Peter van Beek

Cheriton School of Computer Science
University of Waterloo

Research: Smart water infrastructure and analytics.

The City of Abbotsford, BC fitted all of the approximately 24,000 homes and businesses with smart water meters that record usage at the hourly level. Given this unique data resource, there are many interesting research problems to work on—including leak or loss detection, predicting or forecasting usage, customer modeling to improve hydrographic modeling, and disaggregating outdoor usage from total water consumption—and many of these appear to be amenable to artificial intelligence tools and techniques.

Project: Disaggregating outdoor and indoor water usage

Citation

(PDF) Valerie Platsko. Smart-Meter Enabled Estimation and Prediction of Outdoor Residential Water Consumption. Master's of Mathematics thesis, University of Waterloo, January 2018 (slides).

Abstract

Smart meter technology allows frequent measurements of water consumption at at household level. This greater availability of data allows improved analysis of patterns of residential water consumption, which is important for demand management and targeting conservation efforts. The dataset in this thesis includes 8,000 households in Abbotsford, British Columbia from 2012-2013, and contains hourly measurements of water consumption recorded by smart meters installed in 2010. This work focuses on identifying outdoor consumption due to its contribution to peak demand during the summer, which is important because of concerns about strain on infrastructure in Abbotsford. This research shows that outdoor water consumption can be robustly identified from hourly measurement of total water consumption by determining an upper threshold on plausible indoor usage, and that this estimated outdoor water consumption is consistent with seasonal patterns of water consumption identified in previous work, with the timing of restrictions on outdoor watering, and with household size. The research also includes regression tree-based models for predicting next-hour water consumption, however the predictability of this consumption is limited. In contrast to previous work, there is little correlation between outdoor consumption and demographic factors such as income. Outdoor consumption shows a large amount of individual variability, with 8.6% of households accounting for 50% of the total outdoor usage. This limits the predictability of outdoor consumption, but also highlights the importance of identifying this consumption for each household to allow for targeted conservation efforts.

Figure 1. Summer water consumption by dissemination area for the City of Abbotsford, British Columbia.

Figure 2. Summer outdoor water consumption by households for the City of Abbotsford, British Columbia.

Project: Forecasting water usage

Description

Coming soon.

Software