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Abstract

Although satisfiability problems (SAT) are NP-complete, state-of-the-art SAT
solvers are able to solve large practical instances. The notion of backdoors has been
introduced to capture structural properties of instances. Backdoors are a set of vari-
ables for which there exists some value assignment that leads to a polynomial-time
solvable sub-problem. I address in this thesis the problem of finding all minimal
backdoors, which is essential for studying value and variable ordering mistakes. I
discuss our definition of sub-solvers and propose algorithms for finding backdoors. I
implement our proposed algorithms by modifying a state-of-the-art SAT solver, Min-
isat. I analyze experimental results comparing our proposed algorithms to previous
algorithms applied to random 3SAT, structured, and real-world instances. Our pro-
posed algorithms improve over previous algorithms for finding backdoors in two ways.
First, our algorithms often find smaller backdoors. Second, our algorithms often find
a much larger number of backdoors.
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Chapter 1

Introduction

In this chapter, I informally introduce and motivate the problem to be addressed in
this thesis. I summarize the contributions of the thesis and give an outline of the rest
of the thesis.

1.1 Motivation

The satisfiability problem (SAT) is a constraint satisfaction problem (CSP) where
variables have Boolean domains and constraints are Boolean formulas. A formula in
conjunctive normal form (CNF) is a conjunction of a finite set of clauses, where a
clause is a disjunction of a finite set of literals. A literal is a Boolean variable or
its negation. SAT is used for solving combinatorial problems, such as scheduling,
planning, hardware and software verification.

SAT is the first known NP-complete problem. However, there exist polynomial-
time tractable classes, such as 2SAT and Horn. A formula is 2SAT if every clause has
at most two literals. A formula is Horn if every clause has at most one positive literal.
Schaefer [26] proposes a dichotomy theorem that characterizes any SAT instance as
either polynomial-time decidable or NP-complete.

Complete SAT solvers typically apply the Davis-Putnam-Logemann-Loveland (D-
PLL) algorithm [3, 2], which enhances a backtracking algorithm with unit propagation
and pure literal elimination. A backtracking algorithm explores the search tree us-
ing depth-first search. If a clause contains a single literal, unit propagation assigns
the corresponding variable a satisfying value and simplifies the formula. If a literal
occurs in a formula only positively or negatively, pure literal elimination assigns the
corresponding variable a satisfying value and simplifies the formula.

Although SAT is NP-complete in theory, state-of-the-art SAT solvers scale well on
large problem instances in practice. To explain the gap between theory and practice,
Williams, Gomes, and Selman [29] introduce the notion of backdoors. Backdoors
are a set of variables such that once the values of the variables are set properly, the
simplified sub-problem can be solved by a sub-solver. Given a problem instance, a
sub-solver either rejects the instance, or determines the satisfiability of the instance
in polynomial time.
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The problem that I address in this thesis is finding all minimal backdoors in SAT
instances. A minimal backdoor is a backdoor with the smallest size in an instance.
This problem is important for studying the problem hardness, which is generally
represented as the time used or the number of nodes extended by a SAT solver. A
problem instance can be solved by performing a backtracking search on backdoor vari-
ables. Thus, an instance with a large number of variables and clauses could be solved
efficiently if it has small backdoors. In addition, identifying all minimal backdoors is
a first step to investigating value and variable ordering mistakes. A variable ordering
heuristic can make a mistake by selecting a variable not in the backdoor. A value
ordering heuristic can make a mistake by assigning the backdoor variable a value that
does not lead to a polynomial sub-problem. We are interested in studying how value
and variable ordering mistakes affect the performance of backtracking algorithms.

1.2 Contributions of the Thesis

• We define sub-solvers both algorithmically and syntactically. Backdoors are
defined with respect to sub-solvers. Algorithmically defined sub-solvers are
polynomial-time techniques of current SAT solvers, such as unit propagation
and pure literal elimination. Syntactically defined sub-solvers are polynomial-
time tractable classes, such as 2SAT and Horn. Without considering the effect
of unit propagation, the size of backdoors with respect to syntactically defined
sub-solvers is relatively large. On the other hand, it is possible that the sim-
plified sub-problem is polynomial-time solvable before algorithmically defined
sub-solvers find a solution. Therefore, we propose sub-solvers that first apply
unit propagation, and then checks polynomial-time decidable classes.

• We propose both systematic and local search algorithms for finding backdoors.
The systematic search algorithm is guaranteed to find all minimal backdoors.
However, it is unable to handle large instances because of its exponential com-
plexity. Kilby, Slaney, Thiébaux, and Walsh [16] propose a local search algo-
rithm to approximate a minimal backdoor, but our goal is to find as many
minimal backdoors as possible. Hence, based on Kilby et al.’s algorithm, we
propose two local search algorithms for finding small backdoors. Our first al-
gorithm incorporates our definition of sub-solvers with Kilby et al.’s algorithm.
Our second algorithm applies several local search techniques, such as Tabu
Search, on finding small backdoors.

• We implement the algorithms for finding backdoors by modifying one of the
fastest SAT solvers, Minisat [9]. A DPLL-based SAT solver, Satz-rand [10] is
used as the sub-solver in previous work [29, 24, 16, 6]. However, Satz-rand is
unable to efficiently solve large real-world instances. Minisat is able to handle
large instances because it applies modern techniques, such as conflict-clause
recording, in the search for solutions.

• We find small backdoors in large real-world instances. We are interested in
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real-world instances because of their practical use. The test instances used in
previous work are small instances that can be quickly solved by Minisat. We
experiment on large real-world instances, especially the instances from SAT-
Race 2008, to compare our proposed algorithms to previous algorithms.

Algorithms based on our proposed sub-solvers can find smaller backdoors than
previous algorithms. Our proposed local search algorithms can find a significantly
larger number of backdoors than previous algorithms. Although backdoors in large
real-world instances consist of hundreds of variables, the backdoor size is notably
small compared to the total number of variables. The results of our work can be used
to study the problem hardness of large instances, and to study value and variable
ordering mistakes.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces the concepts
and definitions that are fundamental for understanding the work presented in this
thesis. Chapter 3 reviews the approaches and results of previous research on back-
doors. Chapter 4 discusses the systematic and local search algorithms for finding
backdoors in SAT instances. Chapter 5 presents experimental results on random
3SAT, structured, and real-world instances, comparing our proposed algorithms for
finding backdoors to previous algorithms. Chapter 6 concludes this thesis and sug-
gests what could be done in the future.
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Chapter 2

Background

In this chapter, I briefly review the necessary background in constraint programming,
SAT solvers based on backtracking search, and local search algorithms. Then I for-
mally define the problem addressed in this thesis. (For more background on these
topics, see Rossi, van Beek, and Walsh [23], Mitchell [20], Hoos and Stützle [13],
Williams, Gomes, and Selman [29], Schaefer [26], and Dechter [4].)

2.1 Constraint Programming

The constraint satisfaction problem (CSP) has a set of variables, each taking a value in
a given domain, and a collection of constraints that specify the allowed combinations
of values for some subsets of variables. A solution to a CSP is a value assignment to
each variable that satisfies all of the constraints. A CSP is unsatisfiable if no solutions
exist. The following definition is from [23].

Definition 2.1 (Constraint Satisfaction Problem (CSP)). A CSP is a triple P =
〈X,D,C〉 where X is an n-tuple of variables X = 〈x0, x1, . . . , xn−1〉, D is a corre-
sponding n-tuple of domains D = 〈D0, D1, . . . , Dn−1〉 such that xi ∈ Di, C is a t-tuple
of constraints C = 〈C0, C1, . . . , Ct−1〉.

The satisfiability problem (SAT) is a CSP where the domains of variables are
Boolean values and the constraints are Boolean formulas. A formula in conjunctive
normal form (CNF) is a conjunction of a finite set of clauses. Each clause is a
disjunction of a finite set of literals. A literal is a Boolean variable x with an assigned
parity ε ∈ {0, 1}, denoted by xε. A positive literal is denoted by x = x1 and a negative
literal is denoted by ¬x = x0. A solution to a formula is a truth value assignment
to each variable that satisfies all the clauses. Given a formula F = 〈X,D,C〉, we
denote by aS : S → D the partial value assignment to a subset of variables S ⊆ X.
We define the simplified formula F [as] as the formula after removing from F all the
clauses that are satisfied by as, and removing from every clause all the literals that
are false by as. A formula F contains an empty clause if F has both unit clauses {x}
and {¬x}.

A clause is 2SAT if it contains at most two literals, and a formula is 2SAT if every
clause is 2SAT. A clause is Horn if it has at most one positive literal, and a formula
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is Horn if every clause is Horn. A formula is renamable Horn (RHorn) if it can be
transformed into Horn by a uniform renaming of variables. Renaming a variable x
is to replace every occurrence of xε with x1−ε. Dechter [4] calls a clause anti-Horn
if it has at most one negative literal, and a formula is anti-Horn if every clause is
anti-Horn.

Example 2.1. Examples of formulas
CNF formula (x0 ∨ x1 ∨ ¬x2) ∧ (¬x1 ∨ x4) ∧ (¬x0 ∨ x3 ∨ x5)

2SAT (x0 ∨ x1) ∧ (¬x1 ∨ x3) ∧ (x0 ∨ ¬x2)

Horn (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4) ∧ (¬x0 ∨ ¬x2)

Renamable Horn (x0 ∨ x1) ∧ (x2 ∨ x3)
By renaming x0 to ¬x∗

0 and x2 to ¬x∗
2, the formula is

transformed into: (¬x∗
0 ∨ x1) ∧ (¬x∗

2 ∨ x3).

Anti-Horn (x1 ∨ x2 ∨ ¬x3) ∧ (¬x0 ∨ x1) ∧ (x0 ∨ x2 ∨ x3)

2.2 Features of SAT Solvers

The backtracking search is a fundamental algorithm for solving CSPs. A backtracking
algorithm traverses the search tree of a problem instance in a depth-first manner.
Every internal node of the search tree generated by backtracking search is a branching
variable x. The edges from x to its children represent assigning to x possible values
from the domain D. The path from the root to a node is a partial value assignment to
the variables along the path. Value and variable ordering heuristics are used to guide
the search. When the backtracking algorithm attempts to extend a node in the search
tree, the variable ordering heuristic chooses a variable to be branched on and the value
ordering heuristic decides the next value assigned to the variable. The performance
of the backtracking algorithm can vary dramatically depending on value and variable
ordering heuristics. The search tree of SAT instances is a binary tree, where left
and right branches represent assigning the Boolean values {0 (false), 1 (true)} to the
branching variable.

A SAT solver based on the Davis-Putnam-Logemann-Loveland (DPLL) algo-
rithm [3, 2] applies unit propagation and pure literal elimination during the back-
tracking search. A unit clause has only one literal, so the value of its corresponding
variable is determined. Unit propagation means if a formula contains unit clauses, the
variables of the unit clauses are assigned the satisfying values. The value assignments
are then propagated to simplify the formula. A pure literal is a literal xε such that
x1−ε does not occur in the formula. Pure literal elimination means if a formula has
pure literals, the corresponding variables are assigned the satisfying values to simplify
the formula. Clause learning adds implied clauses deduced from the conflicts during
unit propagation.

Example 2.2. Consider a formula F1 = x0∧(¬x0∨¬x1)∧(x1∨x2∨x3)∧(¬x2∨¬x3).
Notice {x0} is a unit clause, so we set x0 = 1. Unit propagation implies x1 = 0 and
F1 is simplified to (x2 ∨ x3) ∧ (¬x2 ∨ ¬x3).
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Consider a formula F2 = (x0∨¬x1∨x2)∧(¬x0∨x2∨x3)∧(¬x0∨x1∨¬x2)∧(x1∨x3).
Notice x3 is a pure literal, so we set x3 = 1 and F2 is simplified to (x0 ∨ ¬x1 ∨ x2) ∧
(¬x0 ∨ x1 ∨ ¬x2).

Given a formula F and a partial assignment as to a set of variables S, F [as] denotes
the simplified formula under as. We use the notation as ∪ {l} for the extension of as

by the literal l. Mitchell [20] presents the DPLL algorithm as follows.

Algorithm DPLL(F, as)
SAT if F [as] is empty, return SATISFIABLE

Conflict if F [as] contains an empty clause, return UNSATISFIABLE

Unit Clause if F [as] contains a unit clause {p}, return DPLL(F, as ∪ {p})
Pure Literal if F [as] contains a pure literal p, return DPLL(F, as ∪ {p})
Branch Let p be a literal of F [as]

if DPLL(F, as ∪ {p}) returns SATISFIABLE, return SATISFIABLE
else return DPLL(F, as ∪ {¬p})

Satz [19] is a DPLL-based SAT solver. A randomized version of Satz, Satz-
rand [10], is used as the sub-solver in some previous work [29, 16, 24, 6] because Satz-
rand has an effective variable selection heuristic and a strong simplification strategy.
However, Satz-rand is unable to efficiently solve large real-world problem instances.

Based on the DPLL algorithm, Minisat [9] includes the techniques of conflict-
clause recording, conflict-driven backjumping, dynamic variable ordering, and two-
literal watch scheme. The version 2 of Minisat has a variable elimination style sim-
plification. Algorithm 2.1 shows the search procedure of Minisat [9].

Algorithm 2.1: The search procedure of Minisat

while true do
Propagate unit clauses; /* two-literal watch scheme */

if no conflict then
if all variables assigned then

return SATISFIABLE;
else

Choose a new variable and assign it a value;
/* dynamic variable ordering based on activity */

else
Analyze and add a conflict clause; /* conflict-clause recording */

if top-level conflict found then
return UNSATISFIABLE;

else
Backtrack; /* conflict-driven backjumping */
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We modify Minisat instead of Satz-rand because Minisat is one of the fastest SAT
solvers. Minisat is highly efficient in solving large real-world instances used in SAT
competitions. In addition, the code of Minisat is clear and well-documented.

2.3 Stochastic Local Search Algorithms

The definitions and algorithms in this section are taken from [13, 23].
The backtracking search algorithm is one of the systematic search algorithms,

which are complete traversals over the search space. If there exists any solution to
a problem instance, systematic search algorithms are guaranteed to find a solution.
Otherwise, systematic search algorithms conclude the fact that the problem instance
has no solutions. In contrast, local search algorithms are neither guaranteed to find a
solution to the problem instance, nor able to firmly determine that no solution exists.
Despite the incompleteness, local search algorithms are essential to solving large CSP
instances.

Hoos and Stützle [13] have formally defined a stochastic local search (SLS) algo-
rithm.

Definition 2.2 (Stochastic Local Search (SLS) Algorithm). Given a (combinato-
rial) problem Π, a stochastic local search algorithm for solving an arbitrary problem
instance π ∈ Π is defined by the following components:

• the search space S(π) of instance π, which is a finite set of candidate solutions
s ∈ S (also called search positions, locations, configurations, or states);

• a set of (feasible) solutions S ′(π) ⊆ S(π);

• a neighborhood relation on S(π), N(π) ⊆ S(π)× S(π);

• a finite set of memory states M(π), which, in the case of SLS algorithms that
do not use memory, may consist of a single state only;

• an initialization function init(π) : ∅ → D (S(π)×M(π)), which specifies a
probability distribution over initial search positions and memory states;

• a step function step(π) : S(π)×M(π)→ D (S(π)×M(π)) mapping each search
position and memory state onto a probability distribution over its neighboring
search positions and memory states;

• a termination predicate terminate(π) : S(π)×M(π)→ D ({true, false}) map-
ping each search position and memory state to a probability distribution over
truth values, which indicates the probability with which the search is to be ter-
minated upon reaching a specific point in the search space and memory state.

In the above, D(S) denotes the set of probability distributions over a given set S,
where formally, a probability distribution D ∈ D(S) is a function D : S → R

+

0 that
maps elements of S to their respective probabilities.
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Definitions of the search space, the set of (feasible) solutions, and the neighborhood
relation usually depend on the problem instance π. Once these three components are
determined, definitions of the initialization and step functions can be independent
from π. Therefore, various general SLS algorithms are developed. I mainly introduce
the Iterative Improvement (II) and Tabu Search (TS) algorithms, which are relevant
to our study. The Iterative Improvement algorithm, Algorithm 2.2, is a basic SLS
algorithm.

Algorithm 2.2: Iterative Improvement (II)

Determine initial candidate solution s;
while s is not a local minimum do

Choose a neighbor s′ ∈ N(s) such that g(s′) < g(s);
s← s′;

The function g(s) : S(π) → R is an evaluation function, which maps each search
state s to a real number such that the global optima correspond to the (optimal) so-
lutions of the problem instance π. The evaluation function directs the search towards
a promising area that is likely to have solutions. Given a search space S, one common
initialization function returns a uniform distribution over S, i.e., init(s) ← 1/|S| if
s ∈ S. Thus, an initial candidate solution s is selected randomly from the search space
S. Then, the Iterative Improvement algorithm applies g(s) to evaluate the neighbor-
hood N(s) of the current search state s. Use I(s) to denote the set of neighbors
s′ ∈ N(s) such that g(s′) < g(s). The step function can then return a uniform distri-
bution over I(s), i.e., step(s)(s′) ← 1/|I(s)| if s′ ∈ I(s); otherwise, step(s)(s′) ← 0.
Hence, a new candidate solution s′ is chosen randomly from I(s) to improve the
current one s.

The Iterative Improvement algorithm terminates when it reaches a local minimum,
which is defined as follows [13].

Definition 2.3 (Local Minimum). Given a search space S, a solution set S ′ ⊆ S,
a neighborhood relation N ⊆ S × S and an evaluation function g : S → R, a local
minimum is a candidate solution s ∈ S such that for all s′ ∈ N(s), g(s) ≤ g(s′).

A search state s is a local minimum if s has no neighbors that can make an im-
provement regarding the evaluation function. To avoid being stuck in local minima,
SLS algorithms are typically incorporated with escape strategies. Tabu Search, Al-
gorithm 2.3, is one of the escape strategies. Tabu Search uses a short-term memory
to record previously visited search states, which are forbidden to be revisited. As a
result, Tabu Search allows the search to escape from local minima and avoids cycles
in the search. The tabu tenure is a parameter that decides the number of search
states to be memorized. However, it is possible that Tabu Search also excludes search
states that lead to new candidate solutions.

Tabu Search allows non-improving moves. If g(s′) ≥ g(s) for every non-tabu
neighbor s′ ∈ N ′(s), then Algorithm 2.3 selects a non-improving candidate solution
s′ in Line 1.
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Algorithm 2.3: Tabu Search (TS)

Determine initial candidate solution s;
while termination criterion is not satisfied do

Determine the set of non-tabu neighbors N ′(s) ⊆ N(s);
Choose a best candidate solution s′ ∈ N ′(s);1

Update tabu attributes based on s′;
s← s′;

2.4 Backdoors

Williams, Gomes, and Selman [29] formally define backbones, sub-solvers, weak back-
doors, and strong backdoors. A CSP instance is denoted as P = 〈X,D,C〉 where
X is the set of variables, D is the set of domains, and C is the set of constraints.
For a subset of variables S ⊆ X, aS : S → D denotes a partial value assignment
to the variables in S. We use P [aS] to denote the simplified CSP instance obtained
by removing from P every constraint that is satisfied by aS. The notation P [v/x]
represents the simplified CSP instance after assigning the value v to the variable x.

Definition 2.4 (Backbone). S is a backbone if there is a unique partial assignment
aS : S → D such that P [aS] is satisfiable.

A backbone is a subset of variables that have the same value assignment in all
solutions, whereas a backdoor is defined with respect to a sub-solver.

Definition 2.5 (Sub-Solver). A sub-solver A given as input a CSP, P , satisfies the
following:

• (Trichotomy) A either rejects the input P , or “determines” P correctly (as
unsatisfiable or satisfiable, returning a solution if satisfiable),

• (Efficiency) A runs in polynomial time,

• (Trivial solvability) A can determine if P is trivially true (has no constraints)
or trivially false (has a contradictory constraint),

• (Self-reducibility) if A determines P , then for any variable x and value v, then
A determines P [v/x].

The DPLL algorithm can be modified to be a sub-solver. We use only unit prop-
agation and pure literal elimination. The algorithm stops when a branching step is
encountered.

Definition 2.6 (Weak Backdoor). A nonempty subset S of the variables is a weak
backdoor in P for A if for some aS : S → D, A returns a satisfying assignment of
P [aS].
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A weak backdoor is a subset of variables such that some value assignment leads
to a polynomial-time solvable sub-problem. Here is an example of a weak backdoor
with respect to unit propagation.

Example 2.3. Consider a formula F = (x0 ∨ x1) ∧ (¬x1 ∨ x2) ∧ (¬x0 ∨ x3) ∧ (¬x3 ∨
x1)∧(¬x2∨¬x3∨x4). We select variable x0 and set x0 = 1. Unit propagation implies
x3 = 1, x1 = 1, x2 = 1, and x4 = 1. Now every variable has a value assignment and
the formula F is satisfied. Hence, x0 is a weak backdoor in F with respect to unit
propagation.

Definition 2.7 (Strong Backdoor). A nonempty subset S of the variables is a strong
backdoor in P for A if for all aS : S → D, A returns a satisfying assignment or
concludes unsatisfiability of P [aS].

A strong backdoor is a subset of variables such that every value assignment leads
to a polynomial-time solvable sub-problem.

Example 2.4. Consider the formula F = (x0 ∨ x1) ∧ (¬x1 ∨ x2) ∧ (¬x0 ∨ x3) ∧
(¬x3 ∨ x1) ∧ (¬x2 ∨ ¬x3 ∨ x4) in the previous example. After we assign x0 the value
1, unit propagation can find a satisfying assignment of F . If we set x0 = 0, by unit
propagation we have x1 = 1 and x2 = 1. The simplified formula is (¬x3 ∨ x4) and
F is not yet satisfied. Hence, x0 is not a strong backdoor in F with respect to unit
propagation.

I will review previous work on deletion backdoors and learning-sensitive backdoors
in Chapter 3, so I introduce the concepts here. Dilkina, Gomes, and Sabharwal [6, 7]
define deletion backdoors and learning-sensitive backdoors for SAT instances. A
formula is denoted as F = 〈X,D,C〉 where X is the set of variables, D is the set of
Boolean domains, and C is the set of constraints. For a subset of variables S ⊆ X,
F − S denotes the formula obtained by deleting the variables in S from F .

Definition 2.8 (Deletion Backdoor). A nonempty subset S of the variables is a
deletion backdoor in F for A if A returns a satisfying assignment or concludes unsat-
isfiability of F − S.

A deletion backdoor is a subset of variables such that once the variables are deleted
from the formula, the remaining sub-formula can be solved in polynomial time.

Example 2.5. Consider a formula F = (x0 ∨ x1) ∧ (¬x1 ∨ x2) ∧ (¬x0 ∨ ¬x2 ∨ x3).
After deleting the variable x3 from F , the formula F −{x3} = (x0∨x1)∧ (¬x1∨x2)∧
(¬x0 ∨ ¬x2) is 2SAT. Thus, x3 is a deletion backdoor in F with respect to 2SAT.

Definition 2.9 (Learning-Sensitive Backdoor). A nonempty subset S of the variables
is a learning-sensitive backdoor in F for A if there exists a search tree exploration
order such that a clause learning SAT solver branching only on the variables in S,
with this order and with A as the sub-solver at the leaves of the search tree, either
finds a satisfying assignment or concludes unsatisfiability of F .

Dilkina et al. provide an example of a learning-sensitive backdoor in [7].
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2.5 Dichotomy Theorem

I introduce the dichotomy theorem in this section because we want to identify poly-
nomial tractable classes for finding backdoors.

Schaefer [26] has proposed a dichotomy theorem that characterizes any SAT in-
stance as either polynomial-time decidable or NP-complete.

Theorem 2.1. A SAT problem over a finite set of logical relations is polynomial-time
decidable if at least one of the following six conditions holds:

1. Every relation is satisfied when all variables are 0.

2. Every relation is satisfied when all variables are 1.

3. Every relation is definable by a CNF formula in which each conjunct has at
most one negative literal.

4. Every relation is definable by a CNF formula in which each conjunct has at
most one positive literal.

5. Every relation is definable by a CNF formula in which each conjunct has at
most two literals.

6. Every relation is the set of solutions of a system of linear equation over the
two-element field {0, 1}.

Jeavons, Cohen, and Gyssens [15] extend Schaefer’s results to CSP instances.
They suggest any set of constraints that is not NP-complete must satisfy an alge-
braic closure property. Given a set of constraints, Jeavons et al. construct a CSP to
determine the closure property of the constraints.

2.6 Summary

In this chapter, I described the background knowledge of CSP, SAT, local search
algorithms, backdoors, and polynomial-time tractable classes.

In the next chapter, I will review the related work on finding backdoors in SAT
instances.

11



Chapter 3

Related Work

In this chapter, I summarize previous research on finding weak and strong backdoors.
I also review previous work on the relationship between backdoor variables and on
generalizations of backdoors.

3.1 Backdoors

Even though CSP and SAT problems are generally NP-complete, the state-of-the-art
CSP and SAT solvers manage to solve large practical problems with thousands of
variables and constraints. To explain why current CSP and SAT solvers scale well
in practice, Williams, Gomes, and Selman [29] propose the notion of backdoors to
capture structural properties of the problems. We have introduced their definitions
of sub-solvers, backdoors, and strong backdoors in Chapter 2. Backdoors are a set of
variables for which there exists some value assignment that leads to a polynomial-time
solvable sub-problem. Using Satz-rand as the sub-solver, Williams et al. empirically
find backdoors in several structured SAT instances. Experimental results show that
the size of backdoors in these practical instances is relatively small compared to the
number of variables, which means practical instances usually have small tractable
structures.

In addition, Williams et al. provide three algorithms to solve CSPs by first ex-
ploiting backdoor variables. Once a backdoor is found, the sub-solver can either
return a satisfying assignment or conclude the unsatisfiability of the problem. The
first algorithm is deterministic and systematically searches every subset of variables
for a backdoor. I will describe and modify this algorithm to find minimal backdoors
in Chapter 4. Based on a beforehand estimate of the backdoor size, the second al-
gorithm employs a randomized strategy. In each iteration of the algorithm, a subset
of variables, whose size is larger than the backdoor size, is selected randomly and
tested for a backdoor. The third algorithm is a depth-first search algorithm with a
variable selection heuristic that chooses a backdoor variable to branch on with a cer-
tain probability. Based on a formal runtime analysis of these algorithms, Williams et
al. believe that when the size of backdoors is small, exploiting backdoors is a benefit
to solving CSPs.
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Williams, Gomes, and Selman [30] further investigate the relations between back-
doors, restarts, and heavy-tailed behaviors. A restart strategy means when a back-
tracking algorithm fails to find a solution after some period, the algorithm restarts
with different value and variable ordering heuristics [23]. The heavy-tailed behavior
means that a backtracking algorithm will very likely run for a long time on the prob-
lem instance [23]. Williams et al. suggest that small strong backdoors lead to runtime
distributions lower-bounded by heavy-tails.

Backdoors are determined with respect to specific sub-solvers, which can be poly-
nomial tractable syntactic classes, or polynomial algorithmic techniques of current
solvers. Sub-solvers for SAT problems accept formulas as input. Because 2SAT,
Horn, or RHorn formulas are well-known polynomial-time tractable, sub-solvers can
be 2SAT, Horn, or RHorn solvers. State-of-the-art SAT solvers, such as Satz-rand,
can also be modified to be sub-solvers because unit propagation and pure literal
elimination are common polynomial-time features of SAT solvers.

Interian [14] proposes several approximation algorithms for computing backdoors
in random 3SAT problems with respect to 2SAT and Horn. The basis of the first al-
gorithm for 2SAT backdoors is finding a maximal independent clause set. A maximal
independent clause set C is a set of clauses in a formula F such that no two clauses in
C share variables, while every remaining clause of F has some variable appearing in C.
In fact, any value assignment to the variables in C leads to a simplified 2SAT formula.
Thus, the variables in a maximal independent clause set form a 2SAT backdoor. Inte-
rian proves that this algorithm has an approximation ratio of 3, which means the size
of backdoors found by this algorithm can be as large as three times the minimal size.
The second algorithm calculates a 2SAT backdoor S by repeatedly adding variables
to S. If a clause C shares no variables with the current backdoor S, a variable of C is
added to S. A similar algorithm is used to find Horn backdoors. For each non-Horn
clause C, the algorithm examines the positive literals whose corresponding variables
are not in the current backdoor S. To make C become Horn, variables corresponding
to the extra positive literals are added to S. Furthermore, Interian considers mapping
the backdoor detection problem to the following hitting set problem.

HITTING SET
Input A collection C of subsets C1, . . . , Cm of a finite set V =

⋃

m

i=1
Ci.

Parameter A positive integer k.
Question Is there a subset V ′ ⊆ V of size at most k such that V ′ ∩ Ci 6= ∅, i = 1, . . . ,m?

In the context of finding 2SAT backdoors, C is the set of all clauses, V is the
set of all variables, and V ′ is the subset of variables forming a 2SAT backdoor. A
mapping for finding Horn backdoors is also constructed in [14]. Interian analyzes the
approximation ratio of the algorithms and indicates that a greedy algorithm for find-
ing a minimum hitting set works best in practice. In addition, Interian concludes that
compared to practical SAT problems, random 3SAT problems have larger backdoor
sets, which include 30%–65% of the total number of variables. However, Interian fails
to take into account the effect of unit propagation, which can result in much smaller
backdoors.
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The focus of some previous work [21, 28] is on the theoretical analysis of the
parameterized complexity of the following two problems.

WEAK A-BACKDOOR
Input A formula F .

Parameter A positive integer k.
Question Does F have a weak backdoor of size at most k with respect to the sub-solver A?

STRONG A-BACKDOOR
Input A formula F .

Parameter A positive integer k.
Question Does F have a strong backdoor of size at most k with respect to the sub-solver A?

Szeider [28] analyzes the parameterized complexity of finding weak and strong
backdoors with respect to DPLL sub-solvers. Applying only unit propagation or pure
literal elimination or both, the DPLL sub-solver either returns a satisfying assignment
of the given formula, or stops if branching is required. Szeider proves that the pa-
rameterized problems of weak and strong DPLL-backdoors are both W[P]-complete.
(See Downey and Fellows [8] for more information on parameterized complexity.)

Nishimura, Ragde, and Szeider [21] investigate the parameterized complexity of
weak and strong backdoor detection with respect to 2SAT and Horn. By reducing
the hitting set problem to the weak 2SAT- or Horn-backdoor problem, they prove
that the parameterized problem of detecting weak backdoors with respect to 2SAT
and Horn is W [2]-hard, which is unlikely to be fixed-parameter tractable. Moreover,
they propose two recursive algorithms, called sb-2cnf and sb-horn respectively, for
finding strong 2SAT and Horn backdoors with size up to k. The algorithm sb-2cnf

changes all clauses into 2SAT by recursively selecting a clause C with more than two
variables. One variable of C is added into the backdoor set, and its occurrence in the
formula is deleted. The algorithm sb-horn applies a similar idea to make non-Horn
clauses into Horn. Based on the time complexity of these two algorithms, Nishimura
et al. conclude that the parameterized problem of strong 2SAT- or Horn-backdoor
is fixed-parameter tractable. They conjecture it is hard to detect weak backdoors
because in addition to fulfilling the syntactic requirements, the simplified formula
has to be satisfiable. Furthermore, they prove that the non-parameterized problems
of both weak and strong 2SAT- or Horn-backdoor are NP-complete. However, as
noted by Dilkina, Gomes, and Sabharwal [6], the algorithms proposed by Nishimura
et al. fail to take into account any simplification caused by value assignments to
backdoor variables. Therefore, the backdoors found by sb-2cnf and sb-horn are
more properly called deletion backdoors.

Dilkina, Gomes, and Sabharwal [6] consider the influence of empty clause detec-
tion, a feature of state-of-the-art SAT solvers. A formula F contains an empty clause
if F has both unit clauses {x} and {¬x}. They prove that the problem of strong
2SAT- or Horn-backdoor becomes both NP-hard and coNP-hard once the feature of
empty clause detection is included. Despite increasing the worst-case complexity, the
incorporation of empty clause detection can reduce the backdoor size in practice. For
backdoors with respect to RHorn, they show that in some problems, strong backdoors
can be exponentially smaller than deletion backdoors. Experimental results illustrate
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that deletion RHorn backdoors have smaller sizes than strong Horn backdoors, al-
though both have considerably larger sizes than strong backdoors with respect to
DPLL sub-solvers and Satz-rand. Satz-rand performs best in finding minimal strong
backdoors in their experiments on structured instances because Satz-rand solves the
instances with little or no search.

Paris, Ostrowski, Siegel, and Säıs [22] introduce a two-step approach to find min-
imal strong RHorn backdoors. The first step is to find a renaming of variables that
maximizes the number of Horn clauses in the formula. To approximate the maximum
Horn sub-formula, they use a local search algorithm, which flips the value of a chosen
variable in each iteration until one of the terminating criteria is met. In the second
step, a greedy algorithm is applied to find a minimal backdoor. The algorithm re-
peatedly adds into the backdoor set a variable that appears in the most non-Horn
clauses. Then, all corresponding positive literals of the chosen variable are deleted to
make non-Horn clauses become Horn. Experimental results from random 3SAT and
real-world SAT instances demonstrate that exploiting backdoor variables can signif-
icantly improve the performance of SAT solvers. However, backdoors found by the
algorithm proposed by Paris et al. are more properly called deletion RHorn backdoors
than strong RHorn backdoors. Moreover, they fail to explain what values are used in
the experiments for the parameters of their proposed local search algorithm.

Kottler, Kaufmann, and Sinz [17] suggest two algorithms to identify deletion
RHorn backdoors based on a transformation into the dependency graph problem.
Given a formula F with n variables, the corresponding dependency graph is a di-
rected graph with 2n vertices, where each variable is represented by two vertices k0

and k1, showing whether or not the variable should be renamed. A variable has a
conflict loop if there is a path from k0 to k1, and vice versa. Kottler et al. provide the
lemma: a formula is RHorn if and only if there exists no variable that has a conflict
loop in the dependency graph. Thus, the main idea of their proposed algorithms is
to break all conflict loops in the dependency graph. Both algorithms calculate small
conflict loops in the dependency graph beforehand. If a variable is added into the
backdoor set, its corresponding vertices and incident edges are removed from the de-
pendency graph. The first algorithm adds variables to the backdoor set in a greedy
way. The variable appearing in the most conflict loops is selected, and the process
repeats until the remaining graph has no conflict loops. The second algorithm elimi-
nates conflict loops by repeatedly selecting a conflict loop and adding all the involved
variables into the backdoor set. If restoring the vertices and edges of a backdoor vari-
able does not introduce new conflict loops into the dependency graph, the variable
is deleted from the backdoor set to reduce the backdoor size. If the largest chosen
conflict loop contains k variables, the size of backdoors found by this algorithm can
be as large as k times the minimal size. Thus, the algorithm selects conflict loops
with preference to the smallest ones. Empirical results show that the size of deletion
RHorn backdoors in real-world SAT instances is usually smaller than the size of 2SAT
or Horn backdoors.

Samer and Szeider [25] propose the concept of backdoor trees to investigate the
relationship between variables of a strong backdoor set. A backdoor tree is a binary
decision tree on variables that form a strong backdoor, whose leaves correspond to the
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polynomial-time tractable sub-formulas the strong backdoor leads to. The following
parameterized problem is discussed.

A-BACKDOOR TREE
Input A formula F .

Parameter A positive integer k.
Question Does F have a backdoor tree with at most k leaves with respect to the sub-solver A?

Samer and Szeider [25] syntactically define the sub-solver as the classes of 2SAT,
Horn, and RHorn formulas. They prove that the problem of 2SAT- or Horn-backdoor
tree is fixed-parameter tractable, while the non-parameterized problem of A-backdoor
tree is NP-hard for A ∈ {2SAT, Horn, RHorn}. Moreover, they empirically compare
the size of strong Horn backdoors, deletion RHorn backdoors, and Horn- or RHorn-
backdoor trees in automotive configuration [27] and random 3SAT instances. They
use the same set of automotive configuration instances as Dilkina et al. [6]. However,
I will show in Chapter 5 that these automotive configuration instances are simple and
mostly are solved by Minisat’s pre-processing.

Ruan, Kautz, and Horvitz [24] study the connections between problem hardness
and backdoors for quasigroup completion and morphed graph coloring problems. Us-
ing Satz-rand as the sub-solver in their experiments, they notice that problem hard-
ness, represented by the runtime of Satz-rand, does not appear to be correlated with
the size of backdoors. Therefore, the notion of backdoor keys is introduced to reveal
the dependencies between backdoor variables. A backdoor key is a backdoor variable
whose value is fixed given a value assignment to the rest of backdoor variables. Ruan
et al. suggest that problem hardness has strong correlation with the ratio of the size
of backdoor keys to the size of backdoors. Nonetheless, they also notice that no such
correlation exists in domains such as logistics and circuit synthesis.

Kilby, Slaney, Thiébaux, and Walsh [16] theoretically prove the NP-hardness of
backbone approximation. By modifying Satz-rand for the sub-solver, they propose a
series of algorithms for finding both weak and strong backdoors. I will discuss their
proposed algorithms later in Chapter 4. Experimental results from random 3SAT
instances demonstrate that backbones do not overlap with backdoors very much.
In addition, Kilby et al. empirically evaluate the correlations between backbones,
backdoors, and problem hardness. They suggest that problem hardness, represented
by the number of search nodes of Satz-rand, is most likely correlated with the size
of strong backdoors. However, they only consider random 3SAT and graph coloring
instances in the experiments, and these are small instances with at most 225 variables.

Extending the results in [16], Gregory, Fox, and Long [11] show that there is lit-
tle overlap between backbones and backdoors for structured SAT instances. They
propose an algorithm to find minimal backdoors by sequentially deleting unnecessary
variables from the candidate backdoor. If the DPLL sub-solver can find a solution
without branching, then the subset of variables is a backdoor. Experiments are carried
out on both random 3SAT and structured instances, taken from domains including
planning, graph coloring, and quasigroup completion. For a particular instance, Gre-
gory et al. analyze the frequency that each variable appears in the 100 backdoors
computed by their proposed algorithm. They also observe that backbone variables
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are likely corresponding to backdoor variables with low frequencies. In addition, they
indicate that combining clause learning with the sub-solver can reduce the size of
backdoors. However, Gregory et al. only find 100 backdoors for each instance by
repeatedly running their proposed algorithm. It is possible that the backdoors found
do not well represent all the backdoors in an instance. Moreover, they only use small
instances in their experiments with up to about 300 variables.

As a common feature of most state-of-the-art SAT solvers, clause learning can
derive new clauses from the conflicts during propagation. Dilkina, Gomes, and Sab-
harwal [7] take clause learning into account and propose the idea of learning-sensitive
backdoors. They prove that using unit propagation as the sub-solver, the mini-
mal learning-sensitive backdoors can be smaller than the minimal traditional strong
backdoors in some unsatisfiable SAT instances. For traditional strong backdoors, the
order of value assignments to backdoor variables makes no difference. Nevertheless,
the value ordering of variables in learning-sensitive backdoors is significant because
for some unsatisfiable SAT instances, one value ordering can lead to a backdoor with
size exponentially smaller than a different value ordering. Dilkina et al. empirically
evaluate the upper bounds on the minimal size of learning-sensitive and traditional
strong backdoors with respect to unit propagation. Experimental results from prac-
tical SAT instances suggest that clause learning leads to learning-sensitive backdoors
with size considerably smaller than traditional strong backdoors.

Observing the similarities between SAT and Mixed Integer Programming (MIP),
Dilkina et al. [5] introduce generalized backdoors for combinatorial optimization
problems, including weak optimality backdoors for finding optimal solutions and
optimality-proof backdoors for proving optimality. Analogous to the clause learn-
ing feature of SAT solvers, optimization algorithms add cuts and tightened bounds
during the search. Hence, they also define order-sensitive backdoors for combinatorial
optimization problems. They empirically analyze the lower bound on the probability
that a randomly selected set of variables of a given size k is a backdoor. Experimen-
tal results show that benchmark instances in MIP tend to have small backdoors, and
optimality-proof backdoors can be smaller than weak optimality backdoors. More-
over, the root Linear Programming (LP) relaxation is a good heuristic for discovering
small backdoors.

3.2 Summary

In this chapter, I described the related work on both weak and strong backdoors.
Experimental results in previous work show that backdoors with respect to syntac-
tically defined sub-solvers tend to have larger sizes than backdoors with respect to
algorithmically defined sub-solvers. Table 3.1 summarizes the sub-solvers and the
domains of test instances used in the previous research.

In the next chapter, I will present several algorithms for finding backdoors.
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Table 3.1: Summary of related work

Sub-Solvers Instance domains
Williams et al. [29] Satz-rand structured

Interian [14] 2SAT and Horn random 3SAT

Szeider [28] DPLL

Nishimura et al. [21] 2SAT and Horn

Dilkina et al. [6] Horn, RHorn, DPLL,
and Satz-rand

graph coloring, planning, game the-
ory, and automotive configuration

Paris et al. [22] RHorn random 3SAT, SAT competition

Kottler et al. [17] 2SAT, Horn, and
RHorn

SAT competition and automotive
configuration

Samer and Szeider [25] 2SAT, Horn, and
RHorn

automotive configuration

Ruan et al. [24] Satz-rand quasigroup completion and mor-
phed graph coloring

Kilby et al. [16] Satz-rand random 3SAT

Gregory et al. [11] DPLL random 3SAT, planning, graph col-
oring, and quasigroup completion

Dilkina et al. [7] unit propagation and
clause learning

structured
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Chapter 4

Algorithms for Finding Backdoors

In this chapter, I introduce how we define sub-solvers in our research and describe
several algorithms for finding minimal backdoors. The ultimate goal of our research
is to evaluate the effects on the runtime of backtracking algorithms when value and
variable ordering heuristics make mistakes. Therefore, we address the problem of
finding all or many minimal backdoors. First, I describe an exact algorithm, which
is suitable for small and simple instances. Then, I explain the previous local search
algorithm proposed by Kilby, Slaney, Thiébaux, and Walsh [16]. I also discuss a
local search algorithm that combines our definition of sub-solvers with Kilby et al.’s
algorithm. Last but not least, I analyze the techniques used in our proposed local
search algorithm for improving Kilby et al.’s algorithm.

I introduce some terminology used in this chapter. The algorithms focus on finding
weak backdoors in SAT instances, so if not explicitly specified, the word backdoor is
used for weak backdoors. A minimal backdoor is a backdoor S such that for every
backdoor S ′ in the instance, |S| ≤ |S ′|. A small backdoor refers to a backdoor S such
that no proper subset of S is also a backdoor. A minimal backdoor can be viewed
as a global minimum, and a small backdoor can be viewed as a local minimum. The
current smallest backdoor is the smallest backdoor found so far by the algorithm.

I use the random 3SAT instance uf50-01 as a running example (See Appendix A).
Taken from SATLIB [12], the instance uf50-01 is satisfiable with 50 variables and
218 clauses. I use subscripts 〈0, 1, . . . , 49〉 to represent variables 〈x0, x1, . . . , x49〉. For
each variable xi, i = 0, 1, . . . , 49, I denote the positive literal as l2i and the negative
literal as l2i+1.

4.1 Sub-Solvers

We apply the sub-solver and backdoor definitions in Chapter 2 to SAT. Given a
formula F with n variables X = 〈x0, x1, . . . , xn−1〉, the domain Di of each variable xi

is Di = {0 (false), 1 (true)}, i = 0, . . . , n− 1. A nonempty subset S of the variables
is a backdoor in F for a sub-solver A if for some partial assignment aS : S → D, A
returns a satisfying assignment of the simplified formula F [aS].

We know from Chapter 3 that the sub-solvers in previous work are defined either
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syntactically or algorithmically. Satz-rand can be modified to be a sub-solver. At each
branching step, Satz-rand extends a variable chosen by the variable selection heuristic
and assigns a truth value to the variable. Then, Satz-rand applies unit propagation
and simplification, forcing some value assignments. The search continues until every
variable has a satisfying value. A Satz-rand sub-solver applies only unit propagation
and simplification. Given a simplified formula, a Satz-rand sub-solver either returns
a satisfying assignment or stops when a branching step is encountered.

Kilby et al. [16] propose Algorithm 4.1 to compute small backdoor sets with respect
to Satz-rand.

Algorithm 4.1: MinWeakBackdoor(F, I)

input : Formula F
A set of literals I forming a candidate backdoor

output: A set of literals W forming a small backdoor

W ← ∅;
while I 6= ∅ do

Choose literal l ∈ I sequentially;
/* randomized version: Choose literal l ∈ I randomly; */

I ← I \ {l};
Run Satz-rand on F [W ∪ I];
if Satz-rand requires branching then

W ← W ∪ {l};
return W ;

The input I is a candidate backdoor; that is, Satz-rand can solve F [I] without
branching. Initially all the literals in I form a backdoor, but we want to remove any
unnecessary literals from I. If we remove a literal l and Satz-rand can still solve the
simplified formula without branching, then the literal l is considered unnecessary for
a small backdoor. The set W contains the literals that form a small backdoor. After
removing a literal l from I, we run Satz-rand on F with a partial assignment W ∪ I.
If Satz-rand requires branching, then l belongs to the small backdoor set and is added
to W .

However, the simplified formula can be polynomial-time solvable before Satz-rand
returns a satisfying assignment. For example, it is possible that the simplified formula
F [aS] is 2SAT, which belongs to the polynomial-time decidable classes, but unit
propagation is unable to solve F [aS] without branching.

Therefore, in our proposed framework, we define the sub-solver both algorithmi-
cally and syntactically. We assume there exists a sub-solver that:

• applies unit propagation;

• solves the simplified formula if it is in one of the polynomial tractable classes.

Specifically, given a partial assignment aS to a subset of variables S, we first
apply unit propagation to obtain the simplified formula F [aS]. Second, we check the
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following conditions to see if F [aS] belongs to Schaefer’s polynomial-time tractable
classes described in Chapter 2:

1. if F is satisfied;

2. if F [aS] is 2SAT;

3. if F is satisfied after assigning 0 (false) to all the remaining variables;

4. if F is satisfied after assigning 1 (true) to all the remaining variables.

If one of the above conditions is true, then S is a backdoor set. The first two
conditions are trivial. If F is satisfied, then a solution of F has been already found.
F [aS] is 2SAT corresponds to Class 5 of Schaefer’s theorem. The third condition
covers Class 1 and 4 of Schaefer’s theorem, while the last condition covers Class 2
and 3. If F [aS] is a Horn formula, it can be satisfied by assigning 0 to all variables
unless it has unit clauses with a single positive literal. However, after unit propagation
F [aS] is guaranteed to have at least two unassigned literals in each clause. In this
case, at least one of the unassigned literals is a negative literal. Thus, F [aS] is satisfied
when all remaining variables are 0, which means F is satisfied. A similar reasoning
applies if F [aS] is an anti-Horn formula.

However, we do not cover the following polynomial-time tractable classes because
of a lack of time:

• if F [aS] belongs to Class 6 of Schaefer’s theorem;

• if F [aS] is RHorn.

Jeavons, Cohen, and Gyssens [15] note that Schaefer’s theorem identifies the types
of clauses that are closed under conjunction. The clauses can be put together with
conjunction while still maintaining tractability. Jeavons et al. suggest that testing for
tractability of any set of relations over a Boolean domain can be done in polynomial
time by solving a CSP with eight variables. RHorn is not one of Schaefer’s tractable
classes because RHorn clauses do not satisfy the closure property. Any clause by itself
is trivially RHorn, but an arbitrary conjunction of RHorn clauses is not guaranteed
to be polynomial-time tractable. Nevertheless, determining whether a set of clauses
is RHorn can be done in polynomial time. Given a formula F , Lewis [18] proposes
a transformation of F into a 2SAT formula F ∗ and proves that F is RHorn if and
only if F ∗ is satisfiable. Both constructing F ∗ and checking the satisfiability of F ∗

require polynomial time. Due to a lack of time, we did not implement algorithms for
checking Class 6 of Schaefer’s theorem and RHorn. Although we expect this does not
significantly change our experimental results in Chapter 5, it is a matter for future
experiments to decide. I will discuss this problem later in Chapter 6.

We have proposed three procedures, listed in Table 4.1, to check for the above
mentioned conditions.
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Table 4.1: Low-level procedures

Procedure Input Output Description
isSatisfied(F) Formula F Return true if F is satisfied.

Otherwise, return false.
Test if every clause of F is
satisfied.

is2SAT(F) Formula F Return true if the remaining
formula is 2SAT. Otherwise,
return false.

For each not yet satisfied
clause C of F , test if C
has at most two unassigned
variables.

setValue(F, v) Formula F ,
Boolean
value v

Return true if F is satisfied
after assigning v to all the
remaining variables. Other-
wise, return false.

Assign v to each unassigned
variable of F . Test if F is
satisfied.

4.2 Exact Algorithm

Let k be the size of a minimal backdoor. Given a formula F with n variables X =
〈x0, x1, . . . , xn−1〉, we can perform an exhaustive search if k is small. There are

(

n

k

)

subsets of k variables, each having 2k possible value assignments. The time complexity
is:

k
∑

i=1

(

f(n) 2i

(

n

i

))

= O
(

f(n)2knk
)

,

where f(n) is the time complexity of the sub-solver A.
In fact, this brute force algorithm only works on very small instances. Even if

the backdoor size k is small, the time complexity becomes infeasible in practice as n
increases.

Algorithm 4.2 is used to find all the backdoors of size at most k. The algorithm
calls a recursive procedure expand(V, S, k), which explores the variables of F in a
depth-first manner.

Algorithm 4.2: Exact algorithm for finding minimal backdoors

input : Formula F
Minimal backdoor size k

output: A set of minimal backdoors S of size k; or the empty set if F has no
backdoors of size at most k

S ← ∅;
for i← 0 to n− 1 do expand({xi}, S, k);
return S;

The procedure expand(V, S, k) takes as input a set of variables V , a set of minimal
backdoors S, and a positive integer k. The integer k is used to control the levels of
recursion. The procedure propagates every value assignment to the variables in V .
If there is no conflict during propagation, we check if the formula F is satisfied or
if the simplified formula is in one of the polynomial-time tractable classes. If one of
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the conditions is true, we add V to a list of backdoors S. If a set of variables V is
a backdoor, then all the subsets of variables that include V are also backdoors. We
focus on finding minimal backdoors, so it is unnecessary to explore further once V is
a backdoor set. Therefore, the procedure returns to the upper level with the Boolean
value true. The procedure recursively calls itself with one more variable added to
V and k − 1. When k ≤ 1, the algorithm reaches the base case, which means no
backdoors have been found. Thus, the algorithm returns false.

Procedure expand(V, S, k)

input : A set of variables V
A set of backdoors S
A positive integer k

output: Return true if V is a backdoor; otherwise, return false
S is updated with new backdoors

foreach value assignment aV of V do
Propagate aV ;
if no conflicts during propagation then

if isSatisfied(F) or isSatisfying2SAT(F) or setValue(F , 0) or
setValue(F , 1) then

S ← S ∪ V ;
return true;

if k ≤ 1 then return false;
j ← index of the last variable in V ;
for i← (j + 1) to n− 1 do expand(V ∪ {xi}, S, k − 1);
return false;

Because the partial assignment could lead to an unsatisfiable 2SAT formula, the
procedure isSatisfying2SAT(F) is used to decide the satisfiability of the simplified
2SAT formula. The first part of the procedure is the same as is2SAT(F), checking if
there are at most two unassigned variables in each not yet satisfied clause. Next, if the
remaining formula is 2SAT, we need to determine its satisfiability. Each remaining
variable xi is first assigned the value 1. If there is a conflict during unit propagation,
xi is set to 0. If a conflict occurs again during propagation, the remaining 2SAT is un-
satisfiable and the algorithm returns false. If there is no conflict during propagation,
we cancel the value assignments of xi and caused by the propagation of xi.

It can be proved that the above method can determine the satisfiability of a 2SAT
formula. If a 2SAT formula F has a variable x, the clauses C of F can be divided into
{C1 : clauses that can be solved by propagating the value of x} and {C2 : clauses that
cannot be solved by propagating the value of x}. If both values 0 and 1 of x result in
conflicts during propagation, then the formula F is unsatisfiable. If propagating the
value of x can satisfy the clauses in C1, then the satisfiability of F depends on the
clauses in C2. And the satisfiability of the clauses in C2 can be decided by propagating
variables contained in C2. The worse-case complexity is O (poly(n) n), where poly(n)
is the time complexity of unit propagation. However, the exact algorithm is only
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Procedure isSatisfying2SAT(F)

input : Formula F
output: Return true if the remaining formula is a satisfying 2SAT; otherwise,

return false

foreach clause C ∈ F do
count← 0;
if C is not yet satisfied then

foreach variable xi ∈ C do
if xi has not been assigned a value then count← count + 1;

if count > 2 then return false;

foreach variable xi ∈ X do
if xi has not been assigned a value then xi ← 1 and propagate;
if conflicts during propagation then

xi ← 0 and propagate;
if conflicts during propagation then return false;

Cancel value assignments;
return true;

applied to small problem instances, so the runtime is acceptable in practice.
Many algorithms for solving 2SAT formulas have been developed in previous re-

search. Aspvall, Plass, and Tarjan [1] propose a linear-time algorithm to solve 2SAT
formulas by constructing a directed graph from the formula. We chose to use the
procedure isSatisfying2SAT(F) because of its simplicity. Our purpose is to find
backdoors, so we only want to decide the satisfiability, and there is no need to solve
the 2SAT formula.

Example 4.1 shows how Algorithm 4.2 performs on the random 3SAT instance
uf50-01 with k = 3, which is the minimal backdoor size.

Example 4.1. Figure 4.1 shows the search space. The exact algorithm explores the
search states in the order of {0} ⇒ {0, 1} ⇒ {0, 1, 2} ⇒ . . .⇒ {0, 1, 49} ⇒ {0, 2} ⇒
{0, 2, 3} ⇒ . . . ⇒ {0, 2, 49} ⇒ {0, 3} ⇒ . . . ⇒ {48} ⇒ {48, 49} ⇒ {49}. The
instance uf50-01 has eight minimal backdoors of size 3, which are {2, 3, 37}, {2, 4, 37},
{2, 5, 37}, {2, 6, 37}, {2, 15, 37}, {2, 21, 37}, {2, 33, 37}, and {21, 37, 45}.

If the input value of k is larger than the minimal backdoor size, Algorithm 4.2 has
the deficiency of finding backdoors that are not necessarily minimal (See Example 4.2).
Hence, we repeatedly run Algorithm 4.2 with k = 1, 2, . . . , n − 1, until minimal
backdoors are found.

Example 4.2. Figure 4.2 shows the search space when k = 4. The set of variables
{2, 3, 37} is a minimal backdoor, so all subsets of 4 variables that include {2, 3, 37}
are also backdoors. Because Algorithm 4.2 explores the search space in a depth-first
way, the search state {0, 2, 3, 37} is reached before {2, 3, 37}. Thus, the exact algo-
rithm finds the backdoor {0, 2, 3, 37}, which is not minimal, before finding the minimal
backdoor {2, 3, 37}.
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Figure 4.1: Example of the search space of Algorithm 4.2 when the input value of k
equals to the minimal backdoor size

Figure 4.2: Example of the search space of Algorithm 4.2 when the input value of k
is larger than the minimal backdoor size

The exact algorithm can easily be modified to find strong backdoors because it
performs an exhaustive search over all subsets of k variables. The following Algo-
rithm 4.5 finds minimal strong backdoors in unsatisfiable instances. Algorithm 4.5
calls the recursive procedure expandStrong(V, S, k), which is a slight modification
of expand(V, S, k). If every value assignment to a set of variables V results in con-
flicts during unit propagation, then we are able to conclude the unsatisfiability of the
instance. Thus, V is added to the list of strong backdoors S.

4.3 Local Search Algorithms

The exact algorithm based on depth-first search is one of the systematic algorithms.
Although the exact algorithm is complete, it does not scale up to large problem
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Algorithm 4.5: Exact algorithm for finding minimal strong backdoors in un-
satisfiable instances
input : Formula F

Minimal strong backdoor size k
output: A set of minimal strong backdoors S of size k; or the empty set if F

has no strong backdoors of size at most k

S ← ∅;
for i← 0 to n− 1 do expandStrong({xi}, S, k);
return S;

Procedure expandStrong(V, S, k)

input : A set of variables V
A set of strong backdoors S
A positive integer k

output: Return true if V is a strong backdoor; otherwise, return false
S is updated with new strong backdoors

count← 0;
foreach value assignment aV of V do

Propagate aV ;
if conflicts during propagation then count← count + 1;

if count = 2|V | then
S ← S ∪ V ;
return true;

if k ≤ 1 then return false;
j ← index of the last variable in V ;
for i← (j + 1) to n− 1 do expandStrong(V ∪ {xi}, S, k − 1);
return false;

instances. For example, we applied the exact algorithm, Algorithm 4.2, on the grieu-
vmpc-s05-27r instance from SAT-Race 2005 with the minimal backdoor size k = 4.
The instance has n = 729 variables, but the exact algorithm did not finish within 24
hours.

Another class of search algorithms that applies here is local search. Local search
algorithms are useful in solving many real-world problems. In practice, we often want
to find solutions in some limited time. If systematic search algorithms are unable
to complete in the limited time, no solutions can be found. In contrast, local search
algorithms can return the best solutions found so far.

Our goal is to find minimal backdoors. However, local search algorithms are
approximation algorithms with no guarantee of finding a backdoor with minimal size.
We hope that the local search algorithms can find small backdoors that are also
minimal. But it is an experimental question (addressed in Chapter 5) how often the
local search algorithms find minimal backdoors.

We apply the definition of Stochastic Local Search (SLS) algorithms in Chapter 2
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to the problem of backdoor detection. Given a problem instance π, the first two
components of an SLS algorithm are:

• the search space S(π) of instance π is the set of all subsets of variables;

• a set of (feasible) solutions S ′(π) ⊆ S(π) is the set of all backdoors;

Each search state s is a backdoor, and the evaluation function g(s) ← |s| is the
size of the backdoor s.

4.3.1 Previous Local Search Algorithm

Kilby, Slaney, Thiébaux, and Walsh [16] propose Algorithm 4.7, which computes small
backdoors using local search.

Algorithm 4.7: Kilby et al.’s local search algorithm

input : Formula F
Initial backdoor set W
Solution M

output: A set of small backdoors S

S ← ∅, B ← W ;
RestartLimit← 2, RestartCount← 0;
IterationLimit← √n× 3, CardMult← 2;
while RestartCount < RestartLimit do

RestartCount← RestartCount + 1;
W ← B;
for IterationCount← 0 to IterationLimit do

Z ← |W | × CardMult literals chosen randomly from M \W ;
W ← MinWeakBackdoor(F , W ∪ Z);1

S ← S ∪W ;2

if |W | < |B| then
B ← W ;
RestartCount← 0;

return S;

Given a formula F , Kilby et al. first use Satz-rand to solve F , recording the set
W of branching literals and the solution M . The set W of branching literals is an
initial backdoor because Satz-rand is able to solve F [W ] without branching. Then,
Algorithm 4.7 takes the inputs F , W , and M to find small backdoors. The set B
is the current smallest backdoor, which is initially the set W of branching literals.
The set W is the current candidate backdoor. The algorithm has the following three
constants:

• RestartLimit: the number of restarts;
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• IterationLimit: the number of iterations per restart;

• CardMult: controlling the number of literals added to W in each iteration.

The constant RestartLimit is used to escape from local minima. After a number
of iterations, Algorithm 4.7 restarts with the current smallest backdoor B. The con-
stant IterationLimit decides how many neighbors the search explores. The constant
CardMult defines the neighbors of the current candidate backdoor W . In each itera-
tion, the algorithm randomly selects from M a set Z of |W |×CardMult literals that
are not in W . The set Z of literals is appended to W , and Algorithm 4.1 is called
to reduce the set W ∪ Z of literals into a small backdoor, which is the next search
state. The current candidate backdoor W is changed to the small backdoor reduced
from W ∪Z, and then W is added to the list of backdoors S. Because Algorithm 4.1
removes literals from W ∪ Z sequentially, the literals of the current search state W
are first removed to test whether the remaining literals form a small backdoor. If the
value of CardMult is too small, the set W ∪Z of literals may be reduced to the same
small backdoor as the current one W . If the value of CardMult is too large, then
the set W ∪Z of literals may be reduced to a backdoor of larger size than W . Hence,
it is possible that the search revisits a previous search state or moves to a worse
state (See Example 4.3). If W has a smaller size than the current smallest backdoor
B, B is updated with W . The values of the three constants are chosen empirically:
RestartLimit = 2, IterationLimit =

√
n × 3, and CardMult = 2. However, Kilby

et al. do not provide details on how these values are decided.
The small backdoors found by Algorithm 4.7 are from one solution M . It is

possible to find more small backdoors if some variables have taken different values.
Therefore, Kilby et al. also propose an algorithm that takes as input a number of
solutions randomly selected from all possible solutions. Then, Algorithm 4.7 is run
repeatedly based on the chosen solutions. Kilby et al. use a collection of ten solutions
in their experiments. Nevertheless, they do not address how to generate all possible
solutions of a problem instance.

Example 4.3. We run Algorithm 4.7 on the instance uf50-01 with the initial backdoor
W = {l5, l29, l44, l61, l68, l83, l93}, which is the set of variables {2, 14, 22, 30, 34, 41, 46}.
A set Z of |W | × CardMult = 14 literals randomly selected from the solution is
appended to W . The set W ∪ Z is then reduced to W = {l51, l79, l85, l87, l93} by
Algorithm 4.1. Thus, the set of variables {25, 39, 42, 43, 46} is a small backdoor.
In the next iteration, a set Z of 10 literals is appended to W , and then W ∪ Z
is reduced to a small backdoor. The next few search states are {13, 16, 26, 37} ⇒
{4, 6, 14, 25, 34, 37} ⇒ {2, 5, 37} ⇒ {2, 33, 37} ⇒ {2, 33, 37} ⇒ {23, 35, 36, 37}. We
can see that the search can step to a backdoor of larger size, such as the move from
{13, 16, 26, 37} to {4, 6, 14, 25, 34, 37}. The search can also step to a previously visited
backdoor, such as the move from {2, 33, 37} to {2, 33, 37}.

In the experiments, we implement Algorithm 4.7 by modifying Minisat. As we
introduced in Chapter 2, Minisat applies clause learning to solve an instance. If there
is a conflict during unit propagation, implied clauses are added and learnt literals
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are propagated. However, we need to turn off clause learning and use only unit
propagation to find small backdoors. Therefore, constructing an initial backdoor set
W requires more than adding only branching literals. We record both branching and
learnt literals for the initial backdoor W . Because clause learning is turned off and
no implied clauses are added, propagating the set W of branching and learnt literals
does not always lead to a solution. Thus, we also add into W literals randomly picked
from the solution until propagating the literals in W leads to a satisfying assignment.

4.3.2 Improvement to Previous Local Search Algorithm

Kilby et al. use a simple sub-solver, which applies Satz-rand’s unit propagation and
simplification. We modify their Algorithm 4.7 to use the more sophisticated sub-solver
we define. Algorithm 4.8 is the local search algorithm after changing Line 1 and 2
of Algorithm 4.7. Line 1 is changed to call Algorithm 4.9 to find a small backdoor.
We first apply Minisat’s unit propagation, and then examine the simplified formula
to see if it belongs to one of the polynomial-time decidable classes. We change Line 2
to add only backdoors of size less than or equal to the size of the current smallest
backdoor B to the list of small backdoors S.

Algorithm 4.8: Kilby et al.’s local search algorithm using our proposed sub-
solver
input : Formula F , Initial weak backdoor W , Solution M
output: A set of small backdoors S

S ← ∅, B ← W ;
RestartLimit← 2, RestartCount← 0;
IterationLimit← √n× 3, CardMult← 2;
while RestartCount < RestartLimit do

RestartCount← RestartCount + 1;
W ← B;
for IterationCount← 0 to IterationLimit do

Z ← |W | × CardMult literals chosen randomly from M \W ;
W ← findMinWeak(F , W ∪ Z);1

if |W | ≤ |B| then S ← S ∪W ;2

if |W | < |B| then
B ← W ;
RestartCount← 0;

return S;

4.3.3 Proposed Local Search Algorithm

The goal of Algorithm 4.7 is to find one small backdoor that is possibly minimal,
but our goal is to find as many small backdoors as possible. Thus, based on Kilby et
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Algorithm 4.9: findMinWeak(F, I)

input : Formula F , A set of literals I forming a candidate backdoor
output: A set of literals W forming a small backdoor

W ← ∅;
while I 6= ∅ do

Choose literal l ∈ I sequentially;
I ← I \ {l};
Run Minisat2 on F [W ∪ I];
if Minisat2 requires branching then

if not isSatisfied(F) and not is2SAT(F) and not setValue(F , 0)
and not setValue(F , 1) then

W ← W ∪ {l};

return W ;

al.’s Algorithm 4.7, we propose Algorithm 4.10, which uses local search techniques,
including:

• Tabu Search;

• best improvement strategy;

• auxiliary local search.

Algorithm 4.10: Proposed local search algorithm to find small backdoors

input : Formula F
Initial weak backdoor W
Solution M

output: A set of small backdoors S

curState← findMinWeak(F , W);
preSize← |S|, RestartLimit← 2, RestartCount← 0;
while RestartCount < RestartLimit do

RestartCount← RestartCount + 1;
cost← searchNeighbors(curState, S, M);
if cost = 0 then break;
tbList← tbList ∪ curState;
if |S| > preSize then RestartCount← 0;
preSize← |S|;

tbList← ∅;
localImprovement(S, M);
return S;

The search state curState is the current candidate backdoor, and tbList is a tabu
list of previous search states. The procedure searchNeighbors(curState, S,M) eval-
uates all the neighborhood of curState and updates curState with the best improving
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neighbor not in tbList. The current state curState is then added to the tabu list
tbList. The while loop stops if no new small backdoors have been found in the last
RestartLimit iterations. We set RestartLimit to 2 in the experiments. The proce-
dure localImprovement(S,M) is an auxiliary local search over the neighborhood of
newly found small backdoors.

Kilby et al.’s Algorithm 4.7 only keeps the current search state, but does not use
any memory states. We apply a tabu list to keep track of the previously visited search
states. The tabu tenure is set to 30 to prevent our proposed Algorithm 4.10 from
revisiting the last 30 search states. When the tabu list is full, the oldest state is
replaced by the new state.

Kilby et al.’s Algorithm 4.7 selects the first neighbor s′ encountered in the neigh-
borhood N(s) without considering its evaluation value g(s′). We try to improve
the previous local search algorithm by choosing the best improving neighbor. Best
improvement evaluates all candidate solutions in the neighborhood and selects the
best improving state [13]. For a given search state s, g∗ ← min{g(s′) | s′ ∈ N(s)}
is the best evaluation value of all candidate solutions in the neighborhood N(s).
Let I∗(s) ← {s′ ∈ N(s) | g(s′) = g∗} be the set of best improving neighbors. The
step function can be defined as step(s)(s′) ← 1/|I∗(s)| if s′ ∈ I∗(s); otherwise,
step(s)(s′) ← 0. Although our proposed Algorithm 4.10 evaluates more neighbors
in each iteration, the backdoor size can be reduced as much as possible.

The procedure searchNeighbors(W,S,M) explores all IterationLimit neighbors
of the current backdoor W to find a best non-tabu candidate backdoor. We set
IterationLimit to

√
n× 2 to limit the neighborhood size in the experiments. In each

iteration, a set Z of |W | ×CardMult literals that are not in the current backdoor W
are randomly selected from the solution M . The set W ∪ Z of literals is reduced to
a small backdoor by Algorithm 4.9. The current candidate backdoor W is updated
with this small backdoor. If W is not in the tabu list tbList, W is added to a
list of candidate backdoors Neighbor. The value of minCost is the minimal size of
backdoors in Neighbor. If minCost is no larger than the size of the current smallest
backdoor, then all the backdoors in Neighbor of size minCost are added to the list
of small backdoors S. A small backdoor of size minCost is randomly selected from
Neighbor to be the next search state. When minCost is larger than the size of the
current smallest backdoor, the search can escape from local minima by making worse
moves. If every non-tabu candidate backdoor in Neighbor has a larger size than
the current smallest backdoor, the search moves to a best candidate backdoor from
Neighbor.

Notice from the minimal backdoors in uf50-01 that some variables appear in most
backdoors. For example, the variable {37} appears in all minimal backdoors. More-
over, backdoor sets {2, 3, 37}, {2, 4, 37}, {2, 5, 37}, {2, 6, 37}, {2, 15, 37}, {2, 21, 37}
and {2, 33, 37} only differ from each other by one variable. Once a minimal backdoor
s is found, it is possible to find more minimal backdoors by replacing a few variables
in s. Thus, we try to find more backdoors by performing an auxiliary local search on
the newly found small backdoors.

Initially we try to construct the neighborhood by replacing one variable in a small
backdoor s with a variable not in s. However, this approach introduces two new
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Procedure searchNeighbors(W, S, M )

input : Current backdoor W
A set of backdoors S
Solution M

output: Size of the next candidate backdoor W ; or 0 if no candidate
backdoors available
S is updated with new backdoors
W is updated with the next candidate backdoor

IterationLimit← √n× 2, CardMult← 2;
Neighbor ← ∅, Cost← ∅;
for IterationCount← 0 to IterationLimit do

Z ← |W | × CardMult literals chosen randomly from M \W ;
W ← findMinWeak(F , W ∪ Z);
if W 6∈ tbList then

Neighbor ← Neighbor ∪W ;
Cost← Cost ∪ |W |;

if |Neighbor| = 0 then return 0;
minCost← min(Cost);
if minCost ≤ current smallest backdoor size then

S ← S ∪ {B ∈ Neighbor | |B| = minCost};
W ← select a backdoor from Neighbor with size minCost randomly;
return minCost;

problems. The first problem is which variable in s is selected to be replaced, and one
solution is to select a backdoor variable that appears in the fewest of the clauses. The
second problem is after replacing a variable in s, the new set of variables may not
be a backdoor. Thus, the evaluation function g(s)← |s| does not work. One way to
define a new evaluation function is:

g(s)←
{

|s| if s is a backdoor
the number of not yet satisfied clauses otherwise

However, the above mentioned methods do not seem to work well in the experi-
ments because they require extra time for calculating the number of clauses. There-
fore, we propose the procedure localImprovement(S,M), which adds one variable
to the small backdoor and calls Algorithm 4.9 to test for possible new small back-
doors. For each newly found backdoor B, a literal l that is not in B is appended to B.
Because the literals in B are removed sequentially by Algorithm 4.9, new backdoors
can be found if the added literal l is a backdoor variable. If the size of B is smaller
or equal to the size of the current smallest backdoor, then B is added to the list of
small backdoors S.

Example 4.4. We run our proposed Algorithm 4.10 on the instance uf50-01 with
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Procedure localImprovement(S, M )

input : A set of backdoors S
Solution M

foreach new backdoor B ∈ S do
if B 6∈ tbList then

tbList← tbList ∪B;
foreach literal l ∈ {M \B} do

B ← findMinWeak(F , B ∪ l);
if |B| ≤ current minimum backdoor size then S ← S ∪B;

the initial backdoor W = {l5, l29, l44, l61, l68, l83, l93}, which is the set of variables
{2, 14, 22, 30, 34, 41, 46}. The procedure searchNeighbors selects the following search
states: {21, 39, 45, 46} ⇒ {21, 37, 45} ⇒ {22, 37, 45, 48}. Notice that the search es-
capes from the local minimum {21, 37, 45} by making a worse move to {22, 37, 45, 48}.
Then the procedure localImprovement adds one variable to the backdoor {21, 37, 45}
and finds the backdoor {2, 21, 37}, which consequently leads to the detection of back-
door sets {2, 3, 37}, {2, 4, 37}, {2, 5, 37}, {2, 6, 37}, {2, 15, 37}, and {2, 33, 37}.

The small backdoors found by the local search algorithms depend on the initial
solution. We repeatedly run Minisat with successive seeds to obtain different initial
solutions for the local search algorithms. However, the initial solutions do not differ
from each other very much, and the sets of small backdoors found tend to be very
similar.

4.4 Summary

In this chapter, I explained how we define sub-solvers both algorithmically and syn-
tactically. I described an exact algorithm for finding minimal backdoors. I presented
the local search algorithm proposed by Kilby et al.. I described a local search algo-
rithm that combines our definition of sub-solvers with Kilby et al.’s algorithm. I also
discussed the techniques used by our proposed local search algorithm.

In the next chapter, I will empirically evaluate the algorithms described in this
chapter.
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Chapter 5

Experimental Evaluation

In this chapter, I describe experiments on random 3SAT, structured and real-world
instances to compare the five algorithms described in Chapter 4. I introduce the
setup and test instances for the experiments. I also analyze the performance of the
algorithms on finding weak and strong backdoors. I refer to the five algorithms by
the following short names:

exact Algorithm 4.2, the exact algorithm for finding minimal weak backdoors in
satisfiable instances;

strong Algorithm 4.5, the exact algorithm for finding minimal strong backdoors in
unsatisfiable instances;

kilby Algorithm 4.7, the local search algorithm proposed by Kilby et al. [16];

kilbyImp Algorithm 4.8, the local search algorithm that incorporates our definition
of sub-solvers with Algorithm 4.7;

myAlg Algorithm 4.10, our proposed local search algorithm.

5.1 Experimental Setup

We conducted experiments on various SAT instances, including uniform random
3SAT, planning, automotive configuration, and real-world instances. The set of sat-
isfiable test instances comprises the uniform random 3SAT and planning instances
from SATLIB [12], as well as the real-world instances from SAT competitions. The
set of unsatisfiable test instances is from the domain of automotive product configu-
ration [27].

We chose two test sets, uf50-218 and uf75-325, of uniform random 3SAT instances.
Each test set contains 100 satisfiable instances sampled from the phase transition
region. Each instance in the set uf50-218 has 50 variables and 218 clauses. Each
instance in the set uf75-325 has 75 variables and 325 clauses. The planning test set
contains seven blocks world planning instances and four logistics planning instances.
For real-world instances, three instances are from the SAT Competition of 2002, three
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instances are from SAT-Race 2005, and the other instances are from SAT-Race 2008.
The instances in previous experiments were also from domains including random
3SAT, structured, and real-world. However, most instances were small instances with
fewer than 10000 variables. Minisat can solve the previous test instances quickly. We
carried out experiments on larger and more difficult instances, especially the SAT-
Race 2008 instances.

We selected the satisfiable instances from SAT-Race 2008. Because we imple-
mented the algorithms based on Minisat, we did not use any instance that Minisat
was unable to solve within some given time. Table 5.1 shows the reason why some
satisfiable SAT-Race 2008 instances were not used in our experiments.

Table 5.1: Satisfiable SAT-Race 2008 instances not used in the experiments

Instance Reason
grieu-vmpc-27 the same instance as grieu-vmpc-s05-27r

from SAT-Race 2005
simon-s02b-r4b1k1.1 the same instance as simon-mixed-s02bis-

01 from SAT-Race 2005
ibm-2002-30r-k85
grieu-vmpc-31
vange-col-abb313GPIA-9-c

Minisat was unable to solve these instances
within the given time in SAT-Race 2008

post-cbmc-zfcp-2.8-u2
velev-npe-1.0-9dlx-b71

the process was killed when we used Min-
isat to simplify these instances

anbul-part-10-15-s Minisat was unable to solve this instance
within our 15-hour cutoff time for local
search algorithms

First, we used Minisat to pre-process all the instances. Table 5.2 and 5.3 list for
each instance the number of variables and clauses before and after Minisat’s simpli-
fication. The last column is the time used by Minisat to solve the original instances.
The number of clauses of the instances is greatly reduced after the simplification of
Minisat. Especially for the een-tip-sat-texas-tp-5e instance, a total of 52128 clauses
is reduced to only 153 after pre-processing.

Second, we applied the strong algorithm to the simplified unsatisfiable instances
and the other four algorithms to the simplified satisfiable instances. The exact algo-
rithm was run only on small instances to ensure reasonable runtime. With different
initial solutions as inputs, the local search algorithms, kilby, kilbyImp, and myAlg,
were run repeatedly until a cutoff time was reached. Only the minimal backdoors
found by the algorithms were recorded. The experiments on real-world instances
were run on the whale cluster of the Sharcnet systems (www.sharcnet.ca). Each node
of the whale cluster is equipped with four Opteron CPUs at 2.2 GHz and 4.0 GB
memory. The experiments on random 3SAT instances were run on a single Pentium
4 CPU at 3.2 GHz with 1 GB memory.
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Table 5.2: Time used by Minisat to solve selected SAT instances

Original Simplified Time
Instance # Vars # Clauses # Vars # Clauses (seconds)

SAT Competition 2002
apex7 gr rcs w5.shuffled 1500 11695 1500 11136 0.046

dp10s10.shuffled 8372 23004 8372 8557 0.507
bart11.shuffled 162 684 162 675 61.843

SAT-Race 2005
grieu-vmpc-s05-24s 576 67872 576 49478 46.155
grieu-vmpc-s05-27r 729 96849 729 71380 606.132

simon-mixed-s02bis-01 2424 14812 2424 13793 461.450

Blocks world planning
anomaly 48 261 48 182 0.004
medium 116 953 116 661 0.003

huge 459 7054 459 4598 0.011
bw large.a 459 4675 459 4598 0.011
bw large.b 1087 13772 1087 13652 0.030
bw large.c 3016 50457 3016 50237 0.222
bw large.d 6325 131973 6325 131607 1.296

Logistics planning
logistics.a 828 6718 828 3116 0.024
logistics.b 843 7301 843 3480 0.022
logistics.c 1141 10719 1141 5867 0.048
logistics.d 4713 21991 4713 16588 0.101

5.2 Experiments on Finding Weak Backdoors

If the instances have small backdoors, the exact algorithm is sufficient to find minimal
backdoors. The exact algorithm was applied to the random 3SAT instances. Each
of the uf50-218 and uf75-325 test sets contains 100 instances, so we show the average
number over 100 instances here. The fifth column of Table 5.4 is the average number of
clauses after Minisat’s simplification. We can see that the reduction in the number of
clauses of random 3SAT instances is not as significant as that of real-world instances.
The last column of Table 5.4 shows the average size of minimal backdoors found by
the exact algorithm for uf50-218 and uf75-325. The percentage is the ratio of the
size of backdoors to the number of variables. The minimal backdoor sizes of the
100 uf50-218 instances range from 2 to 4, while the minimal backdoor sizes of the
100 uf75-325 instances range from 3 to 5. The average size of minimal backdoors
in uf50-218 is 3.09, which is 6.18% of the total number of variables. The average
size of minimal backdoors in uf75-325 is 3.73, which is 4.97% of the total number of
variables. Although Interian [14] claims that backdoors for random 3SAT comprise
30% to 65% of the number of variables, we observe considerably smaller percentages in
our experiments. Therefore, smaller backdoors can be found when features of current
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SAT solvers, such as unit propagation, are considered. Gregory et al. [11] used exactly
the same set of uf75-325 instances in their experiments. They reported the mean
backdoor size for 4 instances, and the sizes were between 4.86 to 9.96. The average
backdoor size in our experiments is 3.73, which is smaller than their reported values.
We found smaller backdoors because we used a systematic search algorithm, while
Gregory et al. used an approximation algorithm to find small backdoors. Moreover,
Gregory et al. used a DPLL-based sub-solver, but we used a complex sub-solver. Our
proposed sub-solver first applies unit propagation, and then examines polynomial-
time tractable classes.

We evaluated the performance of the local search algorithms, kilby, kilbyImp
and myAlg, on random 3SAT instances. For each instance, we compared the small
backdoors found by the local search algorithms in a given time period to those found
by the exact algorithm to see if they were exactly the same. The time periods for the
uf50-218 instances were increased by 2 seconds until 10 seconds. The time periods for
the uf75-325 instances were increased by 10 seconds until 60 seconds. The percentage
of instances in which the local search algorithms found the same set of backdoors as
the exact algorithm are shown in Table 5.5 and 5.6. We notice that in a given time
period, our proposed myAlg algorithm found more minimal backdoors than kilby
and kilbyImp. The percentage of the kilby algorithm is the lowest because it uses
a simpler sub-solver than the other algorithms.

Table 5.7 presents the results of applying the exact algorithm on small real-world
instances. The fourth column of Table 5.7 shows the minimal backdoor size, and the
last column is the number of minimal backdoors found by exact. We notice that
the size of minimal backdoors is very small compared to the number of variables
of the instances, which agrees with Williams et al.’s result that practical instances
generally have small tractable structures [29]. The sizes of minimal backdoors in the
blocks world instances are smaller than those reported by Dilkina et al. [7]. Dilkina
et al. reported percentages between 1.09% to 4.17% even though they used clause
learning in addition to unit propagation. We conjecture the reason is that our sub-
solver not only applies unit propagation, but also tests for polynomial-time syntactic
classes.

For the real-world instances, we compared the small backdoors found by the local
search algorithms, kilby, kilbyImp, and myAlg, in a given time period. The cutoff
time was set to 10800 seconds (3 hours) for small instances with fewer than 10000
variables. The cutoff time was set to 54000 seconds (15 hours) for the other large
instances. Table 5.8 and 5.9 show the experimental results for 3 hours and 15 hours,
respectively. For each algorithm, the first column is the size of small backdoors and
the second column is the number of small backdoors found by the algorithm. I use
the word timeout to indicate that a local search algorithm failed to find a small
backdoor within the cutoff time. The velev-vliw*, narain-vpn-clauses-8, and schup-
l2s-motst-2-k315 instances have a tremendous amount of variables and clauses. For
these instances, the local search algorithms were unable to find a small backdoor
within 15 hours. Only myAlg found one small backdoor in the velev-vliw-sat-4.0-
b4 instance. For each instance, I highlight the algorithm that found the smallest
backdoors among the three local search algorithms. If the algorithms found small
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backdoors of the same size, I highlight the algorithm that found the largest number
of backdoors.

The sizes of small backdoors in the three SAT Competition 2002 instances are
notably smaller than the backdoor sizes reported in [17, 22] because the algorithms
in [17, 22] used syntactically defined sub-solvers.

When the cutoff time was reached, we waited for the algorithms to finish the
current iteration. Because myAlg takes a longer amount of time to complete one
iteration than kilby and kilbyImp, the time when myAlg found the small backdoors
in some SAT-Race 2008 instances was a little longer than 54000 seconds. The longest
time recorded was 168 seconds after the 15-hour cutoff time. It is possible that kilby
and kilbyImp would find smaller backdoors during this leeway. Although myAlg
takes longer time in one iteration than kilby and kilbyImp, myAlg is able to find a
larger number of backdoors in the given time. We notice that our proposed myAlg
always finds more backdoors than kilby and kilbyImp when the backdoor size is
small. For instances that have small backdoors of size less than 10, myAlg found
a remarkably larger amount of backdoors than kilby and kilbyImp. Note that
although the mizh-sha0* instances have backdoors of size more than 200, myAlg
still found smaller backdoors than kilby and kilbyImp.

However, for the difficult real-world instances, our proposed kilbyImp always
outperformed kilby and myAlg in finding small backdoors. The previous kilby
algorithm also found the same set of small backdoors as kilbyImp in the mizh-
md* instances. Algorithms kilby and kilbyImp found smaller backdoors in these
large real-world instances because both algorithms select the first candidate backdoor
encountered. When the backdoor size and the total number of variables are large,
the neighborhood of the current backdoor is too huge to be explored entirely. Thus,
our proposed myAlg algorithm spends a long time in evaluating the neighborhood
to choose the best improvement.

Williams et al. [29] experimented on practical instances with fewer than 10000
variables and showed that practical instances had fairly small backdoors. We extend
Williams et al.’s result to the SAT-Race 2008 instances, which have a huge amount of
variables and clauses. We notice that the SAT-Race 2008 instances have backdoors
that consist of hundreds of variables. However, the backdoor size is usually less than
0.5% of the total number of variables. Thus, these large real-world instances also
have comparatively small tractable structures.

We further examined three real-world instances in which the local search algo-
rithms found small backdoors of the same size. Figure 5.1 shows the number of
backdoors found by kilby, kilbyImp, and myAlg as the time period increased. Be-
cause the exact algorithm found all minimal backdoors in the grieu-vmpc-s05-24s
instance exhaustively, we also include the exact algorithm in the figure of grieu-
vmpc-s05-24s for comparison. It can be seen that on these instances our proposed
myAlg algorithm found significantly more backdoors than kilby and kilbyImp.
Moreover, myAlg was the quickest algorithm to find all minimal backdoors in the
grieu-vmpc-s05-24s instance.

Table 5.10 compares the number of backdoors found by the local search algorithms,
kilby, kilbyImp, and myAlg, during several time periods. The four instances shown
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Figure 5.1: Backdoors in three real-world SAT instances
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are the ones in which the local search algorithms found small backdoors of the same
size. We can see that in any given time period, myAlg always found a larger number
of backdoors than kilby and kilbyImp even though myAlg spent longer time to
finish one iteration than the other two algorithms. By analyzing the number of
backdoors found within various time periods, we could also decide how to set the
cutoff time in future experiments (addressed in Chapter 6).

5.3 Experiments on Finding Strong Backdoors

In previous work [25, 6], unsatisfiable SAT benchmarks from automotive product con-
figuration [27] were used in the experiments. Although the automotive configuration
instances have about 1700 to 2000 variables, these instances are very simple. Among
the 84 unsatisfiable instances, Minisat concludes the unsatisfiability of 71 instances
after pre-processing. We applied the strong algorithm to find minimal strong back-
doors for the remaining 13 instances. Results are shown in Table 5.11, where the last
two columns are the size of minimal strong backdoors and the number of minimal
strong backdoors. The sizes of minimal strong backdoors range from 1 to 3, which
are smaller than the sizes reported in [25, 6]. We found smaller backdoors because we
applied a systematic search algorithm, and we defined sub-solvers both syntactically
and algorithmically.

5.4 Summary

In this chapter, I described the empirical results for the exact algorithms and the local
search algorithms. The exact algorithms were sufficient to find minimal backdoors in
simple instances. When large instances have relatively small backdoors, our proposed
myAlg algorithm found considerably more backdoors than kilby and kilbyImp.
The kilbyImp algorithm always outperformed kilby and myAlg on difficult real-
world instances.

In the next chapter, I will conclude this thesis.

40



Table 5.3: Time used by Minisat to solve satisfiable SAT-Race 2008 instances

Original Simplified Time
Instance # Vars # Clauses # Vars # Clauses (seconds)

ibm-2002-04r-k80 104450 457628 104450 238773 300.41
ibm-2002-11r1-k45 156626 638128 156626 290625 122.88
ibm-2002-18r-k90 175216 721623 175216 370661 1566.15
ibm-2002-20r-k75 151202 623655 151202 319192 573.43
ibm-2002-22r-k75 191166 798844 191166 399095 1205.11
ibm-2002-22r-k80 203961 852379 203961 427792 2060.29
ibm-2002-23r-k90 222291 928885 222291 469900 12660.10
ibm-2002-29r-k75 64686 335189 64686 258748 1163.99
ibm-2004-01-k90 64699 276210 64699 201260 56.56

ibm-2004-1 11-k80 262808 1045990 262808 565220 1223.56
ibm-2004-23-k100 207606 861175 207606 481764 6773.58
ibm-2004-23-k80 165606 686695 165606 379170 1399.16
ibm-2004-29-k55 37714 168958 37714 123699 405.71

ibm-2004-3 02 3-k95 73525 272059 73525 169473 7.00
mizh-md5-47-3 65604 273522 65604 153650 847.47
mizh-md5-47-4 65604 273506 65604 153778 218.46
mizh-md5-47-5 65604 273520 65604 153896 507.11
mizh-md5-48-2 66892 279240 66892 157184 2730.79
mizh-md5-48-5 66892 279256 66892 157466 7676.47
mizh-sha0-35-3 48689 204067 48689 115548 458.14
mizh-sha0-35-4 48689 204067 48689 115631 1170.12
mizh-sha0-36-1 50073 210221 50073 120102 8558.69
mizh-sha0-36-3 50073 210235 50073 120212 2963.06
mizh-sha0-36-4 50073 210235 50073 120279 148.01

post-c32s-gcdm16-22 129652 386749 129652 88631 1568.71
velev-fvp-sat-3.0-b18 35853 1012271 35853 968394 7508.29
velev-vliw-sat-4.0-b4 520721 13348117 520721 13348080 2204.33
velev-vliw-sat-4.0-b8 521179 13378617 521179 13378580 3002.13

een-tip-sat-nusmv-t5.B 61933 178699 61933 42043 1.50
een-tip-sat-texas-tp-5e 17985 52128 17985 153 0.11

een-tip-sat-vis-eisen 18607 54970 18607 12801 0.48
narain-vpn-clauses-8 1461772 5687554 1461772 4572347 3496.54

palac-sn7-ipc5-h16 114548 399368 114548 218043 17164.00
palac-uts-l06-ipc5-h34 187667 874988 187667 606674 181.11

schup-l2s-motst-2-k315 507145 1601920 507145 590065 143.92
simon-s02b-r4b1k1.2 2424 14812 2424 13811 303.71

simon-s03-w08-15 132555 469519 132555 269328 145.48
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Table 5.4: Minimal Backdoors for random 3SAT instances

Original Simplified
Instance # Vars # Cls # Vars Avg # Cls Avg BD Size (%)
uf50-218 50 218 50 214.88 3.09 (6.18%)
uf75-325 75 325 75 321.68 3.73 (4.97%)

Table 5.5: Comparison of the local search algorithms to the exact algorithm on uf50-
218 instances

Algorithm 2s 4s 6s 8s 10s
kilby 17% 17% 17% 17% 17%
kilbyImp 87% 88% 90% 93% 97%
myAlg 90% 95% 97% 97% 98%

Table 5.6: Comparison of the local search algorithms to the exact algorithm on uf75-
325 instances

Algorithm 10s 20s 30s 40s 50s 60s
kilby 9% 9% 9% 9% 9% 9%
kilbyImp 62% 75% 78% 82% 83% 85%
myAlg 79% 83% 88% 91% 91% 94%

Table 5.7: Backdoors in real-world instances found by the exact algorithm

Instance # Vars # Clauses BD Size (%) # BDs
grieu-vmpc-s05-24s 576 49478 3 (0.521%) 143

een-tip-sat-texas-tp-5e 17985 153 1 (0.006%) 2
anomaly 48 182 1 (2.083%) 2
medium 116 661 1 (0.862%) 5

huge 459 4598 2 (0.436%) 89
bw large.a 459 4598 2 (0.436%) 89
bw large.b 1087 13652 2 (0.184%) 7
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Table 5.8: Comparison of the local search algorithms on selected SAT instances (3
hours)

kilby kilbyImp myAlg
Instance # Vars # Cls BD Size (%) # BDs BD Size (%) # BDs BD Size (%) # BDs

SAT Competition 2002
apex7 gr rcs w5.shuffled 1500 11136 77 (5.133%) 1 47 (3.133%) 4 53 (3.533%) 42885

dp10s10.shuffled 8372 8557 9 (0.108%) 10520 9 (0.108%) 9573 9 (0.108%) 59399
bart11.shuffled 162 675 15 (9.259%) 4190 14 (8.642%) 2903 14 (8.642%) 45044

SAT-Race 2005 and 2008
grieu-vmpc-s05-24s 576 49478 3 (0.521%) 143 3 (0.521%) 143 3 (0.521%) 143
grieu-vmpc-s05-27r 729 71380 4 (0.549%) 710 4 (0.549%) 660 4 (0.549%) 3271

simon-mixed-s02bis-01 2424 13793 8 (0.330%) 566 8 (0.330%) 566 8 (0.330%) 10440
simon-s02b-r4b1k1.2 2424 13811 8 (0.330%) 394 7 (0.289%) 3 7 (0.289%) 16

Blocks world planning
bw large.c 3016 50237 4 (0.133%) 1934 3 (0.099%) 15 3 (0.099%) 15
bw large.d 6325 131607 6 (0.095%) 790 5 (0.079%) 69 6 (0.095%) 640

Logistics planning
logistics.a 828 3116 20 (2.415%) 147 20 (2.415%) 6675 24 (2.899%) 584257
logistics.b 843 3480 16 (1.898%) 1688 15 (1.779%) 9789 16 (1.898%) 7634
logistics.c 1141 5867 26 (2.279%) 18 25 (2.191%) 387 28 (2.454%) 424467
logistics.d 4713 16588 25 (0.530%) 39 22 (0.467%) 61 28 (0.594%) 36610
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Table 5.9: Comparison of the local search algorithms on SAT-Race 2008 instances
(15 hours)

kilby kilbyImp myAlg
Instance # Vars # Cls BD Size (%) # BDs BD Size (%) # BDs BD Size (%) # BDs

ibm-2002-04r-k80 104450 238773 252 (0.241%) 10 154 (0.147%) 53 184 (0.176%) 2
ibm-2002-11r1-k45 156626 290625 307 (0.196%) 3 282 (0.180%) 7 344 (0.220%) 2
ibm-2002-18r-k90 175216 370661 360 (0.205%) 3 331 (0.189%) 6 496 (0.283%) 1
ibm-2002-20r-k75 151202 319192 319 (0.211%) 4 275 (0.182%) 17 384 (0.254%) 1
ibm-2002-22r-k75 191166 399095 453 (0.237%) 4 424 (0.222%) 3 551 (0.288%) 2
ibm-2002-22r-k80 203961 427792 499 (0.245%) 1 466 (0.228%) 4 605 (0.297%) 1
ibm-2002-23r-k90 222291 469900 537 (0.242%) 2 534 (0.240%) 1 624 (0.281%) 2
ibm-2002-29r-k75 64686 258748 81 (0.125%) 11 58 (0.090%) 26 59 (0.091%) 1
ibm-2004-01-k90 64699 201260 148 (0.229%) 2 87 (0.134%) 5 93 (0.144%) 8
ibm-2004-1 11-k80 262808 565220 696 (0.265%) 4 648 (0.247%) 1 732 (0.279%) 1
ibm-2004-23-k100 207606 481764 524 (0.252%) 2 455 (0.219%) 1 618 (0.298%) 4
ibm-2004-23-k80 165606 379170 465 (0.281%) 2 441 (0.266%) 1 550 (0.332%) 1
ibm-2004-29-k55 37714 123699 67 (0.178%) 16 52 (0.138%) 21 49 (0.130%) 6381
ibm-2004-3 02 3-k95 73525 169473 1297 (1.764%) 1 238 (0.324%) 2 251 (0.341%) 1
mizh-md5-47-3 65604 153650 179 (0.273%) 1 179 (0.273%) 1 265 (0.404%) 4
mizh-md5-47-4 65604 153778 184 (0.280%) 2 190 (0.290%) 1 232 (0.354%) 2
mizh-md5-47-5 65604 153896 181 (0.276%) 2 181 (0.276%) 2 235 (0.358%) 1
mizh-md5-48-2 66892 157184 203 (0.303%) 1 203 (0.303%) 1 289 (0.432%) 1
mizh-md5-48-5 66892 157466 189 (0.283%) 6 189 (0.283%) 6 238 (0.356%) 1
mizh-sha0-35-3 48689 115548 258 (0.530%) 1 254 (0.522%) 2 238 (0.489%) 1
mizh-sha0-35-4 48689 115631 237 (0.487%) 1 237 (0.487%) 1 210 (0.431%) 1
mizh-sha0-36-1 50073 120102 261 (0.521%) 1 261 (0.521%) 1 219 (0.437%) 1
mizh-sha0-36-3 50073 120212 249 (0.497%) 1 260 (0.519%) 4 209 (0.417%) 5
mizh-sha0-36-4 50073 120279 237 (0.473%) 1 237 (0.473%) 1 220 (0.439%) 1
post-c32s-gcdm16-22 129652 88631 12 (0.009%) 133 12 (0.009%) 133 11 (0.008%) 126
velev-fvp-sat-3.0-b18 35853 968394 228 (0.636%) 3 212 (0.591%) 1 227 (0.633%) 1
velev-vliw-sat-4.0-b4 520721 13348080 timeout timeout 933 (0.179%) 1
velev-vliw-sat-4.0-b8 521179 13378580 timeout timeout timeout
een-tip-sat-nusmv-t5.B 61933 42043 109 (0.176%) 6 88 (0.142%) 35 92 (0.149%) 14318
een-tip-sat-vis-eisen 18607 12801 8 (0.043%) 6087 8 (0.043%) 16466 8 (0.043%) 36941
narain-vpn-clauses-8 1461772 4572347 timeout timeout timeout
palac-sn7-ipc5-h16 114548 218043 10 (0.009%) 46 10 (0.009%) 46 10 (0.009%) 1533
palac-uts-l06-ipc5-h34 187667 606674 10 (0.005%) 152 10 (0.005%) 152 10 (0.005%) 102
schup-l2s-motst-2-k315 507145 590065 timeout timeout timeout
simon-s03-w08-15 132555 269328 233 (0.176%) 26 115 (0.087%) 31 152 (0.115%) 4

Table 5.10: The number of backdoors found by the local search algorithms for various
time periods

3600s 7200s 10800s
Instance kilby kilbyImp myAlg kilby kilbyImp myAlg kilby kilbyImp myAlg
dp10s10.shuffled 3943 3576 19716 7457 6948 39768 10520 9573 59399

grieu-vmpc-s05-24s 139 139 143 141 141 143 143 143 143
grieu-vmpc-s05-27r 324 206 1372 577 434 3118 710 660 3271

simon-mixed-s02bis-01 185 185 5019 395 379 8020 566 566 10440
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Table 5.11: Minimal strong backdoors in the car configuration instances

Original Simplified
Instance # Vars # Cls # Vars # Cls BD Size (%) # BDs

C168 FW SZ 128 1698 5425 1698 119 3 (0.177%) 6
C168 FW SZ 66 1698 5401 1698 60 1 (0.059%) 3
C202 FS RZ 44 1750 6199 1750 119 2 (0.114%) 26
C202 FW SZ 87 1799 8946 1799 305 3 (0.167%) 90
C210 FS RZ 23 1755 5778 1755 161 3 (0.171%) 17
C210 FS RZ 38 1755 5763 1755 118 2 (0.114%) 4
C210 FS SZ 103 1755 5775 1755 280 2 (0.114%) 3
C210 FW RZ 30 1789 7426 1789 338 3 (0.168%) 16
C210 FW RZ 57 1789 7405 1789 330 2 (0.112%) 4
C210 FW SZ 106 1789 7417 1789 555 2 (0.112%) 3
C210 FW SZ 128 1789 7412 1789 447 1 (0.056%) 3
C210 FW UT 8630 2024 9721 2024 577 1 (0.050%) 2
C220 FV SZ 65 1728 4496 1728 85 1 (0.058%) 2
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Chapter 6

Conclusion and Future Work

In this chapter, I summarize the work presented in this thesis and discuss possible
future work.

6.1 Summary of the Thesis

Williams, Gomes, and Selman [29] introduce the concept of backdoors to explain
why state-of-the-art solvers scale well on large practical instances. The interest of
our research is finding all minimal backdoors in SAT instances because we want to
study how value and variable ordering mistakes affect the performance of backtracking
algorithms. Kilby, Slaney, Thiébaux, and Walsh [16] propose a local search algorithm
for finding small backdoors. As well, several algorithms for backdoor detection have
been proposed in previous work and experimental studies have been carried out to
evaluate these algorithms.

In this thesis, I introduced our proposed definition of sub-solvers. After applying
unit propagation, the sub-solver checks if the formula is already satisfied, or if the
simplified formula belongs to Schaefer’s polynomial-time tractable classes [26]. I pre-
sented an exact algorithm for finding all minimal weak backdoors of a certain size in
satisfiable instances. Then I discussed how we modified the exact algorithm to find
minimal strong backdoors in unsatisfiable instances. Based on Kilby et al.’s local
search algorithm kilby, I described our proposed local search algorithms kilbyImp
and myAlg. The kilbyImp algorithm incorporates our definition of sub-solvers with
the previous kilby algorithm. The myAlg algorithm applies local search strategies,
including best improvement, Tabu Search, and an auxiliary local search, to find many
small backdoors. I modified Minisat to implement these algorithms and empirically
evaluated the algorithms on random 3SAT, structured, and real-world instances. Ex-
perimental results showed that the size of backdoors was relatively small compared
to the number of variables. The ratio of the backdoor size to the number of variables
was larger for random 3SAT instances (around 5–6%) than for real-world instances
(generally less than 0.5%). Although the real-world instances have a large number
of variables and backdoors, they could be solved efficiently by backtracking on the
variables in the small backdoors. The exact algorithms were competent to find all
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minimal backdoors in the small instances. We applied local search algorithms to find
small backdoors in large real-world instances. When the real-world instances had
backdoors of size less than ten, our proposed myAlg found a substantially larger
amount of small backdoors than kilby and kilbyImp. For the real-world instances
with a huge number of variables and clauses, our proposed kilbyImp almost always
found backdoors of the smallest size among the three local search algorithms.

6.2 Future Work

• The performance of the local search algorithms depends on the initial solution.
If the initial solutions vary a lot from each other, the local search algorithms have
a better chance of finding more new backdoors in each run. In the experiments,
we ran Minisat with successive seeds to get initial solutions, but the solutions
found tended to be very similar. Thus, the local search algorithms found almost
the same set of backdoors in each run. It is necessary to study how to obtain a
number of different solutions to an instance.

• The size of backdoors found by our proposed algorithms could be reduced if
we could efficiently identify more polynomial-time tractable classes, such as
Class 6 of Schaefer’s theorem [26] and RHorn. As introduced in Chapter 4,
previous work [15, 18] developed polynomial-time algorithms for identifying
these two tractable classes. Because the algorithms require transforming the
original problem into a new problem, we did not implement the algorithms
proposed in [15, 18]. Future work could involve implementing these algorithms
and developing new algorithms for checking polynomial-time tractable classes.

• The local search algorithms could be improved by incorporating other local
search techniques, such as Randomized Iterative Improvement and Variable
Neighborhood Descent [13]. Randomized Iterative Improvement extends the
Iterative Improvement algorithm by choosing random neighbors with a certain
probability so that worsening moves are allowed. Our proposed myAlg ap-
plies the best improvement strategy, which evaluates all the neighborhood and
selects the best improving state. However, myAlg does not perform well on in-
stances with huge neighborhoods because of its high time complexity. Variable
Neighborhood Descent attempts to reduce the time complexity by changing the
neighborhood as the search progresses. In the beginning, the search explores
small neighborhoods until reaching a local minimum. Then the search changes
to evaluating larger neighborhoods.

• The cutoff time for the local search algorithms could be formally decided. We
empirically set the cutoff time to 3 hours and 15 hours in our experiments. As
the time increases, the local search algorithms may find fewer backdoors in each
additional time period. Thus, future work could involve the study of how to
properly determine the cutoff time for the local search algorithms.
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• Clause learning could be taken into account for finding minimal backdoors.
Dilkina, Gomes, and Sabharwal [7] introduced the concept of learning-sensitive
backdoors. We did not consider clause learning because it could increase the
time complexity of the algorithms for finding backdoors. If clause learning is
taken into account for finding backdoors, we need to examine both original
and learnt clauses when checking polynomial-time tractable classes. Moreover,
the order of value assignments to backdoor variables is important when clause
learning is involved [7].

• Our work focuses on finding weak backdoors, so our proposed strong algorithm
for finding strong backdoors is very simple and only works for unsatisfiable
instances. The strong algorithm could be improved by considering the tests for
polynomial-time tractable classes. The strong algorithm could also be extended
to detect strong backdoors in both satisfiable and unsatisfiable instances.

• Finding all minimal backdoors is important for studying value and variable
ordering mistakes. For example, a variable ordering mistake could be selecting
a variable not in the backdoor. A value ordering mistake could be assigning
the backdoor variable a value that does not lead to a polynomial sub-problem.
Future work could be a formal definition of value and variable ordering mistakes.
We could also investigate how value and variable ordering mistakes affect the
performance of backtracking algorithms.
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Appendix A

The Example Instance

I used the random 3SAT instance uf50-01 as an example in Chapter 4. The instance
originally has 50 variables and 218 clauses. After Minisat’s simplification, the number
of clauses is reduced to 215. Table A.1 shows all 215 clauses of uf50-01 after the
simplification. For a variable xi, i = 0, 1, . . . , 49, the positive literal is denoted by
(i+1) and the negative literal is denoted by −(i+1). For example, (-3 7 36) represents
the clause (¬x2∨x6∨x35). The exact algorithm found eight minimal weak backdoors
of size 3 in the instance. Given the following value assignments to the backdoor
variables, the uf50-01 instance can be solved by our proposed sub-solver.

Weak Backdoors Value Assignments
{x2, x3, x37} 0, 1, 0

{x2, x4, x37} 0, 1, 0

{x2, x5, x37} 0, 1, 0

{x2, x6, x37} 0, 1, 0

{x2, x15, x37} 0, 0, 0

{x2, x21, x37} 0, 0, 0

{x2, x33, x37} 0, 0, 0

{x21, x37, x45} 0, 0, 0
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Table A.1: The random 3SAT instance uf50-01 after Minisat’s simplification

-3 7 36 -3 -42 -48 -41 -47 -49 8 17 -40 -21 -31 -39

-22 36 49 14 27 38 6 15 -18 6 7 -43 -7 23 34

2 -42 47 3 -33 -35 40 44 49 31 36 50 -3 -36 -37

26 -29 43 15 29 -45 -11 18 24 6 -26 -47 6 16 32

-34 37 41 7 -17 -28 19 -44 46 7 22 -48 3 34 39

31 -43 46 23 -27 32 -18 37 -50 5 11 20 6 -24 -45

-14 -23 -34 20 21 -22 -17 24 50 3 21 35 -26 -36 47

-28 -45 49 -6 12 -21 -15 -17 -39 2 -14 41 -23 25 36

-3 -39 -40 20 35 50 27 31 -39 -15 -40 45 34 35 50

-1 12 -48 18 -30 -35 -24 -25 -4 -12 -33 -24 -37 -43

31 -37 -44 -9 14 -38 -16 33 34 4 -5 -35 -3 -19 -21

-29 -35 -36 7 36 -43 14 30 41 -7 -24 -35 6 35 -42

-1 -15 39 -16 27 49 -3 -46 50 20 34 -41 -1 23 28

-12 -20 -30 -24 29 -37 5 12 -44 -2 -6 48 -2 -43 -49

1 24 -50 -7 -44 -50 4 -41 43 -3 -11 23 33 41 48

9 23 -49 1 -43 47 16 -29 -40 3 19 30 19 -34 48

14 -16 -44 -12 38 -45 -4 -14 -31 -1 35 -48 -7 9 42

-1 8 -15 -31 -37 -43 -27 -29 47 4 7 17 17 20 -25

-5 35 -42 -5 24 -50 2 -21 -26 -8 -21 45 -16 33 49

6 16 -38 5 21 37 8 31 38 14 -21 33 -5 20 40

-9 -29 31 -7 -22 42 8 26 -48 33 -38 48 -34 46 49

-14 25 -46 4 18 -46 -12 -31 36 12 14 -18 -7 -16 46

7 -8 9 -22 -42 49 -15 22 38 34 -41 47 22 -26 32

-21 -25 -45 -11 -26 32 15 -25 26 -1 25 46 -14 30 -31

-9 12 -22 -18 26 -35 -16 -21 -32 -21 31 -49 9 11 41

3 -4 -22 -18 -25 -50 4 9 -40 20 37 46 22 -27 -29

3 14 34 3 20 -31 2 -26 -50 17 -29 38 12 -41 -49

15 -35 -43 -22 -23 -49 -9 33 48 26 29 35 27 37 -50

-7 -43 46 -8 -37 -46 -24 36 -40 15 -44 46 -3 -16 36

9 43 -48 -4 -25 44 -7 -22 37 -17 -22 -31 -11 17 -48

23 -28 34 23 -39 -48 -1 -23 -37 14 -19 27 -6 -22 33

-6 -26 -32 18 -20 -46 22 27 43 3 -35 -46 32 39 -43

6 -9 -39 -16 27 39 -15 -17 25 27 34 -43 5 -6 49

11 14 -38 -38 40 47 -14 17 37 29 36 39 1 -28 -39

14 -16 -18 15 -40 50 18 37 -42 2 33 -42 -3 8 -22

1 23 -31 -20 26 -45 11 42 49 11 29 -43 -20 -21 30

23 -35 45 -14 -30 38 -9 -29 48 11 -18 -23 -1 -29 -41

5 26 41 -7 -30 44 -6 38 -41 -15 46 48 -32 38 46

12 -32 46 14 31 40 2 -18 49 27 28 -38 14 -16 -21

12 15 -29 5 34 49 -12 14 22 20 30 33 22 -24

4 -23 -48 9 -30 -36 12 -35 44 3 -21 38 -11 33 49

7 -33 35 -50 7 35 -37 49 4 6 7 35 7 -18 35 -47 2 -11 14 15

-11 15 19 45 -11 -14 15 -44 -11 15 19 -30 -11 15 34 49 -11 15 31 33
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