · · × Xn → Y (1.27)

be a multilinear function, meaning a function for which the mapping

uk 7→ φ(u1, . . . , un) (1.28)
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is linear for all k ∈ {1, . . . , n} and every fixed choice of vectors u1, . . . , uk−1,
uk+1, . . . , un. There exists a unique linear mapping

A : X1 ⊗ · · · ⊗ Xn → Y (1.29)

such that
φ(u1, . . . , un) = A(u1 ⊗ · · · ⊗ un) (1.30)

for all choices of u1 ∈ X1, . . . , un ∈ Xn.

If X is a complex Euclidean space, u ∈ X is a vector, and n is a positive
integer, then the notations X⊗n and u⊗n refer to the n-fold tensor product
of either X or u with itself. It is often convenient to make the identification

X⊗n = X1 ⊗ · · · ⊗ Xn, (1.31)

under the assumption that X1, . . . ,Xn and X all refer to the same complex
Euclidean space; this allows one to refer to the different tensor factors in
X⊗n individually, and to express X1 ⊗ · · · ⊗ Xn more concisely.
Remark A rigid interpretation of the definitions above suggests that tensor
products of complex Euclidean spaces (or of vectors in complex Euclidean
spaces) are not associative, insofar as Cartesian products are not associative.
For instance, given alphabets Σ, Γ, and Λ, the alphabet (Σ×Γ)×Λ contains
elements of the form ((a, b), c), the alphabet Σ× (Γ× Λ) contains elements
of the form (a, (b, c)), and the alphabet Σ× Γ× Λ contains elements of the
form (a, b, c), for a ∈ Σ, b ∈ Γ, and c ∈ Λ. For X = CΣ, Y = CΓ, and
Z = CΛ, one may therefore view the complex Euclidean spaces (X ⊗Y)⊗Z,
X ⊗ (Y ⊗ Z), and X ⊗ Y ⊗ Z as being different.

However, the alphabets (Σ × Γ) × Λ, Σ × (Γ × Λ), and Σ × Γ × Λ can
of course be viewed as equivalent by simply removing parentheses. For this
reason, there is a natural equivalence between the complex Euclidean spaces
(X ⊗ Y) ⊗ Z, X ⊗ (Y ⊗ Z), and X ⊗ Y ⊗ Z. Whenever it is convenient,
identifications of this sort are made implicitly throughout this book. For
example, given vectors u ∈ X ⊗ Y and v ∈ Z, the vector u ⊗ v may be
treated as an element of X ⊗ Y ⊗ Z rather than (X ⊗ Y)⊗Z.

Although such instances are much less common in this book, a similar
convention applies to direct sums of complex Euclidean spaces.

Real Euclidean spaces
Real Euclidean spaces are defined in a similar way to complex Euclidean
spaces, except that the field of complex numbers C is replaced by the field
of real numbers R in each of the definitions and concepts in which it arises.
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Naturally, complex conjugation acts trivially in the real case, and therefore
may be omitted.

Complex Euclidean spaces will play a more prominent role than real ones
in this book. Real Euclidean spaces will, nevertheless, be important in those
settings that make use of concepts from the theory of convexity. The space
of Hermitian operators acting on a given complex Euclidean space is an
important example of a real vector space that can be identified with a real
Euclidean space, as is discussed in the subsection following this one.

1.1.2 Linear operators
Given complex Euclidean spaces X and Y, one writes L(X ,Y) to refer to
the collection of all linear mappings of the form

A : X → Y. (1.32)

Such mappings will be referred to as linear operators, or simply operators,
from X to Y in this book. Parentheses are omitted when expressing the
action of linear operators on vectors when no confusion arises in doing so.
For instance, one writes Au rather than A(u) to denote the vector resulting
from the application of an operator A ∈ L(X ,Y) to a vector u ∈ X .

The set L(X ,Y) forms a complex vector space when addition and scalar
multiplication are defined as follows:

1. Addition: for operators A,B ∈ L(X ,Y), the operator A + B ∈ L(X ,Y)
is defined by the equation

(A+B)u = Au+Bu (1.33)

for all u ∈ X .
2. Scalar multiplication: for an operator A ∈ L(X ,Y) and a scalar α ∈ C,

the operator αA ∈ L(X ,Y) is defined by the equation

(αA)u = αAu (1.34)

for all u ∈ X .

Matrices and their correspondence with operators
A matrix over the complex numbers is a mapping of the form

M : Γ× Σ→ C (1.35)

for alphabets Σ and Γ. For a ∈ Γ and b ∈ Σ the value M(a, b) is called the
(a, b) entry of M , and the elements a and b are referred to as indices in this
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context: a is the row index and b is the column index of the entry M(a, b).
Addition and scalar multiplication of matrices are defined in a similar way
to vectors in complex Euclidean spaces:

1. Addition: for matrices M : Γ × Σ → C and N : Γ × Σ → C, the matrix
M +N is defined as

(M +N)(a, b) = M(a, b) +N(a, b) (1.36)

for all a ∈ Γ and b ∈ Σ.
2. Scalar multiplication: for a matrix M : Γ × Σ → C and a scalar α ∈ C,

the matrix αM is defined as

(αM)(a, b) = αM(a, b) (1.37)

for all a ∈ Γ and b ∈ Σ.

In addition, one defines matrix multiplication as follows:

3. Matrix multiplication: for matrices M : Γ× Λ→ C and N : Λ×Σ→ C,
the matrix MN : Γ× Σ→ C is defined as

(MN)(a, b) =
∑

c∈Λ
M(a, c)N(c, b) (1.38)

for all a ∈ Γ and b ∈ Σ.

For any choice of complex Euclidean spaces X = CΣ and Y = CΓ, there is
a bijective linear correspondence between the set of operators L(X ,Y) and
the collection of all matrices taking the form M : Γ×Σ→ C that is obtained
as follows. With each operator A ∈ L(X ,Y), one associates the matrix M

defined as
M(a, b) = 〈ea, Aeb〉 (1.39)

for a ∈ Γ and b ∈ Σ. The operator A is uniquely determined by M , and may
be recovered from M by the equation

(Au)(a) =
∑

b∈Σ
M(a, b)u(b) (1.40)

for all a ∈ Γ. With respect to this correspondence, matrix multiplication is
equivalent to operator composition.

Hereafter in this book, linear operators will be associated with matrices
implicitly, without the introduction of names that distinguish matrices from
the operators with which they are associated. With this in mind, the notation

A(a, b) = 〈ea, Aeb〉 (1.41)
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is introduced for each A ∈ L(X ,Y), a ∈ Γ, and b ∈ Σ (where it is to be
assumed that X = CΣ and Y = CΓ, as above).

The standard basis of a space of operators
For every choice of complex Euclidean spaces X = CΣ and Y = CΓ, and
each choice of symbols a ∈ Γ and b ∈ Σ, the operator Ea,b ∈ L(X ,Y) is
defined as

Ea,b u = u(b)ea (1.42)

for every u ∈ X . Equivalently, Ea,b is defined by the equation

Ea,b(c, d) =





1 if (c, d) = (a, b)
0 otherwise

(1.43)

holding for all c ∈ Γ and d ∈ Σ. The collection

{Ea,b : a ∈ Γ, b ∈ Σ} (1.44)

forms a basis of L(X ,Y) known as the standard basis of this space. The
number of elements in this basis is, of course, consistent with the fact that
the dimension of L(X ,Y) is given by dim(L(X ,Y)) = dim(X ) dim(Y).

The entry-wise conjugate, transpose, and adjoint
For every operator A ∈ L(X ,Y), for complex Euclidean spaces X = CΣ and
Y = CΓ, one defines three additional operators,

A ∈ L(X ,Y) and AT, A∗ ∈ L(Y,X ), (1.45)

as follows:

1. The operator A ∈ L(X ,Y) is the operator whose matrix representation
has entries that are complex conjugates to the matrix representation of A:

A(a, b) = A(a, b) (1.46)

for all a ∈ Γ and b ∈ Σ.
2. The operator AT ∈ L(Y,X ) is the operator whose matrix representation

is obtained by transposing the matrix representation of A:

AT(b, a) = A(a, b) (1.47)

for all a ∈ Γ and b ∈ Σ.
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3. The operator A∗ ∈ L(Y,X ) is the uniquely determined operator that
satisfies the equation

〈v,Au〉 = 〈A∗v, u〉 (1.48)

for all u ∈ X and v ∈ Y. It may be obtained by performing both of the
operations described in items 1 and 2:

A∗ = AT. (1.49)

The operators A, AT, and A∗ are called the entry-wise conjugate, transpose,
and adjoint operators to A, respectively.

The mappings A 7→ A and A 7→ A∗ are conjugate linear and A 7→ AT is
linear:

αA+ βB = αA+ β B,

(αA+ βB)∗ = αA∗ + βB∗,

(αA+ βB)T = αAT + βBT,

for all A,B ∈ L(X ,Y) and α, β ∈ C. These mappings are bijections, each
being its own inverse.

Each vector u ∈ X in a complex Euclidean space X may be identified with
the linear operator in L(C,X ) defined as α 7→ αu for all α ∈ C. Through
this identification, the linear mappings u ∈ L(C,X ) and uT, u∗ ∈ L(X ,C) are
defined as above. As an element of X , the vector u is simply the entry-wise
complex conjugate of u, i.e., if X = CΣ then

u(a) = u(a) (1.50)

for every a ∈ Σ. For each vector u ∈ X the mapping u∗ ∈ L(X ,C) satisfies
u∗v = 〈u, v〉 for all v ∈ X .

Kernel, image, and rank
The kernel of an operator A ∈ L(X ,Y) is the subspace of X defined as

ker(A) = {u ∈ X : Au = 0}, (1.51)

while the image of A is the subspace of Y defined as

im(A) = {Au : u ∈ X}. (1.52)

For every operator A ∈ L(X ,Y), one has that

ker(A) = ker(A∗A) and im(A) = im(AA∗), (1.53)

as well as the equation

dim(ker(A)) + dim(im(A)) = dim(X ). (1.54)
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The rank of an operator A ∈ L(X ,Y), denoted rank(A), is the dimension of
the image of A:

rank(A) = dim(im(A)). (1.55)

By (1.53) and (1.54), one may conclude that

rank(A) = rank(AA∗) = rank(A∗A) (1.56)

for every A ∈ L(X ,Y).
For any choice of vectors u ∈ X and v ∈ Y, the operator vu∗ ∈ L(X ,Y)

satisfies
(vu∗)w = v(u∗w) = 〈u,w〉v (1.57)

for all w ∈ X . Assuming that u and v are nonzero, the operator vu∗ has
rank equal to one, and every rank one operator in L(X ,Y) can be expressed
in this form for vectors u and v that are unique up to scalar multiples.

Operators involving direct sums of complex Euclidean spaces
Suppose that

X1 = CΣ1 , . . . , Xn = CΣn and Y1 = CΓ1 , . . . , Ym = CΓm (1.58)

are complex Euclidean spaces, for alphabets Σ1, . . . ,Σn and Γ1, . . . ,Γm. For
a given operator

A ∈ L(X1 ⊕ · · · ⊕ Xn,Y1 ⊕ · · · ⊕ Ym), (1.59)

there exists a unique collection of operators
{
Aj,k ∈ L(Xk,Yj) : 1 ≤ j ≤ m, 1 ≤ k ≤ n} (1.60)

for which the equation

Aj,k(a, b) = A
(
(j, a), (k, b)

)
(1.61)

holds for all j ∈ {1, . . . ,m}, k ∈ {1, . . . , n}, a ∈ Γj , and b ∈ Σk. For all
vectors u1 ∈ X1, . . . , un ∈ Xn, one has that

A(u1 ⊕ · · · ⊕ un) = v1 ⊕ · · · ⊕ vm (1.62)

for v1 ∈ Y1, . . . , vm ∈ Ym being defined as

vj =
n∑

k=1
Aj,kuk (1.63)

for each j ∈ {1, . . . ,m}. Conversely, for any collection of operators of the
form (1.60), there is a unique operator A of the form (1.59) that obeys the
equations (1.62) and (1.63) for all vectors u1 ∈ X1, . . . , un ∈ Xn.
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There is therefore a bijective correspondence between operators of the
form (1.59) and collections of operators of the form (1.60). With respect to
the matrix representations of these operators, this correspondence may be
expressed succinctly as

A =




A1,1 · · · A1,n
... . . . ...

Am,1 · · · Am,n


 . (1.64)

One interprets the right-hand side of (1.64) as the specification of the
operator having the form (1.59) that is defined by the collection (1.60) in
this way.

Tensor products of operators
Suppose that

X1 = CΣ1 , . . . , Xn = CΣn and Y1 = CΓ1 , . . . , Yn = CΓn (1.65)

are complex Euclidean spaces, for alphabets Σ1, . . . ,Σn and Γ1, . . . ,Γn. For
any choice of operators

A1 ∈ L(X1,Y1), . . . , An ∈ L(Xn,Yn), (1.66)

one defines the tensor product

A1 ⊗ · · · ⊗An ∈ L(X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Yn) (1.67)

of these operators to be the unique operator that satisfies the equation

(A1 ⊗ · · · ⊗An)(u1 ⊗ · · · ⊗ un) = (A1u1)⊗ · · · ⊗ (Anun) (1.68)

for all choices of u1 ∈ X1, . . . , un ∈ Xn. This operator may equivalently be
defined in terms of its matrix representation as

(A1 ⊗ · · · ⊗An)((a1, . . . , an), (b1, . . . , bn))
= A1(a1, b1) · · ·An(an, bn)

(1.69)

for all a1 ∈ Γ1, . . . , an ∈ Γn and b1 ∈ Σ1, . . . , bn ∈ Σn.
For every choice of complex Euclidean spaces X1, . . . ,Xn, Y1, . . . ,Yn, and
Z1, . . . ,Zn, operators

A1, B1 ∈ L(X1,Y1), . . . , An, Bn ∈ L(Xn,Yn),

C1 ∈ L(Y1,Z1), . . . , Cn ∈ L(Yn,Zn),
(1.70)
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and scalars α, β ∈ C, the following equations hold:

A1 ⊗ · · · ⊗Ak−1 ⊗ (αAk + βBk)⊗Ak+1 ⊗ · · · ⊗An
= α(A1 ⊗ · · · ⊗Ak−1 ⊗Ak ⊗Ak+1 ⊗ · · · ⊗An)
+ β(A1 ⊗ · · · ⊗Ak−1 ⊗Bk ⊗Ak+1 ⊗ · · · ⊗An),

(1.71)

(C1 ⊗ · · · ⊗ Cn)(A1 ⊗ · · · ⊗An) = (C1A1)⊗ · · · ⊗ (CnAn), (1.72)

(A1 ⊗ · · · ⊗An)T = AT
1 ⊗ · · · ⊗AT

n, (1.73)

A1 ⊗ · · · ⊗An = A1 ⊗ · · · ⊗An, (1.74)

(A1 ⊗ · · · ⊗An)∗ = A∗1 ⊗ · · · ⊗A∗n. (1.75)

Similar to vectors, for an operator A and a positive integer n, the notation
A⊗n refers to the n-fold tensor product of A with itself.

Square operators
For every complex Euclidean space X , the notation L(X ) is understood to be
a shorthand for L(X ,X ). Operators in the space L(X ) will be called square
operators, due to the fact that their matrix representations are square, with
rows and columns indexed by the same set.

The space L(X ) is an associative algebra; in addition to being a vector
space, the composition of square operators is associative and bilinear:

(XY )Z = X(Y Z),
Z(αX + βY ) = αZX + βZY,

(αX + βY )Z = αXZ + βY Z,

(1.76)

for every choice of X,Y, Z ∈ L(X ) and α, β ∈ C.
The identity operator 1 ∈ L(X ) is the operator defined as 1u = u for all

u ∈ X . It may also be defined by its matrix representation as

1(a, b) =
{

1 if a = b

0 if a 6= b
(1.77)

for all a, b ∈ Σ, assuming X = CΣ. One writes 1X rather than 1 when it is
helpful to indicate explicitly that this operator acts on X .

For a complex Euclidean space X , an operator X ∈ L(X ) is invertible
if there exists an operator Y ∈ L(X ) such that Y X = 1. When such an
operator Y exists it is necessarily unique and is denoted X−1. When the
inverse X−1 of X exists, it must also satisfy XX−1 = 1.
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Trace and determinant
The diagonal entries of a square operator X ∈ L(X ), for X = CΣ, are those
of the form X(a, a) for a ∈ Σ. The trace of a square operator X ∈ L(X ) is
defined as the sum of its diagonal entries:

Tr(X) =
∑

a∈Σ
X(a, a). (1.78)

Alternatively, the trace is the unique linear function Tr : L(X ) → C such
that, for all vectors u, v ∈ X , one has

Tr
(
uv∗

)
= 〈v, u〉. (1.79)

For every choice of complex Euclidean spaces X and Y and operators
A ∈ L(X ,Y) and B ∈ L(Y,X ), it holds that

Tr(AB) = Tr(BA). (1.80)

This property is known as the cyclic property of the trace.
By means of the trace, one defines an inner product on the space L(X ,Y)

as follows:
〈A,B〉 = Tr

(
A∗B

)
(1.81)

for all A,B ∈ L(X ,Y). It may be verified that this inner product satisfies
the requisite properties of being an inner product:

1. Linearity in the second argument:

〈A,αB + βC〉 = α〈A,B〉+ β〈A,C〉 (1.82)

for all A,B,C ∈ L(X ,Y) and α, β ∈ C.
2. Conjugate symmetry:

〈A,B〉 = 〈B,A〉 (1.83)

for all A,B ∈ L(X ,Y).
3. Positive definiteness: 〈A,A〉 ≥ 0 for all A ∈ L(X ,Y), with equality if and

only if A = 0.

The determinant of a square operator X ∈ L(X ), for X = CΣ, is defined
by the equation

Det(X) =
∑

π∈Sym(Σ)
sign(π)

∏

a∈Σ
X(a, π(a)). (1.84)

Here, the set Sym(Σ) denotes the collection of all permutations π : Σ→ Σ,
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and sign(π) ∈ {−1,+1} denotes the sign (or parity) of the permutation π.
The determinant is multiplicative,

Det(XY ) = Det(X) Det(Y ) (1.85)

for all X,Y ∈ L(X ), and Det(X) 6= 0 if and only if X is invertible.

Eigenvectors and eigenvalues
If X ∈ L(X ) is an operator and u ∈ X is a nonzero vector for which it holds
that

Xu = λu (1.86)

for some choice of λ ∈ C, then u is said to be an eigenvector of X and λ is
its corresponding eigenvalue.

For every operator X ∈ L(X ), one has that

pX(α) = Det(α1X −X) (1.87)

is a monic polynomial in the variable α having degree dim(X ), known as
the characteristic polynomial of X. The spectrum of X, denoted spec(X),
is the multiset containing the roots of the polynomial pX , where each root
appears a number of times equal to its multiplicity. As pX is monic, it holds
that

pX(α) =
∏

λ∈spec(X)
(α− λ). (1.88)

Each element λ ∈ spec(X) is necessarily an eigenvalue of X, and every
eigenvalue of X is contained in spec(X).

The trace and determinant may be expressed in terms of the spectrum as
follows:

Tr(X) =
∑

λ∈spec(X)
λ and Det(X) =

∏

λ∈spec(X)
λ (1.89)

for every X ∈ L(X ). The spectral radius of an operator X ∈ L(X ) is the
maximum absolute value |λ| taken over all eigenvalues λ of X. For every
choice of operators X,Y ∈ L(X ) it holds that

spec(XY ) = spec(Y X). (1.90)

Lie brackets and commutants
A set A ⊆ L(X ) is a subalgebra of L(X ) if it is closed under addition, scalar
multiplication, and operator composition:

X + Y ∈ A, αX ∈ A, and XY ∈ A (1.91)
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for all X,Y ∈ A and α ∈ C. A subalgebra A of L(X ) is said to be self-adjoint
if it holds that X∗ ∈ A for every X ∈ A, and is said to be unital if it holds
that 1 ∈ A.

For any pair of operators X,Y ∈ L(X ), the Lie bracket [X,Y ] ∈ L(X ) is
defined as

[X,Y ] = XY − Y X. (1.92)

It holds that [X,Y ] = 0 if and only if X and Y commute: XY = Y X. For
any subset of operators A ⊆ L(X ), one defines the commutant of A as

comm(A) =
{
Y ∈ L(X ) : [X,Y ] = 0 for all X ∈ A}. (1.93)

The commutant of every subset of L(X ) is a unital subalgebra of L(X ).

Important classes of operators
The following classes of operators have particular importance in the theory
of quantum information:

1. Normal operators. An operator X ∈ L(X ) is normal if it commutes with
its adjoint: [X,X∗] = 0, or equivalently, XX∗ = X∗X. The importance
of this collection of operators, for the purposes of this book, is mainly
derived from two facts: (1) the normal operators are those for which the
spectral theorem (discussed later in Section 1.1.3) holds, and (2) most of
the special classes of operators that are discussed below are subsets of
the normal operators.

2. Hermitian operators. An operator X ∈ L(X ) is Hermitian if X = X∗.
The set of Hermitian operators acting on a complex Euclidean space X
will hereafter be denoted Herm(X ) in this book:

Herm(X ) = {X ∈ L(X ) : X = X∗}. (1.94)

Every Hermitian operator is a normal operator.
3. Positive semidefinite operators. An operator X ∈ L(X ) is positive semi-

definite if it holds that X = Y ∗Y for some operator Y ∈ L(X ). Positive
semidefinite operators will, as a convention, often be denoted by the
letters P , Q, and R in this book. The collection of positive semidefinite
operators acting on X is denoted Pos(X ), so that

Pos(X ) = {Y ∗Y : Y ∈ L(X )}. (1.95)

Every positive semidefinite operator is Hermitian.
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4. Positive definite operators. A positive semidefinite operator P ∈ Pos(X )
is said to be positive definite if, in addition to being positive semidefinite,
it is invertible. The notation

Pd(X ) = {P ∈ Pos(X ) : Det(P ) 6= 0} (1.96)

will be used to denote the set of such operators for a complex Euclidean
space X .

5. Density operators. Positive semidefinite operators having trace equal to 1
are called density operators. Lowercase Greek letters, such as ρ, ξ, and
σ, are conventionally used to denote density operators. The notation

D(X ) = {ρ ∈ Pos(X ) : Tr(ρ) = 1} (1.97)

will be used to denote the collection of density operators acting on a
complex Euclidean space X .

6. Projection operators. A positive semidefinite operator Π ∈ Pos(X ) is said
to be a projection operator2 if, in addition to being positive semidefinite,
it satisfies the equation Π2 = Π. Equivalently, a projection operator is a
Hermitian operator whose only eigenvalues are 0 and 1. The collection
of all projection operators of the form Π ∈ Pos(X ) is denoted Proj(X ).
For each subspace V ⊆ X , there is a uniquely defined projection operator
Π ∈ Proj(X ) satisfying im(Π) = V; when it is convenient, the notation
ΠV is used to refer to this projection operator.

7. Isometries. An operator A ∈ L(X ,Y) is an isometry if it preserves the
Euclidean norm: ‖Au‖ = ‖u‖ for all u ∈ X . This condition is equivalent
to A∗A = 1X . The notation

U(X ,Y) =
{
A ∈ L(X ,Y) : A∗A = 1X

}
(1.98)

is used to denote this class of operators. In order for an isometry of the
form A ∈ U(X ,Y) to exist, it must hold that dim(Y) ≥ dim(X ). Every
isometry preserves not only the Euclidean norm, but inner products as
well: 〈Au,Av〉 = 〈u, v〉 for all u, v ∈ X .

8. Unitary operators. The set of isometries mapping a complex Euclidean
space X to itself is denoted U(X ), and operators in this set are unitary
operators. The letters U , V , and W will often be used to refer to unitary
operators (and sometimes to isometries more generally) in this book.
Every unitary operator U ∈ U(X ) is necessarily invertible and satisfies
the equation UU∗ = U∗U = 1X , and is therefore normal.

2 Sometimes the term projection operator refers to an operator X ∈ L(X ) that satisfies the
equation X2 = X, but that might not be Hermitian. This is not the meaning that is
associated with this term in this book.
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9. Diagonal operators. An operator X ∈ L(X ), for a complex Euclidean
space of the form X = CΣ, is a diagonal operator if X(a, b) = 0 for all
a, b ∈ Σ with a 6= b. For a given vector u ∈ X , one writes Diag(u) ∈ L(X )
to denote the diagonal operator defined as

Diag(u)(a, b) =




u(a) if a = b

0 if a 6= b.
(1.99)

Further remarks on Hermitian and positive semidefinite operators
The sum of two Hermitian operators is Hermitian, as is a real scalar multiple
of a Hermitian operator. The inner product of two Hermitian operators is
real as well. For every choice of a complex Euclidean space X , the space
Herm(X ) therefore forms a vector space over the real numbers on which an
inner product is defined.

Indeed, under the assumption that X = CΣ, it holds that the space
Herm(X ) and the real Euclidean space RΣ×Σ are isometrically isomorphic:
there exists a linear bijection

φ : RΣ×Σ → Herm(X ) (1.100)

with the property that
〈φ(u), φ(v)〉 = 〈u, v〉 (1.101)

for all u, v ∈ RΣ×Σ. The existence of such a linear bijection allows one to
directly translate many statements about real Euclidean spaces to the space
of Hermitian operators acting on a complex Euclidean space.

One way to define a mapping φ as above is as follows. First, assume that
a total ordering of Σ has been fixed, and define a collection

{Ha,b : (a, b) ∈ Σ× Σ} ⊂ Herm(X ) (1.102)

as

Ha,b =





Ea,a if a = b

1√
2(Ea,b + Eb,a) if a < b

1√
2(iEa,b − iEb,a) if a > b

(1.103)

for each pair (a, b) ∈ Σ×Σ. It holds that (1.102) is an orthonormal set (with
respect to the usual inner product defined on L(X )), and moreover every
element of Herm(X ) can be expressed uniquely as a real linear combination
of the operators in this set. The mapping φ defined by the equation

φ
(
e(a,b)

)
= Ha,b, (1.104)
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and extended to all of RΣ×Σ by linearity, satisfies the requirement (1.101).
The eigenvalues of a Hermitian operator are necessarily real numbers,

and can therefore be ordered from largest to smallest. For every complex
Euclidean space X and every Hermitian operator H ∈ Herm(X ), the vector

λ(H) = (λ1(H), λ2(H), . . . , λn(H)) ∈ Rn (1.105)

is defined so that

spec(H) =
{
λ1(H), λ2(H), . . . , λn(H)

}
(1.106)

and
λ1(H) ≥ λ2(H) ≥ · · · ≥ λn(H). (1.107)

The notation λk(H) may also be used in isolation to refer to the k-th largest
eigenvalue of a Hermitian operator H.

The eigenvalues of Hermitian operators can be characterized by a theorem
known as the Courant–Fischer theorem, which is as follows.

Theorem 1.2 (Courant–Fischer theorem) Let X be a complex Euclidean
space of dimension n and let H ∈ Herm(X ) be a Hermitian operator. For
every k ∈ {1, . . . , n} it holds that

λk(H) = max
u1,...,un−k∈S(X )

min
v∈S(X )

v⊥{u1,...,un−k}

v∗Hv

= min
u1,...,uk−1∈S(X )

max
v∈S(X )

v⊥{u1,...,uk−1}

v∗Hv
(1.108)

(It is to be interpreted that the maximum or minimum is omitted if it is to
be taken over an empty set of vectors, and that v ⊥ ∅ holds for all v ∈ X .)

There are alternative ways to describe positive semidefinite operators that
are useful in different situations. In particular, the following statements are
equivalent for every operator P ∈ L(X ):

1. P is positive semidefinite.
2. P = A∗A for an operator A ∈ L(X ,Y), for some choice of a complex

Euclidean space Y.
3. P is Hermitian and every eigenvalue of P is nonnegative.
4. 〈u, Pu〉 is a nonnegative real number for all u ∈ X .
5. 〈Q,P 〉 is a nonnegative real number for all Q ∈ Pos(X ).
6. There exists a collection of vectors {ua : a ∈ Σ} ⊂ X for which it holds

that P (a, b) = 〈ua, ub〉 for all a, b ∈ Σ.
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7. There exists a collection of vectors {ua : a ∈ Σ} ⊂ Y, for some choice of
a complex Euclidean space Y, for which it holds that P (a, b) = 〈ua, ub〉
for all a, b ∈ Σ.

Along similar lines, one has that the following statements are equivalent for
every operator P ∈ L(X ):

1. P is positive definite.
2. P is Hermitian, and every eigenvalue of P is positive.
3. 〈u, Pu〉 is a positive real number for every nonzero u ∈ X .
4. 〈Q,P 〉 is a positive real number for every nonzero Q ∈ Pos(X ).
5. There exists a positive real number ε > 0 such that P − ε1 ∈ Pos(X ).

The notations P ≥ 0 and 0 ≤ P indicate that P is positive semidefinite,
while P > 0 and 0 < P indicate that P is positive definite. More generally,
for Hermitian operators X and Y , one writes either X ≥ Y or Y ≤ X to
indicate that X −Y is positive semidefinite, and either X > Y or Y < X to
indicate that X − Y is positive definite.

Linear maps on square operators
Linear maps of the form

Φ : L(X )→ L(Y), (1.109)

for complex Euclidean spaces X and Y, play a fundamental role in the theory
of quantum information. The set of all such maps is denoted T(X ,Y), and
is itself a complex vector space when addition and scalar multiplication are
defined in the straightforward way:

1. Addition: given two maps Φ,Ψ ∈ T(X ,Y), the map Φ + Ψ ∈ T(X ,Y) is
defined as

(Φ + Ψ)(X) = Φ(X) + Ψ(X) (1.110)

for all X ∈ L(X ).
2. Scalar multiplication: given a map Φ ∈ T(X ,Y) and a scalar α ∈ C, the

map αΦ ∈ T(X ,Y) is defined as

(αΦ)(X) = αΦ(X) (1.111)

for all X ∈ L(X ).

For a given map Φ ∈ T(X ,Y), the adjoint of Φ is defined to be the unique
map Φ∗ ∈ T(Y,X ) that satisfies

〈Φ∗(Y ), X〉 = 〈Y,Φ(X)〉 (1.112)
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for all X ∈ L(X ) and Y ∈ L(Y).
Tensor products of maps of the form (1.109) are defined in a similar way

to tensor products of operators. More specifically, for any choice of complex
Euclidean spaces X1, . . . ,Xn and Y1, . . . ,Yn and linear maps

Φ1 ∈ T(X1,Y1), . . . , Φn ∈ T(Xn,Yn), (1.113)

one defines the tensor product of these maps

Φ1 ⊗ · · · ⊗ Φn ∈ T(X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Yn) (1.114)

to be the unique linear map that satisfies the equation

(Φ1 ⊗ · · · ⊗ Φn)(X1 ⊗ · · · ⊗Xn) = Φ1(X1)⊗ · · · ⊗ Φn(Xn) (1.115)

for all operators X1 ∈ L(X1), . . . , Xn ∈ L(Xn). As for vectors and operators,
the notation Φ⊗n denotes the n-fold tensor product of a map Φ with itself.

The notation T(X ) is understood to be a shorthand for T(X ,X ). The
identity map 1L(X ) ∈ T(X ) is defined as

1L(X )(X) = X (1.116)

for all X ∈ L(X ).
The trace function defined for square operators acting on X is a linear

mapping of the form
Tr : L(X )→ C. (1.117)

By making the identification L(C) = C, one sees that the trace function is
a linear map of the form

Tr ∈ T(X ,C). (1.118)

For a second complex Euclidean space Y, one may consider the map

Tr⊗ 1L(Y) ∈ T(X ⊗ Y,Y). (1.119)

By the definition of the tensor product of maps stated above, this is the
unique map that satisfies the equation

(Tr⊗ 1L(Y))(X ⊗ Y ) = Tr(X)Y (1.120)

for all operators X ∈ L(X ) and Y ∈ L(Y). This map is called the partial
trace, and is more commonly denoted TrX . Along similar lines, the map
TrY ∈ T(X ⊗ Y,X ) is defined as

TrY = 1L(X ) ⊗ Tr. (1.121)

Generalizations of these maps may also be defined for tensor products of
three or more complex Euclidean spaces.
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The following classes of maps of the form (1.109) are among those that
are discussed in greater detail later in this book:

1. Hermitian-preserving maps. A map Φ ∈ T(X ,Y) is Hermitian-preserving
if it holds that

Φ(H) ∈ Herm(Y) (1.122)

for every Hermitian operator H ∈ Herm(X ).
2. Positive maps. A map Φ ∈ T(X ,Y) is positive if it holds that

Φ(P ) ∈ Pos(Y) (1.123)

for every positive semidefinite operator P ∈ Pos(X ).
3. Completely positive maps. A map Φ ∈ T(X ,Y) is completely positive if

it holds that
Φ⊗ 1L(Z) (1.124)

is a positive map for every complex Euclidean space Z. The set of all
completely positive maps of this form is denoted CP(X ,Y).

4. Trace-preserving maps. A map Φ ∈ T(X ,Y) is trace-preserving if it holds
that

Tr(Φ(X)) = Tr(X) (1.125)

for all X ∈ L(X ).
5. Unital maps. A map Φ ∈ T(X ,Y) is unital if

Φ(1X ) = 1Y . (1.126)

Maps of these sorts are discussed in greater detail in Chapters 2 and 4.

The operator-vector correspondence
There is a correspondence between the spaces L(Y,X ) and X ⊗ Y, for any
choice of complex Euclidean spaces X = CΣ and Y = CΓ, that will be used
repeatedly throughout this book. This correspondence is given by the linear
mapping

vec : L(Y,X )→ X ⊗ Y, (1.127)

defined by the action
vec(Ea,b) = ea ⊗ eb (1.128)

for all a ∈ Σ and b ∈ Γ. In other words, this mapping is the change-of-basis
taking the standard basis of L(Y,X ) to the standard basis of X ⊗ Y. By
linearity, it holds that

vec(uv∗) = u⊗ v (1.129)
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for u ∈ X and v ∈ Y. This includes the special cases

vec(u) = u and vec(v∗) = v, (1.130)

obtained by setting v = 1 and u = 1, respectively.
The vec mapping is a linear bijection, which implies that every vector

u ∈ X ⊗ Y uniquely determines an operator A ∈ L(Y,X ) that satisfies
vec(A) = u. It is also an isometry, in the sense that

〈A,B〉 = 〈vec(A), vec(B)〉 (1.131)

for all A,B ∈ L(Y,X ).
A few specific identities concerning the vec mapping will be especially

useful throughout this book. One such identity is

(A0 ⊗A1) vec(B) = vec
(
A0BA

T
1
)
, (1.132)

holding for all operators A0 ∈ L(X0,Y0), A1 ∈ L(X1,Y1), and B ∈ L(X1,X0),
over all choices of complex Euclidean spaces X0, X1, Y0, and Y1. Two more
such identities are

TrY
(
vec(A) vec(B)∗

)
= AB∗, (1.133)

TrX
(
vec(A) vec(B)∗

)
= ATB, (1.134)

which hold for all operators A,B ∈ L(Y,X ), over all choices of complex
Euclidean spaces X and Y.

1.1.3 Operator decompositions and norms
Two decompositions of operators—the spectral decomposition and singular
value decomposition—along with various related notions, are discussed in the
present section. Among these related notions is a class of operator norms
called Schatten norms, which include the trace norm, the Frobenius norm,
and the spectral norm. These three norms are used frequently throughout
this book.

The spectral theorem
The spectral theorem establishes that every normal operator can be expressed
as a linear combination of projections onto pairwise orthogonal subspaces.
A formal statement of the spectral theorem follows.
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Theorem 1.3 (Spectral theorem) Let X be a complex Euclidean space
and let X ∈ L(X ) be a normal operator. There exists a positive integer m,
distinct complex numbers λ1, . . . , λm ∈ C, and nonzero projection operators
Π1, . . . ,Πm ∈ Proj(X ) satisfying Π1 + · · ·+ Πm = 1X , such that

X =
m∑

k=1
λkΠk. (1.135)

The scalars λ1, . . . , λm and projection operators Π1, . . . ,Πm are unique, up
to their ordering: each scalar λk is an eigenvalue of X with multiplicity equal
to the rank of Πk, and Πk is the projection operator onto the space spanned
by the eigenvectors of X corresponding to the eigenvalue λk.

The expression of a normal operator X in the form of the equation (1.135)
is called a spectral decomposition of X.

A simple corollary of the spectral theorem follows. It expresses essentially
the same fact as the spectral theorem, but in a slightly different form that
will sometimes be convenient to refer to later in the book.

Corollary 1.4 Let X be a complex Euclidean space having dimension n, let
X ∈ L(X ) be a normal operator, and assume that

spec(X) = {λ1, . . . , λn}. (1.136)

There exists an orthonormal basis {x1, . . . , xn} of X such that

X =
n∑

k=1
λkxkx

∗
k. (1.137)

It is evident from the expression (1.137), along with the requirement that
the set {x1, . . . , xn} is an orthonormal basis, that each xk is an eigenvector of
X whose corresponding eigenvalue is λk. It is also evident that any operator
X that is expressible in such a form as (1.137) is normal, implying that the
condition of normality is equivalent to the existence of an orthonormal basis
of eigenvectors.

On a few occasions later in the book, it will be convenient to index the
eigenvectors and eigenvalues of a given normal operator X ∈ L(CΣ) by
symbols in the alphabet Σ rather than by integers in the set {1, . . . , n} for
n = |Σ|. It follows immediately from Corollary 1.4 that a normal operator
X ∈ L(CΣ) may be expressed as

X =
∑

a∈Σ
λaxax

∗
a (1.138)

for some choice of an orthonormal basis {xa : a ∈ Σ} of CΣ and a collection
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of complex numbers {λa : a ∈ Σ}. Indeed, such an expression may be
derived from (1.137) by associating symbols in the alphabet Σ with integers
in the set {1, . . . , n} with respect to an arbitrarily chosen bijection.

It is convenient to refer to expressions of operators having either of the
forms (1.137) or (1.138) as spectral decompositions, despite the fact that they
may differ slightly from the form (1.135). Unlike the form (1.135), the forms
(1.137) and (1.138) are generally not unique. Along similar lines, the term
spectral theorem is sometimes used to refer to the statement of Corollary 1.4,
as opposed to the statement of Theorem 1.3. These conventions are followed
throughout this book when there is no danger of any confusion resulting
from their use.

The following important theorem states that the same orthonormal basis
of eigenvectors {x1, . . . , xn} may be chosen for any two normal operators
under the assumption that they commute.

Theorem 1.5 Let X be a complex Euclidean space having dimension n

and let X,Y ∈ L(X ) be normal operators for which [X,Y ] = 0. There exists
an orthonormal basis {x1, . . . , xn} of X such that

X =
n∑

k=1
αkxkx

∗
k and Y =

n∑

k=1
βkxkx

∗
k, (1.139)

for some choice of complex numbers α1, . . . , αn, β1, . . . , βn satisfying

spec(X) = {α1, . . . , αn} and spec(Y ) = {β1, . . . , βn}. (1.140)

Jordan–Hahn decompositions
Every Hermitian operator is normal and has real eigenvalues. It therefore
follows from the spectral theorem (Theorem 1.3) that, for every Hermitian
operator H ∈ Herm(X ), there exists a positive integer m, nonzero projection
operators Π1, . . . ,Πm satisfying

Π1 + · · ·+ Πm = 1X , (1.141)

and real numbers λ1, . . . , λm such that

H =
m∑

k=1
λkΠk. (1.142)

By defining operators

P =
m∑

k=1
max{λk, 0}Πk and Q =

m∑

k=1
max{−λk, 0}Πk , (1.143)
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one finds that
H = P −Q (1.144)

for P,Q ∈ Pos(X ) satisfying PQ = 0. The expression (1.144) of a given
Hermitian operator H in this form, for positive semidefinite operators P
and Q satisfying PQ = 0, is called a Jordan–Hahn decomposition. There is
only one such expression for a given operator H ∈ Herm(X ); the operators
P and Q are uniquely defined by the requirements that P,Q ∈ Pos(X ),
PQ = 0, and H = P −Q.

Functions of normal operators
Every function of the form f : C→ C may be extended to the set of normal
operators in L(X ), for a given complex Euclidean space X , by means of the
spectral theorem (Theorem 1.3). In particular, if X ∈ L(X ) is normal and
has the spectral decomposition (1.135), then one defines

f(X) =
m∑

k=1
f(λk)Πk. (1.145)

Naturally, functions defined only on subsets of C may be extended to normal
operators whose eigenvalues are restricted accordingly.

The following examples of scalar functions extended to operators will be
important later in this book:

1. For r > 0, the function λ 7→ λr is defined for all λ ∈ [0,∞). For a positive
semidefinite operator P ∈ Pos(X ) having spectral decomposition

P =
m∑

k=1
λkΠk, (1.146)

for which it necessarily holds that λk ≥ 0 for all k ∈ {1, . . . ,m}, one
defines

P r =
m∑

k=1
λrk Πk. (1.147)

For positive integer values of r, it is evident that P r coincides with the
usual meaning of this expression given by operator multiplication.

The case that r = 1/2 is particularly common, and in this case one
may write

√
P to denote P 1/2. The operator

√
P is the unique positive

semidefinite operator that satisfies the equation
√
P
√
P = P. (1.148)
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2. Along similar lines to the previous example, for any real number r ∈ R,
the function λ 7→ λr is defined for all λ ∈ (0,∞). For a given positive
definite operator P ∈ Pd(X ) having a spectral decomposition of the form
(1.146), for which it holds that λk > 0 for all k ∈ {1, . . . ,m}, one defines
P r in a similar way to (1.147) above.

3. The (base-2) logarithm function λ 7→ log(λ) is defined for all λ ∈ (0,∞).
For a given positive definite operator P ∈ Pd(X ), having a spectral
decomposition (1.146) as above, one defines

log(P ) =
m∑

k=1
log(λk)Πk. (1.149)

The singular value theorem
The singular value theorem has a close relationship to the spectral theorem.
Unlike the spectral theorem, however, the singular value theorem holds for
arbitrary (nonzero) operators, as opposed to just normal operators.

Theorem 1.6 (Singular value theorem) Let A ∈ L(X ,Y) be a nonzero
operator having rank equal to r, for complex Euclidean spaces X and Y.
There exist orthonormal sets {x1, . . . , xr} ⊂ X and {y1, . . . , yr} ⊂ Y, along
with positive real numbers s1, . . . , sr, such that

A =
r∑

k=1
skykx

∗
k. (1.150)

An expression of a given operator A in the form of (1.150) is said to
be a singular value decomposition of A. The numbers s1, . . . , sr are called
singular values and the vectors x1, . . . , xr and y1, . . . , yr are called right and
left singular vectors, respectively.

The singular values s1, . . . , sr of an operator A are uniquely determined,
up to their ordering. It will be assumed hereafter that singular values are
always ordered from largest to smallest: s1 ≥ · · · ≥ sr. When it is necessary
to indicate the dependence of these singular values on the operator A, they
are denoted s1(A), . . . , sr(A). Although 0 is not formally considered to be a
singular value of any operator, it is convenient to also define sk(A) = 0 for
k > rank(A), and to take sk(A) = 0 for all k ≥ 1 when A = 0. The notation
s(A) is used to refer to the vector of singular values

s(A) = (s1(A), . . . , sr(A)), (1.151)

or to an extension of this vector

s(A) = (s1(A), . . . , sm(A)) (1.152)
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when it is convenient to view it as an element of Rm for m > rank(A).
As suggested above, there is a close relationship between the singular

value theorem and the spectral theorem. In particular, the singular value
decomposition of an operator A and the spectral decompositions of the
operators A∗A and AA∗ are related in the following way: it holds that

sk(A) =
√
λk(AA∗) =

√
λk(A∗A) (1.153)

for 1 ≤ k ≤ rank(A), and moreover the right singular vectors of A are
eigenvectors of A∗A and the left singular vectors of A are eigenvectors of
AA∗. One is free, in fact, to choose the left singular vectors of A to be any
orthonormal collection of eigenvectors of AA∗ for which the corresponding
eigenvalues are nonzero—and once this is done the right singular vectors will
be uniquely determined. Alternately, the right singular vectors of A may be
chosen to be any orthonormal collection of eigenvectors of A∗A for which
the corresponding eigenvalues are nonzero, which uniquely determines the
left singular vectors.

In the special case that X ∈ L(X ) is a normal operator, one may obtain
a singular value decomposition of X directly from a spectral decomposition
of the form

X =
n∑

k=1
λkxkx

∗
k. (1.154)

In particular, one may define S = {k ∈ {1, . . . , n} : λk 6= 0}, and set

sk = |λk| and yk = λk
|λk|

xk (1.155)

for each k ∈ S. The expression

X =
∑

k∈S
skykx

∗
k (1.156)

then represents a singular value decomposition of X, up to a relabeling of
the terms in the sum.

The following corollary represents a reformulation of the singular value
theorem that is useful in some situations.

Corollary 1.7 Let X and Y be complex Euclidean spaces, let A ∈ L(X ,Y)
be a nonzero operator, and let r = rank(A). There exists a diagonal and
positive definite operator D ∈ Pd(Cr) and isometries U ∈ U(Cr,X ) and
V ∈ U(Cr,Y) such that A = V DU∗.



30 Mathematical preliminaries

Polar decompositions
For every square operator X ∈ L(X ), it is possible to choose a positive
semidefinite operator P ∈ Pos(X ) and a unitary operator W ∈ U(X ) such
that the equation

X = WP (1.157)

holds; this follows from Corollary 1.7 by taking W = V U∗ and P = UDU∗.
Alternatively, by similar reasoning it is possible to write

X = PW (1.158)

for a (generally different) choice of operators P ∈ Pos(X ) and W ∈ U(X ).
The expressions (1.157) and (1.158) are known as polar decompositions of X.

The Moore–Penrose pseudo-inverse
For a given operator A ∈ L(X ,Y), one defines an operator A+ ∈ L(Y,X ),
known as the Moore–Penrose pseudo-inverse of A, as the unique operator
that possesses the following properties:

1. AA+A = A,
2. A+AA+ = A+, and
3. AA+ and A+A are both Hermitian.

It is evident that there is at least one such choice of A+, for if

A =
r∑

k=1
skykx

∗
k (1.159)

is a singular value decomposition of a nonzero operator A, then

A+ =
r∑

k=1

1
sk
xky

∗
k (1.160)

possesses the three properties listed above. One may observe that AA+ and
A+A are projection operators, projecting onto the spaces spanned by the
left singular vectors and right singular vectors of A, respectively.

The fact that A+ is uniquely determined by the above equations may be
verified as follows. Suppose that B,C ∈ L(Y,X ) both possess the above
properties:

1. ABA = A = ACA,
2. BAB = B and CAC = C, and
3. AB, BA, AC, and CA are all Hermitian.
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It follows that

B = BAB = (BA)∗B = A∗B∗B = (ACA)∗B∗B
= A∗C∗A∗B∗B = (CA)∗(BA)∗B = CABAB

= CAB = CACAB = C(AC)∗(AB)∗ = CC∗A∗B∗A∗

= CC∗(ABA)∗ = CC∗A∗ = C(AC)∗ = CAC = C,

(1.161)

which shows that B = C.

Schmidt decompositions
Let X and Y be complex Euclidean spaces, and suppose that u ∈ X ⊗ Y is
a nonzero vector. Given that the vec mapping is a bijection, there exists a
unique operator A ∈ L(Y,X ) such that u = vec(A). For any singular value
decomposition

A =
r∑

k=1
skxky

∗
k, (1.162)

it holds that

u = vec(A) = vec
(

r∑

k=1
skxky

∗
k

)
=

r∑

k=1
skxk ⊗ yk. (1.163)

The orthonormality of {y1, . . . , yr} implies that {y1, . . . , yr} is orthonormal
as well. It follows that every nonzero vector u ∈ X ⊗ Y can be expressed in
the form

u =
r∑

k=1
skxk ⊗ zk (1.164)

for positive real numbers s1, . . . , sr and orthonormal sets {x1, . . . , xr} ⊂ X
and {z1, . . . , zr} ⊂ Y. An expression of u having this form is called a Schmidt
decomposition of u.

Norms of operators
A norm on the space of operators L(X ,Y), for complex Euclidean spaces X
and Y, is a function ‖·‖ satisfying the following properties:

1. Positive definiteness: ‖A‖ ≥ 0 for all A ∈ L(X ,Y), with ‖A‖ = 0 if and
only if A = 0.

2. Positive scalability: ‖αA‖ = |α|‖A‖ for all A ∈ L(X ,Y) and α ∈ C.
3. The triangle inequality: ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈ L(X ,Y).
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Many interesting and useful norms can be defined on spaces of operators,
but this book will mostly be concerned with a single family of norms called
Schatten p-norms. This family includes the three most commonly used norms
in quantum information theory: the spectral norm, the Frobenius norm, and
the trace norm.

For any operator A ∈ L(X ,Y) and any real number p ≥ 1, one defines the
Schatten p-norm of A as

‖A‖p =
(
Tr
(
(A∗A)

p
2
)) 1

p . (1.165)

The Schatten ∞-norm is defined as

‖A‖∞ = max {‖Au‖ : u ∈ X , ‖u‖ ≤ 1} , (1.166)

which coincides with limp→∞‖A‖p, explaining why the subscript ∞ is used.
The Schatten p-norm of an operator A coincides with the ordinary vector
p-norm of the vector of singular values of A:

‖A‖p = ‖s(A)‖p. (1.167)

The Schatten p-norms possess a variety of properties, including the ones
summarized in the following list:

1. The Schatten p-norms are non-increasing in p: for every operator A and
for 1 ≤ p ≤ q ≤ ∞, it holds that

‖A‖p ≥ ‖A‖q. (1.168)

2. For every nonzero operator A and for 1 ≤ p ≤ q ≤ ∞, it holds that

‖A‖p ≤ rank(A)
1
p
− 1
q ‖A‖q. (1.169)

In particular, one has

‖A‖1 ≤
√

rank(A)‖A‖2 and ‖A‖2 ≤
√

rank(A)‖A‖∞. (1.170)

3. For every p ∈ [1,∞], the Schatten p-norm is isometrically invariant (and
therefore unitarily invariant): for every A ∈ L(X ,Y), U ∈ U(Y,Z), and
V ∈ U(X ,W) it holds that

‖A‖p = ‖UAV ∗‖p. (1.171)

4. For each p ∈ [1,∞], one defines p∗ ∈ [1,∞] by the equation
1
p

+ 1
p∗

= 1. (1.172)
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For every operator A ∈ L(X ,Y), it holds that the Schatten p-norm and
p∗-norm are dual, in the sense that

‖A‖p = max
{|〈B,A〉| : B ∈ L(X ,Y), ‖B‖p∗ ≤ 1

}
. (1.173)

One consequence of (1.173) is the inequality

|〈B,A〉| ≤ ‖A‖p‖B‖p∗ , (1.174)

which is known as the Hölder inequality for Schatten norms.
5. For operators A ∈ L(Z,W), B ∈ L(Y,Z), and C ∈ L(X ,Y), and any

choice of p ∈ [1,∞], it holds that

‖ABC‖p ≤ ‖A‖∞‖B‖p‖C‖∞. (1.175)

It follows that the Schatten p-norm is submultiplicative:

‖AB‖p ≤ ‖A‖p‖B‖p. (1.176)

6. For every p ∈ [1,∞] and every A ∈ L(X ,Y), it holds that

‖A‖p =
∥∥A∗

∥∥
p

=
∥∥AT∥∥

p
=
∥∥A
∥∥
p
. (1.177)

The Schatten 1-norm is commonly called the trace norm, the Schatten
2-norm is also known as the Frobenius norm, and the Schatten ∞-norm is
called the spectral norm or operator norm. Some additional properties of
these three norms are as follows:

1. The spectral norm. The spectral norm ‖·‖∞ is special in several respects.
It is the operator norm induced by the Euclidean norm, which is its
defining property (1.166). It also has the property that

‖A∗A‖∞ = ‖AA∗‖∞ = ‖A‖2∞ (1.178)

for every A ∈ L(X ,Y). Hereafter in this book, the spectral norm of an
operator A will be written ‖A‖ rather than ‖A‖∞, which reflects the
fundamental importance of this norm.

2. The Frobenius norm. Substituting p = 2 into the definition of ‖·‖p, one
sees that the Frobenius norm ‖·‖2 is given by

‖A‖2 =
(
Tr(A∗A)

) 1
2 =

√
〈A,A〉, (1.179)

and is therefore analogous to the Euclidean norm for vectors, but defined
by the inner product on L(X ,Y).
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In essence, the Frobenius norm corresponds to the Euclidean norm of
an operator viewed as a vector:

‖A‖2 = ‖vec(A)‖ =
√∑

a,b

∣∣A(a, b)
∣∣2, (1.180)

where a and b range over the indices of the matrix representation of A.
3. The trace norm. Substituting p = 1 into the definition of ‖·‖p, one has

that the trace norm ‖·‖1 is given by

‖A‖1 = Tr
(√

A∗A
)
, (1.181)

which is equal to the sum of the singular values of A. For two density
operators ρ, σ ∈ D(X ), the value ‖ρ− σ‖1 is typically referred to as the
trace distance between ρ and σ.

A useful expression of ‖X‖1, for any square operator X ∈ L(X ), is

‖X‖1 = max
{|〈U,X〉| : U ∈ U(X )

}
, (1.182)

which follows from (1.167) and the singular value theorem (Theorem 1.6).
As a result, one has that the trace-norm is non-increasing under the
action of partial tracing: for every operator X ∈ L(X ⊗Y), it holds that

‖TrY(X)‖1 = max
{|〈U ⊗ 1Y , X〉| : U ∈ U(X )

}

≤ max
{|〈V,X〉| : V ∈ U(X ⊗ Y)

}
= ‖X‖1.

(1.183)

The identity
∥∥αuu∗ − βvv∗

∥∥
1 =

√
(α+ β)2 − 4αβ|〈u, v〉|2, (1.184)

which holds for all unit vectors u, v and nonnegative real numbers α, β,
is used multiple times in this book. It may be proved by considering the
spectrum of αuu∗ − βvv∗; this operator is Hermitian, and has at most
two nonzero eigenvalues, represented by the expression

α− β
2 ± 1

2

√
(α+ β)2 − 4αβ |〈u, v〉|2. (1.185)

In particular, for unit vectors u and v, one has
∥∥uu∗ − vv∗

∥∥
1 = 2

√
1− |〈u, v〉|2. (1.186)
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1.2 Analysis, convexity, and probability theory
Some of the proofs to be presented in this book will make use of concepts
from analysis, convexity, and probability theory. The summary that follows
provides an overview of these concepts, narrowly focused on the needs of
this book.

1.2.1 Analysis and convexity
In the same spirit as the previous section on linear algebra, it is assumed that
the reader is familiar with the most basic notions of mathematical analysis,
including the supremum and infimum of sets of real numbers, sequences and
limits, and standard univariate calculus over the real numbers.

The discussion below is limited to finite-dimensional real and complex
vector spaces—and the reader is cautioned that some of the stated facts
rely on the assumption that one is working with finite dimensional spaces.
For the remainder of the subsection, V andW will denote finite dimensional
real or complex vector spaces upon which some norm ‖·‖ is defined. Unless
it is explicitly noted otherwise, the norm may be chosen arbitrarily—so the
symbol ‖·‖ may not necessarily denote the Euclidean norm or spectral norm
in this section.

Open and closed sets
A set A ⊆ V is open if, for every u ∈ A, there exists ε > 0 such that

{
v ∈ V : ‖u− v‖ < ε

} ⊆ A. (1.187)

A set A ⊆ V is closed if the complement of A, defined as

V\A =
{
v ∈ V : v 6∈ A}, (1.188)

is open. Given subsets A ⊆ B ⊆ V, one defines that A is open or closed
relative to B if A is the intersection of B with some set in V that is open or
closed, respectively. Equivalently, A is open relative to B if, for every u ∈ A,
there exists a choice of ε > 0 such that

{
v ∈ B : ‖u− v‖ < ε

} ⊆ A; (1.189)

and A is closed relative to B if B\A is open relative to B.
For subsets A ⊆ B ⊆ V, one defines the closure of A relative to B as the

intersection of all subsets C such that A ⊆ C ⊆ B and C is closed relative
to B. In other words, this is the smallest set that contains A and is closed
relative to B. The set A is dense in B if the closure of A relative to B is B
itself.
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Continuous functions
Let f : A →W be a function defined on some subset A ⊆ V. For any vector
u ∈ A, the function f is said to be continuous at u if the following holds:
for every ε > 0 there exists δ > 0 such that

‖f(v)− f(u)‖ < ε (1.190)

for all v ∈ A satisfying ‖u− v‖ < δ. If f is continuous at every vector in A,
then one simply says that f is continuous on A.

For a function f : A → W defined on some subset A ⊆ V, the preimage
of a set B ⊆ W is defined as

f−1(B) =
{
u ∈ A : f(u) ∈ B}. (1.191)

Such a function f is continuous on A if and only if the preimage of every
open set in W is open relative to A. Equivalently, f is continuous on A if
and only if the preimage of every closed set in W is closed relative to A.

For a positive real number κ, a function f : A → W defined on a subset
A ⊆ V is said to be a κ-Lipschitz function if

‖f(u)− f(v)‖ ≤ κ‖u− v‖ (1.192)

for all u, v ∈ A. Every κ-Lipschitz function is necessarily continuous.

Compact sets
A set A ⊆ V is compact if every sequence in A has a subsequence that
converges to a vector u ∈ A. As a consequence of the fact V is assumed to
be finite dimensional, one has that a set A ⊆ V is compact if and only if it
is both closed and bounded—a fact known as the Heine–Borel theorem.

Two properties regarding continuous functions and compact sets that are
particularly noteworthy for the purposes of this book are as follows:

1. If A is compact and f : A → R is continuous on A, then f achieves both
a maximum and minimum value on A.

2. If A ⊂ V is compact and f : V → W is continuous on A, then

f(A) = {f(u) : u ∈ A} (1.193)

is also compact. In words, continuous functions always map compact sets
to compact sets.
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Differentiation of multivariate real functions
Basic multivariate calculus will be employed in a few occasions later in this
book, and in these cases it will be sufficient to consider only real-valued
functions.

Suppose n is a positive integer, f : Rn → R is a function, and u ∈ Rn is a
vector. Under the assumption that the partial derivative

∂kf(u) = lim
α→0

f(u+ αek)− f(u)
α

(1.194)

exists and is finite for each k ∈ {1, . . . , n}, one defines the gradient vector of
f at u as

∇f(u) =
(
∂1f(u), . . . , ∂nf(u)

)
. (1.195)

A function f : Rn → R is differentiable at a vector u ∈ Rn if there exists
a vector v ∈ Rn with the following property: for every sequence (w1, w2, . . .)
of vectors in Rn that converges to 0, one has that

lim
k→∞

|f(u+ wk)− f(u)− 〈v, wk〉|
‖wk‖

= 0 (1.196)

(where here ‖·‖ denotes the Euclidean norm). In this case the vector v is
necessarily unique, and one writes v = (Df)(u). If f is differentiable at u,
then it holds that

(Df)(u) = ∇f(u). (1.197)

It may be the case that the gradient vector ∇f(u) is defined for a vector u
at which f is not differentiable, but if the function u 7→ ∇f(u) is continuous
at u, then f is necessarily differentiable at u.

If a function f : Rn → R is both differentiable and κ-Lipschitz, then for
all u ∈ Rn and for ‖·‖ denoting the Euclidean norm, it must hold that

‖∇f(u)‖ ≤ κ. (1.198)

Finally, suppose g1, . . . , gn : R → R are functions that are differentiable
at a real number α ∈ R and f : Rn → R is a function that is differentiable
at the vector (g1(α), . . . , gn(α)). The chain rule for differentiation implies
that the function h : R→ R defined as

h(β) = f(g1(β), . . . , gn(β)) (1.199)

is differentiable at α, with its derivative being given by

h′(α) =
〈∇f(g1(α), . . . , gn(α)), (g′1(α), . . . , g′n(α))

〉
. (1.200)
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Nets
Let V be a real or complex vector space, let A ⊆ V be a subset of V, let ‖·‖
be a norm on V, and let ε > 0 be a positive real number. A set of vectors
N ⊆ V is an ε-net for A if, for every vector u ∈ A, there exists a vector
v ∈ N such that ‖u − v‖ ≤ ε. An ε-net N for A is minimal if N is finite
and every ε-net of A contains at least |N | vectors.

The following theorem gives an upper bound for the number of elements
in a minimal ε-net for the unit ball

B(X ) = {u ∈ X : ‖u‖ ≤ 1} (1.201)

in a complex Euclidean space, with respect to the Euclidean norm.

Theorem 1.8 (Pisier) Let X be a complex Euclidean space of dimension n
and let ε > 0 be a positive real number. With respect to the Euclidean norm
on X , there exists an ε-net N ⊂ B(X ) for the unit ball B(X ) such that

|N | ≤
(

1 + 2
ε

)2n
. (1.202)

The proof of this theorem does not require a complicated construction;
one may take N to be any maximal set of vectors chosen from the unit ball
for which it holds that ‖u − v‖ ≥ ε for all u, v ∈ N with u 6= v. Such a
set is necessarily an ε-net for B(X ), and the bound on |N | is obtained by
comparing the volume of B(X ) with the volume of the union of ε/2 balls
around vectors in N .

Borel sets and functions
Throughout this subsection, A ⊆ V and B ⊆ W will denote fixed subsets of
finite-dimensional real or complex vector spaces V and W.

A set C ⊆ A is said to be a Borel subset of A if one or more of the following
inductively defined properties holds:

1. C is an open set relative to A.
2. C is the complement of a Borel subset of A.
3. For {C1, C2, . . .} being a countable collection of Borel subsets of A, it

holds that C is equal to the union

C =
∞⋃

k=1
Ck. (1.203)

The collection of all Borel subsets of A is denoted Borel(A).
A function f : A → B is a Borel function if f−1(C) ∈ Borel(A) for all
C ∈ Borel(B). That is, Borel functions are functions for which the preimage
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of every Borel subset is also a Borel subset. If f is a continuous function, then
f is necessarily a Borel function. Another important type of Borel function
is any function of the form

f(u) = χC(u) v (1.204)

for any choice of v ∈ B and

χC(u) =





1 if u ∈ C
0 if u 6∈ C

(1.205)

being the characteristic function of a Borel subset C ∈ Borel(A).
The collection of all Borel functions f : A → B possesses a variety of

closure properties, including the following properties:

1. If B is a vector space, f, g : A → B are Borel functions, and α is a scalar
(either real or complex, depending on whether B is a real or complex
vector space), then the functions αf and f + g are also Borel functions.

2. If B is a subalgebra of L(Z), for Z being a real or complex Euclidean
space, and f, g : A → B are Borel functions, then the function h : A → B
defined by

h(u) = f(u)g(u) (1.206)

for all u ∈ A is also a Borel function. (This includes the special cases
f, g : A → R and f, g : A → C.)

Measures on Borel sets
A Borel measure (or simply a measure) defined on Borel(A) is a function

µ : Borel(A)→ [0,∞] (1.207)

that possesses two properties:

1. µ(∅) = 0.
2. For any countable collection {C1, C2, . . .} ⊆ Borel(A) of pairwise disjoint

Borel subsets of A, it holds that

µ

( ∞⋃

k=1
Ck
)

=
∞∑

k=1
µ(Ck). (1.208)

A measure µ defined on Borel(A) is said to be normalized if it holds that
µ(A) = 1. The term probability measure is also used to refer to a normalized
measure.
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There exists a measure ν defined on Borel(R), known as the standard
Borel measure,3 that has the property

ν([α, β]) = β − α (1.209)

for all choices of α, β ∈ R with α ≤ β.
If A1, . . . ,An are subsets of (not necessarily equal) finite-dimensional real

or complex vector spaces, and

µk : Borel(Ak)→ [0,∞] (1.210)

is a measure for each k ∈ {1, . . . , n}, then there is a uniquely defined product
measure

µ1 × · · · × µn : Borel(A1 × · · · × An)→ [0,∞] (1.211)

for which

(µ1 × · · · × µn)(B1 × · · · × Bn) = µ1(B1) · · ·µn(Bn) (1.212)

for all B1 ∈ Borel(A1), . . . ,Bn ∈ Borel(An).

Integration of Borel functions
For some (but not all) Borel functions f : A → B, and for µ being a Borel
measure of the form µ : Borel(A)→ [0,∞], one may define the integral

∫
f(u) dµ(u), (1.213)

which is an element of B when it is defined.
An understanding of the specifics of the definition through which such

an integral is defined is not critical within the context of this book, but
some readers may find that a high-level overview of the definition is helpful
in associating an intuitive meaning to the integrals that do arise. In short,
one defines what is meant by the integral of an increasingly large collection
of functions, beginning with functions taking nonnegative real values, and
then proceeding to vector (or operator) valued functions by taking linear
combinations.

1. Nonnegative simple functions. A function g : A → [0,∞) is a nonnegative
simple function if it may be written as

g(u) =
m∑

k=1
αk χk(u) (1.214)

3 The standard Borel measure agrees with the well-known Lebesgue measure on every Borel
subset of R. The Lebesgue measure is also defined for some subsets of R that are not Borel
subsets, which endows it with additional properties that happen not to be relevant within
the context of this book.
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for a nonnegative integer m, distinct positive real numbers α1, . . . , αm,
and characteristic functions χ1, . . . , χm given by

χk(u) =





1 if u ∈ Ck
0 if u 6∈ Ck

(1.215)

for disjoint Borel sets C1, . . . , Cm ∈ Borel(A). (It is to be understood that
the sum is empty when m = 0, which corresponds to g being identically
zero.)

A nonnegative simple function g of the form (1.214) is integrable with
respect to a measure µ : Borel(A) → [0,∞] if µ(Ck) is finite for every
k ∈ {1, . . . ,m}, and in this case the integral of g with respect to µ is
defined as

∫
g(u) dµ(u) =

m∑

k=1
αk µ(Ck). (1.216)

This is a well-defined quantity, by virtue of the fact that the expression
(1.214) happens to be unique for a given simple function g.

2. Nonnegative Borel functions. The integral of a Borel function of the form
f : A → [0,∞), with respect to a given measure µ : Borel(A) → [0,∞],
is defined as ∫

f(u) dµ(u) = sup
∫
g(u) dµ(u), (1.217)

where the supremum is taken over all nonnegative simple functions of the
form g : A → [0,∞) for which it holds that g(u) ≤ f(u) for all u ∈ A. It
is said that f is integrable if the supremum value in (1.217) is finite.

3. Real and complex Borel functions. A Borel function g : A → R is
integrable with respect to a measure µ : Borel(A)→ [0,∞] if there exist
integrable Borel functions f0, f1 : A → [0,∞) such that g = f0 − f1, and
in this case the integral of g with respect to µ is defined as

∫
g(u) dµ(u) =

∫
f0(u) dµ(u)−

∫
f1(u) dµ(u). (1.218)

Similarly, a Borel function h : A → C is integrable with respect to a
measure µ : Borel(A) → [0,∞] if there exist integrable Borel functions
g0, g1 : A → R such that h = g0 + ig1, and in this case the integral of h
with respect to µ is defined as

∫
h(u) dµ(u) =

∫
g0(u) dµ(u) + i

∫
g1(u) dµ(u). (1.219)



42 Mathematical preliminaries

4. Arbitrary Borel functions. An arbitrary Borel function f : A → B is
integrable with respect to a given measure µ : Borel(A)→ [0,∞] if there
exists a finite-dimensional vector space W such that B ⊆ W, a basis
{w1, . . . , wm} of W, and integrable functions g1, . . . , gm : A → R or
g1, . . . , gm : A → C (depending on whetherW is a real or complex vector
space) such that

f(u) =
m∑

k=1
gk(u)wk. (1.220)

In this case, the integral of f with respect to µ is defined as
∫
f(u) dµ(u) =

m∑

k=1

(∫
gk(u) dµ(u)

)
wk. (1.221)

The fact that the third and fourth items in this list lead to uniquely defined
integrals of integrable functions is not immediate and requires a proof.

A selection of properties and conventions regarding integrals defined in
this way, targeted to the specific needs of this book, follows.

1. Linearity. For integrable functions f and g, and scalar values α and β,
one has
∫

(αf(u) + βg(u)) dµ(u) = α

∫
f(u) dµ(u) + β

∫
g(u) dµ(u). (1.222)

2. Standard Borel measure as the default. Hereafter in this book, whenever
f : R → R is an integrable function, and ν denotes the standard Borel
measure on R, the shorthand notation

∫
f(α) dα =

∫
f(α) dν(α) (1.223)

will be used. It is the case that, whenever f is an integrable function for
which the commonly studied Riemann integral is defined, the Riemann
integral will be in agreement with the integral defined as above for the
standard Borel measure—so this shorthand notation is not likely to lead
to confusion or ambiguity.

3. Integration over subsets. For an integrable function f : A → B and a
Borel subset C ∈ Borel(A), one defines

∫

C
f(u) dµ(u) =

∫
f(u)χC(u) dµ(u), (1.224)
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for χC being the characteristic function of C. The notation
γ∫

β

f(α) dα =
∫

[β,γ]

f(α) dα (1.225)

is also used in the case that f takes the form f : R → B and β, γ ∈ R
satisfy β ≤ γ.

4. Order of integration. Suppose that A0 ⊆ V0, A1 ⊆ V1, and B ⊆ W are
subsets of finite-dimensional real or complex vector spaces, where it is
to be assumed that V0 and V1 are either both real or both complex for
simplicity. If µ0 : Borel(A0) → [0,∞] and µ1 : Borel(A1) → [0,∞] are
Borel measures, f : A0×A1 → B is a Borel function, and f is integrable
with respect to the product measure µ0×µ1, then it holds (by a theorem
known as Fubini’s theorem) that

∫ (∫
f(u, v) dµ0(u)

)
dµ1(v) =

∫
f(u, v) d(µ0 × µ1)(u, v)

=
∫ (∫

f(u, v) dµ1(v)
)

dµ0(u).
(1.226)

Convex sets, cones, and functions
Let V be a vector space over the real or complex numbers. A subset C of V
is convex if, for all vectors u, v ∈ C and scalars λ ∈ [0, 1], it holds that

λu+ (1− λ)v ∈ C. (1.227)

Intuitively speaking, this means that for any two distinct elements u and v

of C, the line segment whose endpoints are u and v lies entirely within C.
The intersection of any collection of convex sets is also convex.

If V and W are vector spaces, either both over the real numbers or both
over the complex numbers, and A ⊆ V and B ⊆ W are convex sets, then the
set

{u⊕ v : u ∈ A, v ∈ B} ⊆ V ⊕W (1.228)

is also convex. Moreover, if A ∈ L(V,W) is an operator, then the set

{Au : u ∈ A} ⊆ W (1.229)

is convex as well.
A set K ⊆ V is a cone if, for all choices of u ∈ K and λ ≥ 0, one has that

λu ∈ K. The cone generated by a set A ⊆ V is defined as

cone(A) =
{
λu : u ∈ A, λ ≥ 0}. (1.230)
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If A is a compact set that does not include 0, then cone(A) is necessarily a
closed set. A convex cone is simply a cone that is also convex. A cone K is
convex if and only if it is closed under addition, meaning that u+ v ∈ K for
every choice of u, v ∈ K.

A function f : C → R defined on a convex set C ⊆ V is a convex function
if the inequality

f(λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v) (1.231)

holds for all u, v ∈ C and λ ∈ [0, 1]. A function f : C → R defined on a
convex set C ⊆ V is a midpoint convex function if the inequality

f
(u+ v

2
)
≤ f(u) + f(v)

2 (1.232)

holds for all u, v ∈ C. Every continuous midpoint convex function is convex.
A function f : C → R defined on a convex set C ⊆ V is a concave function

if −f is convex. Equivalently, f is concave if the reverse of the inequality
(1.231) holds for all u, v ∈ C and λ ∈ [0, 1]. Similarly, a function f : C → R
defined on a convex set C ⊆ V is a midpoint concave function if −f is a
midpoint convex function, and therefore every continuous midpoint concave
function is concave.

Convex hulls
For any alphabet Σ, a vector p ∈ RΣ is said to be a probability vector if it
holds that p(a) ≥ 0 for all a ∈ Σ and

∑

a∈Σ
p(a) = 1. (1.233)

The set of all such vectors will be denoted P(Σ).
For any vector space V and any subset A ⊆ V, a convex combination of

vectors in A is any expression of the form
∑

a∈Σ
p(a)ua, (1.234)

for some choice of an alphabet Σ, a probability vector p ∈ P(Σ), and a
collection

{ua : a ∈ Σ} ⊆ A (1.235)

of vectors in A.
The convex hull of a set A ⊆ V, denoted conv(A), is the intersection of all

convex sets containing A. The set conv(A) is equal to the set of all vectors
that may be written as a convex combination of elements of A. (This is true



1.2 Analysis, convexity, and probability theory 45

even in the case that A is infinite.) The convex hull conv(A) of a closed set
A need not itself be closed. However, if A is compact, then so too is conv(A).

The theorem that follows provides an upper bound on the number of
elements over which one must take convex combinations in order to generate
every point in the convex hull of a given set. The theorem refers to the notion
of an affine subspace: a set U ⊆ V is an affine subspace of V having dimension
n if there exists a subspace W ⊆ V of dimension n and a vector u ∈ V such
that

U = {u+ v : v ∈ W}. (1.236)

Theorem 1.9 (Carathéodory’s theorem) Let V be a real vector space and
let A be a subset of V. Assume, moreover, that A is contained in an affine
subspace of V having dimension n. For every vector v ∈ conv(A) in the
convex hull of A, there exist m ≤ n + 1 vectors u1, . . . , um ∈ A such that
v ∈ conv

({u1, . . . , um}
)
.

Extreme points
A point w ∈ C in a convex set C is said to be an extreme point of C if, for
every expression

w = λu+ (1− λ)v (1.237)

for which u, v ∈ C and λ ∈ (0, 1), it holds that u = v = w. In words, the
extreme points are those elements of C that do not lie properly between two
distinct points of C.

The following theorem states that every convex and compact subset of a
finite-dimensional vector space, over the real or complex numbers, is equal
to the convex hull of its extreme points.

Theorem 1.10 (Minkowski) Let V be a finite-dimensional vector space
over the real or complex numbers, let C ⊆ V be a compact and convex set,
and let A ⊆ C be the set of extreme points of C. It holds that C = conv(A).

A few examples of convex and compact sets, along with an identification
of their extreme points, follow.

1. The spectral norm unit ball. For any complex Euclidean space X , the set
{
X ∈ L(X ) : ‖X‖ ≤ 1

}
(1.238)

is a convex and compact set. The extreme points of this set are the
unitary operators U(X ).
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2. The trace norm unit ball. For any complex Euclidean space X , the set
{
X ∈ L(X ) : ‖X‖1 ≤ 1

}
(1.239)

is a convex and compact set. The extreme points of this set are those
operators of the form uv∗ for u, v ∈ S(X ) unit vectors.

3. Density operators. For any complex Euclidean space X , the set D(X )
of density operators acting on X is convex and compact. The extreme
points of D(X ) coincide with the rank-one projection operators. These
are the operators of the form uu∗ for u ∈ S(X ) being a unit vector.

4. Probability vectors. For any alphabet Σ, the set of probability vectors
P(Σ) is convex and compact. The extreme points of this set are the
elements of the standard basis {ea : a ∈ Σ} of RΣ.

Hyperplane separation and min-max theorems
Convex sets in real Euclidean spaces possess a fundamentally important
property: every vector lying outside of a given convex set in a real Euclidean
space can be separated from that convex set by a hyperplane. That is, if the
underlying real Euclidean space has dimension n, then there exists an affine
subspace of that space having dimension n− 1 that divides the entire space
into two half-spaces: one contains the convex set and the other contains
the chosen point lying outside of the convex set. The following theorem
represents one specific formulation of this fact.

Theorem 1.11 (Hyperplane separation theorem) Let V be a real Euclidean
space, let C ⊂ V be a closed, convex subset of V, and let u ∈ V be a vector
with u 6∈ C. There exists a vector v ∈ V and a scalar α ∈ R such that

〈v, u〉 < α ≤ 〈v, w〉 (1.240)

for all w ∈ C. If C is a cone, then v may be chosen so that (1.240) holds for
α = 0.

Another theorem concerning convex sets that finds uses in the theory of
quantum information is the following theorem.

Theorem 1.12 (Sion’s min-max theorem) Let X and Y be real or complex
Euclidean spaces, let A ⊆ X and B ⊆ Y be convex sets with B compact, and
let f : A× B → R be a continuous function such that

1. u 7→ f(u, v) is a convex function on A for all v ∈ B, and
2. v 7→ f(u, v) is a concave function on B for all u ∈ A.
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It holds that
inf
u∈A

max
v∈B

f(u, v) = max
v∈B

inf
u∈A

f(u, v). (1.241)

1.2.2 Probability theory
Concepts from probability theory will play an important role throughout
much of this book. Probability distributions over alphabets or other finite
sets will be viewed as having fundamental importance; they arise naturally
when information-theoretic tasks and settings are considered. The reader is
assumed to have familiarity with basic probability theory for distributions
over sets with finitely many elements. It will also be convenient to use the
language of probability theory to discuss properties of Borel measures.

Random variables distributed with respect to probability measures
Suppose A is a subset of a finite-dimensional real or complex vector space
V and µ : Borel(A) → [0, 1] is a probability measure (by which it is meant
that µ is a normalized Borel measure). A random variable X distributed
with respect to µ is a real-valued, integrable Borel function of the form

X : A → R, (1.242)

which is typically viewed as representing an outcome of a random process
of some sort.

For every Borel subset B ⊆ R of the real numbers, the probability that X
takes a value in B is defined as

Pr(X ∈ B) = µ
({
u ∈ A : X(u) ∈ B}). (1.243)

As a matter of notational convenience, one often writes expressions such as

Pr(X ≥ β) and Pr(|X − β| ≥ ε), (1.244)

which are to be understood as meaning Pr(X ∈ B) for

B = {α ∈ R : α ≥ β} and B = {α ∈ R : |α− β| ≥ ε}, (1.245)

respectively. Other expressions of this form are interpreted in an analogous
way.

The union bound states, for any random variable X and arbitrary Borel
subsets B1, . . . ,Bn of R, that

Pr
(
X ∈ B1 ∪ · · · ∪ Bn) ≤ Pr(X ∈ B1) + · · ·+ Pr(X ∈ Bn). (1.246)
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The expected value (or mean value) of a random variable X, distributed
with respect to a probability measure µ : Borel(A)→ [0, 1], is defined as

E(X) =
∫
X(u) dµ(u). (1.247)

If X is a random variable taking nonnegative real values, then it holds that

E(X) =
∞∫

0

Pr(X ≥ λ) dλ. (1.248)

Random variables for discrete distributions
For a given alphabet Σ and a probability vector p ∈ P(Σ), one may also
define a random variable X, distributed with respect to p, in an analogous
way to a random variable distributed with respect to a Borel measure. In
particular, such a random variable is a function of the form

X : Σ→ R, (1.249)

and for every subset Γ ⊆ Σ one writes

Pr(X ∈ Γ) =
∑

a∈Γ
p(a). (1.250)

In this case, the expected value (or mean value) of X is

E(X) =
∑

a∈Σ
p(a)X(a). (1.251)

It is, in some sense, not necessary for random variables distributed with
respect to probability vectors of the form p ∈ P(Σ) to be viewed as being
fundamentally different from random variables distributed with respect to
Borel probability measures. Indeed, one may consider the set

{1, . . . , n} ⊂ R, (1.252)

for some choice of a positive integer n, and observe that every subset of
{1, . . . , n} is a Borel subset of this set. The Borel probability measures

µ : Borel({1, . . . , n})→ [0, 1] (1.253)

coincide precisely with the set of all probability vectors p ∈ P({1, . . . , n})
through the equations

µ(B) =
∑

b∈B
p(b) and p(a) = µ({a}), (1.254)

for every B ⊆ {1, . . . , n} and a ∈ {1, . . . , n}.
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Thus, by associating an arbitrary alphabet Σ with the set {1, . . . , n}, one
finds that a random variable distributed with respect to a probability vector
p ∈ P(Σ) is represented by a random variable distributed with respect to a
Borel probability measure.

Vector and operator valued random variables
It is sometimes convenient to define random variables that take vector or
operator values, rather than real number values. Random variables of this
sort will always be specified explicitly in terms of ordinary random variables
(i.e., ones that take real values) in this book. For example, given random
variables X1, . . . , Xn and Y1, . . . , Yn, for some choice of a positive integer n,
one may refer to the vector-valued random variables

(X1, . . . , Xn) ∈ Rn and (X1 + iY1, . . . , Xn + iYn) ∈ Cn. (1.255)

The default meaning of the term random variable should be understood as
referring to real-valued random variables, and the term vector-valued random
variable or operator-valued random variable will be used when referring to
random variables obtained in the manner just described.

Independent and identically distributed random variables
Two random variables X and Y are said to be independent if

Pr((X,Y ) ∈ A× B) = Pr(X ∈ A) Pr(Y ∈ B) (1.256)

for every choice of Borel subsets A,B ⊆ R, and are said to be identically
distributed if

Pr(X ∈ A) = Pr(Y ∈ A) (1.257)

for every Borel subset A ⊆ R. In general, these conditions do not require
that X and Y are defined with respect to the same Borel measure. In both
cases, these notions may be extended to more than two random variables,
as well as to vector-valued random variables, in a straightforward way.

Suppose that A is a subset of a finite-dimensional real or complex vector
space, µ : Borel(A) → [0, 1] is a probability measure, and Y : A → R is a
random variable distributed with respect to µ. For any choice of a positive
integer n, one may consider independent and identically distributed random
variables X1, . . . , Xn, each being distributed in the same way as Y . For the
purposes of this book, one may assume without a loss of generality that this
means that X1, . . . , Xn are Borel functions, taking the form

Xk : An → R (1.258)
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and being defined as
Xk(u1, . . . , un) = Y (uk) (1.259)

for each k and each (u1, . . . , un) ∈ An. Moreover, each Xk is understood to
be distributed with respect to the n-fold product measure µ × · · · × µ on
An. In essence, this formal specification represents the simple and intuitive
notion that X1, . . . , Xn are uncorrelated copies of the random variable Y .

A few fundamental theorems
A few fundamental theorems concerning random variables will be used later
in this book. While these theorem do hold for more general notions of random
variables, the theorem statements that follow should be understood to apply
to random variables distributed with respect to Borel probability measures
(including random variables distributed with respect to probability vectors
of the form p ∈ P(Σ) as a special case, as described above).

The first theorem to be stated in this subsection is Markov’s inequality,
which provides a sometimes coarse upper bound on the probability that a
nonnegative random variable exceeds a given threshold value.

Theorem 1.13 (Markov’s inequality) Let X be a random variable taking
nonnegative real values, and let ε > 0 be a positive real number. It holds that

Pr
(
X ≥ ε) ≤ E(X)

ε
. (1.260)

The next theorem, known as Jensen’s inequality, concerns the expected
value of a convex function applied to a random variable.

Theorem 1.14 (Jensen’s inequality) Suppose that X is a random variable
and f : R→ R is a convex function. It holds that

f
(
E(X)

) ≤ E(f(X)). (1.261)

Two additional theorems—known as the weak law of large numbers and
Hoeffding’s inequality—provide bounds on the deviation of the average value
of a collection of independent and identically distributed random variables
from their mean value.

Theorem 1.15 (Weak law of large numbers) Let X be a random variable
and let α = E(X). Assume, moreover, for every positive integer n, that
X1, . . . , Xn are independent random variables identically distributed to X.
For every positive real number ε > 0, it holds that

lim
n→∞Pr

(∣∣∣∣
X1 + · · ·+Xn

n
− α

∣∣∣∣ ≥ ε
)

= 0. (1.262)
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Theorem 1.16 (Hoeffding’s inequality) Let X1, . . . , Xn be independent
and identically distributed random variables taking values in the interval
[0, 1] and having mean value α. For every positive real number ε > 0 it holds
that

Pr
(∣∣∣∣
X1 + · · ·+Xn

n
− α

∣∣∣∣ ≥ ε
)
≤ 2 exp

(−2nε2). (1.263)

Gaussian measure and normally distributed random variables
The standard Gaussian measure on R is the Borel probability measure

γ : Borel(R)→ [0, 1] (1.264)

defined as

γ(A) = 1√
2π

∫

A
exp

(
−α

2

2

)
dα (1.265)

for every A ∈ Borel(R), where the integral is to be taken with respect to the
standard Borel measure on R. The fact that this is a well-defined measure
follows from the observation that the function

α 7→





1√
2π exp

(
−α2

2

)
if α ∈ A

0 otherwise
(1.266)

is an integrable Borel function for every Borel subset A ⊆ R, and the fact
that it is a probability measure follows from the Gaussian integral

∫
exp

(
−α

2

2

)
dα =

√
2π. (1.267)

A random variable X is a standard normal random variable if it holds
that Pr(X ∈ A) = γ(A) for every A ∈ Borel(R). This is equivalent to saying
that X is identically distributed to a random variable Y (α) = α distributed
with respect to the standard Gaussian measure γ on R.

The following integrals are among many integrals of a similar sort that
are useful when reasoning about standard normal random variables:

1. For every positive real number λ > 0 and every real number β ∈ R it
holds that

∫
exp

(−λα2 + βα
)

dα =
√
π

λ
exp

(
β2

4λ

)
. (1.268)
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2. For every positive integer n, it holds that
∞∫

0

αn dγ(α) =
2n2 Γ

(
n+1

2
)

2
√
π

, (1.269)

where the Γ-function may be defined at positive half-integer points as
follows:

Γ
(m+ 1

2
)

=





√
π if m = 0

1 if m = 1
m−1

2 Γ
(
m−1

2
)

if m ≥ 2.
(1.270)

3. For every positive real number λ > 0 and every pair of real numbers
β0, β1 ∈ R with β0 ≤ β1 it holds that

β1∫

β0

α exp(−λα2) dα = 1
2λ exp

(−λβ2
0
)− 1

2λ exp
(−λβ2

1
)
. (1.271)

This formula also holds for infinite values of β0 and β1, with the natural
interpretation exp(−∞) = 0.

For every positive integer n, the standard Gaussian measure on Rn is the
Borel probability measure

γn : Borel(Rn)→ [0, 1] (1.272)

obtained by taking the n-fold product measure of γ with itself. Equivalently,

γn(A) = (2π)−
n
2

∫

A
exp

(
−‖u‖

2

2

)
dνn(u), (1.273)

where νn denotes the n-fold product measure of the standard Borel measure
ν with itself and the norm is the Euclidean norm.

The standard Gaussian measure on Rn is invariant under orthogonal
transformations (which include rotations):

γn(UA) = γn(A) (1.274)

for every Borel set A ⊆ Rn and every orthogonal operator U ∈ L(Rn),
meaning one that satisfies UUT = 1. Therefore, for independent standard
normal random variables X1, . . . , Xn, one has that the vector valued random
variable (X1, . . . , Xn) is identically distributed to the vector-valued random
variable (Y1, . . . , Yn) obtained by defining

Yk =
n∑

j=1
U(k, j)Xj (1.275)
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for each k ∈ {1, . . . , n}, for U ∈ L(Rn) being any orthogonal operator. As a
consequence of this fact, one has that if the standard Gaussian measure is
projected onto a subspace, it is equivalent to the standard Gaussian measure
on that subspace.

Proposition 1.17 Let m and n be positive integers satisfying m < n and
let V ∈ L(Rm,Rn) satisfy V TV = 1. For every Borel set A ⊆ Rm, one has

γm(A) = γn
({
u ∈ Rn : V Tu ∈ A}). (1.276)

It follows from this proposition that the standard Gaussian measure γn(V)
of any proper subspace V of Rn is zero.

Finally, for independent standard normal random variables X1, . . . , Xn,
one may define a random variable

Y =
√
X2

1 + · · ·+X2
n. (1.277)

The distribution of Y is known as the χ-distribution. The mean value of Y
has the following closed-form expression:

E(Y ) =
√

2Γ
(
n+1

2
)

Γ
(
n
2
) . (1.278)

From this expression, it may be proved that

E(Y ) = υn
√
n, (1.279)

where (υ1, υ2, . . .) is a strictly increasing sequence that begins

υ1 =
√

2
π
, υ2 =

√
π

2 , υ3 =
√

8
3π , . . . (1.280)

and converges to 1 in the limit as n goes to infinity.

1.2.3 Semidefinite programming
The paradigm of semidefinite programming finds numerous applications in
the theory of quantum information, both analytical and computational. This
section describes a formulation of semidefinite programming that is well-
suited to its (primarily analytical) applications found in this book.

Definitions associated with semidefinite programs
Let X and Y be complex Euclidean spaces, let Φ ∈ T(X ,Y) be a Hermitian-
preserving map, and let A ∈ Herm(X ) and B ∈ Herm(Y) be Hermitian
operators. A semidefinite program is a triple (Φ, A,B), with which the
following pair of optimization problems is associated:
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Primal problem

maximize: 〈A,X〉
subject to: Φ(X) = B,

X ∈ Pos(X ).

Dual problem

minimize: 〈B, Y 〉
subject to: Φ∗(Y ) ≥ A,

Y ∈ Herm(Y).

With these problems in mind, one defines the primal feasible set A and the
dual feasible set B of (Φ, A,B) as follows:

A =
{
X ∈ Pos(X ) : Φ(X) = B

}
,

B =
{
Y ∈ Herm(Y) : Φ∗(Y ) ≥ A}.

(1.281)

Operators X ∈ A and Y ∈ B are also said to be primal feasible and dual
feasible, respectively.

The function X 7→ 〈A,X〉, from Herm(X ) to R, is the primal objective
function, while the function Y 7→ 〈B, Y 〉, from Herm(Y) to R, is the dual
objective function of (Φ, A,B). The optimum values associated with the
primal and dual problems are defined as

α = sup
{〈A,X〉 : X ∈ A} and β = inf

{〈B, Y 〉 : Y ∈ B}, (1.282)

respectively. (If it is the case that A = ∅ or B = ∅, then one defines α = −∞
and β =∞, respectively.)

Semidefinite programming duality
Semidefinite programs have associated with them a notion of duality, which
refers to the special relationship between the primal and dual problems.

The property of weak duality, which holds for all semidefinite programs,
is that the primal optimum can never exceed the dual optimum. In more
succinct terms, it necessarily holds that α ≤ β. This implies that every dual
feasible operator Y ∈ B provides an upper bound of 〈B, Y 〉 on the value
〈A,X〉 that is achievable over all choices of a primal feasible X ∈ A, and
likewise every primal feasible operator X ∈ A provides a lower bound of
〈A,X〉 on the value 〈B, Y 〉 that is achievable over all dual feasible operators
Y ∈ B.

It is not always the case that the primal optimum and dual optimum of
a semidefinite program (Φ, A,B) agree, but for many semidefinite programs
that arise naturally in applications, the primal optimum and dual optimum
will be equal. This situation is called strong duality. The following theorem
provides one set of conditions under which strong duality is guaranteed.
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Theorem 1.18 (Slater’s theorem for semidefinite programs) Let X and Y
be complex Euclidean spaces, let Φ ∈ T(X ,Y) be a Hermitian-preserving
map, and let A ∈ Herm(X ) and B ∈ Herm(Y) be Hermitian operators.
Letting A, B, α, and β be as defined above for the semidefinite program
(Φ, A,B), one has the following two implications:

1. If α is finite and there exists a Hermitian operator Y ∈ Herm(Y) such
that Φ∗(Y ) > A, then α = β, and moreover there exists a primal-feasible
operator X ∈ A such that 〈A,X〉 = α.

2. If β is finite and there exists a positive definite operator X ∈ Pd(X ) such
that Φ(X) = B, then α = β, and moreover there exists a dual-feasible
operator Y ∈ B such that 〈B, Y 〉 = β.

In the situation that the optimum primal and dual values are equal, and
are both achieved for some choice of feasible operators, a simple relationship
between these operators, known as complementary slackness, must hold.

Proposition 1.19 (Complementary slackness for semidefinite programs)
Let X and Y be complex Euclidean spaces, let Φ ∈ T(X ,Y) be a Hermitian-
preserving map, and let A ∈ Herm(X ) and B ∈ Herm(Y) be Hermitian
operators. Let A and B be the primal-feasible and dual-feasible sets associated
with the semidefinite program (Φ, A,B), and suppose that X ∈ A and Y ∈ B
are operators satisfying 〈A,X〉 = 〈B, Y 〉. It holds that

Φ∗(Y )X = AX. (1.283)

Simplified forms and alternative expressions of semidefinite programs
Semidefinite programs are typically presented in a way that is somewhat
less formal than a precise specification of a triple (Φ, A,B), for Φ ∈ T(X ,Y)
being a Hermitian-preserving map and A ∈ Herm(X ) and B ∈ Herm(Y)
being Hermitian operators. Rather, the primal and dual problems are stated
directly, often in a simplified form, and it is sometimes left to the reader
to formulate a triple (Φ, A,B) that corresponds to the simplified problem
statements.

Two examples of semidefinite programs follow, in both cases including
their formal specifications and simplified forms.

Example 1.20 (Semidefinite program for the trace norm) Let X and Y
be complex Euclidean spaces and let K ∈ L(X ,Y) be any operator. Define
a Hermitian-preserving map Φ ∈ T(X ⊕ Y) as

Φ
(
X ·
· Y

)
=
(
X 0
0 Y

)
(1.284)
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for all X ∈ L(X ) and Y ∈ L(Y), where the dots represent elements of
L(X ,Y) and L(Y,X ) that are effectively zeroed out by Φ. The map Φ is
self-adjoint: Φ∗ = Φ. Also define A,B ∈ Herm(X ⊕ Y) as

A = 1
2

(
0 K∗

K 0

)
and B =

(
1X 0
0 1Y

)
. (1.285)

The primal and dual problems associated with the semidefinite program
(Φ, A,B) may, after some simplifications, be expressed as follows:

Primal problem

maximize: 1
2〈K,Z〉+ 1

2〈K
∗, Z∗〉

subject to:
(
1X Z∗

Z 1Y

)
≥ 0,

Z ∈ L(X ,Y).

Dual problem

minimize: 1
2 Tr(X) + 1

2 Tr(Y )

subject to:
(
X −K∗
−K Y

)
≥ 0,

X ∈ Pos(X ),
Y ∈ Pos(Y).

The primal and dual optima are equal for all choices of K, and given by
‖K‖1. (Given a singular value decomposition of K, one can construct both
a primal feasible and dual feasible solution achieving this value.)

A standard way of expressing this semidefinite program would be to list
only the simplified primal and dual problems given above, letting the triple
(Φ, A,B) be specified implicitly.

Example 1.21 (Semidefinite programs with inequality constraints) Let X ,
Y, and Z be complex Euclidean spaces, let Φ ∈ T(X ,Y) and Ψ ∈ T(X ,Z)
be Hermitian-preserving maps, and let A ∈ Herm(X ), B ∈ Herm(Y), and
C ∈ Herm(Z) be Hermitian operators. Define a map

Ξ ∈ T(X ⊕ Z,Y ⊕ Z) (1.286)

as

Ξ
(
X ·
· Z

)
=
(

Φ(X) 0
0 Ψ(X) + Z

)
(1.287)

for all X ∈ L(X ) and Z ∈ L(Z). (Similar to the previous example, the dots
in the argument to Ξ represent arbitrary elements of L(X ,Z) and L(Z,X )
upon which Ξ does not depend.) The adjoint map

Ξ∗ ∈ T(Y ⊕ Z,X ⊕ Z) (1.288)
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to Ξ is given by

Ξ∗
(
Y ·
· Z

)
=
(

Φ∗(Y ) + Ψ∗(Z) 0
0 Z

)
. (1.289)

The primal and dual problems of the semidefinite program specified by
the map Ξ, together with the Hermitian operators

(
A 0
0 0

)
∈ Herm(X ⊕ Z) and

(
B 0
0 C

)
∈ Herm(Y ⊕ Z), (1.290)

may be expressed in the following simplified form:

Primal problem

maximize: 〈A,X〉
subject to: Φ(X) = B,

Ψ(X) ≤ C,
X ∈ Pos(X ).

Dual problem

minimize: 〈B, Y 〉+ 〈C,Z〉
subject to: Φ∗(Y ) + Ψ∗(Z) ≥ A,

Y ∈ Herm(Y),
Z ∈ Pos(Z).

It is sometimes convenient to consider semidefinite programming problems
of this form, that include both equality and inequality constraints in the
primal problem, as opposed to just equality constraints.

1.3 Suggested references
Several textbooks cover the material on linear algebra summarized in this
chapter; the classic books of Halmos (1978) and Hoffman and Kunze (1971)
are two examples. Readers interested in a more modern development of
linear algebra for finite dimensional spaces are referred to the book of Axler
(1997). The books of Horn and Johnson (1985) and Bhatia (1997) also cover
much of the material on linear algebra that has been summarized in this
chapter (and a great deal more, including relevant theorems to be proved
in subsequent chapters of this book), with a focus on the matrix-theoretic
aspects of the subject.

There are also many textbooks on mathematical analysis, including the
classic texts of Rudin (1964) and Apostol (1974), as well as the books of
Bartle (1966) and Halmos (1974) that focus on measure theory. The book of
Rockafellar (1970) is a standard reference on convex analysis, and the two
volume collection of Feller (1968, 1971) is a standard reference on probability
theory. Semidefinite programming is discussed by Wolkowicz, Saigal, and
Vandenberge (2000).


