CP Next Challenge: Simplicity of Use

Jean-François Puget
ILOG
Motivation

We monitor how our CP tools are used by our customers in industry

- Many customers achieve very good performance with CP
- But they find it difficult to learn, use and maintain
- CP academic research offers little help here

Math programming (MP) community seems more interested in usability

- SAT community as well
Overview

• Compare CP with MP
• CP is too complex for engineers in industry
 • How serious is this?
• Is CP academic research addressing the problem?
 • No, it even makes it worse!
• What can we do about it?
 • Interesting new research topics
• Conclusions
ILOG optimization products

Same R&D team (I am their boss)

- **Constraint Programming (CP) products**
 - ILOG Solver and specialized extensions
 - ILOG OPL Studio

- **Math Programming (MP) products**
 - ILOG CPLEX
 - ILOG OPL Studio

- It is “easy” to compare them and learn from their differences
MP CP comparison

Not that easy! Cultural difference

- **MP**
 - Programming
 - Planning
 - Solution
 - Solution
 - Feasible solution
 - Decision variables
 - X >=0 by default
 - No upper bound is OK
 - Almost integer is OK
 - Floating point computations

- **CP**
 - Programming
 - Computer programming
 - Solution
 - Optimal solution
 - Solution
 - Variables
 - X in [a, b]
 - a can be < 0
 - a,b must be finite
 - Integrality is strict
 - Integer computations

10/8/2004
MP CP comparison

Many common points

• A problem is described by
 • Variables
 • Constraints (linear for MP, general for CP)
 • An objective function

• Models look similar

• Tree search/ branch and bound for both
 • Inference at each node
 • Bound strengthening / Constraint propagation
 • LP relaxation / Global constraints
Many hybrid combinations

- Use LP in global constraints for CP
- Use MP on one part, CP on the other, in sequential order
- Use MP on one part, CP on another, concurrently
 - Dantzig Wolfe decomposition
 - MP on the master problem
 - CP for generating variables (columns)
- Linearize CP constraints
What precedes is not relevant!

An industry stand point

- **What matters is the usefulness of the technology**
 - Is CP (or MP) useful for my problem?
 - How can I assess that quickly?
 - Is a CP (or MP) code easy to tune, to maintain?
 - Is a CP (or MP) code robust?
 - Does performance depend too much on data?

- **When faced with these questions**
 - CP doesn’t provide good answers
 - MP seems much more appealing

- **CP performance is not the issue per se**
 - CP has numerous successes in industry
Example 1

- A big software company in SCM
 - They use ILOG Solver and ILOG Scheduler in their scheduling package
 - This is successful
 - Performance is great

- They will not launch new CP projects
 - CP is difficult to maintain
They want transfer maintenance to an India team trained 1 week on CP

- Indian people are smart and cheap

First question from India:

- Why do you write in your code $\text{IlcOr}(x==a, x!=a)$ since this is a tautology?

- This is a non deterministic choice point…
Example 2: from another customer

True story

• What solution does the system outputs when there is no solution?
 • None
 • I want a solution!
 • Nope
 • Explain me why there is no solution!
Example 3: graceful graph

Graph coloring problem

- m vertices and n edges. Color vertices and edges with numbers from 0 to n
 - Colors of the vertices must be all different
 - all different \((x_1, x_2, \ldots, x_m)\)
 - Other constraints on edges
 - Color of edge \((i, j)\) is \(\text{abs}(x_i - x_j)\)
 - Colors of edges must be all different
Example 3

Tighten the representation

- All different \((\text{abs}(x_i - x_j))\) for all edges \((i,j)\)
- \(x_i\) and \(x_j\) are different, therefore
 \(\text{abs}(x_i - x_j) > 0\)
- Stating this makes the all different constraint tight
 - Much better propagation of the global constraint
 - Running times improve a lot
- This is straightforward, isn’t it?
Example 4: coin design problem

From [Wallace 03]

- Select coin values so that any change can be given with a minimum amount of coins
- Mark said that a CP solution is easy to produce!

Let’s see if you’re as clever as Mark…
range coin 1..6;
range change 1..100;
var int value[coin] in 1..100;
var int num[coin] in 1..100;
var int sel[change, coin] in 0..100;
minimize sum(i in coin) num[i] subject to {
 forall(i in coin, s in change)
 sel[s,i] <= num[i];
 forall(s in change)
 sum(i in coin) value[i]*sel[s,i] = s;
};

It runs forever!
To make it work

Write search!

search{

 generate (value);

 generate (num);

 forall (s in change) generate (sel[s]);
}

Straightforward isn't it?

It runs forever!
To make it work (continued)

The problem has symmetries

\[
\forall (i \in \text{coin}: i \neq 6) \{ \\
\quad \text{value}[i] \times \text{num}[i] < \text{value}[i+1] ; \\
\}
\]

It runs in .45 seconds on this laptop!

See, CP is really good on this problem!
MP for dummies (engineers)

Modeling is what matters

1. Model your problem with
 - Decision variables (integer and continuous)
 - Linear constraints
 - Linear objective

2. Run

It may output solutions without any tuning
MP for dummies (engineers)

Modeling can be tricky

- It may run forever
- In such case, change the model
 - Tighten it
 - Use Dantzig Wolfe decomposition
- This is sufficient for the vast majority of MP applications
 - There is no need to understand MP algorithms
- Difficult problems are still difficult
 - For these, one can use advanced techniques such as branch and price, specialized cut generation, etc.
 - This is not for dummies.
Is modeling what matters?

1. Model your problem with
 • Decision variables (integer or continuous)
 • Constraints
 • Some objective if you really insist

2. Run

It runs forever!
Modeling can be tricky

- **Your model is not right**
 - **Use that fancy global constraint**
 - Yes, I know it is logically equivalent to the constraints you already stated
 - **Why didn’t you wrote a specialized propagator for you problem?**
 - Why didn’t you write a specialized CP language?
 - **You should use a dual model and channeling constraints**
 - Which dual model?
 - Try any you can think of!

- **These advices assume the user understands what constraint propagation can do and what it can’t do**
CP for dummies

Modeling can be tricky, the rest too!

• You’re not using the software as documented!
 • You need to write a search code
 • Non deterministic
 • Recursive
 • Side effect free
 • Exactly the opposite of what you’re used to code
 • Deterministic
 • Iterative
 • With side effects
• This advice assumes the user is a clever computer scientist
CP for dummies

Modeling can be tricky, the rest too!

- **Your problem has symmetries!**
 - State generators of the symmetry group then call GAP-XXX symmetry breaking constraint technique
 - State lex constraints
 - Beware, they must use a compatible ordering

- **Your objective function does not propagate!**
 - Replace sum by max
 - It does not fit your business needs? Change your business!
 - Change the search strategy so that good solutions are generated first
 - I can’t tell you how to
• Use dominance constraints (or conditional symmetry breaking)

• Use a hybrid approach with one of the following:
 • LP solver
 • Local search method
 • Both

• Try
 • Russian doll search,
 • LDS (ouch, this is patented)
 • Large Neighborhood Search

• …
In order to be able to use CP, one must master modeling
- Same for MP.
- There are many more possibilities with CP
 - Too many of them

One must also master
- Search
- Constraint propagation

MP is useable even if you do not understand the internal algorithms
CP is designed for clever users
 - Academics
 - Authors of CP systems

Clever users that master all the complexity can achieve very good results
 - Our consultants are great
 - Academics are great

Beginners cannot
 - However, they can achieve something with MP (CPLEX).
MP at work

- Modeling is what matters
- Modeling can be done independently from solvers
 - Several modeling languages: AMPL, GAMS, OPL, MOSEL, MPL, AIMMS
 - A standard file format: MPS
- This is good because business users not tied to a particular vendor
- Common set of benchmarks
MP research

- Oriented towards algorithms
 - Input: an MPS file
 - Output: a solution + duality information (gap, reduced cost for LP)
- Improvements do not require new modeling features
 - CPLEX speedup is 1,000,000 in 10 years
 - 1,000 comes from hardware
 - 1,000 comes from software
CP research

- CP is oriented towards toolkits
 - One has to combine various pieces when trying to solve a problem
 - See the famous CP for dummies series!
- CP improvements are packaged into new modeling or search features
 - Global constraints
 - Search abstractions
 - Symmetry breaking techniques
Example: symmetry breaking

Different approaches for similar issue

- **In MP (Margot)**
 - Use graph automorphism software (NAUTY) to automatically compute the symmetries of the problem

- **In SAT (Aloul et al)**
 - Use graph automorphism software (SAUCY) to automatically compute the symmetries of the problem

- **In CP**
 - Symmetries are assumed to be given as input
 - *(Mc Donald 03)(Kelsey et al 03)*: Use new modeling constructs to express symmetries!
CP academic research is wrong

From an industry standpoint

- The more successful CP research, the richer CP becomes
 - Selecting the right set of CP constructs for a given problem is becoming harder and harder
 - This makes the life of engineers worse and worse!
 - Granted, it also expands the set of problems solvable with CP. This is not relevant for engineers.

- The more successful CP academic research is, the less usable CP is!
What can we do?

• Fire academics?
 • No, see later why!

• Let’s not bother with engineers?
 • No, because industrial successes motivates funding agencies

• Learn from MP community
 • Yes!
 • Note that we can learn from SAT community as well
Learn from MP

Modeling is what matters most

- Standard for expressing CP models
 - Standard file format
- Existing CP books are about
 - CP algorithms
 - Propagation
 - Search
 - CP language design
- They are useful for CP system design
 - Not for using a CP system to solve a given problem
- No book on modeling per se
 - MP has some books [Williams]
Learn from MP

Think algorithms

- Create executables
 - Input is a problem, output is a solution
 - Running time is what matters!
 - Not node count, nor number of constraints checks
- Set up challenges at CP conferences
 - Entries are executables that takes as input problem instances, and try to solve them
 - Similar challenges exits in combinatorial optimization (DIMACS), data mining (KDD), model checking, etc.
Learn from MP

Think about optimization

• CP is not geared towards optimization
 • Almost no cost aware global constraints
 • Search goals do not use the objective function
 • I am not sure preferences and soft constraints are the right answer

• CP conference is never co located with an OR conference...
 • CPAIOR conference is a better place for optimization

• Add optimization problems to CSPLIB
Learn from MP

- Improve “out of the box” performance
- Move away from DFS
 - CPLEX is DFS most of the time, but not always
- Randomization
 - Random restarts
 - Randomize variable and value selection

Search code should come for free
Learn from MP

Search code should come for free

- Learn during search
 - No goods, symmetry breaking
 - Learn which decisions have an impact on search tree size [Refalo 04]

- Develop generic combination of local search and propagation
 - [Perron 04]

- It does not matter if these techniques are not as good as ad hoc CP codes!
Learn from MP

Reformulate before search

• Called “presolve” in MP

• For instance
 • From $X \neq Y$, $Y \neq Z$, $Z \neq X$ add all_different(X,Y,Z)

• The point is that CP improvements should not require model reformulation by users
 • We can’t say that CP is 1,000,000 faster than 10 years ago
 • Although this is probably true

• The speedup obtained with reformulation should not be offset by the time needed by presolve!
 • Running time is what matters!
Learn from MP

Explanations

• CPLEX provides for sensitivity analysis and explanations
• Explanations are important when the problem is over constrained
Conclusion

- CP can solve complex problems, with good performance
- BUT, CP is difficult to learn use and maintain for engineers
 - Not because they are dumb
- CP academic research is making this worse every year
- MP provides good out of the box performance
 - SAT too
What academics could do

Some of this is already happening

- CP academic research should look at new topics
 - Standard file formats / modeling languages
 - Search
 - Explanations
 - Optimization
 - Modeling practice, Books
 - Presolve
 - Challenges

- Running time is what matters
 - Not node count
If we (CP community) don’t do this...

• CP will stay ...
 • ... as an academic research topic
 • ... embedded in industry packages

• Generic CP systems will disappear
 • Not ILOG

• Funding will disappear

• Academics will disappear