
Lecture 6

Nonlocal games and Tsirelson’s
theorem

In this lecture we will discuss nonlocal games, which offer a model through which
the phenomenon of nonlocality is commonly studied. We will then narrow our
focus to XOR games, which are a highly restricted form of nonlocal games that
can, perhaps surprisingly, be analyzed through semidefinite programming. This is
made possible by Tsirelson’s theorem, which we will prove in this lecture.

6.1 Nonlocal games

We will begin by introducing the nonlocal games model. A nonlocal game is a hy-
pothetical game in which two cooperating players, Alice and Bob, each receive a
question from a referee, and then respond with an answer. The referee randomly
selects the questions according to a known distribution, and, upon receiving an-
swers from Alice and Bob, decides whether they win or lose. The following defini-
tion makes this notion precise in mathematical terms.

Definition 6.1. A nonlocal game is a 6-tuple G = (X, Y, A, B, π, V), where

1. X, Y, A, and B are finite and nonempty sets,

2. π ∈ P(X×Y) is a probability vector, and

3. V : A× B× X×Y → {0, 1} is a predicate.

In this definition, the sets X and Y are the sets of questions, and A and B are
the sets of answers, for Alice and Bob, respectively. The probability vector π de-
termines the probability with which each pair of questions (x, y) ∈ X × Y is se-
lected by the referee, and V determines whether or not a pair of answers (a, b)
wins or loses for a given pair of questions (x, y). For a given pair of questions
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(x, y) ∈ X×Y and a pair of answers (a, b) ∈ A× B, we write the value of the pred-
icate as V(a, b|x, y), because that’s the way Ben Toner prefers it to be written—as it
helps to stress the idea that (a, b) either wins or loses given that the question pair
(x, y) was selected.

Example 6.2 (The CHSH game). The CHSH game (named after Clauser, Horne,
Shimony, and Holt) is a nonlocal game in which the questions and answers cor-
respond to binary values, X = Y = A = B = {0, 1}, the probability vector π is
uniform,

π(0, 0) = π(0, 1) = π(1, 0) = π(1, 1) =
1
4

, (6.1)

and the predicate V is defined as

V(a, b|x, y) =

{
1 if a⊕ b = x ∧ y
0 if a⊕ b 6= x ∧ y,

(6.2)

where a⊕ b denotes the XOR of a and b, and x ∧ y denotes the AND of x and y.
Intuitively speaking, if the referee selects any of the question pairs (0, 0), (0, 1),

or (1, 0), then Alice and Bob must provide a pair of answers (a, b) for which a = b
in order to win, while if the referee selects the question pair (1, 1), the answer (a, b)
wins when a 6= b.

Example 6.3 (The FFL game). The FFL game (named after Fortnow, Feige, and
Lovász) is a nonlocal game in which the questions and answers correspond to
binary values, X = Y = A = B = {0, 1}, the probability vector π is given by

π(0, 0) = π(0, 1) = π(1, 0) =
1
3

, π(1, 1) = 0, (6.3)

and the predicate V is defined as

V(a, b|x, y) =

{
1 if a ∨ x 6= b ∨ y
0 if a ∨ x = b ∨ y,

(6.4)

where a ∨ x denotes the OR of a and x, and similar for b ∨ y.
Intuitively speaking, if the referee asks the question pair (0, 0), then exactly one

of Alice and Bob, but not both, must respond with the answer 1 in order to win.
However, if the question pair is either (0, 1) or (1, 0), then the player who received
0 must answer 0 to win (and it does not matter what the player who received the
question 1 answers).
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Example 6.4 (Graph coloring games). Suppose that H = (V, E) is an undirected
graph and k is a positive integer. Let us also define n = |V| and m = |E|, and
assume m ≥ 1. We may form a nonlocal game in the following way. The question
sets are both equal to the set of vertices, X = Y = {1, . . . , n}, and the answer sets
are given by A = B = {1, . . . , k}, which we may intuitively think about as colors.
The probability vector π is defined as follows:

π(x, y) =


1

2n if x = y
1

4m if {x, y} ∈ E
0 otherwise.

(6.5)

In words, the referee flips a fair coin, and if the outcome is heads, it randomly
selects a vertex and sends it to both players, and if the outcome is tails, it randomly
selects an edge and then sends the two incident vertices to the two players (again
at random). The predicate is defined as

V(a, b|x, y) =


1 if x = y and a = b
1 if x 6= y and a 6= b
0 otherwise.

(6.6)

The idea is that if Alice and Bob receive the same vertex, they should answer with
the same color, while if they receive different (adjacent) vertices, they should an-
swer with different colors.

Strategies

The definition of a nonlocal game does not, in itself, specify or restrict the sorts
of strategies that Alice and Bob might employ when playing. There are, in fact,
different types of strategies that are of interest. Let us start with a short summary
of the strategy types that are of interest for this lecture.

1. Deterministic strategies. In a deterministic strategy, Alice must deterministically
choose her answer a based on her question x alone, and likewise Bob must
choose b based on y alone. A deterministic strategy may therefore be described
as a pair of functions ( f , g), where f : X → A and g : Y → B.

Notice that when we consider such a strategy, there is an implicit assumption
that Alice cannot see Bob’s question (or answer), and likewise Bob cannot see
Alice’s question (or answer). This sort of implicit assumption is also in place
for the other strategy types listed below, and is what makes nonlocal games
interesting and motivates their name.
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2. Randomized strategies. Rather than choosing their answers deterministically, Al-
ice and Bob could choose to make use of randomness when selecting their
answers. The randomness could be in the form of local randomness, where
Alice and Bob individually generate random numbers to assist in the selection
of their answers, or it could be in the form of shared randomness, which one
might view as having been generated by Alice and Bob at some point in the
past.

As it turns out, randomized strategies are not helpful to Alice and Bob, as-
suming their goal is to maximize the probability that they win. This is because
randomized strategies can simply be viewed as the random selection of a de-
terministic strategy, and Alice and Bob might as well just select the optimal
deterministic strategy—the average winning probability obviously cannot be
larger than the maximum winning probability over all deterministic strategies.

3. Entangled strategies. An entangled strategy is one in which Alice and Bob make
use of a shared quantum state when playing a nonlocal game. That is, Alice
holds a register A and Bob holds a register B, where (A,B) is in a joint state
ρ ∈ D(A⊗ B), prior to the referee sending the questions. Upon receiving a
question x ∈ X, Alice measures the register A with respect to a measurement
described by a collection of measurement operators{

Px
a : a ∈ A

}
⊂ Pos(A), (6.7)

and likewise Bob measures B with respect to a measurement described by
measurement operators {

Qy
b : b ∈ B

}
⊂ Pos(B). (6.8)

To be clear, Alice’s measurement depends on her question x ∈ X and Bob’s
measurement depends on his question y ∈ Y; they each have a measurement
for each possible question they might receive.

Given such a strategy, we see that the probability that Alice and Bob respond
to a question pair (x, y) with an answer pair (a, b) is equal to〈

Px
a ⊗Qy

b , ρ
〉
. (6.9)

Note that ρ is not actually required to be entangled by the definition of an
entangled strategy, but also note that if ρ is separable, then the strategy will be
equivalent to a classical randomized strategy. So, entanglement is what makes
this sort of strategy different from a classical strategy, which perhaps explains
the name entangled strategy.
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There are other types of strategies that are often considered in the study of non-
local games, including commuting operator strategies and no-signaling strategies—we
will discuss commuting operator strategies in the lecture following the next one.
One could also consider global strategies, in which there is no implicit assumption
that Alice and Bob are separated, so that (a, b) can depend arbitrarily on (x, y), but
this class of strategies is not very interesting in a setting in which the nonlocality
of Alice and Bob is relevant.

Values of games

When we speak of the value of a nonlocal game, we’re referring to the supremum
probability with which Alice and Bob can win the game, with respect to whatever
class of strategies we might wish to consider. For this lecture we will focus on two
values: the classical value and the entangled value.

Definition 6.5 (Classical value of a nonlocal game). The classical value of a nonlocal
game G = (X, Y, A, B, π, V), which is denoted ω(G), is given by a maximization
of the winning probability over all deterministic strategies:

ω(G) = max
f ,g

∑
(x,y)∈X×Y

π(x, y)V
(

f (x), g(y)|x, y
)
, (6.10)

where the maximum is over all f : X → A and g : Y → B.

Remark 6.6. As was previously discussed, the deterministic and randomized val-
ues of nonlocal games are the same—and so the name classical value is justified.

Definition 6.7 (Entangled value of a nonlocal game). The entangled value of a non-
local game G = (X, Y, A, B, π, V), which is denoted ω∗(G), is the supremum of the
winning probabilities

∑
(x,y)∈X×Y

π(x, y) ∑
(a,b)∈A×B

V
(
a, b|x, y

)〈
Px

a ⊗Qy
b , ρ
〉
, (6.11)

over all choices of complex Euclidean spaces A and B, states ρ ∈ D(A⊗B), and
sets of measurements{

Px
a : a ∈ A}x∈X ⊂ Pos(A) and

{
Qy

b : b ∈ B}y∈Y ⊂ Pos(B). (6.12)

That is, the entangled value is the supremum winning probability over all entan-
gled strategies.
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Remark 6.8. There are nonlocal games for which the winning probability is never
achieved, so it is necessary to use the supremum in this definition. The principal
issue is that the dimensions of the spaces A and B are not bounded as one ranges
over all entangled strategies.

Example 6.9 (CHSH game values). Letting G denote the CHSH game, we have that
the classical value of this game is ω(G) = 3/4. This may be verified by checking
that the winning probability of each of the 16 possible deterministic strategies is at
most 3/4, and of course that some of those strategies win with probability 3/4.

The entangled value of the CHSH game is ω∗(G) = cos2(π/8) ≈ 0.85. The fact
that this is so will emerge as a simple corollary to Tsirelson’s theorem—which is
fitting given that the inequality ω∗(G) ≤ cos2(π/8) is a rephrasing of an inequality
known as Tsirelson’s bound.

Example 6.10 (FFL game values). If we let G denote the FFL game, then we have
that its classical value and quantum value agree: ω(G) = ω∗(G) = 2/3. The fact
that ω(G) = 2/3 is easily established by testing all deterministic classical strate-
gies. I will ask you to prove that ω∗(G) = 2/3 as a homework problem. One way to
do this is to prove that even the so-called no-signaling value, which upper-bounds
the quantum value, of the FFL game is 2/3. The no-signaling value can be com-
puted through linear programming.

Example 6.11 (Graph coloring game values). If G is the graph coloring game de-
termined by a graph H and an integer k, there we see that ω(G) = 1 if and only
if the chromatic number of H is at most k. That is, given any perfect deterministic
strategy, meaning one that wins with certainty, it is possible to recover a k-coloring
of H, meaning an assignment of colors {1, . . . , k} to the vertices of H such that no
two adjacent vertices share the same color.

There are known examples of graphs H and choices of k for which the associ-
ated nonlocal game G satisfies ω(G) < 1 but ω∗(G) = 1.

6.2 XOR games

XOR games are a restricted type of nonlocal game G = (X, Y, A, B, π, V) in which
both players answer binary values, so that A = B = {0, 1}, and for which the
predicate V takes the form

V(a, b|x, y) =

{
1 if a⊕ b = f (x, y)
0 if a⊕ b 6= f (x, y)

(6.13)
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for some choice of a function f : X × Y → {0, 1}. Intuitively speaking, the func-
tion f specifies whether a and b should agree or disagree in order to be a winning
answer, for each question pair (x, y). Notice that exactly one of the two possibili-
ties, meaning the possibilities that a and b agree or disagree, always wins for each
question pair, while the other possibility loses.

As every XOR game is uniquely determined by the sets X and Y, the probabil-
ity vector π ∈ P(X× Y), and the function f : X× Y → {0, 1}, we will identify the
corresponding game G with the quadruple (X, Y, π, f ) when it is convenient to do
that. For example, the CHSH game is an example of an XOR game, correspond-
ing to the quadruple ({0, 1}, {0, 1}, π, f ), for π the uniform probability vector and
f (x, y) = x ∧ y being the AND function.

Bias of an XOR game

When analyzing XOR games, it is often convenient to consider the bias of games
rather than their value. For a given XOR game G = (X, Y, π, f ), and any strategy
for G, we define the bias of that strategy, for that game, to be the probability it
wins minus the probability it loses—which happens to be the same thing as twice
the probability it wins minus 1. The bias of a game is defined to be the supremum
bias over all strategies under consideration for that game. We will write ε(G) and
ε∗(G) to denote the classical and quantum biases for G, and so we have

ε(G) = 2ω(G)− 1 and ε∗(G) = 2ω∗(G)− 1, (6.14)

or, alternatively,

ω(G) =
1
2
+

ε(G)

2
and ω∗(G) =

1
2
+

ε∗(G)

2
. (6.15)

XOR game strategies described by observables

Let G = (X, Y, π, f ) be an XOR game, and consider any entangled strategy for that
game, represented by a state ρ ∈ D(A⊗B} and measurement operators{

Px
0 , Px

1 }x∈X ⊂ Pos(A) and
{

Qy
0, Qy

1}y∈Y ⊂ Pos(B). (6.16)

If we consider the expression

∑
x,y∈X×Y

π(x, y)(−1) f (x,y)〈(Px
0 − Px

1
)
⊗
(
Qy

0 −Qy
1

)
, ρ
〉

(6.17)

for a few moments, we find that it agrees with the bias of the strategy just de-
scribed. By defining Ax = Px

0 − Px
1 for each x ∈ X and By = Qy

0 − Qy
1 for each
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y ∈ Y, we may express this quantity as

∑
x,y∈X×Y

π(x, y)(−1) f (x,y)〈Ax ⊗ By, ρ
〉
. (6.18)

The operators Ax and By may be viewed as representing observables in the parlance
of quantum mechanics.

Notice that as one ranges over all binary-valued measurements {R0, R1}, the
operator R0 − R1 ranges over all Hermitian operators H with ‖H‖ ≤ 1. Therefore,
the bias of a game G is given by the supremum value of the expression (6.18),
over all choices of {Ax : x ∈ X} ⊂ Herm(A), {By : y ∈ Y} ⊂ Herm(B), and
ρ ∈ D(A⊗B), subject to the constraints ‖Ax‖ ≤ 1 for every x ∈ X and ‖By‖ ≤ 1
for every y ∈ Y.

6.3 Tsirelson’s theorem

Now we will prove the theorem of Tsirelson mentioned previously. Let us begin
with a statement of the theorem.

Theorem 6.12 (Tsirelson’s theorem). For every choice of finite and nonempty sets X and
Y and an operator M ∈ L(RY, RX), the following statements are equivalent.

1. There exist complex Euclidean spaces A and B, a density operator ρ ∈ D(A⊗B), and
two collections {Ax : x ∈ X} ⊂ Herm(A) and {By : y ∈ Y} ⊂ Herm(B) of
operators such that ‖Ax‖ ≤ 1, ‖By‖ ≤ 1, and

M(x, y) =
〈

Ax ⊗ By, ρ
〉

(6.19)

for all x ∈ X and y ∈ Y.

2. There exist positive semidefinite operators R ∈ Pos(CX) and S ∈ Pos(CY), with
R(x, x) = 1 and S(y, y) = 1 for all x ∈ X and y ∈ Y, such that(

R M
M∗ S

)
≥ 0. (6.20)

Remark 6.13. The second statement in the theorem is equivalent to one in which
the requirement that R and S have real number entries is added. In particular, if R0
and S0 satisfy the conditions listed in the second statement of the theorem, then so
too will

R =
R0 + RT

0
2

and S =
S0 + ST

0
2

, (6.21)
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by virtue of the fact that M has real-number entries and(
R M

M∗ S

)
=

1
2

(
R0 M
M∗ S0

)
+

1
2

(
R0 M
M∗ S0

)T

(6.22)

is a positive semidefinite operator whose diagonal entries are all equal to 1.

The first statement of the theorem says that the operator M, which is best
viewed as a matrix indexed by pairs (x, y) ∈ X × Y in this case, describes exactly
the values in the expression (6.18) that depend upon the strategy under consider-
ation. The second statement of the theorem is a suprisingly simple condition on
M—and it may come at no surprise to learn that it will be used to define semidefi-
nite programs to calculate XOR game biases. The fact that these two statements are
exactly the same thing is a remarkable thing of beauty.

Weyl–Brauer operators

The proof of Tsirelson’s theorem will make use of a collection of unitary and Her-
mitian operators known as Weyl–Brauer operators.

Definition 6.14. Let N be a positive integer and let Z = C2. The Weyl–Brauer oper-
ators of order N are the operators V1, . . . , V2N+1 ∈ L(Z⊗N) defined as

V2k−1 = σ
⊗(k−1)
z ⊗ σx ⊗ 1⊗(N−k),

V2k = σ
⊗(k−1)
z ⊗ σy ⊗ 1⊗(N−k),

(6.23)

for all k ∈ {1, . . . , N}, as well as

V2N+1 = σ⊗N
z , (6.24)

where 1, σx, σy, and σz denote the Pauli operators:

1 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (6.25)

Example 6.15. In the case N = 3, the Weyl–Brauer operators V1, . . . , V7 are

V1 = σx ⊗ 1⊗ 1

V2 = σy ⊗ 1⊗ 1

V3 = σz ⊗ σx ⊗ 1

V4 = σz ⊗ σy ⊗ 1

V5 = σz ⊗ σz ⊗ σx

V6 = σz ⊗ σz ⊗ σy

V7 = σz ⊗ σz ⊗ σz.

(6.26)
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A proposition summarizing the properties of the Weyl–Brauer operators that
are relevant to the proof of Tsirelson’s theorem follows.

Proposition 6.16. Let N be a positive integer, let V1, . . . , V2N+1 denote the Weyl–Brauer
operators of order N. For every unit vector u ∈ R2N+1, the operator

2N+1

∑
k=1

u(k)Vk (6.27)

is both unitary and Hermitian, and for any two vectors u, v ∈ R2N+1, it holds that

1
2N

〈
2N+1

∑
j=1

u(j)Vj,
2N+1

∑
k=1

v(k)Vk

〉
= 〈u, v〉. (6.28)

Proof. Each operator Vk is Hermitian, and therefore the operator (6.27) is Hermitian
as well.

The Pauli operators anti-commute in pairs:

σxσy = −σyσx, σxσz = −σzσx, and σyσz = −σzσy. (6.29)

By an inspection of the definition of the Weyl–Brauer operators, it follows that
V1, . . . , V2N+1 also anti-commute in pairs:

VjVk = −VkVj (6.30)

for distinct choices of j, k ∈ {1, . . . , 2N + 1}. Moreover, each Vk is unitary (as well
as being Hermitian), and therefore V2

k = 1⊗N. It follows that(
2N+1

∑
k=1

u(k)Vk

)2

=
2N+1

∑
k=1

u(k)2V2
k + ∑

1≤j<k≤2N+1
u(j)u(k)

(
VjVk + VkVj

)
=

2N+1

∑
k=1

u(k)21⊗N = 1⊗N,

(6.31)

and therefore (6.27) is unitary.
Next, observe that

〈Vj, Vk〉 =
{

2N if j = k
0 if j 6= k.

(6.32)

Therefore, one has

1
2N

〈
2N+1

∑
j=1

u(j)Vj,
2N+1

∑
k=1

v(k)Vk

〉

=
1

2N

2N+1

∑
j=1

2N+1

∑
k=1

u(j)v(k)〈Vj, Vk〉 =
2N+1

∑
k=1

u(k)v(k) = 〈u, v〉,
(6.33)

as required.
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Proof of Tsirelson’s theorem

Proof of Theorem 6.12. For the sake of simplifying notation, we will make the as-
sumption that X = {1, . . . , n} and Y = {1, . . . , m}.

Assume that the first statement is true, and define an operator

K =



vec
(
(A1 ⊗ 1)

√
ρ
)∗

...
vec
(
(An ⊗ 1)

√
ρ
)∗

vec
(
(1⊗ B1)

√
ρ
)∗

...
vec
(
(1⊗ Bm)

√
ρ
)∗


∈ L(A⊗B⊗A⊗B, Cn ⊕Cm). (6.34)

The operator KK∗ ∈ Pos
(
Cn ⊕Cm) may be written in a block form as

KK∗ =
(

P M
M∗ Q

)
(6.35)

for P ∈ Pos(Cn) and Q ∈ Pos(Cm); the fact that the off-diagonal blocks are as
claimed follows from the calculation〈

(Aj ⊗ 1)
√

ρ, (1⊗ Bk)
√

ρ
〉
=
〈

Aj ⊗ Bk, ρ
〉
= M(j, k). (6.36)

For each j ∈ {1, . . . , n} one has

P(j, j) =
〈
(Aj ⊗ 1)

√
ρ, (Aj ⊗ 1)

√
ρ
〉
=
〈

A2
j ⊗ 1, ρ

〉
, (6.37)

which is necessarily a nonnegative real number in the interval [0, 1]; and through
a similar calculation, one finds that Q(k, k) is also a nonnegative integer in the
interval [0, 1] for each k ∈ {1, . . . , m}. A nonnegative real number may be added to
each diagonal entry of this operator to yield another positive semidefinite operator,
so one has that statement 2 holds.

Next, let us assume statement 2 holds. As was explained in Remark 6.13, we
are free to assume that all of the entries of R and S are real numbers.

Now, a matrix with real number entries is positive semidefinite if and only if
it is the Gram matrix of a collection of real vectors, and therefore there must exist
real vectors {u1, . . . , un, v1, . . . , vm} such that

〈uj, vk〉 = M(j, k) (6.38)

for all j ∈ {1, . . . , n} and k ∈ {1, . . . , m}, as well as

〈uj0 , uj1〉 = R(j0, j1) and 〈vk0 , vk1〉 = S(k0, k1) (6.39)
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for all j0, j1 ∈ {1, . . . , n} and k0, k1 ∈ {1, . . . , m}. There are n + m of these vectors,
and therefore they span a real vector space of dimension at most n + m, so there is
no loss of generality in assuming u1, . . . , un, v1, . . . , vm ∈ Rn+m. Observe that these
vectors are all unit vectors, as the diagonal entries of R and S represent their norm
squared.

Choose N so that 2N + 1 ≥ n + m and let Z = C2. Define operators A1, . . . , An
and B1, . . . , Bm, all acting on L(Z⊗N), as

Aj =
n+m

∑
i=1

uj(i)Vi and Bk =
n+m

∑
i=1

vk(i)VT
i (6.40)

for each j ∈ {1, . . . , n} and k ∈ {1, . . . , m}, where V1, . . . , Vn+m are the first n + m
Weyl–Brauer operators of order N. By Proposition 6.16, each of these operators
is both unitary and Hermitian, and therefore each of these operators has spectral
norm equal to 1.

Finally, define

ρ =
1

2N vec
(
1⊗N) vec

(
1⊗N)∗ ∈ D

(
Z⊗N ⊗ Z⊗N). (6.41)

Applying Proposition 6.16 again gives

〈
Aj ⊗ Bk, ρ

〉
=

1
2N

〈
Aj, BT

k
〉
= 〈uj, vk〉 = M(j, k), (6.42)

for each j ∈ {1, . . . , n} and k ∈ {1, . . . , m}.
We have proved that statement 2 implies statement 1, for the spaces A = Z⊗N

and B = Z⊗N, and so the proof is complete.
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