Assignment 1 solutions

1. This problem is not intended to reveal anything profound—it is just meant to give you some practice in working with vectors, operators, and such.

(a) Let \(\mathcal{X} \) and \(\mathcal{Y} \) be complex Euclidean spaces and let \(A \in L(\mathcal{Y}, \mathcal{X}) \) be any nonzero operator. Prove that there exists a complex Euclidean space \(\mathcal{Z} \) along with vectors \(u \in \mathcal{X} \otimes \mathcal{Z} \) and \(v \in \mathcal{Z} \otimes \mathcal{Y} \) such that

\[
A = (1_\mathcal{X} \otimes v^*) (u \otimes 1_\mathcal{Y}).
\]

What is the minimum possible dimension of \(\mathcal{Z} \) that is required to write a given \(A \) in this way? (Unless stated otherwise, your answers should always be supported by a proof or argument of some form—so in this case you should not only give an expression for the minimum dimension of \(\mathcal{Z} \), but also a proof showing that your expression is indeed the minimum possible dimension.)

(b) Let \(\mathcal{X} \) and \(\mathcal{Y} \) be complex Euclidean spaces and let \(\Phi \in CP(\mathcal{X}, \mathcal{Y}) \) be a completely positive map. Prove that there exists an operator \(B \in L(\mathcal{X} \otimes \mathcal{Z}, \mathcal{Y}) \), for some choice of a complex Euclidean space \(\mathcal{Z} \), such that

\[
\Phi(X) = B(X \otimes 1_Z)B^*
\]

for all \(X \in L(\mathcal{X}) \). Identify a condition on the operator \(B \) that is equivalent to \(\Phi \) preserving trace.

Solution. (a) Consider first a singular-value decomposition of \(A \):

\[
A = \sum_{k=1}^{r} s_k x_k y_k^*,
\]

where \(r = \text{rank}(A) \). Let \(\mathcal{Z} = \mathbb{C}^r \) and define vectors \(u \in \mathcal{X} \otimes \mathcal{Z} \) and \(v \in \mathcal{Z} \otimes \mathcal{Y} \) as follows:

\[
u = \sum_{k=1}^{r} s_k e_k \otimes y_k.
\]

It holds that

\[
(1_\mathcal{X} \otimes v^*) (u \otimes 1_\mathcal{Y}) = \sum_{j=1}^{r} \sum_{k=1}^{r} \sqrt{s_j} \sqrt{s_k} (1_\mathcal{X} \otimes e_j^* \otimes y_j^*)(x_k \otimes e_k \otimes 1_\mathcal{Y}) = \sum_{k=1}^{r} s_k x_k y_k^* = A,
\]

as required.

The minimum dimension of \(\mathcal{Z} \) that is required is \(\text{rank}(A) \). The vectors described above show that it is possible to write \(A \) in this form when \(\mathcal{Z} \) has dimension \(r = \text{rank}(A) \). To see that it is not possible to write \(A \) in this way for \(\mathcal{Z} \) having smaller dimension than \(\text{rank}(A) \), consider an arbitrary choice of a complex Euclidean space \(\mathcal{Z} = \mathbb{C}^\Sigma \). For any two vectors \(u \in \mathcal{X} \otimes \mathcal{Z} \) and \(v \in \mathcal{Z} \otimes \mathcal{Y} \), one may write

\[
u = \sum_{a \in \Sigma} e_a \otimes y_a
\]

and

\[
u = \sum_{a \in \Sigma} e_a \otimes y_a
\]
for some choice of (not necessarily orthogonal) vectors \(\{x_a : a \in \Sigma\} \subset \mathcal{X}\) and \(\{y_a : a \in \Sigma\} \subset \mathcal{Y}\). It holds that

\[
(1_{\mathcal{X}} \otimes \nu^*)(u \otimes 1_{\mathcal{Y}}) = \sum_{a,b \in \Sigma} (1_{\mathcal{X}} \otimes e_a^* \otimes y_a^*)(x_b \otimes e_b \otimes 1_{\mathcal{Y}}) = \sum_{a \in \Sigma} x_a y_a^*,
\]

and therefore, assuming \(A = (1_{\mathcal{X}} \otimes \nu^*)(u \otimes 1_{\mathcal{Y}})\), one has

\[
\text{rank}(A) = \text{rank}((1_{\mathcal{X}} \otimes \nu^*)(u \otimes 1_{\mathcal{Y}})) \leq |\Sigma| = \dim(\mathcal{Z}).
\]

(b) Because \(\Phi\) is a completely positive map, we know that there must exist an alphabet \(\Sigma\) and a collection of operators \(\{A_a : a \in \Sigma\} \subset \mathcal{L}(\mathcal{X}, \mathcal{Y})\) satisfying

\[
\sum_{a \in \Sigma} A_a X A_a^* = \Phi(X)
\]

for all \(X \in \mathcal{L}(\mathcal{X})\). Let \(\mathcal{Z} = \mathbb{C}^\Sigma\) and define \(B \in \mathcal{L}(\mathcal{X} \otimes \mathcal{Z}, \mathcal{Y})\) as

\[
B = \sum_{a \in \Sigma} A_a \otimes e_a^*.
\]

It holds that

\[
B(X \otimes 1_{\mathcal{Z}})B^* = \sum_{a,b \in \Sigma} (A_a \otimes e_a^*)(X \otimes 1_{\mathcal{Z}})(A_b^* \otimes e_b) = \sum_{a \in \Sigma} A_a X A_a^* = \Phi(X)
\]

for every \(X \in \mathcal{L}(\mathcal{X})\).

Under the assumption that \(\Phi(X) = B(X \otimes 1_{\mathcal{Z}})B^*\) for all \(X \in \mathcal{L}(\mathcal{X})\), a condition on \(B\) that is equivalent to \(\Phi\) preserving trace is

\[
\text{Tr}_\mathcal{Z}(B^*B) = 1_{\mathcal{X}}.
\]

One can verify that this is so by first observing that

\[
\text{Tr}(B(X \otimes 1_{\mathcal{Z}})B^*) = \text{Tr}(B^*B(X \otimes 1_{\mathcal{Z}})) = \text{Tr}(\text{Tr}_\mathcal{Z}(B^*B)X) = (\text{Tr}_\mathcal{Z}(B^*B), X),
\]

for every \(X \in \mathcal{L}(\mathcal{X})\). Therefore, the condition that \(\Phi\) preserves trace is equivalent to

\[
\langle 1_{\mathcal{X}}, X \rangle = \text{Tr}(X) = \text{Tr}(\Phi(X)) = (\text{Tr}_\mathcal{Z}(B^*B), X)
\]

for all \(X \in \mathcal{L}(\mathcal{X})\), which is equivalent to \(\text{Tr}_\mathcal{Z}(B^*B) = 1_{\mathcal{X}}\).

2. Let \(\Sigma\) be an alphabet, let \(\mathcal{X}\) be a complex Euclidean space, and let \(\phi : \text{Herm}(\mathcal{X}) \to \mathbb{R}^\Sigma\) be a linear function. Prove that these two statements are equivalent:

Statement 1. It holds that \(\phi(\rho) \in \mathcal{P}(\Sigma)\) for every density operator \(\rho \in \mathcal{D}(\mathcal{X})\).

Statement 2. There exists a measurement \(\mu : \Sigma \to \text{Pos}(\mathcal{X})\) such that

\[
(\phi(H))(a) = \langle \mu(a), H \rangle
\]

for every \(H \in \text{Herm}(\mathcal{X})\) and \(a \in \Sigma\).

A correct solution to this problem implies that the definition of how measurements work is simply a mathematical way of representing what measurements obviously need to be: linear functions that map quantum states to probability distributions of measurement outcomes.
Solution. Assume first that statement 1 holds.

For every linear function of the form $\psi : \text{Herm}(\mathcal{X}) \to \mathbb{R}$, there must exist a unique Hermitian operator $K \in \text{Herm}(\mathcal{X})$ such that

$$\psi(H) = \langle K, H \rangle$$

for all $H \in \text{Herm}(\mathcal{X})$. The existence of such an operator K is established by taking

$$K = \sum_{a,b \in \Gamma} \phi(H_{a,b}) H_{a,b}$$

assuming $\mathcal{X} = \mathbb{C}^\Gamma$ and taking $\{H_{a,b} : a, b \in \Gamma\}$ to be any orthonormal basis for $\text{Herm}(\mathcal{X})$ (such as the basis described in equation (1.103) in the book). Uniqueness is straightforward: if K_0 and K_1 both satisfy the required property, then

$$\langle K_0, K_0 - K_1 \rangle = \phi(K_0 - K_1) = \langle K_1, K_0 - K_1 \rangle,$$

so

$$\|K_0 - K_1\|_2^2 = \langle K_0 - K_1, K_0 - K_1 \rangle = 0,$$

and therefore $K_0 = K_1$.

For a given linear function $\phi : \text{Herm}(\mathcal{X}) \to \mathbb{R}^\Sigma$, there must therefore exist uniquely determined Hermitian operators $\{K_a : a \in \Sigma\} \subset \text{Herm}(\mathcal{X})$ such that

$$\phi(H)(a) = \langle K_a, H \rangle$$

for all $H \in \text{Herm}(\mathcal{X})$ and all $a \in \Sigma$. For each $a \in \Sigma$ this implies that $\langle K_a, \rho \rangle \geq 0$ for every $\rho \in \text{D}(\mathcal{X})$, and therefore $K_a \in \text{Pos}(\mathcal{X})$. Moreover

$$\left\langle \sum_{a \in \Sigma} K_a, \rho \right\rangle = 1$$

for every $\rho \in \text{D}(\mathcal{X})$, which implies

$$\sum_{a \in \Sigma} K_a = 1_{\mathcal{X}}.$$

Defining $\mu(a) = K_a$ for each $a \in \Sigma$ establishes that statement 2 holds.

The fact that statement 2 implies statement 1 is routine: for every $a \in \Sigma$ and every measurement operator $\mu(a)$, one has $\langle \mu(a), \rho \rangle \geq 0$, and moreover

$$\sum_{a \in \Sigma} \langle \mu(a), \rho \rangle = \langle 1_{\mathcal{X}}, \rho \rangle = 1,$$

implying that $\phi(\rho) \in \mathcal{P}(\Sigma)$ for every $\rho \in \text{D}(\mathcal{X})$.

3. Interesting structural properties of channels are sometimes reflected in a simple way by their Choi representations. This problem is concerned with one example along these lines.

Let \mathcal{X}, \mathcal{Y}, and \mathcal{Z} be complex Euclidean spaces, let $\Phi \in \mathcal{C}(\mathcal{X}, \mathcal{Y} \otimes \mathcal{Z})$ be a channel, and consider the following two statements.

\textit{Statement 1.} There exists a density operator $\rho \in \text{D}(\mathcal{Y})$ such that

$$\text{Tr}_\mathcal{Z}(J(\Phi)) = \rho \otimes 1_{\mathcal{X}}.$$

There exists a complex Euclidean space W, a density operator $\sigma \in D(Y \otimes W)$, and a channel $\Psi \in C(W \otimes \mathcal{X}, Z)$ so that

$$\Phi(X) = (1_{L(Y)} \otimes \Psi)(\sigma \otimes X)$$

for all $X \in L(\mathcal{X})$.

It may be helpful to think about a channel Φ satisfying statement 2 as being one that can be implemented as the following figure suggests:

```
  \sigma
  \downarrow
  W
  \downarrow
  \mathcal{X}
  \Psi
  \downarrow
  Z
```

Prove that statements 1 and 2 are equivalent.

Solution. Assume first that statement 1 holds. Choose W to be any complex Euclidean space with $\dim(W) \geq \text{rank}(\rho)$, and choose $u \in Y \otimes W$ to be any purification of ρ. (All we require of W is that it is large enough to admit a purification of ρ.)

Now consider the vector

$$u \otimes \text{vec}(1_X) \in Y \otimes W \otimes \mathcal{X} \otimes \mathcal{X}.$$

If we trace out the middle two tensor factors, we obtain

$$\text{Tr}_{W \otimes X}(uu^* \otimes \text{vec}(1_X) \text{vec}(1_X)^*) = \rho \otimes 1_X = \text{Tr}_Z(J(\Phi)).$$

By Proposition 2.29, there must therefore exist a channel $\Psi \in C(W \otimes \mathcal{X}, Z)$ such that

$$(1_{L(Y)} \otimes \Psi \otimes 1_{L(\mathcal{X})})(uu^* \otimes \text{vec}(1_X) \text{vec}(1_X)^*) = J(\Phi).$$

Let us now check that the channel Ψ satisfies the requirements of statement 2, assuming we take $\sigma = uu^*$. In the interest of clarity, let us define a new channel $\Xi \in C(\mathcal{X}, Y \otimes Z)$ as

$$\Xi(X) = (1_{L(Y)} \otimes \Psi)(uu^* \otimes X)$$

for every $X \in L(\mathcal{X})$, so that our goal is to prove that $\Xi = \Phi$. In fact, this task is essentially done already—for if we compute the Choi representation of Ξ we obtain

$$J(\Xi) = (\Xi \otimes 1_{L(\mathcal{X})})(\text{vec}(1_X) \text{vec}(1_X)^*)$$

$$= (1_{L(Y)} \otimes \Psi \otimes 1_{L(\mathcal{X})})(uu^* \otimes \text{vec}(1_X) \text{vec}(1_X)^*) = J(\Phi),$$

and because Choi representations uniquely determine maps we find that $\Xi = \Phi$. It has been proved that statement 1 implies statement 2.

The fact that statement 2 implies statement 1 is fairly straightforward. Let us assume that $\mathcal{X} = \mathbb{C}^\Sigma$, so that

$$J(\Phi) = \sum_{a,b \in \Sigma} (1_{L(Y)} \otimes \Psi)(\sigma \otimes E_{a,b}) \otimes E_{a,b}.$$
Tracing out Z yields
\[
\text{Tr}_Z(f(\Phi)) = \sum_{a,b \in \Sigma} \text{Tr}_{W \otimes X}(\sigma \otimes E_{a,b} \otimes E_{a,b}) = \sum_{a \in \Sigma} \text{Tr}_W(\sigma) \otimes E_{a,a} = \text{Tr}_W(\sigma) \otimes 1_X.
\]

Statement 1 therefore holds for $\rho = \text{Tr}_W(\sigma)$.

4. Let \mathcal{X} and \mathcal{Y} be complex Euclidean spaces, let Σ be an alphabet, and let $\eta : \Sigma \to \text{Pos}(\mathcal{X})$ be an ensemble of states. Suppose further that $u \in \mathcal{X} \otimes \mathcal{Y}$ is a vector such that
\[
\text{Tr}_\mathcal{Y}(uu^*) = \sum_{a \in \Sigma} \eta(a).
\]

Prove that there exists a measurement $\mu : \Sigma \to \text{Pos}(\mathcal{Y})$ for which it holds that
\[
\eta(a) = \text{Tr}_\mathcal{Y}(1_X \otimes \mu(a) uu^*)
\]
for all $a \in \Sigma$.

One interpretation of this problem is as follows. Suppose Alice holds X and Bob holds Y, and that the state of (X, Y) is pure. If Bob performs a measurement on Y and sends the outcome to Alice, the state of X (together with Bob’s measurement outcome) will be described by some ensemble η. The fact you are asked to prove implies that if Bob selects his measurement appropriately, he can cause the state of X to be described by any ensemble he chooses, so long as the original state purified the average state of that ensemble.

Solution. First, define $Z = C^\Sigma$, and let
\[
P = \sum_{a \in \Sigma} \eta(a) \otimes E_{a,a}.
\]

It holds that $P \in \text{Pos}(\mathcal{X} \otimes Z)$ and
\[
\text{Tr}_\mathcal{Y}(uu^*) = \sum_{a \in \Sigma} \eta(a) = \text{Tr}_Z(P).
\]

From Proposition 2.29 in the book, there must exist a channel $\Phi \in \mathcal{C}(\mathcal{Y}, Z)$ such that
\[
(1_L(\mathcal{X}) \otimes \Phi)(uu^*) = P.
\]

Now, we will use the channel Φ to define the measurement μ that the problem statement requires. Intuitively speaking, μ will correspond to the measurement on \mathcal{Y} that is obtained by first applying Φ and then measuring in the standard basis of Z. More succinctly, we define
\[
\mu(a) = \Phi^*(E_{a,a})
\]
for each $a \in \Sigma$. It holds that
\[
\text{Tr}_\mathcal{Y}(1_X \otimes \mu(a) uu^*) = \text{Tr}_\mathcal{Y}(1_X \otimes \Phi^*(E_{a,a}) uu^*) = \text{Tr}_Z(1_X \otimes E_{a,a})(1_L(\mathcal{X}) \otimes \Phi)(uu^*) = \text{Tr}_Z(1_X \otimes E_{a,a} P) = \eta(a)
\]
for each $a \in \Sigma$, as required.

Remark. The fact that this problem establishes is sometimes known as the Hughston–Josza–Wootters theorem.