Machine Learning of Bayesian Networks

Peter van Beek University of Waterloo

Collaborators

- Hella-Franziska Hoffmann, PhD student
- Colin Lee, NSERC USRA
- Andrew Li, NSERC USRA
- Alister Liao, PhD student
- Charupriya Sharma, PhD student

Outline

- Introduction
 - Machine learning
 - Bayesian networks
- Machine learning a Bayesian network
 - exact learning algorithms
 - approximate learning algorithms
- Extensions
 - generate all of the best networks
 - incorporate expert domain knowledge
- Conclusions

Outline

- Introduction
 - Machine learning
 - Bayesian networks
- Machine learning a Bayesian network
 - exact learning algorithms
 - approximate learning algorithms
- Extensions
 - generate all of the best networks
 - incorporate expert domain knowledge
- Conclusions

Machine learning: Supervised learning

• Training data \mathcal{D} , with N examples (instances):

Sex	Exercise	Age	Diastolic BP	 Diabetes
male	no	middle-aged	high	 yes
female	yes	elderly	normal	 no

- Supervised learning: learn mapping from inputs **x** to outputs *y*, given a labeled set of input-output pairs $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}, i = 1, ..., N$
 - prediction
 - *here*: probabilistic models of the form P(y | x)
 - P(Diabetes = yes | Exercise = yes, Age = young)
 - P(Diabetes = no | Exercise = yes, Age = young)

Machine learning: Unsupervised learning

• Training data \mathcal{D} , with N examples (instances):

Sex	Exercise	Age	Diastolic BP	 Diabetes
male	no	middle-aged	high	 yes
female	yes	elderly	normal	 no

- Unsupervised learning: learn hidden structure from unlabeled data $\mathcal{D} = \{(\mathbf{x}_i)\}, i = 1, ..., N$
 - knowledge discovery
 - density estimation (estimate underlying probability density function)
 - here: probabilistic models of the form P(x)
 - answer any probabilistic query; e.g., P(Exercise = yes | Diastolic BP = high)
 - representations that are useful for $P(\mathbf{x})$ tend to be useful when learning $P(y | \mathbf{x})$

Supervised vs unsupervised learning

- Supervised: Probabilistic models of the form P(y | x)
 - discriminative models
 - model dependence of unobserved target variable y on observed variables x
 - performance measure: predictive accuracy, cross-validation
- Unsupervised: Probabilistic models of the form P(x)
 - generative models
 - model probability distribution over all variables
 - performance measure: "fit" to the data

Bayesian networks

- A Bayesian network is a directed acyclic graph (DAG) where:
 - nodes are variables

- directed arcs connect pairs of nodes, indicating direct influence, high correlation
- each node has a conditional probability table specifying the effects parents have on the node

Example: Medical diagnosis of diabetes

Real-world examples

- Conflict analysis for groundwater protection (Giordano et al., 2013)
 - Bayesian network for farmers' behavior with regard to groundwater management
 - Analyze impact of policy on behavior and degree of conflict
- Safety risk assessment for construction projects (Leu & Chang, 2013)
 - Bayesian networks for four primary accident types
 - Site safety management and analyze causes of accidents
- Climate change adaption policies (Catenacci and Giupponi, 2009)
 - Bayesian network for ecological modelling, natural resource management, climate change policy
 - Analyze impact of climate change policies

Semantics of Bayesian networks (I)

• Training data \mathcal{D} , with N examples (instances):

Sex	Exercise	Age	Diastolic BP	 Diabetes
male	no	middle-aged	high	 yes
female	yes	elderly	normal	 no

- Representation of joint probability distribution
 - Atomic event: assignment of a value to each variable in the model
 - Joint probability distribution: assignment of a probability to each possible atomic event
 - Bayesian network is a succinct representation of the joint probability distribution

 $P(x_1, ..., x_n) = \prod P(x_i | Parents(x_i))$

• Can answer any and all probabilistic queries

Semantics of Bayesian networks (II)

- Encoding of conditional independence assumptions
 - Conditional independence

x is conditionally independent of y given z if P(x | y, z) = P(x | z)

- "Missing" arcs represent conditional independence assumptions
 - E.g., P(Glucose | Age, Diabetes) = P(Glucose | Diabetes)

Advantages of Bayesian networks

- Declarative representation
 - separation of knowledge and reasoning
 - principled representation of uncertainty
- Interpretable
 - clear semantics, facilitate understanding a domain
 - explanation
- Learnable from data
 - can combine learning from data with prior expert knowledge
- Easily combinable with decision analytic tools
 - decision networks, value of information, utility theory

Outline

- Introduction
 - Machine learning
 - Bayesian networks

Machine learning a Bayesian network

- exact learning algorithms
- approximate learning algorithms
- Extensions
 - generate all of the best networks
 - incorporate expert domain knowledge
- Conclusions

Structure learning from data: *measure fit to data*

• Training data \mathcal{D} , with N examples (instances):

Sex	Exercise	Age	Diastolic BP	 Diabetes
male	no	middle-aged	high	 yes
female	yes	elderly	normal	 no

- First attempt: Maximize probability of observing data, given model G:
 - P(*D* | *G*)
 - overfitting: complete network
- Scoring function: Add penalty term for complexity of model
 - Score(G) = likelihood + (penalty for complexity)
 - e.g., $BIC(G) = -\log_2 P(\mathcal{D} \mid G) + \frac{1}{2} (\log_2 N) \cdot ||G||$
 - as N grows, more emphasis given to fit to data

Structure learning from data: decomposability

• Problem: Find a directed acyclic graph (DAG) G which minimizes:

Score(G)

• Decomposability:

 $Score(G) = \sum_{i=1}^{n} Score(Parents(x_i))$

 Rephrased problem: Choose parent set for each variable so that Score(G) is minimized and resulting graph is acyclic

Structure learning from data: score-and-search approach

1. Training data \mathcal{D} , with N examples (instances):

Sex	Exercise	Age	Diastolic BP	 Diabetes
male	no	middle-aged	high	 yes
female	yes	elderly	normal	 no

2. Scoring function (BIC/MDL, BDeu) gives possible parent sets:

- 3. Combinatorial optimization problem:
 - find a directed acyclic graph (DAG) over the variables that minimizes the total score

Outline

- Introduction
 - Machine learning
 - Bayesian networks
- Machine learning a Bayesian network
 - exact learning algorithms
 - approximate learning algorithms
- Extensions
 - generate all of the best networks
 - incorporate expert domain knowledge
- Conclusions

Exact learning: Global search algorithms

Dynamic programming	Koivisto & Sood, 2004
	Silander & Myllymäki, 2006
	Malone, Yuan & Hansen, 2011
Integer linear programming	Jaakkola et al., 2010
	Bartlett & Cussens, 2013, 2017 (GOBNILP)
A* search	Yuan & Malone, 2013
	Fan, Malone & Yuan, 2014
	Fan & Yuan, 2015
Breadth-first branch-and-bound search	Suzuki, 1996
	Campos & Ji, 2011
	Fan, Malone & Yuan, 2014, 2015
Depth-first branch-and-bound search	Tian, 2000
	Malone & Yuan, 2014
	van Beek & Hoffman, 2015 (CPBayes)

Constraint programming

- A constraint model is defined by:
 - a set of variables $\{x_1, \ldots, x_n\}$
 - a set of values for each variable $dom(x_1), \ldots, dom(x_n)$
 - a set of constraints $\{C_1, \ldots, C_m\}$
- A solution to a constraint model is a complete assignment to all the variables that satisfies the constraints

Global constraints

- A global constraint is a constraint that can be specified over an arbitrary number of variables
- Advantages:
 - captures common constraint patterns
 - efficient, special purpose constraint propagation algorithms can be designed

Example global constraint: alldifferent

- Consists of:
 - set of variables {*x*₁, ..., *x*_n}
- Satisfied iff:
 - each of the variables is assigned a different value
- Constraint propagation:
 - suppose all different (x_1, x_2, x_3) where:
 - dom(x₁) = {■, c, ■, e}
 - $dom(x_2) = \{b, d\}$
 - $dom(x_3) = \{b, d\}$

Bayesian network structure learning: Constraint model (I)

Notation:

V	set of variables
n	number of variables in data set
cost(v)	cost (score) of variable v
dom(v)	domain of variable v

- Vertex (possible parent set) variables: v₁, ..., v_n
 - $dom(v_i) \subseteq 2^V$ consists of possible parent sets for v_i
 - assignment $v_i = p$ denotes vertex v_i has parents p in the graph
 - global constraint: $acyclic(v_1, ..., v_n)$

satisfied iff the graph designated by the parent sets is acyclic

Bayesian network structure learning: Constraint model (II)

- Ordering (permutation) variables: $o_1, ..., o_n$
 - $dom(o_i) = \{1, ..., n\}$
 - assignment $o_i = j$ denotes vertex v_j is in position *i* in the total ordering
 - global constraint: alldifferent(o₁, ..., o_n)
 - given a permutation, it is easy to determine the minimum cost DAG
- Depth auxiliary variables: $d_1, ..., d_n$
 - $dom(d_i) = \{0, ..., n-1\}$
 - assignment d_i = k denotes that depth of vertex variable v_j that occurs at position i in the ordering is k
- Channeling constraints connect the three types of variables

Bayesian network structure learning: Improving the constraint model

- Add constraints to increase constraint propagation (e.g., Smith 2006)
 - symmetry-breaking constraints: preserve one among a set of symmetric solutions
 - *dominance constraints*: preserve an optimal solution

Example: Symmetry-breaking constraints

- I-equivalent networks:
 - two DAGs are said to be I-equivalent if they encode the same set of conditional independence assumptions
- Chickering (1995, 2002) provides a local characterization:
 - sequence of "covered" edges that can be reversed
- Example:

Example: Dominance constraints

- Teyssier and Koller (2005) present a cost-based pruning rule
 - only applicable before search begins
 - routinely used in score-and-search approaches

- We generalize the pruning rule
 - applicable during search
 - takes into account ordering information induced by the partial solution so far

Constraint-based search variant (CPBayes)

- Constraint-based depth-first branch-and-bound search
 - branching over ordering (permutation) variables o_1, \ldots, o_n
 - cost function $z = cost(v_1) + ... + cost(v_n)$
 - lower bound based on Fan and Yuan (2015) using pattern databases
 - initial upper bound based on Lee and van Beek (2017) using local search

Outline

- Introduction
 - Machine learning
 - Bayesian networks

Machine learning a Bayesian network

- exact learning algorithms
- approximate learning algorithms
- Extensions
 - generate all of the best networks
 - incorporate expert domain knowledge
- Conclusions

Approximate learning: Local search algorithms

Genetic algorithm	Larrañaga et al., 1996		
Greedy search	Chickering et al., 1997		
Tabu search	Teyssier & Koller, 2005		
Ant colony optimization	De Campos et al., 2002		
Memetic search	Lee and van Beek, 2017		
Space of network structures	Cooper and Herskovits, 1992		
	Chickering et al., 1997		
Space of equivalent network structures	Chickering, 2002		
Space of variable orderings,	Larrañaga et al., 1996		
permutations	Teyssier & Koller, 2005 (OBS)		
	Scanagatta et al., 2015 (ASOBS)		
	Lee and van Beek, 2017 (MINOBS)		

Permutation-based local search

- Local search over the space of permutations of vertices
 - best score for a permutation is easily found
 - find permutation that gives best score overall
- Example: Ordering O = x₁, x₂, x₃

Candidate parent sets:

$x_1: 4, \{x_2, x_3\}$	12, {}
x ₂ : 5, {x ₁ }	10, {}
x_3 : 3, { x_1 , x_2 }	4, {}

Optimal parent set for x ₁ : {}	Score:	12
Optimal parent set for x_2 : { x_1 }	Score:	5
Optimal parent set for $x_3 : \{x_1, x_2\}$	Score:	3

Score of network (Score(O)): 12 + 5 + 3 = 20

Greedy search over orderings

- 1 $O \leftarrow randomOrdering();$
- 2 $curScore \leftarrow sc(O);$
- **3** while neighbours(O) contains an ordering which improves curScore do
- 4 | $O \leftarrow selectImprovingNeighbour(O);$
- 5 $\lfloor curScore \leftarrow sc(O);$
- 6 return O
- Basic local search algorithm
- Output is a local minima in the search space
- Need to design functions neighbours(O), selectImprovingNeighbour(O)

Neighborhoods

Consider a permutation representation

<1, 2, 3, 4, 5, 6, 7, 8>

What could be its neighbors?

Transpose:	swap two adjacent e.g., <1, 2, <u>4</u> , <u>3</u> , 5, 6, 7, 8> is a neighbor	O(n)
Swap:	swap two (not necessarily adjacent) e.g., <1, <u>6</u> , 3, 4, 5, <u>2</u> , 7, 8> is a neighbor	$O(n^2)$
Insert:	move e.g., <1, <u>5,</u> 2, 3, 4, 6, 7, 8> is a neighbor	$O(n^2)$
Block insert:	move a subsequence of queens e.g., <1, <u>4</u> , <u>5</u> , 2, 3, 6, 7, 8> is a neighbor	$O(n^3)$

Memetic search variant (MINOBS)

- Population-based approach with local improvement procedures
- At start of algorithm, create a population of locally optimal orderings
- For each iteration:
 - Add new local optima to the population by crossing/perturbing members of the population and applying local search
 - Prune members of the population so that it returns to the original size
- Parameters tuned from small training set using ParamILS

Experimental evaluation

- Algorithms evaluated in our study:
 - GOBNILP, version 1.6.2 (Bartlett and Cussens 2013; Bartlett et al., 2017)
 - global search, based on integer linear programming
 - CPBayes, version 1.2 (van Beek and Hoffman, 2015)
 - global search, based on constraint programming
 - ASOBS, version of December 2016 (Scanagatta et al., 2015)
 - local search, based on space of variable orderings, swap neighborhood, and improved search of neighborhood
 - MINOBS, version 0.2 (Lee and van Beek, 2017)
 - local search, based on space of variable orderings, insertion neighborhood, and memetic or population based approach
 - report median of 10 runs with different random seeds

Experimental setup

• Instances:

size	variables	scoring functions	remarks	
small	<i>n</i> ≤ 20	BIC BDeu BIC	 data sets obtained from J. Cussens, B. Malone, UCI ML Repository 	
medium	20 < <i>n</i> ≤ 60			 local scores computed from data sets using code from B. Malone larger BDeu instances have indegree
			restricted to be between 6 and 8data sets and local scores obtained from	
large	60 < <i>n</i> ≤ 100			Bayesian Network Learning and Inference Package (BLIP) by M.
very large	100 < <i>n</i> ≤ 1000		 Scanagatta maximum indegree of parents sets restricted to be 6 	
massive	<i>n</i> > 1000			

• Notation:

n	number of variables in data set
Ν	number of instances in data set
d	total number of possible parent sets for variables
	indicates method did not report any solution within given time bound
opt	indicates method found the known optimal solution within given time bound
benchmark*	indicates optimal value for benchmark is not known; in such cases percentage from optimal is calculated using best value found within 24 hours of CPU time

Percentage from optimal, BIC scoring function, small networks ($n \le 20$ variables)

				1 minute			5	minutes	6	10 minutes			
benchmark	n	Ν	d	GO	СР	MI	GO	CP	MI	GO	CP	MI	
nltcs	16	3,236	7,933	0.2%	opt	opt	opt	opt	opt	opt	opt	opt	
msnbc	17	58,265	47,229	—	opt	opt	0.4%	opt	opt	0.0%	opt	opt	
letter	17	20,000	4,443	opt	opt	opt	opt	opt	opt	opt	opt	opt	
voting	17	435	1,848	opt	opt	opt	opt	opt	opt	opt	opt	opt	
Z00	17	101	554	opt	opt	opt	opt	opt	opt	opt	opt	opt	
tumour	18	339	219	opt	opt	opt	opt	opt	opt	opt	opt	opt	
lympho	19	148	143	opt	opt	opt	opt	opt	opt	opt	opt	opt	
vehicle	19	846	763	opt	opt	opt	opt	opt	opt	opt	opt	opt	
hepatitis	20	155	266	opt	opt	opt	opt	opt	opt	opt	opt	opt	
segment	20	2,310	1,053	opt	opt	opt	opt	opt	opt	opt	opt	opt	

Percentage from optimal, BDeu scoring function, small networks ($n \le 20$ variables)

				1 minute			5	minutes	6	10 minutes		
benchmark	n	Ν	d	GO	CP	MI	GO	CP	MI	GO	CP	MI
nltcs	16	3,236	8,091	0.0%	opt	opt	0.0%	opt	opt	opt	opt	opt
msnbc	17	58,265	50,921	—	opt	opt	0.2%	opt	opt	0.1%	opt	opt
letter	17	20,000	18,841	1.3%	opt	opt	0.1%	opt	opt	0.0%	opt	opt
voting	17	435	1,940	opt	opt	opt	opt	opt	opt	opt	opt	opt
Z00	17	101	2,855	1.7%	opt	opt	opt	opt	opt	opt	opt	opt
tumour	18	339	274	opt	opt	opt	opt	opt	opt	opt	opt	opt
lympho	19	148	345	opt	opt	opt	opt	opt	opt	opt	opt	opt
vehicle	19	846	3,121	opt	opt	opt	opt	opt	opt	opt	opt	opt
hepatitis	20	155	501	opt	opt	opt	opt	opt	opt	opt	opt	opt
segment	20	2,310	6,491	0.3%	opt	opt	0.3%	opt	opt	0.0%	opt	opt

Discussion of results for BIC and BDeu scoring functions, small networks ($n \le 20$ variables)

- CPBayes and MINOBS are able to consistently find optimal solutions within a 1 minute time bound, whereas GOBNILP sometimes has not yet found an optimal solution with a 10 minute time bound
- CPBayes and GOBNILP, being global search methods, may terminate earlier than time bound, whereas MINOBS and ASOBS, being local search methods, terminate only when a time bound is reached
- The parameter *d* is a relatively good predictor for instances that GOBNILP finds difficult; it strongly correlates with size of integer programming model

Percentage from optimal, BIC scoring function, medium networks ($20 < n \le 60$ variables)

				1 minute			5	minutes	5	10 minutes			
benchmark	n	Ν	d	GO	CP	MI	GO	CP	MI	GO	CP	MI	
mushroom	23	8,124	13,025	1.1%	opt	opt	0.6%	opt	opt	0.6%	opt	opt	
autos	26	159	2,391	1.5%	opt	opt	opt	opt	opt	opt	opt	opt	
insurance	27	1,000	506	opt	opt	opt	opt	opt	opt	opt	opt	opt	
horse colic	28	300	490	opt	opt	opt	opt	opt	opt	opt	opt	opt	
steel	28	1,941	93,026	—	0.0%	0.0%	0.9%	opt	opt	0.7%	opt	opt	
flag	29	194	741	opt	opt	opt	opt	opt	opt	opt	opt	opt	
wdbc	31	569	14,613	0.7%	opt	opt	0.2%	opt	opt	0.2%	opt	opt	
water	32	1,000	159	opt	opt	opt	opt	opt	opt	opt	opt	opt	
mildew	35	1,000	126	opt	opt	opt	opt	opt	opt	opt	opt	opt	
soybean	36	266	5,926	1.6%	opt	opt	1.6%	opt	opt	opt	opt	opt	
alarm	37	1,000	1,002	opt	opt	opt	opt	opt	opt	opt	opt	opt	
bands	39	277	892	opt	opt	opt	opt	opt	opt	opt	opt	opt	
spectf	45	267	610	opt	opt	opt	opt	opt	opt	opt	opt	opt	
sponge	45	76	618	opt	opt	opt	opt	opt	opt	opt	opt	opt	
barley	48	1,000	244	opt	opt	opt	opt	opt	opt	opt	opt	opt	
hailfinder	56	100	50	opt	opt	opt	opt	opt	opt	opt	opt	opt	
hailfinder	56	500	43	opt	opt	opt	opt	opt	opt	opt	opt	opt	
lung cancer	57	32	292	opt	opt	opt	opt	opt	opt	opt	opt	opt	
carpo	60	100	423	opt	opt	opt	opt	opt	opt	opt	opt	opt	
carpo	60	500	847	opt	opt	opt	opt	opt	opt	opt	opt	opt	

Percentage from optimal, BDeu scoring function, medium networks ($20 < n \le 60$ variables)

				5 minutes 1 hour				12 hours				
benchmark	n	Ν	d	GO	CP	MI	GO	CP	MI	GO	CP	MI
mushroom	23	8,124	438,185	—	0.0%	0.0%	0.5%	opt	0.0%	0.1%	opt	opt
autos	26	159	25,238	4.3%	0.0%	0.0%	1.2%	opt	0.0%	opt	opt	opt
insurance	27	1,000	792	opt	opt	opt	opt	opt	opt	opt	opt	opt
horse colic	28	300	490	opt	opt	opt	opt	opt	opt	opt	opt	opt
steel	28	1,941	113,118	2.0%	0.0%	opt	0.5%	opt	opt	0.4%	opt	opt
flag	29	194	1,324	opt	opt	opt	opt	opt	opt	opt	opt	opt
wdbc	31	569	13,473	0.6%	opt	opt	opt	opt	opt	opt	opt	opt
water	32	1,000	261	opt	opt	opt	opt	opt	opt	opt	opt	opt
mildew	35	1,000	166	opt	opt	opt	opt	opt	opt	opt	opt	opt
soybean*	36	266	212,425	—	0.1%	0.1%	3.1%	0.1%	0.1%	1.8%	0.0%	0.0%
alarm	37	1,000	2,113	opt	opt	opt	opt	opt	opt	opt	opt	opt
bands	39	277	1,165	opt	opt	opt	opt	opt	opt	opt	opt	opt
spectf	45	267	316	opt	opt	opt	opt	opt	opt	opt	opt	opt
sponge	45	76	10,790	0.4%	opt	opt	opt	opt	opt	opt	opt	opt
barley	48	1,000	364	opt	opt	opt	opt	opt	opt	opt	opt	opt
hailfinder	56	100	199	opt	opt	opt	opt	opt	opt	opt	opt	opt
hailfinder	56	500	447	opt	opt	opt	opt	opt	opt	opt	opt	opt
lung cancer*	57	32	22,338	6.7%	0.3%	0.1%	6.7%	0.0%	0.0%	0.9%	0.0%	0.0%
carpo	60	100	15,408	2.1%	opt	opt	0.5%	opt	opt	opt	opt	opt
carpo	60	500	3,324	opt	opt	opt	opt	opt	opt	opt	opt	opt

Discussion of results for BIC and BDeu scoring functions, medium networks ($20 < n \le 60$ variables)

- BDeu scoring leads to instances that are significantly harder to solve than BIC scoring (max time bound of 12 hours for BDeu vs. 10 minutes for BIC)
- By the shortest time bounds, CPBayes and MINOBS are able to consistently find optimal or near-optimal solutions
- By the largest time bounds, CPBayes and MINOBS found an optimal solution in all cases where it was known, whereas for five of these instances GOBNILP found high-quality solutions but not optimal solutions
- The parameter *d* is once again a relatively good predictor for instances that GOBNILP finds difficult (GOBNILP is able to prove the optimality of larger instances than CPBayes, and thus scales better on the parameter *n*)

Percentage from optimal, BIC scoring function, large networks ($60 < n \le 100$ variables)

					1 h	our		12 hours				
benchmark	n	N	d	GO	CP	AS	MI	GO	CP	AS	MI	
kdd	64	34,955	152,873	3.4%	opt	0.5%	0.0%	3.3%	opt	0.5%	opt	
plants*	69	3,482	520,148	44.5%	0.1%	17.5%	0.0%	33.0%	0.0%	14.8%	0.0%	
bnetflix	100	3,000	1,103,968	<u> </u>	opt	3.7%	opt	—	opt	2.2%	opt	

Percentage from optimal, BIC scoring function, very large networks ($100 < n \le 1000$ variables)

					1 hc	bur		12 hours				
benchmark	n	Ν	d	GO	CP	AS	MI	GO	СР	AS	MI	
accidents*	111	2,551	1,425,966		0.6%	325.6%	0.3%		0.0%	155.9%	0.0%	
pumsb_star*	163	2,452	1,034,955	320.7%		24.0%	0.0%	277.2%	_	18.9%	<mark>0.0%</mark>	
dna*	180	1,186	2,019,003			7.3%	0.4%			5.8%	<mark>0.0%</mark>	
kosarek*	190	6,675	1,192,386			8.4%	0.1%			8.0%	<mark>0.0%</mark>	
msweb*	294	5,000	1,597,487			1.5%	0.0%			1.3%	0.0%	
diabetes*	413	5,000	754,563			0.8%	0.0%			0.7%	<mark>0.0%</mark>	
pigs*	441	5,000	1,984,359			16.8%	1.8%			16.8%	<mark>0.1%</mark>	
book*	500	1,739	2,794,588			9.9%	0.8%			9.1%	<mark>0.1%</mark>	
tmovie*	500	591	2,778,556			36.1%	5.5%			33.4%	0.2%	
link*	724	5,000	3,203,086			28.4%	0.2%			17.1%	0.1%	
cwebkb*	839	838	3,409,747			32.4%	2.3%			25.5%	0.2%	
cr52*	889	1,540	3,357,042			25.9%	2.2%			23.5%	0.1%	
c20ng*	910	3,764	3,046,445			16.3%	1.0%			14.6%	0.0%	

Percentage from optimal, BIC scoring function, massive networks (n > 1000 variables)

					1	hour		12 hours				
benchmark	n	Ν	d	GO	CP	AS	MI	GO	CP	AS	MI	
bbc*	1,058	326	3,915,071			26.0%	4.5%			24.4%	0.5%	
ad*	1,556	487	6,791,926	—	—	15.2%	3.2%	—	—	15.0%	0.5%	

Discussion of results for BIC scoring function, large, very large, and massive networks

- Global search solvers GOBNILP and CPBayes are not competitive on these large to massive networks
 - GOBNILP: for all but three instances, memory requirements exceed 30 GB limit
 - CPBayes: able to solve four instances but this is only due to high-quality initial upper bound found by MINOBS (as well, note that CPBayes can only handle instances for n ≤ 128)
- Local search solvers ASOBS and MINOBS are able to scale to these large to massive networks within reasonable time bounds
 - MINOBS performs exceptionally well, *consistently* finding high-quality solutions within 1 hour and very high-quality solutions within 12 hours (over ten tests, standard deviation less than 0.3 for 12 hour time bound)
 - ASOBS often reports solutions that are quite far from optimal

Outline

- Introduction
 - Bayesian networks (BNs)
 - applications and advantages
- Machine learning a Bayesian network
 - exact learning algorithms
 - approximate learning algorithms
- Extensions
 - generate all of the best networks
 - incorporate expert domain knowledge
- Conclusions

Generate all of the best networks

- Selecting a single Bayesian network may not be best choice
 - there may be many other Bayesian networks with scores that are close to optimal
 - posterior probability of even the best-scoring Bayesian network often close to zero
- Alternative: some form of Bayesian model averaging
- Previous work:
 - generate k-best Bayesian networks for some k
 - disadvantage: how to choose k?
- We are extending CPBayes to generate all Bayesian networks such that,
 - OPT \leq score(*G*) $\leq \rho$ OPT
 - advantages: pruning rules can be generalized and applied, scaling, principled way to chose ρ

Incorporate expert domain knowledge

- Bayesian networks are either:
 - fully specified by a domain expert
 - difficult as number of variables grows
 - learned from data
 - not so reliable when data is limited
- Hybrid method:
 - incorporate both expert knowledge (side constraints) and data
- We have extended MINOBS to handle side constraints:
 - existence of an arc
 - absence of an arc
 - ordering constraints: assert *x* comes before *y* in some ordering of the nodes
 - ancestral constraints: there exists a directed path from *x* to *y*

Conclusion

- Unsupervised learning of structure of Bayesian network
 - formulated as a combinatorial optimization problem
- Viewpoint leads to state-of-the-art algorithms
 - CPBayes: exact algorithm based on constraint-based global search
 - MINOBS: approximate algorithm based on local search
- Viewpoint leads to generalization of existing algorithms
 - generate all of the best networks
 - incorporate expert domain knowledge