
Lecture 4

Regularization of the smoothed
max-relative entropy

In this lecture we will prove an important theorem concerning the smoothed max-
relative entropy, which is that by regularizing the smoothed max-relative entropy
we obtain the ordinary quantum relative entropy:

lim
n→∞

Dε
max
(
ρ⊗n

∥∥σ⊗n)
n

= D(ρ‖σ) (4.1)

for all density operators ρ, σ ∈ D(X) and all ε ∈ (0, 1). For the sake of clarity, recall
that we define the smoothed max-relative entropy with respect to trace-distance
smoothing:

Dε
max(ρ‖σ) = inf

ξ∈Bε(ρ)
Dmax(ξ‖σ) (4.2)

where
Bε(ρ) =

{
ξ ∈ D(X) : 1

2‖ρ− ξ‖1 ≤ ε
}

. (4.3)

Bibliographic remarks

Lemma 4.4, which in some sense is the engine that drives the proof we will discuss,
is due to Bjelaković and Siegmund-Schultze (arXiv:quant-ph/0307170), who used
it to prove the so-called quantum Stein lemma, and through it obtained an alternative
proof of the monotonicity of quantum relative entropy.

The more direct route from Bjelaković and Siegmund-Schultze’s lemma to the
regularization (4.1) to be followed in this lecture appears in the following as-of-yet
unpublished manuscript:

Shitikanth Kashyap, Ashwin Nayak, and Michael Saks. Asymptotic equiparti-
tion for quantum relative entropy revisited. Manuscript, 2014.
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4.1 Strong typicality

The general notion of typicality is fundamentally important in information theory,
and there is a sense in which it goes hand-in-hand with the concept of entropy. We
will begin the lecture with a brief and directed summary of strong typicality, which
is a particular formulation of typicality that is convenient for the proof.

First let us introduce some notation. Supposing that Σ is an alphabet, for every
string a1 · · · an ∈ Σn and symbol a ∈ Σ, we write

N(a | a1 · · · an) =
∣∣{k ∈ {1, . . . , n} : ak = a}

∣∣, (4.4)

which is simply the number of times the symbol a occurs in the string a1 · · · an.
With respect to that notation, strong typicality is defined as follows.

Definition 4.1. Let Σ be an alphabet, let p ∈ P(Σ) be a probability vector, let n be
a positive integer, and let δ > 0 be a positive real number. A string a1 · · · an ∈ Σn is
δ-strongly typical with respect to p if∣∣∣∣N(a | a1 · · · an)

n
− p(a)

∣∣∣∣ ≤ p(a)δ (4.5)

for every a ∈ Σ. The set of all δ-strongly typical strings of length n with respect
to p is denoted Sn,δ(p).

What the definition expresses is that the proportion of each symbol in a strongly
typical string is approximately what one would expect if the individual symbols
were chosen independently at random according to the probability vector p. No-
tice that because it is the quantity p(a)δ, as opposed to δ, that appears on the right-
hand side of the inequality in the definition, we have that the error tolerance for the
frequency with which each symbol appears shrinks proportionately as the proba-
bility for that symbol to appear shrinks—and if p(a) = 0 for some a ∈ Σ, then a
strongly typical string cannot include the symbol a at all.

Next we will prove two basic facts concerning the notion of strong typicality.
The two facts are stated as the lemmas that follow.

Lemma 4.2. Let Σ be an alphabet, let p ∈ P(Σ) be a probability vector, let n be a positive
integer, and let δ > 0 be a positive real number. It is the case that

∑
a1···an∈Sn,δ(p)

p(a1) · · · p(an) ≥ 1− 2 ∑
a∈Σ

p(a)>0

exp
(
−2nδ2p(a)2). (4.6)

34



Lecture 4

Proof. Suppose first that a ∈ Σ is fixed, and consider the probability that a string
a1 · · · an ∈ Σn, where each symbol is selected independently at random according
to the probability vector p, satisfies∣∣∣∣N(a | a1 · · · an)

n
− p(a)

∣∣∣∣ > p(a)δ. (4.7)

To upper-bound this probability, one may define X1, . . . , Xn to be independent and
identically distributed random variables, taking value 1 with probability p(a) and
value 0 otherwise, so that the probability of the event (4.7) is equal to

Pr
(∣∣∣∣X1 + · · ·+ Xn

n
− p(a)

∣∣∣∣ > p(a)δ

)
. (4.8)

If it is the case that p(a) > 0, then Hoeffding’s inequality implies that

Pr
(∣∣∣∣X1 + · · ·+ Xn

n
− p(a)

∣∣∣∣ > p(a)δ

)
≤ 2 exp

(
−2nδ2p(a)2), (4.9)

while it is the case that

Pr
(∣∣∣∣X1 + · · ·+ Xn

n
− p(a)

∣∣∣∣ > p(a)δ

)
= 0 (4.10)

in case p(a) = 0. The lemma follows from the union bound.

Lemma 4.3. Let Σ be an alphabet, let p ∈ P(Σ) be a probability vector, let n be a positive
integer, let δ > 0 be a positive real number, let a1 · · · an ∈ Sn,δ(p) be a δ-strongly typical
string with respect to p, and let φ : Σ → [0, ∞) be a nonnegative real-valued function.
The following inequality is satisfied:∣∣∣∣∣φ(a1) + · · ·+ φ(an)

n
− ∑

a∈Σ
p(a)φ(a)

∣∣∣∣∣ ≤ δ ∑
a∈Σ

p(a)φ(a). (4.11)

Proof. The inequality (4.11) follows from the definition of strong typicality together
with the triangle inequality:∣∣∣∣∣φ(a1) + · · ·+ φ(an)

n
− ∑

a∈Σ
p(a)φ(a)

∣∣∣∣∣
=

∣∣∣∣∣∑a∈Σ

(
N(a | a1 · · · an)

n
− p(a)

)
φ(a)

∣∣∣∣∣
≤ ∑

a∈Σ

∣∣∣∣N(a | a1 · · · an)

n
− p(a)

∣∣∣∣ φ(a) ≤ δ ∑
a∈Σ

p(a)φ(a),

(4.12)

as required.
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4.2 Lemmas

Next we will prove two lemmas that are needed for the proof of the main theo-
rem to which this lecture is devoted. The first of these lemmas is the one due to
Bjelaković and Siegmund-Schultze mentioned at the start of the lecture.

Lemma 4.4. Let ρ, σ ∈ D(X) be density operators for which im(ρ) ⊆ im(σ) and let
δ > 0 be a positive real number. There exist positive real numbers K and µ such that, for
every positive integer n, there exists a projection operator Πn acting on X⊗n satisfying[
Πn, σ⊗n] = 0, 〈

Πn, ρ⊗n〉 ≥ 1− K exp(−µn), (4.13)

and
2(1+δ)n Tr(ρ log(σ))Πn ≤ Πnσ⊗nΠn ≤ 2(1−δ)n Tr(ρ log(σ))Πn. (4.14)

Proof. By considering a spectral decomposition of σ, one may select an alphabet Σ,
an orthonormal set {xa : a ∈ Σ} ⊂ X, and a probability vector q ∈ P(Σ) such that

σ = ∑
a∈Σ

q(a)xax∗a (4.15)

and q(a) > 0 for all a ∈ Σ. Define a new probability vector p ∈ P(Σ) as

p(a) = x∗a ρxa (4.16)

for every a ∈ Σ. The fact that p is indeed a probability vector follows from the
assumption that ρ is a density operator with im(ρ) ⊆ im(σ).

Real numbers K and µ satisfying the requirements of the lemma may now be
selected as follows:

K = 2|supp(p)|,
µ = 2δ2 min

{
p(a)2 : a ∈ Σ, p(a) > 0

}
.

(4.17)

Toward a verification that K and µ satisfying the requirements of the lemma, let

Πn = ∑
a1···an∈Sn,δ(p)

xa1 x∗a1
⊗ · · · ⊗ xan x∗an , (4.18)

where Sn,δ(p) denotes the set of δ-strongly typical sequences with respect to the
probability vector p, for every positive integer n. The condition

[
Πn, σ⊗n] = 0 is

immediate, while the bound〈
Πn, ρ⊗n〉 = ∑

a1···an∈Sn,δ(p)
p(a1) · · · p(an)

≥ 1− 2 ∑
a∈Σ

p(a)>0

exp
(
−2nδ2p(a)2) ≥ 1− K exp(−µn)

(4.19)
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follows directly from Lemma 4.2.
It remains to prove the inequalities in (4.14). As

Πnσ⊗nΠn = ∑
a1···an∈Sn,δ(p)

q(a1) · · · q(an)xa1 x∗a1
⊗ · · · ⊗ xan x∗an , (4.20)

these inequalities are equivalent to

− (1− δ)n Tr(ρ log(σ)) ≤ −
n

∑
k=1

log(q(ak)) ≤ −(1 + δ)n Tr(ρ log(σ)) (4.21)

for every a1 · · · an ∈ Sn,δ(p). By taking φ(a) = − log(q(a)) for every a ∈ Σ in
Lemma 4.3, so that

∑
a∈Σ

p(a)φ(a) = −Tr(ρ log(σ)), (4.22)

the inequalities (4.21) are obtained, which completes the proof.

The next lemma is just a technical fact concerning the inner-product of a prod-
uct of projection operators with a density operator.

Lemma 4.5. Let ρ ∈ D(X) be a density operator, let ε > 0 be a positive real number, and
let Π and ∆ be projection operators on X that satisfy 〈Π, ρ〉 ≥ 1− ε and 〈∆, ρ〉 ≥ 1− ε.
It is the case that

〈∆Π∆, ρ〉 ≥ 1− 6ε. (4.23)

Proof. Notice that the inequality in (4.23) is trivially satisfied when ε ≥ 1/6. It may
therefore be assumed that ε < 1/6 for the remainder of the proof.

Observe first that〈
∆Π∆, ρ

〉
= Tr

(
Π∆ρ∆Π

)
=
∥∥Π∆

√
ρ
∥∥2

2 ≥
∣∣〈√ρ, Π∆

√
ρ
〉∣∣2 = |〈∆Π, ρ〉|2, (4.24)

where the inequality is by the Cauchy–Schwarz inequality. Next, by the identity

1 = (1− ∆)(1−Π) + ∆ + Π− ∆Π, (4.25)

one sees that

〈∆Π, ρ〉 = 〈∆, ρ〉+ 〈Π, ρ〉 − 1 + 〈(1− ∆)(1−Π), ρ〉, (4.26)

and by the triangle inequality,∣∣〈∆Π, ρ
〉∣∣ = ∣∣〈∆, ρ〉+ 〈Π, ρ〉 − 1 + 〈(1− ∆)(1−Π), ρ〉

∣∣
≥ |〈∆, ρ〉+ 〈Π, ρ〉 − 1| −

∣∣〈(1− ∆)(1−Π), ρ〉
∣∣. (4.27)
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By the assumption that ε < 1/6, which implies that 1 − 2ε is nonnegative, one
immediately observes the inequality

|〈∆, ρ〉+ 〈Π, ρ〉 − 1| ≥ 1− 2ε. (4.28)

By the Cauchy–Schwarz inequality, we have∣∣〈(1− ∆)(1−Π), ρ〉
∣∣ = ∣∣〈(1−Π)

√
ρ, (1− ∆)

√
ρ
〉∣∣

≤
∥∥(1−Π)

√
ρ
∥∥

2

∥∥(1− ∆)
√

ρ
∥∥

2 =
√〈

1−Π, ρ
〉√〈

1− ∆, ρ
〉
≤ ε.

(4.29)

It follows that ∣∣〈∆Π, ρ〉
∣∣ ≥ 1− 3ε. (4.30)

Again using the assumption ε < 1/6, so that 1− 3ε is nonnegative, we see that〈
∆Π∆, ρ

〉
≥ (1− 3ε)2 ≥ 1− 6ε, (4.31)

as required.

Remark 4.6. If ∆ commutes with ρ, then the bound established by the previous
lemma can be improved to

〈∆Π∆, ρ〉 ≥ 1− 2ε. (4.32)

To see that this is so, note that

ρ− ∆ρ∆ = (1− ∆)ρ(1− ∆), (4.33)

and therefore

〈∆Π∆, ρ〉 = 〈Π, ρ〉+ 〈Π, ∆ρ∆− ρ〉 = 〈Π, ρ〉 − 〈Π, (1− ∆)ρ(1− ∆)〉. (4.34)

Because (1− ∆)ρ(1− ∆) is positive semidefinite and Π ≤ 1, it follows that

〈∆Π∆, ρ〉 ≥ 〈Π, ρ〉 − Tr
(
(1− ∆)ρ(1− ∆)

)
= 〈Π, ρ〉 − 〈1− ∆, ρ〉 ≥ 1− 2ε. (4.35)

Remark 4.7. The proof of the lemma above can be extended to the assumptions
〈Π, ρ〉 ≥ 1− ε and 〈∆, ρ〉 ≥ 1− δ to obtain

〈∆Π∆, ρ〉 ≥
(

1− ε− δ−
√

εδ
)2

. (4.36)

We’re also going to make use of Winter’s gentle measurement lemma, which is
a very useful and well-known fact.
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Lemma 4.8 (Winter’s gentle measurement lemma). Let X be a complex Euclidean
space, let ρ ∈ D(X) be a density operator, and let P ∈ Pos(X) be a positive semidefinite
operator satisfying P ≤ 1 and 〈P, ρ〉 > 0. This inequality is satisfied:

F

(
ρ,

√
Pρ
√

P
〈P, ρ〉

)
≥
√
〈P, ρ〉. (4.37)

Proof. Observe that for any two positive semidefinite operators Q and R, it is nec-
essarily the case that F(R, QRQ) = 〈R, Q〉. Indeed,√√

RQRQ
√

R =

√(√
RQ
√

R
)2

=
√

RQ
√

R, (4.38)

and therefore

F(R, QRQ) = Tr
(√√

RQRQ
√

R
)
= Tr

(√
RQ
√

R
)
= 〈R, Q〉. (4.39)

By this formula, along with the square root scaling of the fidelity function, one
finds that

F

(
ρ,

√
Pρ
√

P
〈P, ρ〉

)
=

1√
〈P, ρ〉

F
(

ρ,
√

Pρ
√

P
)
=

〈√
P, ρ
〉√

〈P, ρ〉
. (4.40)

Finally, under the assumption 0 ≤ P ≤ 1, it is the case that
√

P ≥ P, and
therefore

〈√
P, ρ
〉
≥ 〈P, ρ〉, from which the lemma follows.

Remark 4.9. We will actually only need the lemma for P being a projection opera-
tor, in which case

√
P = P, and so the lemma holds with equality in (4.37).

4.3 Main theorem

Now we’re ready for the main theorem and its proof. Here it is.

Theorem 4.10. Let ρ, σ ∈ D(X) be density operators. For every ε ∈ (0, 1), the following
equality holds.

lim
n→∞

Dε
max
(
ρ⊗n

∥∥σ⊗n)
n

= D(ρ‖σ). (4.41)

Proof. Let us first consider the case that im(ρ) 6⊆ im(σ). In this case the right-hand
side of (4.41) is infinite, and so we must prove the same for the left-hand side.
This follows from the fact that Dε

max(ρ
⊗n
∥∥σ⊗n) is infinite for all but finitely many

positive integers n. Indeed, let Λ be the projection onto im(σ), so that σ = ΛσΛ
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and 〈Λ, ρ〉 < 1. Now, for a given choice of n, one has that if ξn ∈ D(X⊗n) satisfies
im(ξn) ⊆ im(σ⊗n), then

F
(
ξn, ρ⊗n) = F

(
ξn, Λ⊗nρ⊗nΛ⊗n) ≤ √Tr

(
Λ⊗nρ⊗nΛ⊗n

)
= 〈Λ, ρ〉 n

2 , (4.42)

and therefore
1
2

∥∥ξn − ρ⊗n∥∥
1 ≥ 1− 〈Λ, ρ〉 n

2 (4.43)

by one of the Fuchs–van de Graaf inequalities. The right-hand side of this inequal-
ity must exceed ε for all but finitely many positive integers n, by the fact that
〈Λ, ρ〉 < 1. It follows that for all but finitely many positive integers n, there are
no elements of Bε(ρ⊗n) whose images are contained in im(σ⊗n), which implies for
any such n that Dε

max(ρ
⊗n‖σ⊗n) = ∞.

For the remainder of the proof it will be assumed that im(ρ) ⊆ im(σ). Let
δ > 0 be chosen arbitrarily, and for each positive integer n, let Πn be the projection
whose existence is guaranteed by Lemma 4.4 for ρ, σ, δ, and n, and also let ∆n be
the projection whose existence is guaranteed by Lemma 4.4, again for ρ, δ, and n,
but where σ is replaced by ρ. Thus, we have [Πn, σ⊗n] = 0 and [∆n, ρ⊗n] = 0, and
the following inequalities are satisfied:

2(1+δ)n Tr(ρ log(σ))Πn ≤ Πnσ⊗nΠn ≤ 2(1−δ)n Tr(ρ log(σ))Πn, (4.44)

2−(1+δ)n H(ρ)∆n ≤ ∆nρ⊗n∆n ≤ 2−(1−δ)n H(ρ)∆n, (4.45)

〈∆n, ρ⊗n〉 ≥ 1− K exp(−µn), (4.46)

〈Πn, ρ⊗n〉 ≥ 1− K exp(−µn), (4.47)

where K and µ are positive constants independent of n.
It will first be proved that

lim sup
n→∞

Dε
max
(
ρ⊗n

∥∥σ⊗n)
n

≤ D(ρ‖σ). (4.48)

The projection operator ∆n commutes with ρ⊗n, and therefore

〈∆nΠn∆n, ρ⊗n〉 ≥ 1− 2K exp(−µn) (4.49)

by Remark 4.6. It is therefore the case that 〈∆n, ρ⊗n〉, 〈Πn, ρ⊗n〉, and 〈∆nΠn∆n, ρ⊗n〉
are all positive for all but finitely many n, and we will restrict our attention to those
n for which these values are all positive.

Define a density operator

ξn =
Πn∆nρ⊗n∆nΠn

〈∆nΠn∆n, ρ⊗n〉 (4.50)
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for all values of n under consideration. We will begin by proving a bound on the
trace distance between ξn and ρ⊗n. To this end, observe that

1
2

∥∥ξn − ρ⊗n∥∥
1 ≤

1
2

∥∥ξn − τn
∥∥

1 +
1
2

∥∥τn − ρ⊗n∥∥
1 (4.51)

for

τn =
∆nρ⊗n∆n〈
∆n, ρ⊗n

〉 , (4.52)

and notice that
ξn =

ΠnτnΠn

〈Πn, τn〉
. (4.53)

By Winter’s gentle measurement lemma and one of the Fuchs–van de Graaf in-
equalities, we find that

1
2

∥∥ξn − τn
∥∥

1 =
1
2

∥∥∥∥ΠnτnΠn

〈Πn, τn〉
− τn

∥∥∥∥
1
≤
√

1− 〈Πn, τn〉, (4.54)

and because

〈Πn, τn〉 =
〈∆nΠn∆n, ρ⊗n〉
〈∆n, ρ⊗n〉 ≥ 〈∆nΠn∆n, ρ⊗n〉, (4.55)

we obtain

1
2

∥∥ξn − τn
∥∥

1 ≤
√

1− 〈∆nΠn∆n, ρ⊗n〉 ≤
√

2K exp(−µn). (4.56)

Along similar (although simpler) lines, we find that

1
2

∥∥τn − ρ⊗n∥∥
1 ≤

√
1− 〈∆n, ρ⊗n〉 ≤

√
K exp(−µn). (4.57)

These upper bounds are decreasing to 0 (exponentially quickly, as it happens), and
therefore

1
2

∥∥ξn − ρ⊗n∥∥
1 ≤ ε, (4.58)

or equivalently ξn ∈ Bε

(
ρ⊗n), implying

Dε
max
(
ρ⊗n∥∥σ⊗n) ≤ Dmax

(
ξn
∥∥σ⊗n), (4.59)

for all but finitely many n. Let us further restrict our attention to these values of n.
Next, we will use the inequalities (4.44) and (4.45) to obtain an upper-bound on

Dmax
(
ξn
∥∥σ⊗n). First, by (4.45), together with ∆n ≤ 1 and Π2

n = Πn, we find that

Πn∆nρ⊗n∆nΠn ≤ 2−(1−δ)n H(ρ)Πn∆nΠn ≤ 2−(1−δ)n H(ρ)Πn. (4.60)
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Second, by (4.44), together with the fact that [Πn, σ⊗n] = 0, we have

Πn ≤ 2−(1+δ)n Tr(ρ log(σ))Πnσ⊗nΠn ≤ 2−(1+δ)n Tr(ρ log(σ))σ⊗n. (4.61)

Combining (4.60) and (4.61), we obtain

Πn∆nρ⊗n∆nΠn ≤ 2n D(ρ‖σ)+δn(H(ρ)−Tr(ρ log(σ)))σ⊗n. (4.62)

Accounting for the normalization of ξn and making use of (4.49), we find that

Dmax
(
ξn
∥∥σ⊗n) ≤ n D(ρ‖σ) + δn(H(ρ)− Tr(ρ log(σ)))

− log
(
1− 2K exp(−µn)

)
.

(4.63)

At this point we may conclude that

lim sup
n→∞

Dε
max
(
ρ⊗n

∥∥σ⊗n)
n

≤ D(ρ‖σ) + δ(H(ρ)− Tr(ρ log(σ))), (4.64)

and as δ was an arbitrarily chosen positive real number, we obtain the required
inequality (4.48).

Now we will prove the reverse inequality

lim inf
n→∞

Dε
max
(
ρ⊗n

∥∥σ⊗n)
n

≥ D(ρ‖σ). (4.65)

Let δ > 0 again be chosen arbitrarily. For every positive integer n it is the case that〈
σ⊗n, Πn∆nΠn

〉
=
〈
∆n, Πnσ⊗nΠn

〉
≤ 2(1−δ)n Tr(ρ log(σ))〈∆n, Πn

〉
(4.66)

by (4.44), as well as〈
∆n, Πn

〉
≤ 2(1+δ)n H(ρ)

〈
∆nρ⊗n∆n, Πn

〉
≤ 2(1+δ)n H(ρ) (4.67)

by (4.45). It therefore follows that the operator

Zn = 2n D(ρ‖σ)−δn(H(ρ)−Tr(ρ log(σ)))Πn∆nΠn (4.68)

is positive semidefinite and satisfies 〈σ⊗n, Zn〉 ≤ 1. By an inspection of the dual
form of Optimization Problem 3.2, the conic program for the exponential of the
smoothed max-relative entropy, we conclude that

Dε
max
(
ρ⊗n∥∥σ⊗n) ≥ n D(ρ‖σ)− δn(H(ρ)− Tr(ρ log(σ)))

+ inf
ξn∈Bε(ρ⊗n)

log〈Πn∆nΠn, ξn〉. (4.69)
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For every ξn ∈ Bε(ρ⊗n) we have, by virtue of the fact that ρ⊗n − ξn is traceless and
0 ≤ Πn∆nΠn ≤ 1, that

〈
Πn∆nΠn, ρ⊗n − ξn

〉
≤ 1

2

∥∥ρ⊗n − ξn
∥∥

1 ≤ ε (4.70)

and therefore

〈Πn∆nΠn, ξn〉 = 〈Πn∆nΠn, ρ⊗n〉+ 〈Πn∆nΠn, ξn − ρ⊗n〉
≥ 1− 6K exp(−µn)− ε

(4.71)

by Lemma 4.5. Consequently,

Dε
max
(
ρ⊗n∥∥σ⊗n) ≥ n D(ρ‖σ)− δn(H(ρ)− Tr(ρ log(σ)))

+ log
(
1− 6K exp(−µn)− ε

)
.

(4.72)

Given the assumption ε ∈ (0, 1), one concludes that log
(
1 − 6K exp(−µn) − ε

)
converges to a constant value as n goes to infinity. It follows that

lim inf
n→∞

Dε
max
(
ρ⊗n

∥∥σ⊗n)
n

≥ D(ρ‖σ)− δ(H(ρ)− Tr(ρ log(σ))). (4.73)

Once again, as δ was an arbitrarily chosen positive real number, the required in-
equality (4.65) follows.

Remark 4.11. An alternative way to argue the closeness of ξn to ρ⊗n is to use a
different known equality concerning the fidelity function, which is that

F
(

AA∗, BB∗
)
=
∥∥A∗B

∥∥
1 (4.74)

for any choice of operators A, B ∈ L(X,Y). (This fact is closely connected with
Uhlmann’s theorem, and can be found as Lemma 3.21 in my book Theory of Quan-
tum Information.) In the present case, we obtain

F
(
Πn∆nρ⊗n∆nΠn, ρ⊗n) = ∥∥∥∥√ρ⊗n∆nΠn

√
ρ⊗n

∥∥∥∥
1

≥
∣∣∣∣Tr
(√

ρ⊗n∆nΠn

√
ρ⊗n

)∣∣∣∣ = 〈∆nΠn∆n, ρ⊗n〉, (4.75)

where the last equality makes use of [∆n, ρ⊗n] = 0. A suitable bound on the trace
distance between ξn and ρ⊗n is obtained through the Fuchs–van de Graaf inequal-
ities.
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And we will conclude with two corollaries.
It is not important that σ is a density operator in Theorem 4.10—it is true for

arbitrary positive semidefinite models. The only part of the proof that depends on
the scaling of σ occurs in the proof of Lemma 4.4, where q ∈ P(Σ) implies that
φ(a) = − log(q(a)) is nonnegative. Although it would not be difficult to modify
this portion of the proof slightly to handle arbitrary positive semidefinite models,
it is perhaps simpler to observe it as a fairly straightforward corollary of Theo-
rem 4.10.

Corollary 4.12. If ρ is a density operator and Q is any nonzero positive semidefinite
operator, we have

lim
n→∞

Dε
max
(
ρ⊗n

∥∥Q⊗n)
n

= D(ρ‖Q). (4.76)

Proof. Let σ = Q/ Tr(Q). Then

Dε
max
(
ρ⊗n∥∥Q⊗n) = Dε

max
(
ρ⊗n∥∥Tr(Q)nσ⊗n)

= Dε
max
(
ρ⊗n∥∥σ⊗n)− n log(Tr(Q))

so

lim
n→∞

Dε
max
(
ρ⊗n

∥∥Q⊗n)
n

= lim
n→∞

Dε
max
(
ρ⊗n

∥∥σ⊗n)
n

− log(Tr(Q))

= D(ρ‖σ)− log(Tr(Q))

= D(ρ‖Q),

as required.

The second and final corollary is quite spectacular. Of course it is well-known,
and we proved it in CS 766/QIC 820, but now we have a completely different
alternative proof.

Corollary 4.13 (Monotonicity of quantum relative entropy). Let ρ, σ ∈ D(X) be
density operators and let Φ ∈ C(X,Y) be a channel, for complex Euclidean spaces X

and Y. It is the case that D(Φ(ρ)‖Φ(σ)) ≤ D(ρ‖σ).

Proof. Observe first that the smoothed max-relative entropy is monotonic:

Dε
max(Φ(ρ)‖Φ(σ)) ≤ inf

ξ∈Bε(ρ)
Dmax(Φ(ξ)‖Φ(σ))

≤ inf
ξ∈Bε(ρ)

Dmax(ξ‖σ) = Dε
max(ρ‖σ)

(4.77)
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by the monotonicity of the max-relative entropy. Therefore,

D(Φ(ρ)‖Φ(σ)) = lim
n→∞

Dε
max
(
Φ(ρ)⊗n

∥∥Φ(σ)⊗n)
n

= lim
n→∞

Dε
max
(
Φ⊗n(ρ⊗n)

∥∥Φ⊗n(σ⊗n)
)

n

≤ lim
n→∞

Dε
max(ρ

⊗n
∥∥σ⊗n)

n
= D(ρ‖σ),

(4.78)

as required.
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