
Machine Learning of Bayesian Networks

Peter van Beek

University of Waterloo



Collaborators

• Hella-Franziska Hoffmann, PhD student

• Colin Lee, NSERC USRA

• Andrew Li, NSERC USRA

• Alister Liao, PhD student

• Charupriya Sharma, PhD student



Outline

• Introduction

• Machine learning

• Bayesian networks

• Machine learning a Bayesian network

• exact learning algorithms

• approximate learning algorithms

• Extensions

• generate all of the best networks

• incorporate expert domain knowledge

• Conclusions



Outline

• Introduction

• Machine learning

• Bayesian networks

• Machine learning a Bayesian network

• exact learning algorithms

• approximate learning algorithms

• Extensions

• generate all of the best networks

• incorporate expert domain knowledge

• Conclusions



Machine learning: Supervised learning

• Training data D, with N examples (instances):

• Supervised learning: learn mapping from inputs x to outputs y, given a 

labeled set of input-output pairs D = {(xi, yi)}, i = 1, …, N

• prediction

• here: probabilistic models of the form P( y | x )

• P( Diabetes = yes | Exercise = yes, Age = young )

• P( Diabetes = no | Exercise = yes, Age = young )

Sex Exercise Age Diastolic BP … Diabetes

male no middle-aged high … yes

female yes elderly normal … no

… … … … … …



Machine learning: Unsupervised learning

• Training data D, with N examples (instances):

• Unsupervised learning: learn hidden structure from unlabeled data        

D = {(xi)}, i = 1, …, N

• knowledge discovery

• density estimation (estimate underlying probability density function)

• here: probabilistic models of the form P( x )

• answer any probabilistic query; e.g., P( Exercise = yes | Diastolic BP = high )

• representations that are useful for P( x ) tend to be useful when learning P( y | x )

Sex Exercise Age Diastolic BP … Diabetes

male no middle-aged high … yes

female yes elderly normal … no

… … … … … …



Supervised vs unsupervised learning

• Supervised: Probabilistic models of the form P( y | x )

• discriminative models

• model dependence of unobserved target variable y on observed variables x

• performance measure: predictive accuracy, cross-validation

• Unsupervised: Probabilistic models of the form P( x )

• generative models

• model probability distribution over all variables

• performance measure: “fit” to the data



Bayesian networks

• A Bayesian network is a directed acyclic graph (DAG) where:

• nodes are variables

• directed arcs connect pairs of nodes, indicating direct influence, high correlation

• each node has a conditional probability table specifying the effects parents have 

on the node

Sex Pregnancies Age

P(Preg=0 | Sex=male, Age=young) = …

P(Preg=0 | Sex=male, Age=middle-aged) = …

…

P(Sex=male) = 0.493

P(Sex=female) = 0.490

P(Sex=intersex) = 0.017

P(Age=young | Sex=male) = …

P(Age=middle-aged | Sex=male) = …

P(Age=elderly | Sex=male) = …

P(Age=young | Sex=female) = …

P(Age=middle-aged | Sex=female) = …

…

Pregnancies Age

Sex



Example: Medical diagnosis of diabetes

Patient information 

& root causes

Medical 

difficulties & 

diseases

Diagnostic tests 

& symptoms

PregnanciesHeredity OverweightAge

ExerciseSex

Diabetes

Glucose conc. Serum test Diastolic BPFatigue

BMI



Real-world examples

• Conflict analysis for groundwater protection (Giordano et al., 2013)

• Bayesian network for farmers’ behavior with regard to groundwater management

• Analyze impact of policy on behavior and degree of conflict

• Safety risk assessment for construction projects (Leu & Chang, 2013)

• Bayesian networks for four primary accident types 

• Site safety management and analyze causes of accidents

• Climate change adaption policies (Catenacci and Giupponi, 2009)

• Bayesian network for ecological modelling, natural resource management, climate change policy

• Analyze impact of climate change policies



Semantics of Bayesian networks (I)

• Training data D, with N examples (instances):

• Representation of joint probability distribution

• Atomic event: assignment of a value to each variable in the model

• Joint probability distribution: assignment of a probability to each possible atomic event

• Bayesian network is a succinct representation of the joint probability distribution

P(x1, …, xn) =  Π P(xi | Parents(xi))

• Can answer any and all probabilistic queries

Sex Exercise Age Diastolic BP … Diabetes

male no middle-aged high … yes

female yes elderly normal … no

… … … … … …



Semantics of Bayesian networks (II)

• Encoding of conditional independence assumptions

• Conditional independence

x is conditionally independent of y given z if

P(x | y, z) = P(x | z)

• “Missing” arcs represent conditional 

independence assumptions

• E.g., P( Glucose | Age, Diabetes ) = P( Glucose | Diabetes )

Age

Diabetes

Glucose conc.



Advantages of Bayesian networks

• Declarative representation

• separation of knowledge and reasoning

• principled representation of uncertainty

• Interpretable

• clear semantics, facilitate understanding a domain

• explanation

• Learnable from data

• can combine learning from data with prior expert knowledge

• Easily combinable with decision analytic tools

• decision networks, value of information, utility theory
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Structure learning from data: 

measure fit to data

• Training data D, with N examples (instances):

• First attempt: Maximize probability of observing data, given model G: 

• P(D | G)

• overfitting: complete network

• Scoring function: Add penalty term for complexity of model

• Score(G)  =  likelihood  + (penalty for complexity)

• e.g., BIC(G) =  – log2 P(D | G)  +  ½ (log2 N) · || G ||

• as N grows, more emphasis given to fit to data

Sex Exercise Age Diastolic BP … Diabetes

male no middle-aged high … yes

female yes elderly normal … no

… … … … … …



Structure learning from data: 

decomposability

• Problem: Find a directed acyclic graph (DAG) G which minimizes:

Score 𝐺

• Decomposability:

Score 𝐺 =  𝑖=1
𝑛 Score( Parents(xi) )

• Rephrased problem: Choose parent set for each variable so that 

Score(G) is minimized and resulting graph is acyclic



Structure learning from data: 

score-and-search approach

1. Training data D, with N examples (instances):

2. Scoring function (BIC/MDL, BDeu) gives possible parent sets:

3. Combinatorial optimization problem:

• find a directed acyclic graph (DAG) over the variables that minimizes the total score

Sex Exercise Age Diastolic BP … Diabetes

male no middle-aged high … yes

female yes elderly normal … no

… … … … … …

Exercise

Sex

Exercise

Age

17.5 20.2

Exercise

Sex Age

19.3

……
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Exact learning: Global search algorithms

Dynamic programming Koivisto & Sood, 2004

Silander & Myllymäki, 2006

Malone, Yuan & Hansen, 2011

Integer linear programming Jaakkola et al., 2010

Bartlett & Cussens, 2013, 2017 (GOBNILP)

A* search Yuan & Malone, 2013

Fan, Malone & Yuan, 2014

Fan & Yuan, 2015

Breadth-first branch-and-bound search Suzuki, 1996

Campos & Ji, 2011

Fan, Malone & Yuan, 2014, 2015

Depth-first branch-and-bound search Tian, 2000

Malone & Yuan, 2014

van Beek & Hoffman, 2015 (CPBayes)



Constraint programming

• A constraint model is defined by:

• a set of variables {x1, …, xn}

• a set of values for each variable dom(x1), …, dom(xn)

• a set of constraints {C1, …, Cm}

• A solution to a constraint model is a complete assignment to all the 

variables that satisfies the constraints



Global constraints

• A global constraint is a constraint that 

can be specified over an arbitrary 

number of variables

• Advantages:

• captures common constraint patterns

• efficient, special purpose constraint 

propagation algorithms can be designed



Example global constraint: alldifferent

• Consists of:

• set of variables {x1, …, xn}

• Satisfied iff:

• each of the variables is assigned 

a different value

• Constraint propagation:

• suppose alldifferent(x1, x2, x3) where:

• dom(x1) = {b, c, d, e}

• dom(x2) = {b, d}

• dom(x3) = {b, d}



Bayesian network structure learning:          

Constraint model (I)

• Notation:

• Vertex (possible parent set) variables: v1, …, vn

• dom(vi) ⊆ 2V consists of possible parent sets for vi

• assignment vi = p denotes vertex vi has parents p in the graph

• global constraint: acyclic(v1, …, vn)

• satisfied iff the graph designated by the parent sets is acyclic

V set of variables

n number of variables in data set

cost(v) cost (score) of variable v

dom(v) domain of variable v



Bayesian network structure learning: 

Constraint model (II)

• Ordering (permutation) variables: o1, …, on

• dom(oi) = {1, …, n} 

• assignment oi = j denotes vertex vj is in position i in the total ordering

• global constraint: alldifferent(o1, …, on)

• given a permutation, it is easy to determine the minimum cost DAG

• Depth auxiliary variables: d1, …, dn

• dom(di) = {0, …, n−1}

• assignment di = k denotes that depth of vertex variable vj that occurs at position i

in the ordering is k

• Channeling constraints connect the three types of variables



Bayesian network structure learning:  

Improving the constraint model

• Add constraints to increase constraint propagation (e.g., Smith 2006)

• symmetry-breaking constraints: preserve one among a set of symmetric solutions

• dominance constraints: preserve an optimal solution



Example: Symmetry-breaking constraints

• I-equivalent networks:

• two DAGs are said to be I-equivalent if they encode the same set of conditional 

independence assumptions

• Chickering (1995, 2002) provides a local characterization:

• sequence of “covered” edges that can be reversed

• Example:

Age

ExerciseSex

Age

ExerciseSex



Example: Dominance constraints

• Teyssier and Koller (2005) present a cost-based pruning rule

• only applicable before search begins

• routinely used in score-and-search approaches

• We generalize the pruning rule

• applicable during search

• takes into account ordering information induced by the partial solution so far

Sex

Exercise

17.5

Sex

Exercise Age

19.3



Constraint-based search variant (CPBayes)

• Constraint-based depth-first branch-and-bound search

• branching over ordering (permutation) variables o1, …, on

• cost function z = cost(v1) + … + cost(vn)

• lower bound based on Fan and Yuan (2015) using pattern databases

• initial upper bound based on Lee and van Beek (2017) using local search
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Approximate learning: Local search algorithms

Genetic algorithm Larrañaga et al., 1996

Greedy search Chickering et al., 1997

Tabu search Teyssier & Koller, 2005

Ant colony optimization De Campos et al., 2002

Memetic search Lee and van Beek, 2017

Space of network structures Cooper and Herskovits, 1992

Chickering et al., 1997

Space of equivalent network structures Chickering, 2002

Space of variable orderings, 

permutations

Larrañaga et al., 1996

Teyssier & Koller, 2005 (OBS)

Scanagatta et al., 2015 (ASOBS)

Lee and van Beek, 2017 (MINOBS)



Permutation-based local search

• Local search over the space of permutations of vertices

• best score for a permutation is easily found

• find permutation that gives best score overall

• Example: Ordering O = x1, x2, x3

Optimal parent set for x1 : {} Score: 12 

Optimal parent set for x2 : {x1} Score: 5

Optimal parent set for x3 : {x1, x2} Score: 3

Score of network (Score(O)): 12 + 5 + 3 = 20

x1

x2
x3

Candidate parent sets:

x1:  4, {x2, x3}    12, {}

x2:  5, {x1}  10, {}

x3: 3, {x1, x2} 4, {}



Greedy search over orderings

• Basic local search algorithm

• Output is a local minima in the search space

• Need to design functions neighbours(O), selectImprovingNeighbour(O)



Neighborhoods

Consider a permutation representation       

<1, 2, 3, 4, 5, 6, 7, 8>

What could be its neighbors?

Transpose: swap two adjacent 

e.g.,  <1, 2, 4, 3, 5, 6, 7, 8>  is a neighbor

Swap: swap two (not necessarily adjacent)

e.g.,  <1, 6, 3, 4, 5, 2, 7, 8>  is a neighbor

Insert: move 

e.g.,  <1, 5, 2, 3, 4, 6, 7, 8>  is a neighbor

Block insert: move a subsequence of queens

e.g.,  <1, 4, 5, 2, 3, 6, 7, 8>  is a neighbor

O(n)

O(n2)

O(n2)

O(n3)



Memetic search variant (MINOBS)

• Population-based approach with local improvement procedures

• At start of algorithm, create a population of locally optimal orderings

• For each iteration:

• Add new local optima to the population by crossing/perturbing members of the 

population and applying local search

• Prune members of the population so that it returns to the original size

• Parameters tuned from small training set using ParamILS



Experimental evaluation

• Algorithms evaluated in our study:

• GOBNILP, version 1.6.2 (Bartlett and Cussens 2013; Bartlett et al., 2017)

• global search, based on integer linear programming

• CPBayes, version 1.2 (van Beek and Hoffman, 2015)

• global search, based on constraint programming

• ASOBS, version of December 2016 (Scanagatta et al., 2015)

• local search, based on space of variable orderings, swap neighborhood, and improved search of 

neighborhood

• MINOBS, version 0.2 (Lee and van Beek, 2017)

• local search, based on space of variable orderings, insertion neighborhood, and memetic or population 

based approach

• report median of 10 runs with different random seeds



Experimental setup

• Instances:

size variables

scoring 

functions remarks

small n ≤ 20

BIC

BDeu

• data sets obtained from J. Cussens,    

B. Malone, UCI ML Repository

• local scores computed from data sets 

using code from B. Malone

• larger BDeu instances have indegree

restricted to be between 6 and 8

medium 20 < n ≤ 60

large 60 < n ≤ 100

BIC

• data sets and local scores obtained from

Bayesian Network Learning and 

Inference Package (BLIP) by M. 

Scanagatta

• maximum indegree of parents sets 

restricted to be 6

very large 100 < n ≤ 1000

massive n > 1000



Experimental results

• Notation:

n number of variables in data set 

N number of instances in data set

d total number of possible parent sets for variables

—
indicates method did not report any solution within given 

time bound

opt
indicates method found the known optimal solution within 

given time bound

benchmark*

indicates optimal value for benchmark is not known; in such 

cases percentage from optimal is calculated using best 

value found within 24 hours of CPU time



Experimental results

benchmark n N d

1 minute 5 minutes 10 minutes

GO CP MI GO CP MI GO CP MI

nltcs 16 3,236 7,933 0.2% opt opt opt opt opt opt opt opt

msnbc 17 58,265 47,229 — opt opt 0.4% opt opt 0.0% opt opt

letter 17 20,000 4,443 opt opt opt opt opt opt opt opt opt

voting 17 435 1,848 opt opt opt opt opt opt opt opt opt

zoo 17 101 554 opt opt opt opt opt opt opt opt opt

tumour 18 339 219 opt opt opt opt opt opt opt opt opt

lympho 19 148 143 opt opt opt opt opt opt opt opt opt

vehicle 19 846 763 opt opt opt opt opt opt opt opt opt

hepatitis 20 155 266 opt opt opt opt opt opt opt opt opt

segment 20 2,310 1,053 opt opt opt opt opt opt opt opt opt

Percentage from optimal, BIC scoring function, 

small networks (n ≤ 20 variables)



Experimental results

benchmark n N d

1 minute 5 minutes 10 minutes

GO CP MI GO CP MI GO CP MI

nltcs 16 3,236 8,091 0.0% opt opt 0.0% opt opt opt opt opt

msnbc 17 58,265 50,921 — opt opt 0.2% opt opt 0.1% opt opt

letter 17 20,000 18,841 1.3% opt opt 0.1% opt opt 0.0% opt opt

voting 17 435 1,940 opt opt opt opt opt opt opt opt opt

zoo 17 101 2,855 1.7% opt opt opt opt opt opt opt opt

tumour 18 339 274 opt opt opt opt opt opt opt opt opt

lympho 19 148 345 opt opt opt opt opt opt opt opt opt

vehicle 19 846 3,121 opt opt opt opt opt opt opt opt opt

hepatitis 20 155 501 opt opt opt opt opt opt opt opt opt

segment 20 2,310 6,491 0.3% opt opt 0.3% opt opt 0.0% opt opt

Percentage from optimal, BDeu scoring function, 

small networks (n ≤ 20 variables)



Experimental results

Discussion of results for BIC and BDeu scoring functions, 

small networks (n ≤ 20 variables)

• CPBayes and MINOBS are able to consistently find optimal solutions within a 

1 minute time bound, whereas GOBNILP sometimes has not yet found an 

optimal solution with a 10 minute time bound

• CPBayes and GOBNILP, being global search methods, may terminate earlier 

than time bound, whereas MINOBS and ASOBS, being local search 

methods, terminate only when a time bound is reached

• The parameter d is a relatively good predictor for instances that GOBNILP 

finds difficult; it strongly correlates with size of integer programming model



Experimental results

benchmark n N d

1 minute 5 minutes 10 minutes

GO CP MI GO CP MI GO CP MI

mushroom 23 8,124 13,025 1.1% opt opt 0.6% opt opt 0.6% opt opt

autos 26 159 2,391 1.5% opt opt opt opt opt opt opt opt

insurance 27 1,000 506 opt opt opt opt opt opt opt opt opt

horse colic 28 300 490 opt opt opt opt opt opt opt opt opt

steel 28 1,941 93,026 — 0.0% 0.0% 0.9% opt opt 0.7% opt opt

flag 29 194 741 opt opt opt opt opt opt opt opt opt

wdbc 31 569 14,613 0.7% opt opt 0.2% opt opt 0.2% opt opt

water 32 1,000 159 opt opt opt opt opt opt opt opt opt

mildew 35 1,000 126 opt opt opt opt opt opt opt opt opt

soybean 36 266 5,926 1.6% opt opt 1.6% opt opt opt opt opt

alarm 37 1,000 1,002 opt opt opt opt opt opt opt opt opt

bands 39 277 892 opt opt opt opt opt opt opt opt opt

spectf 45 267 610 opt opt opt opt opt opt opt opt opt

sponge 45 76 618 opt opt opt opt opt opt opt opt opt

barley 48 1,000 244 opt opt opt opt opt opt opt opt opt

hailfinder 56 100 50 opt opt opt opt opt opt opt opt opt

hailfinder 56 500 43 opt opt opt opt opt opt opt opt opt

lung cancer 57 32 292 opt opt opt opt opt opt opt opt opt

carpo 60 100 423 opt opt opt opt opt opt opt opt opt

carpo 60 500 847 opt opt opt opt opt opt opt opt opt

Percentage from optimal, BIC scoring function, 

medium networks (20 < n ≤ 60 variables)



Experimental results

benchmark n N d

5 minutes 1 hour 12 hours

GO CP MI GO CP MI GO CP MI

mushroom 23 8,124 438,185 — 0.0% 0.0% 0.5% opt 0.0% 0.1% opt opt

autos 26 159 25,238 4.3% 0.0% 0.0% 1.2% opt 0.0% opt opt opt

insurance 27 1,000 792 opt opt opt opt opt opt opt opt opt

horse colic 28 300 490 opt opt opt opt opt opt opt opt opt

steel 28 1,941 113,118 2.0% 0.0% opt 0.5% opt opt 0.4% opt opt

flag 29 194 1,324 opt opt opt opt opt opt opt opt opt

wdbc 31 569 13,473 0.6% opt opt opt opt opt opt opt opt

water 32 1,000 261 opt opt opt opt opt opt opt opt opt

mildew 35 1,000 166 opt opt opt opt opt opt opt opt opt

soybean* 36 266 212,425 — 0.1% 0.1% 3.1% 0.1% 0.1% 1.8% 0.0% 0.0%

alarm 37 1,000 2,113 opt opt opt opt opt opt opt opt opt

bands 39 277 1,165 opt opt opt opt opt opt opt opt opt

spectf 45 267 316 opt opt opt opt opt opt opt opt opt

sponge 45 76 10,790 0.4% opt opt opt opt opt opt opt opt

barley 48 1,000 364 opt opt opt opt opt opt opt opt opt

hailfinder 56 100 199 opt opt opt opt opt opt opt opt opt

hailfinder 56 500 447 opt opt opt opt opt opt opt opt opt

lung cancer* 57 32 22,338 6.7% 0.3% 0.1% 6.7% 0.0% 0.0% 0.9% 0.0% 0.0%

carpo 60 100 15,408 2.1% opt opt 0.5% opt opt opt opt opt

carpo 60 500 3,324 opt opt opt opt opt opt opt opt opt

Percentage from optimal, BDeu scoring function, 

medium networks (20 < n ≤ 60 variables)



Experimental results

Discussion of results for BIC and BDeu scoring functions, 

medium networks (20 < n ≤ 60 variables)

• BDeu scoring leads to instances that are significantly harder to solve than 

BIC scoring (max time bound of 12 hours for BDeu vs. 10 minutes for BIC)

• By the shortest time bounds, CPBayes and MINOBS are able to consistently 

find optimal or near-optimal solutions 

• By the largest time bounds, CPBayes and MINOBS found an optimal 

solution in all cases where it was known, whereas for five of these instances 

GOBNILP found high-quality solutions but not optimal solutions

• The parameter d is once again a relatively good predictor for instances that 

GOBNILP finds difficult (GOBNILP is able to prove the optimality of larger 

instances than CPBayes, and thus scales better on the parameter n)



Experimental results

benchmark n N d

1 hour 12 hours

GO CP AS MI GO CP AS MI

kdd 64 34,955 152,873 3.4% opt 0.5% 0.0% 3.3% opt 0.5% opt

plants* 69 3,482 520,148 44.5% 0.1% 17.5% 0.0% 33.0% 0.0% 14.8% 0.0%

bnetflix 100 3,000 1,103,968 — opt 3.7% opt — opt 2.2% opt

Percentage from optimal, BIC scoring function, 

large networks (60 < n ≤ 100 variables)



Experimental results

Percentage from optimal, BIC scoring function, 

very large networks (100 < n ≤ 1000 variables)

benchmark n N d

1 hour 12 hours

GO CP AS MI GO CP AS MI

accidents* 111 2,551 1,425,966 — 0.6% 325.6% 0.3% — 0.0% 155.9% 0.0%

pumsb_star* 163 2,452 1,034,955 320.7% — 24.0% 0.0% 277.2% — 18.9% 0.0%

dna* 180 1,186 2,019,003 — — 7.3% 0.4% — — 5.8% 0.0%

kosarek* 190 6,675 1,192,386 — — 8.4% 0.1% — — 8.0% 0.0%

msweb* 294 5,000 1,597,487 — — 1.5% 0.0% — — 1.3% 0.0%

diabetes* 413 5,000 754,563 — — 0.8% 0.0% — — 0.7% 0.0%

pigs* 441 5,000 1,984,359 — — 16.8% 1.8% — — 16.8% 0.1%

book* 500 1,739 2,794,588 — — 9.9% 0.8% — — 9.1% 0.1%

tmovie* 500 591 2,778,556 — — 36.1% 5.5% — — 33.4% 0.2%

link* 724 5,000 3,203,086 — — 28.4% 0.2% — — 17.1% 0.1%

cwebkb* 839 838 3,409,747 — — 32.4% 2.3% — — 25.5% 0.2%

cr52* 889 1,540 3,357,042 — — 25.9% 2.2% — — 23.5% 0.1%

c20ng* 910 3,764 3,046,445 — — 16.3% 1.0% — — 14.6% 0.0%



Experimental results

benchmark n N d

1 hour 12 hours

GO CP AS MI GO CP AS MI

bbc* 1,058 326 3,915,071 — — 26.0% 4.5% — — 24.4% 0.5%

ad* 1,556 487 6,791,926 — — 15.2% 3.2% — — 15.0% 0.5%

Percentage from optimal, BIC scoring function, 

massive networks (n > 1000 variables)



Experimental results

Discussion of results for BIC scoring function,          

large, very large, and massive networks

• Global search solvers GOBNILP and CPBayes are not competitive on these 

large to massive networks

• GOBNILP: for all but three instances, memory requirements exceed 30 GB limit

• CPBayes: able to solve four instances but this is only due to high-quality initial 

upper bound found by MINOBS (as well, note that CPBayes can only handle 

instances for n ≤ 128)

• Local search solvers ASOBS and MINOBS are able to scale to these large 

to massive networks within reasonable time bounds

• MINOBS performs exceptionally well, consistently finding high-quality solutions 

within 1 hour and very high-quality solutions within 12 hours (over ten tests, 

standard deviation less than 0.3 for 12 hour time bound)

• ASOBS often reports solutions that are quite far from optimal
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Generate all of the best networks

• Selecting a single Bayesian network may not be best choice

• there may be many other Bayesian networks with scores that are close to optimal

• posterior probability of even the best-scoring Bayesian network often close to zero

• Alternative: some form of Bayesian model averaging

• Previous work: 

• generate k-best Bayesian networks for some k

• disadvantage: how to choose k?

• We are extending CPBayes to generate all Bayesian networks such that,

• OPT ≤ score( G ) ≤ ρ OPT 

• advantages: pruning rules can be generalized and applied, scaling, principled way to chose ρ



Incorporate expert domain knowledge

• Bayesian networks are either:

• fully specified by a domain expert

• difficult as number of variables grows

• learned from data

• not so reliable when data is limited

• Hybrid method:

• incorporate both expert knowledge (side constraints) and data

• We have extended MINOBS to handle side constraints:

• existence of an arc

• absence of an arc

• ordering constraints: assert x comes before y in some ordering of the nodes

• ancestral constraints: there exists a directed path from x to y



Conclusion

• Unsupervised learning of structure of Bayesian network

• formulated as a combinatorial optimization problem

• Viewpoint leads to state-of-the-art algorithms

• CPBayes: exact algorithm based on constraint-based global search

• MINOBS: approximate algorithm based on local search

• Viewpoint leads to generalization of existing algorithms

• generate all of the best networks

• incorporate expert domain knowledge


