Assignment 3
Due: Monday, November 11

1. Assume \(X, Y, \) and \(Z \) are registers in some arbitrary given state \(\rho \in D(\mathcal{X} \otimes \mathcal{Y} \otimes \mathcal{Z}) \). Prove that each of the following inequalities is true:

 (a) \(H(X|Z) - H(X,Y|Z) \leq H(Y|Z) + 2H(Z) \).

 (b) \(I(X,Y : Z) \leq I(Y : X,Z) + 2H(X) \).

 (c) \(I(X : Z) - I(Y : Z) \leq I(X,Y : Z) \).

2. Let \(X, Y, \) and \(Z \) be registers, let \(\Sigma \) be an alphabet, let \(\eta : \Sigma \rightarrow \text{Pos}(\mathcal{X}) \) be an ensemble of states of \(X \), and let \(\{\sigma_a : a \in \Sigma\} \subseteq D(\mathcal{Y} \otimes \mathcal{Z}) \) be an arbitrary collection of states of \((Y,Z) \). Prove that, with respect to the state

\[
\rho = \sum_{a \in \Sigma} \eta(a) \otimes \sigma_a \in D(\mathcal{X} \otimes \mathcal{Y} \otimes \mathcal{Z}),
\]

it is the case that

\[
I(X, Y : Z) \leq I(Y : X,Z) + \chi(\eta).
\]

Notice that, because \(\chi(\eta) \leq H(X) \), a correct solution to this problem demonstrates that the inequality in part (b) of problem 1 (which is, in fact, tight for some states) can be improved for states of the form described above. In words, these are simply states for which \(X \) and \((Y,Z) \) are not entangled.

3. Let \(\mathcal{X} \) be a complex Euclidean space of dimension \(n \) and let \(\Phi \in \mathcal{C}(\mathcal{X}) \) be a unital channel. Following our usual convention for singular-value decompositions, let \(s_1(X) \geq \cdots \geq s_n(X) \) denote the singular values of a given operator \(X \in \mathcal{L}(\mathcal{X}) \), ordered from largest to smallest, and taking \(s_k(X) = 0 \) when \(k > \text{rank}(X) \).

Prove that, for every operator \(X \in \mathcal{L}(\mathcal{X}) \), it holds that

\[
s_1(X) + \cdots + s_m(X) \geq s_1(\Phi(X)) + \cdots + s_m(\Phi(X))
\]

for every \(m \in \{1, \ldots, n\} \).

4. For every positive integer \(n \geq 2 \), define a unital channel \(\Phi_n \in \mathcal{C}(\mathcal{C}^n) \) as

\[
\Phi_n(X) = \frac{\text{Tr}(X)1_n - X^T}{n-1}
\]

for every \(X \in \mathcal{L}(\mathcal{C}^n) \), where \(1_n \) denotes the identity operator on \(\mathcal{C}^n \). Prove that \(\Phi_n \) is not mixed-unitary when \(n \) is odd.

Hint: This is proved in the book in Example 4.3 for the case that \(n = 3 \), but this proof will not extend to larger odd values of \(n \). Instead, for any fixed choice of \(n \geq 2 \), think about an arbitrary Kraus representation

\[
\Phi_n(X) = \sum_{a \in \Sigma} A_a X A_a^*
\]

of \(\Phi_n \). Try to identify a property that every Kraus operator \(A_a \) must have, and then prove that no nonzero scalar multiple of a unitary operator can have this property when \(n \) is odd.