
Lecture 7

A semidefinite program for the
entangled bias of XOR games

In this lecture we will discuss a couple of applications of Tsirelson’s theorem, cen-
tering primarily on the semidefinite programming formulation for the entangled
bias of XOR games that it yields.

7.1 The semidefinite program

Let us begin with the semidefinite program that is suggested by Tsirelson’s theo-
rem. Assume that G = (X, Y, π, f ) is an XOR game, and recall (as was discussed
in the previous lecture) that the entangled bias of G is the supremum of the values

∑
(x,y)∈X×Y

π(x, y)(−1) f (x,y)〈Ax ⊗ By, ρ〉, (7.1)

taken over all choices for complex Euclidean spaces A and B, a state ρ ∈ D(A⊗B),
and Hermitian contractions

{Ax : x ∈ X} ⊂ Herm(A) and {By : y ∈ Y} ⊂ Herm(B). (7.2)

By Tsirelson’s theorem, this is equivalent to the supremum of the values

∑
(x,y)∈X×Y

π(x, y)(−1) f (x,y)M(x, y), (7.3)

taken over all M ∈ L(RY, RX) for which there exist R ∈ Pos(CX) and S ∈ Pos(CY)
for which R(x, x) = 1 for all x ∈ X, S(y, y) = 1 for all y ∈ Y, and(

R M
M∗ S

)
∈ Pos(CX ⊕CY). (7.4)
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With this fact in mind, let us consider the following semidefinite program.
First, let us write X = CX and Y = CY for brevity, and let ∆ ∈ C(X ⊕ Y) de-
note the completely dephasing channel acting on X⊕ Y, which zeros out all of the
off-diagonal entries of its input and leaves the diagonal entries alone. Define an
operator D ∈ L(Y,X) as

D(x, y) = π(x, y)(−1) f (x,y) (7.5)

for every x ∈ X and y ∈ Y, and let H ∈ Herm(X⊕ Y) be defined as

H =
1
2

(
0 D

D∗ 0

)
. (7.6)

The semidefinite program to be considered is described by the triple (∆, H,1X⊕Y).
The primal and dual problems associated with this semidefinite program take the
following form.

Problem 7.1 (SDP for XOR game bias, unsimplified)

Primal problem

maximize: 〈H, Z〉
subject to: ∆(Z) = 1X⊕Y,

Z ∈ Pos(X⊕ Y).

Dual problem

minimize: Tr(W)

subject to: ∆(W) ≥ H,

W ∈ Herm(X⊕ Y).

Note that in the dual problem formulation we have used the fact that the com-
pletely dephasing channel is self-dual: ∆ = ∆∗. Strong duality and the achiev-
ability of the optimal values in both the primal and dual problems follow from
Slater’s theorem; strictly feasible solutions are given by Z = 1X⊕Y in the primal
and W = λ1X⊕Y for a sufficiently large λ in the dual.

Let us now examine both the primal and dual problems, beginning with the
primal problem. Our principal order of business with the primal problem, which
is fairly straightforward, is to verify that its optimal value indeed agrees with the
entangled bias of the XOR game G.

Suppose first that M ∈ L(RY, RX) is such that there exist R ∈ Pos(X) and
S ∈ Pos(Y) for which R(x, x) = 1 for all x ∈ X, S(y, y) = 1 for all y ∈ Y, and

Z =

(
R M

M∗ S

)
∈ Pos(X⊕ Y). (7.7)

The operator Z is then primal feasible, as the constraint ∆(Z) = 1X⊕Y is equivalent
to R and S having diagonal entries equal to one. The objective value for Z is equal
to

〈H, Z〉 = 1
2
〈D, M〉+ 1

2
〈D∗, M∗〉 = 〈D, M〉, (7.8)
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owing to the fact that D and M have real number entries. Noting that

〈D, M〉 = ∑
(x,y)∈X×Y

π(x, y)(−1) f (x,y)M(x, y), (7.9)

we find that the optimal value of the semidefinite program is at least the entangled
bias of G.

To see that the optimal value of the semidefinite program is no greater than the
entangled bias of G, consider any Z ∈ Pos(X⊕ Y), which can be expressed as

Z =

(
R K
K∗ S

)
(7.10)

for some choice of R ∈ Pos(X), S ∈ Pos(Y), and K ∈ L(Y,X). Again the constraint
∆(Z) = 1X⊕Y is equivalent to R and S having diagonal entries equal to one, and
the only issue remaining is that K might not have real number entries. However,
by expressing the objective function in terms of the block structure of H and Z, we
find that

〈H, Z〉 = 1
2
〈D, K〉+ 1

2
〈D∗, K∗〉 = 〈D, M〉 (7.11)

for

M =
K + K

2
, (7.12)

following from the fact that D has real entries:

〈D∗, K∗〉 = 〈D, K〉 =
〈

D, K
〉
=
〈

D, K
〉
. (7.13)

Proceeding in much the same way as in the previous lecture, we see that

1
2

(
R K
K∗ S

)
+

1
2

(
R K
K∗ S

)T

=

(1
2 R + 1

2 RT M
M∗ 1

2 S + 1
2 ST

)
(7.14)

is positive semidefinite, and the diagonal entries of 1
2 R + 1

2 RT and 1
2 S + 1

2 ST, are
all equal to one, and therefore the objective value 〈D, M〉 is no greater than the
entangled bias of G.

Now let us consider the dual problem, in which one maximizes Tr(W) over all
W ∈ Herm(X⊕ Y), subject to the constraint that

∆(W) ≥ H. (7.15)

Notice that the off-diagonal entries of W have absolutely no influence on this prob-
lem: they are zeroed out by ∆ in the constraint, and they do not influence the objec-
tive function. For this reason there is no generality lost in restricting one’s attention
to W taking the form

W =
1
2

(
Diag(u) 0

0 Diag(v)

)
(7.16)
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for vectors u ∈ RX and v ∈ RY. (Here we’re including the factor of 1/2 for the
sake of convenience—we’re free to scale the vectors u and v as we choose.) The
objective function then becomes

Tr(W) =
1
2 ∑

x∈X
u(x) +

1
2 ∑

y∈Y
v(y), (7.17)

while the constraint becomes equivalent to(
Diag(u) −D
−D∗ Diag(v)

)
≥ 0. (7.18)

Summarizing what we have just concluded about Optimization Problem 7.1,
we arrive at the following expression of the same problem.

Problem 7.2 (SDP for XOR game bias, simplified)

Primal problem

maximize: 〈D, M〉

subject to:
(

R M
M∗ S

)
≥ 0,

R(x, x) = 1 for all x ∈ X,

S(y, y) = 1 for all y ∈ Y,

R ∈ Pos(X),

S ∈ Pos(Y),

M ∈ L(RY, RX).

Dual problem

minimize:
1
2 ∑

x∈X
u(x) +

1
2 ∑

y∈Y
v(y)

subject to:

(
Diag(u) −D
−D∗ Diag(v)

)
≥ 0,

u ∈ RX,

v ∈ RY.

It will be helpful later in the lecture for us to observe at this point that for any
dual-optimal choice of u and v, it must be the case that

∑
x∈X

u(x) = ∑
y∈Y

v(y). (7.19)

The reason is that for any choice of u and v, and for any λ > 0, the operator(
Diag(u) −D
−D∗ Diag(v)

)
(7.20)

is positive semidefinite if and only if(
λ Diag(u) −D
−D∗ 1

λ Diag(v)

)
(7.21)
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is positive semidefinite. The dual objective value obtained by the operator (7.21),
assuming it is positive semidefinite, is equal to

λ

2 ∑
x∈X

u(x) +
1

2λ ∑
y∈Y

v(y). (7.22)

Assuming that D is nonzero, which is always the case when it arises from an XOR
game G, it must be the case that ∑x∈X u(x) and ∑y∈Y v(y) are strictly positive, and
in this case the minimum value for (7.22) occurs when

λ =

√
∑y∈Y v(y)

∑x∈X u(x)
, (7.23)

and this is the unique choice of λ for which the minimum is obtained. Thus, under
the assumption that u and v are optimal, it must be the case that λ = 1, which is
equivalent to (7.19).

We can now verify that the entangled value of the CHSH game is cos2(π/8), as
claimed in the previous lecture.

Example 7.1 (CHSH game entangled bias/value). Recall that the CHSH game is
the XOR game G = (X, Y, π, f ) with

X = Y = {0, 1},

π(0, 0) = π(0, 1) = π(1, 0) = π(1, 1) =
1
4

,

f (x, y) = x ∧ y.

(7.24)

The matrix D(x, y) = π(x, y)(−1) f (x,y) is then equal to

D =
1
4

(
1 1
1 −1

)
. (7.25)

We will verify that the optimal value of Optimization Problem 7.2 for the game G
is ε∗(G) = 1/

√
2.

First choose

M =
1√
2

(
1 1
1 −1

)
, (7.26)

which has spectral norm equal to 1—it is a unitary operator, representing the
Hadamard transform—and observe that for R = S = 1 we have that

Z =

(
R M

M∗ S

)
≥ 0. (7.27)
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The diagonal entries of R and S are equal to one, so Z is primal feasible, and it
achieves the objective value 〈D, M〉 = 1/

√
2.

In the dual problem, choosing

u =
(

1
2
√

2
, 1

2
√

2

)
and v =

(
1

2
√

2
, 1

2
√

2

)
(7.28)

yields a feasible solution. The objective value is the same value just achieved in the
primal:

1
2 ∑

x∈{0,1}
u(x) +

1
2 ∑

y∈{0,1}
v(y) =

1√
2

. (7.29)

Having obtained the same value in the primal and dual, we have verified that
the optimal value, which is the entangled bias, is

ε∗(G) =
1√
2

. (7.30)

This implies that the entangled value of the CHSH game is

ω∗(G) =
1
2
+

1
2
√

2
= cos2(π/8). (7.31)

7.2 Strong parallel repetition for XOR games

Next we will prove that XOR games obey a strong parallel repetition property. To
explain what this means, let us first discuss the notion of parallel repetition in
greater generality.

Given arbitrary nonlocal games G1, . . . , Gn, described by probability distribu-
tions

π1 : X1 ×Y1 → [0, 1],
...

πn : Xn ×Yn → [0, 1],

(7.32)

and predicates
V1 : A1 × B1 × X1 ×Y1 → {0, 1},

...

Vn : An × Bn × Xn ×Yn → {0, 1},

(7.33)

respectively, one defines the nonlocal game G = G1 ∧ · · · ∧ Gn by the distribution

π((x1, . . . , xn), (y1, . . . , yn)) = π1(x1, y1) · · ·πn(xn, yn) (7.34)
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and the predicate

V((a1, . . . , an), (b1, . . . , bn)|(x1, . . . , xn), (y1, . . . , yn))

= V1(a1, b1|x1, y1) ∧ · · · ∧Vn(an, bn|xn, yn).
(7.35)

In words, the game G is run as if it were independent instances of the games
G1, . . . , Gn, where Alice and Bob receive n-tuples of questions (x1, . . . , xn) and
(y1, . . . , yn) all at the same time, with each question pair (xk, yk) being chosen ac-
cording to πk, independent of all other question pairs. They are expected to pro-
vide answers (a1, . . . , an) and (b1, . . . , bn), respectively, and they win the game G if
and only if every one of the pairs (ak, bk) is correct for the corresponding question
pair (xk, yk) in the game Gk.

It is important to realize, though, that Alice and Bob are not required to treat
the individual games G1, . . . , Gn independently. They may, in particular, attempt to
correlate their answers in otherwise independent game instances to their advan-
tage. The following example illustrates that it is indeed possible for them to gain
an advantage along these lines.

Example 7.2 (Parallel repetition of the FFL game). The classical value of the FFL
game, introduced in the previous lecture, is 2/3. Remarkably, the classical value
of the two-fold repetition FFL ∧ FFL of this game with itself is also 2/3. A deter-
ministic strategy that achieves this winning probability is that Alice and Bob both
respond to their question pairs by simply swapping the two binary values. That
is, Alice’s answers are determined by the function f : X × X → A× A and Bob’s
answers are determined by the function g : Y×Y → B× B, where

f (x1, x2) = (x2, x1) and g(y1, y2) = (y2, y1). (7.36)

For this strategy, the winning condition in both games is the same:

x1 ∨ x2 6= y1 ∨ y2. (7.37)

That is, they either win both games or lose both games, never winning just one of
them. If (x1, y1) and (x2, y2) are independently and uniformly generated from the
set {(0, 0), (0, 1), (1, 0)} then the above condition fails only when

((x1, y1), (x2, y2)) ∈
{
((0, 0), (0, 0)), ((1, 0), (0, 1)), ((0, 1), (1, 0))

}
. (7.38)

Such question pairs are selected with probability 3/9 = 1/3, so the winning proba-
bility is 2/3, as claimed.

The example of the FFL game illustrates that the classical value of a nonlo-
cal game G = G1 ∧ · · · ∧ Gn is not always equal to the product of the values of

79



Advanced topics in quantum information theory

G1, . . . , Gn, which is what one obtains when Alice and Bob play the games inde-
pendently. That is, one always has

ω(G1 ∧ · · · ∧ Gn) ≥ ω(G1) · · ·ω(Gn), (7.39)

but in some cases the inequality is strict. A similar phenomenon occurs for the
entangled value—although we did not prove it, the entangled value of the FFL
game agrees with the classical value, and therefore

ω∗(FFL∧ FFL) ≥ ω(FFL∧ FFL) =
2
3
= ω∗(FFL) > ω∗(FFL)2. (7.40)

We will prove that the entangled value of XOR games forbids this type of ad-
vantage. That is, if G1, . . . , Gn are XOR games, then

ω∗(G1 ∧ · · · ∧ Gn) = ω∗(G1) · · ·ω∗(Gn). (7.41)

This is the property referred to as strong parallel repetition. In particular, if G is an
XOR game and we write

G∧n = G ∧ · · · ∧ G (n times), (7.42)

then it necessarily holds that

ω∗(G∧n) = ω∗(G)n. (7.43)

The first step in proving that (7.41) holds for XOR games G1, . . . , Gn is to define
the XOR of two (or more) XOR games. Suppose that G1 and G2 are XOR games,
specified by probability distributions

π1 : X1 ×Y1 → [0, 1] and π2 : X2 ×Y2 → [0, 1] (7.44)

along with functions

f1 : X1 ×Y1 → {0, 1} and f2 : X2 ×Y2 → {0, 1}. (7.45)

The XOR G1⊕ G2 of these two games is the XOR game defined by the distribution
π : (X1 × X2)× (Y1 ×Y2)→ [0, 1] given by

π((x1, x2), (y1, y2)) = π1(x1, y1)π2(x2, y2) (7.46)

and the function f : (X1 × X2)× (Y1 ×Y2)→ {0, 1} given by

f ((x1, x2), (y1, y2)) = f1(x1, y1)⊕ f2(x2, y2). (7.47)
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In words, the question sets for the game G1 ⊕ G2 are X1 × X2 and Y1 × Y2, and
if Alice receives (x1, x2) and Bob receives (y1, y2), they are expected to provide
answers a, b ∈ {0, 1} that are consistent with the equations

a = a1 ⊕ a2 and b = b1 ⊕ b2 (7.48)

for some choice of a1, a2, b1, b2 ∈ {0, 1} that would cause (a1, b1) to be correct for
(x1, y1) and (a2, b2) to be correct for (x2, y2). The XOR of more than two XOR games
is defined similarly (or, equivalently, by applying this definition iteratively).

It is evident, for any two XOR games G1 and G2, that

ε∗(G1 ⊕ G2) ≥ ε∗(G1)ε
∗(G2). (7.49)

The reason is that if Alice and Bob play the game G1 ⊕ G2 by playing G1 and G2
independently and optimally, and then answer according to the XOR of their an-
swers in G1 and G2, then they will achieve the bias ε∗(G1)ε

∗(G2). We will prove
that this is, in fact, the best they can do. That is, we will prove

ε∗(G1 ⊕ G2) = ε∗(G1)ε
∗(G2). (7.50)

This will be done using semidefinite programming duality.
In particular, consider the dual form of Optimization Problem 7.2, the semidef-

inite program for the entangled bias of an XOR game, for the two separate XOR
games G1 and G2. Suppose that (u1, v1) and (u2, v2) represent dual-optimal solu-
tions to these semidefinite programs. As argued previously, this implies

∑
x1

u1(x1) = ∑
y1

v1(y1) and ∑
x2

u2(x2) = ∑
y2

v2(y2). (7.51)

The dual form of Optimization Problem 7.2 for the entangled bias of the XOR game
G1 ⊕ G2 has the following form:

minimize:
1
2 ∑

x∈X1×X2

u(x) +
1
2 ∑

y∈Y1×Y2

v(y)

subject to:

(
Diag(u) −D1 ⊗ D2

−D∗1 ⊗ D∗2 Diag(v)

)
≥ 0,

u ∈ RX1×X2 , v ∈ RY1×Y2 .

Here, D1 and D2 are the operators given by

D1(x1, y1) = π1(x1, y1)(−1) f1(x1,y1),

D2(x2, y2) = π2(x2, y2)(−1) f2(x2,y2).
(7.52)
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Next we observe that u = u1 ⊗ u2 and v = v1 ⊗ v2 provide a dual feasible
solution to Optimization Problem 7.2 for ε∗(G1 ⊕ G2). To prove that this is so, it is
helpful to observe that if(

P1 X1
X∗1 Q1

)
≥ 0 and

(
P2 X2
X∗2 Q2

)
≥ 0 (7.53)

then (
P1 ⊗ P2 X1 ⊗ X2

X∗1 ⊗ X∗2 Q1 ⊗Q2

)
≥ 0. (7.54)

This is so because, after some simultaneous re-ordering of rows and columns, the
matrix above is a principal submatrix of the positive semidefinite matrix(

P1 X1
X∗1 Q1

)
⊗
(

P2 X2
X∗2 Q2

)
. (7.55)

Alternatively, by (7.53) we may conclude that

X1 =
√

P1K1
√

Q1 and X2 =
√

P2K2
√

Q2 (7.56)

for K1 and K2 satisfying ‖K1‖ ≤ 1 and ‖K2‖ ≤ 1. As we therefore have

X1 ⊗ X2 =
√

P1 ⊗ P2(K1 ⊗ K2)
√

Q1 ⊗Q2, (7.57)

and ‖K1 ⊗ K2‖ = ‖K1‖‖K2‖ ≤ 1, it follows that (7.54) holds. One may therefore
conclude that (

Diag(u1)⊗Diag(u2) D1 ⊗ D2

D∗1 ⊗ D∗2 Diag(v1)⊗Diag(v2)

)
≥ 0. (7.58)

As Diag(u1)⊗Diag(u2) = Diag(u) and Diag(v1)⊗Diag(v2) = Diag(v), we have(
Diag(u) −D1 ⊗ D2

−D∗1 ⊗ D∗2 Diag(v)

)

=

(
1 0
0 −1

)(
Diag(u) D1 ⊗ D2

D∗1 ⊗ D∗2 Diag(v)

)(
1 0
0 −1

)
≥ 0.

(7.59)

The objective value of the dual solution (u, v) is

1
2 ∑

x
u(x) +

1
2 ∑

y
v(y) =

1
2 ∑

x1

u1(x1)∑
x2

u2(x2) +
1
2 ∑

y1

v1(y1)∑
y2

v2(y2)

=
1
2

ε∗(G1) ε∗(G2) +
1
2

ε∗(G1) ε∗(G2) = ε∗(G1) ε∗(G2),
(7.60)
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where we have used the fact that

∑
x1

u1(x1) = ∑
y1

v1(y1) = ε∗(G1) and ∑
x2

u2(x2) = ∑
y2

v2(y2) = ε∗(G2). (7.61)

Therefore, ε∗(G1 ⊕ G2) ≤ ε∗(G1)ε
∗(G2), which implies (7.50).

We are now prepared to prove that, for XOR games G1, . . . , Gn, it holds that

ω∗(G1 ∧ · · · ∧ Gn) = ω∗(G1) · · ·ω∗(Gn). (7.62)

As we have already observed, it holds that

ω∗(G1 ∧ · · · ∧ Gn) ≥ ω∗(G1) · · ·ω∗(Gn), (7.63)

and therefore it remains to prove

ω∗(G1 ∧ · · · ∧ Gn) ≤ ω∗(G1) · · ·ω∗(Gn), (7.64)

Assume hereafter that XOR games G1, . . . , Gn have been fixed, and consider an
arbitrary strategy for Alice and Bob in the game G1 ∧ · · · ∧Gn, through which Alice
and Bob answer question tuples (x1, . . . , xn) and (y1, . . . , yn) with answer tuples
(a1, . . . , an) and (b1, . . . , bn), respectively. We will consider how well this strategy
performs for the XOR game

Gk1 ⊕ · · · ⊕ Gkm , (7.65)

for various choices of a subset S = {k1, . . . , km} ⊆ {1, . . . , n}, provided that we
define Alice and Bob’s answers as

ak1 ⊕ · · · ⊕ akm and bk1 ⊕ · · · ⊕ bkm (7.66)

and where we assume that they have chosen to share randomly generated question
pairs (xk, yk) for those choices of k 6∈ S.

To do this we will define binary-valued random variables Z1, . . . , Zn as

Zk = ak ⊕ bk ⊕ fk(xk, yk), (7.67)

where we view x1, . . . , xn, y1, . . . , yn, a1, . . . , an, and b1, . . . , bn as random variables,
with (x1, y1), . . . , (xn, yn) distributed independently according to the distributions
π1, . . . , πn given by the games G1, . . . , Gn and a1, . . . , an, b1, . . . , bn distributed and
correlated with x1, . . . , xn, y1, . . . , yn in whatever manner Alice and Bob’s strategy
determines. It holds that

Zk =

{
0 if Alice and Bob win Gk

1 if Alice and Bob lose Gk
(7.68)
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and therefore the probability of winning minus losing game Gk is equal to the
expectation

E
(
(−1)Zk

)
. (7.69)

More generally, if Alice and Bob’s strategy is transformed into a strategy for the
XOR game Gk1 ⊕ · · · ⊕ Gkm as suggested above, we find that

Zk1 ⊕ · · · ⊕ Zkm =

{
0 if Alice and Bob win Gk1 ⊕ · · · ⊕ Gkm

1 if Alice and Bob lose Gk1 ⊕ · · · ⊕ Gkm

(7.70)

and therefore the probability they win minus the probability they lose in this XOR
game is

E
(
(−1)Zk1

+···+Zkm
)

. (7.71)

Now, we know that probability of winning minus the probability of losing in the
game Gk1 ⊕ · · · ⊕ Gkm is upper-bounded by its bias:

E
(
(−1)Zk1

+···+Zkm
)
≤ ε∗(Gk1 ⊕ · · · ⊕ Gkm) = ε∗(Gk1) · · · ε

∗(Gkm). (7.72)

Here we have used the fact concerning XOR game biases proved above, which is
the key to making the entire argument work. The probability that Alice and Bob’s
strategy wins G1 ∧ · · · ∧ Gn is therefore bounded as follows:

Pr(Z1 = 0, . . . , Zn = 0) = E
((

1 + (−1)Z1

2

)
· · ·
(

1 + (−1)Zn

2

))
=

1
2n ∑

S⊆{1,...,n}
E
(
(−1)∑k∈S Zk

)
≤ 1

2n ∑
S⊆{1,...,n}

∏
k∈S

ε∗(Gk)

=

(
1 + ε∗(G1)

2

)
· · ·
(

1 + ε∗(Gn)

2

)
= ω∗(G1) · · ·ω∗(Gn).

(7.73)

Maximizing over all possible entangled strategies for Alice and Bob yields

ω∗(G1 ∧ · · · ∧ Gn) ≤ ω∗(G1) · · ·ω∗(Gn), (7.74)

as required.
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