
Randomization and Restart Strategies

by

Huayue Wu

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2006

c© Huayue Wu 2006

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The running time for solving constraint satisfaction problems (CSP) and propositional sat-
isfiability problems (SAT) using systematic backtracking search has been shown to exhibit
great variability. Randomization and restarts is an effective technique for reducing such
variability to achieve better expected performance. Several restart strategies have been
proposed and studied in previous work and show differing degrees of empirical effectiveness.

The first topic in this thesis is the extension of analytical results on restart strategies
through the introduction of physically based assumptions. In particular, we study the
performance of two of the restart strategies on a class of heavy tail distribution that has been
used to model running time. We show that the geometric strategy provably removes heavy
tail of the Pareto form. We also examine several factors that arise during implementation
and their effects on existing restart strategies.

The second topic concerns the development of a new hybrid restart strategy in a realistic
problem setting. Our work adapts the existing general approach on dynamic strategy but
implements more sophisticated machine learning techniques. The resulting hybrid strat-
egy shows superior performance compared to existing static strategies and an improved
robustness.

iii

Acknowledgments

I would like to thank my supervisor, Peter van Beek, for his invaluable guidance and
infinite amount of patience. I am deeply grateful for his continual encouragement and the
meticulous effort he has spent proofreading this thesis. I would also like to thank Alex
Lopez-Ortiz and Prabhakar Ragde for their prompt willingness to act as readers. Their
suggestions are insightful and are greatly appreciated. Special thanks go to my parents for
without their help and support this thesis would not have been possible. Finally, I would
like to thank all the people who had inspired and encouraged me over the years.

iv

Table of Contents

1 Introduction 1
1.1 Summary of Contributions . 2
1.2 Outline of the Thesis . 2

2 Background 5

2.1 CSP, SAT and Systematic Search . 5
2.1.1 Solution Techniques . 6

2.2 Randomized Algorithms . 7
2.3 Heavy Tail . 8
2.4 Supervised Learning . 9
2.5 Summary . 11

3 Existing Restart Strategies 13
3.1 Motivation and Background . 13
3.2 When Do Restarts Help? . 16

3.2.1 Runtime Distributions For Which Restarts Are Useful 16
3.2.2 Underlying Causes For Heavy Tail 17

3.3 Randomization Techniques . 19
3.4 Restart Strategies . 19

3.4.1 Fixed-cutoff Strategy . 20
3.4.2 Luby’s Universal Strategy . 23
3.4.3 Geometric Strategy . 24
3.4.4 Frisch’s Combined Strategy . 26
3.4.5 Dynamic Strategy . 26

3.5 Other Related Work . 28
3.6 Summary . 29

4 New Results on Static Restart Strategies 31

4.1 Fixed-cutoff Strategy . 31
4.2 Geometric Strategy . 34
4.3 Constraints on Parameterized Restart Strategies 38

v

4.3.1 Deadline . 38
4.3.2 Restart Overhead Cost . 42
4.3.3 tmin . 45
4.3.4 Other Constraints . 46

4.4 Summary . 47

5 New Results on Dynamic Restart Strategies 49
5.1 Hybrid Geometric-Dynamic Strategy . 49
5.2 Setup for Predictor Inference . 51
5.3 Results . 57
5.4 Summary . 60

6 Conclusions 61

vi

List of Tables

5.1 List of runtime observations recorded. 53
5.2 Feature frequencies in the top 10 feature sets of size 3. The features marked

with (*) are new features that Kautz et al. have not used. The unmarked
ones might have appeared in their work. 57

5.3 Comparative results for various restart strategies averaged over 10 trials.
Data set consist of 200 balanced QCP instances of order 34 with 33% holes.
The Hybrid and Dynamic strategies use an observation horizon of 50 seconds.
The Hybrid (Fixed) is a strategy that performs fixed restart with cutoff 50
after the geometric portion completes. The Hybrid and geometric strategies
use a geometric factor of 2 and scale factor 1. Default parameters are used
for Luby’s universal strategy. 59

5.4 Comparative results for various restart strategies on 26 easy instances aver-
aged over 10 trials. 60

5.5 Comparative results for various restart strategies on hard instances averaged
over 10 trials. Data set consists of 60 balanced QCP instances of order 37
with 33% holes. 60

vii

List of Figures

2.1 Basic backtrack search algorithm. 7
2.2 Runtime distribution for a randomized solver on a 15×15 crossword puzzle

instance. The x-axis is the runtime T given in seconds and the y-axis is
P [X = t]. 8

2.3 Heavy-tailed distribution vs. exponential distribution in log− log plot. . . . 9
2.4 General workflow of supervised learning. 10

3.1 Backtrack search algorithm with restart. 14
3.2 Effect of restart strategy on runtime distribution when the sequence of cutoffs

is (t, t, t, . . .). 15
3.3 Heavy-tailed distribution in solving crossword puzzle. 16
3.4 Simulation result showing the performance of fixed-cutoff strategy. Input

runtime distributions are constructed by attaching a Pareto tail to an em-
pirical runtime distribution from solving a crossword puzzle instance (using
|dom|/deg heuristic where ties are broken randomly). The total probability
mass given to the tail section is determined by (1−fraction). Three Pareto
tails of different α values are used for each fraction setting. 22

3.5 Simulation result showing the performance of Luby’s universal strategy, where
the scale factor is set to 1. Input runtime distributions are constructed by
attaching a Pareto tail to an empirical runtime distribution from solving a
crossword puzzle instance (using |dom|/deg heuristic where ties are broken
randomly). The total probability mass given to the tail section is determined
by (1−fraction). Three Pareto tails of different α values are used for each
fraction setting. 24

3.6 Simulation result showing the performance of geometric strategy, where the
scale factor is set to 1. Input runtime distributions are constructed by at-
taching a Pareto tail to an empirical runtime distribution from solving a
crossword puzzle instance (using |dom|/deg heuristic where ties are broken
randomly). The total probability mass given to the tail section is determined
by (1−fraction). Three Pareto tails of different α values are used for each
fraction setting. 25

ix

4.1 The function E[TS] for increasing cutoffs where α = 1.1. The horizontal line
shows the asymptote α

α−1 . 32
4.2 Comparison of performance measured in terms of mean runtime and solution

probability for different fixed cutoffs. The runtime distribution comes from
a crossword puzzle instance and the deadline is 100. 43

4.3 Effect of overhead cost c on expected performance of the fixed-cutoff strategy
on heavy-tailed distribution. 44

5.1 Sample depth profiles of short (solved in 1200 seconds) and long runs (timed
out in 3600 seconds) for a instruction scheduling problem instance. The
instance is given as a set of 68 instructions with constraints such as latency
and processor resource. The aim is to schedule the instructions within the
given optimal schedule length of 64 time slots. 50

5.2 Extracting the general shape from time series using Gaussian filtering. . . . 54
5.3 A feature that partially discriminates between short and long runs. 55
5.4 Maximum errors as functions of feature set size. 56
5.5 Example of cross validation error as a function of tree size. 58
5.6 Example of cross validation error as a function of tree size for the two different

classes of samples. 58
5.7 One of the learned decision trees. 59

x

Chapter 1

Introduction

Many challenging problems from diverse fields can be easily formulated as optimization
problems where the solution(s) sought must satisfy a set of constraints. In this thesis, I
am interested in the cases where the application of constraint-based modeling generates a
constraint satisfaction problem (CSP) or a satisfiability problem (SAT). One area of active
research in computer science has been the study and development of efficient backtracking
techniques for solving CSP and SAT problems.

Since CSP and SAT problems are NP-hard, no solution techniques can be expected
to have guaranteed good performance. Instead, there is an inherent variation of orders of
magnitude in solution time [18]. Some of this variation is attributed to degrees of effec-
tiveness of the backtracking search algorithm. Wrong branches taken early in the search
tend to have a catastrophic effect on the search effort [23, 28, 46]. The observation has
led to adding randomization to backtracking search algorithms in the hope of avoiding bad
decisions during some of the runs [23, 20].

The randomized search can be further combined with a restart scheme where the search
is terminated and restarted at regular intervals [2, 23, 35]. The effect is that long runs are
aborted early thus saving on the cost of branching mistakes and improving the expected
performance. Mathematically, the restart scheme trims the tail in the runtime probability
distribution associated with the randomized search [3]. The resulting transformed distri-
bution often has a smaller expected value. This translates into a shorter expected runtime
and therefore a faster solver. In practice, the improvement can be very dramatic and some
problems are essentially unsolvable without restart [47].

In the past two decades, there have been both theoretical as well as practical advances on
the technique of randomization and restart. Several different restart schemes or strategies
have been proposed each using a different sequence of restart intervals. These restart strate-
gies have demonstrated varying degrees of effectiveness in practice. Examples include the
fixed-cutoff strategy [2, 35], Luby’s universal strategy [35], the geometric strategy [45] and
the dynamic strategy [26, 30, 40]. Expected performance bounds and optimality conditions
are available for the first two strategies.

1

However, there are still many open questions and issues that serve as motivation for this
thesis. For example, theoretical analyses so far have assumed that the runtime distribu-
tions of randomized searches can be arbitrary, but in reality these distributions can be more
precisely modeled. Moreover, the theories are overly simplified and neglect many practical
constraints and factors. Lastly, empirical evaluations of the state-of-the-art restart tech-
niques fail to include realistic situations for which the suggested performance is relatively
poor.

1.1 Summary of Contributions

The aim of this thesis is to expand on the theoretical framework for randomization and
restart as well as to improve on the state-of-the-art restart techniques in terms of both
performance and practical applicability.

Randomization and restart on heavy-tailed distributions. The fixed-cutoff and
geometric restart strategies are analyzed using a heavy-tailed model for the runtime distri-
bution. We derive expressions for the expected performance and variance. We also obtain
performance bounds for the geometric strategy and show for the first time that it indeed
removes heavy tail.

Effects of practical constraints on randomization and restart. We analyze the
effects of some of the factors encountered when applying restart techniques in practice. We
show that by setting a deadline not only is the optimal infinite strategy no longer optimal
but the optimality measure itself needs to change as well. We also derive expressions showing
the impact of overhead cost for each restart and a non-trivial minimum effort required in
solving real instances.

Extending and improving dynamic restart techniques. We introduce a new hy-
brid static-dynamic strategy. The dynamic strategy portion is based on an existing general
approach but extended to a novel problem setup that is more realistic. The approach uses
new techniques for feature extraction and predictor inference. The resulting performance is
greatly improved. We also address the weakness in the existing evaluation setup and choose
to compare performance in measures that are of more practical interest.

1.2 Outline of the Thesis

This thesis is organized as follows:
Chapter 2 introduces the background material needed to understand the general topic

discussed in this thesis and is intended for readers not familiar with the subject area. Con-
cepts such as CSP and SAT are introduced. We also present the systematic backtracking
search algorithms used to solve these problems and show how and why they can be ran-
domized. We then give an overview of the concept of runtime distribution and heavy tail

2

distribution that are central to the randomization and restart techniques. We finish with a
quick review of the machine learning techniques used later in the thesis.

Chapter 3 reviews the existing work on the subject of randomization and restart. We
begin with a description of the motivation and limitations of the technique. We then present
several of the most well-known restart strategies and the relevant theoretical results.

Chapter 4 is a collection of new theoretical results we have derived for the static restart
strategies. The first available analytical results on geometric strategies are obtained by
assuming a heavy-tailed model for the runtime distribution. We also discuss how the theories
change when realistic factors are considered.

Chapter 5 presents our new hybrid restart strategy that combines the geometric and
dynamic restart strategies and is shown to be robust. We describe the feature extraction
and predictor inference in our approach that give a great boost to the runtime prediction
accuracy. The problem setup we use is more realistic but for which results are missing from
previous work. We also compare existing strategies on performance measures that are of
more practical concern.

Chapter 6 summarizes the thesis and suggests some possible future work.

3

Chapter 2

Background

There have been many developments and ideas in the long history of CSP and SAT problems.
This chapter provides a short review of those concepts that form the basis of the work
discussed in this thesis. We first introduce CSP and SAT problems and describe how
they can be solved with systematic backtrack search. We then recap the basic ideas from
probability theory as they relate to algorithm randomization. We give a primer on heavy-
tailed distributions which in the following chapter is shown to be central to the idea of
randomization and restart. We finish with a brief look at machine learning techniques.

2.1 CSP, SAT and Systematic Search

Formally, a CSP is defined by a 3-tuple (V,D,C) where V is the set of variables, D the set
of domains for the variables, and C the set of constraints whose form is problem dependent.
A solution to a CSP is an n-tuple ((v1, a1), (v2, a2), .., (vn, an)) where each variable vi is
assigned a value ai from its domain such that all the constraints are simultaneously satisfied.
If there is no solution then the CSP is unsatisfiable.

Example 2.1. The N-queens problem has traditionally been used to demonstrate how CSP
modeling works. The problem is to place N queens on an N×N chess board such that no
two queens attack each other. In one possible model the variables are the rows, and the
domain for each variable consists of the column numbers. The constraints are that no two
queens attack each other. A solution to the problem is a set of ordered pairs of row and
column numbers that specify placement of the queens satisfying the given constraints. In
this simple problem, all constraints are binary, that is, involving only two variables (two
rows).

For general CSPs, the number of variables in a constraint can be arbitrary and is referred
to as the arity of the constraint. The multitude of terminologies on CSP are thoroughly
explored in reference materials (see, e.g. [42]).

5

SAT problems form a special class of CSP problems. They have small variable domains
containing only two values, true and false, and the constraints are Boolean clauses given in
conjunctive normal form (CNF). In contrast to more general CSP problems, SAT problems
have a long history and have been relatively well investigated. Some of the results are
generalizable to other CSP domains but many are specific to SAT problems.

2.1.1 Solution Techniques

Many techniques have been proposed for solving CSP and SAT problems, including local
search and hybrid algorithms, but the dominant technique is backtracking search. The
term “backtrack” was first introduced in the 1950’s by D.H. Lehmer [5], and the first back-
track search algorithm was credited to Davis and Putnam [10] and later improved by Davis,
Longemann and Loveland [9] to become the well-known DPLL algorithm. The family of
backtrack algorithms for solving CSPs saw many enhancements and modifications since the
80’s. Bitner and Reingold [5] in the 70’s applied the technique to solve several small applica-
tions and in the process identified several important algorithmic aspects of backtrack search
including pre-processing (later known as propagation or filtering), symmetry breaking, and
variable ordering. Haralick and Elliott in 1980 [22] gave the first comprehensive analysis
of several algorithmic extensions such as look-ahead and backmarking. Since then, many
other techniques were introduced to greatly improve the performance of backtrack search.
More recently, Chen and van Beek [7] established and proved a performance dominance
hierarchy among various backtrack algorithms.

The general structure of the backtrack algorithm is given in Figure 2.1. In each recursion,
the algorithm uses heuristics to pick an unbound variable and a value to assign to it. A
propagator and look-ahead module prunes the search space as much as possible in light
of the new assignment. If inconsistency is detected, the algorithm backtracks and tries an
alternative value assignment. When alternative value assignments for the current variable
are exhausted the algorithm then backtracks further to an earlier variable. Otherwise, the
recursive search continues with a new unbound variable. The search terminates when either
arriving at a solution where all variables are bound (i.e. the problem becomes empty), or
all branches in the search tree are shown to lead to inconsistency and the problem is proved
unsatisfiable. In practice, however, there is often an execution time limit and the problem
is indeterminate when neither state is reached before the deadline.

The most elusive components of the search algorithm are the heuristics. Although much
effort has been spent on developing more sophisticated heuristics, there does not exist a
simple dominance hierarchy. No heuristic performs universally well across all problem do-
mains and performance can differ by orders of magnitude across instances. This observation
is not surprising considering CSP and SAT are NP-complete problems. Often, the choice
of heuristic decides if a particular instance can be solved in any reasonable amount of time.

6

Function Search(CSP)
If (Propagate(CSP) = failure) return Unsatisfiable
If (CSP is empty) return Satisfiable
Choose Variable(CSP)
While (Choose and Assign Value(CSP) �= exhausted)

status := Search(CSP)
If (status = Satisfiable) return Satisfiable

return Unsatisfiable

Figure 2.1: Basic backtrack search algorithm.

2.2 Randomized Algorithms

A randomized algorithm is an algorithm whose computational process possesses a degree
of randomness that is reflected in a performance measure such as the runtime. There are
two kinds of randomized algorithms, Las Vegas algorithms in which the solution is correct
but the runtime varies, and Monte Carlo algorithms whose runtime is guaranteed but the
result is allowed a certain error bound. The motivation behind the Las Vegas type is the
hope of achieving good average performance. This is particularly relevant in our context
where CSPs can seem to take forever to solve when using a deterministic solver.

A backtrack search algorithm can be turned into a Las Vegas type algorithm, for exam-
ple, by introducing randomness into the heuristic decisions. The runtime of the resulting
algorithm on any given instance can be represented by a random variable, say T . Recall
from probability theory that a random variable has an associated probability distribution
that assigns a probability to an event, which in this case is the length of execution. Figure
2.2 shows a sample runtime distribution of a randomized backtrack search algorithm on a
crossword puzzle instance.

The runtime distribution can be uniquely described by its cumulative distribution func-
tion F (t), the probability that the algorithm stops on or before time t, and is defined as,

F (t) = P [T ≤ t].

One can also speak of the probability mass function in the discrete case representing the
probability the algorithm stops at time t and is defined as,

f(t) = P [T = t],

and the probability density function for the continuous case is defined implicitly as,

P [a ≤ T ≤ b] =
∫ b

a
f(t)dt.

7

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

time (s)

pr
ob

ab
ili

ty
 m

as
s

Figure 2.2: Runtime distribution for a randomized solver on a 15×15 crossword puzzle
instance. The x-axis is the runtime T given in seconds and the y-axis is P [X = t].

Like other probability distributions, the runtime distribution can be characterized by
properties such as the expected value E[T] and the variance V ar[T]. Another interesting
measure is the tail probability function or survival function representing the probability the
algorithm would take time longer than t to finish and is defined as,

P [T > t] = 1 − F (t).

Lastly, the hazard function specifies the instantaneous finishing rate as a function of time
and is given by,

h(t) =
f(t)

1 − F (t)
.

2.3 Heavy Tail

Heavy tail was a concept first introduced in economics by Pareto and later expanded on by
Levy and Mandelbrot [36, 37]. The heavy-tailed model has found application in modeling
a wide variety of physical and sociological phenomena from power grid failures to Internet
traffic patterns, and, in our case, the runtime distribution of a randomized search algorithm.
Heavy tail refers to a probability distribution having a slow-decaying or fat tail when com-
pared with the classic exponentially decaying tail. An intuitive interpretation is that rare
events are not all that rare. Specifically, a heavy-tailed distribution obeys the following:

P [T > t] ∼ Ct−α, where t → ∞, 0 < α < 2, C > 0.

8

As the algebraic form suggests, heavy tail is also known as power-law decay where α is
referred to as the index of stability. The interesting property of a heavy-tailed distribution
is that when α ≤ 1 the distribution has neither finite mean nor finite variance. When
1 < α < 2, the distribution has only finite mean. And for α ≥ 2 the distribution has both
finite mean and finite variance. A particularly simple heavy-tailed distribution is the Pareto
distribution whose probability mass function and cumulative distribution function are given
by,

f(t) = αt−α−1, α > 0,

F (t) = 1 − t−α, α > 0.

Heavy tail is best illustrated graphically with a log-log plot where the logarithm of
the tail (1 − F (t)) is plotted against log(t). For fast decaying distributions such as the
exponential distribution, one would observe a sharp drop-off in the tail. But for heavy-
tailed distribution, the drop-off is approximately linear and the slope provides an estimate
for the index α. Figure 2.3 illustrates the scenario.

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

log(t)

lo
g(

1−
F

(t
))

Heavy tail
Exponential

Figure 2.3: Heavy-tailed distribution vs. exponential distribution in log− log plot.

In the next chapter we will see that heavy tail can be used to model the runtime
distribution of a randomized backtrack search and serves as motivation for the technique of
randomization and restart.

2.4 Supervised Learning

Later in the thesis, we introduce algorithms that make use of runtime predictors constructed
with supervised learning. Supervised learning is a machine learning technique for building

9

a predictor function for a set of data. The general procedure is given in Figure 2.4.

Figure 2.4: General workflow of supervised learning.

Prior to data collection, a problem domain is first determined for which we want to
make predictions about a particular objective measure. For example, when solving schedul-
ing problems with randomized backtracking search we may want to predict the runtime
length. During data collection, observations and measurements are made on a dataset con-
taining samples that are representative of the given problem domain. These observations
include both the objective measure and other information deemed useful in helping make
the prediction. For example, the size of a scheduling problem is a useful piece of information
since larger problems tend to take longer to solve.

During feature extraction and processing, feature vectors are first formed from the col-
lected set of raw measures. The newly formed features can be either just the raw measures,
such as problem size, or a combination of different raw measures. One feature vector is
formed for each of the samples in the original dataset. The features are then filtered to
keep the feature set small. Such processing is necessary for effective learning because of
the curse of dimensionality. That is, the ratio of the number of features to the number of
samples must be kept small. Also, highly correlated or redundant features have an impact
on predictor robustness and should be removed. There is a large literature (e.g.,[21, 29, 31])
on the topic of feature selection.

Before predictor inference, it is necessary to decide on the form of the predictor function,
and an error metric. An example of a predictor function is the decision tree. This is a tree
structured graph where the internal nodes are labeled with branching criteria in terms of the
features and the leaf nodes are labeled with class names. An error metric used in evaluating
the decision tree is the classification error which counts the number of misclassified samples.
Once the form of the predictor function and the error metric are fixed, an appropriate
learning algorithm can be applied. Available algorithms for learning decision trees include
CART, ID3, and C4.5 [11].

To assess the effectiveness of the learned predictor, the original dataset is often split
into a training set, a validation set, and a test set. The training set is used by the learning
algorithm to build the predictor and the test set is used to estimate its typical performance.
In iterative inference procedures where a series of predictors of increasing sizes are learned,
the validation set is used for picking the predictor with the appropriate level of complexity.
Such a predictor can be expected to perform well on future unseen data without overfitting,
i.e. tuned too much to the peculiarities of the given training set.

10

2.5 Summary

Many combinatorial problems can be easily and naturally formulated as CSP and SAT prob-
lems. These problems can be solved with systematic backtrack search where performance
is largely influenced by the heuristics used in deciding variable and value branchings. The
deterministic search can be randomized through, for example, the heuristics. The resulting
Las Vegas type algorithm has an associated runtime distribution and can be studied with
ideas from probability theory. One type of runtime distribution that arises is the heavy-
tailed distribution that is characterized by a slow decaying asymptotic tail and it may not
have finite mean and variance. Machine learning techniques are useful for predicting run-
time length and consist of three major steps including data collection, feature extraction
and predictor inference. In the next chapter we will introduce the idea and techniques of
randomization and restart making use of the concepts introduced here.

11

Chapter 3

Existing Restart Strategies

This chapter reviews existing work on randomization and restart. We begin by describing
the motivations behind the technique and a chronological recount of major developments.
We then discuss the conditions under which randomization and restart is useful as well as
providing intuitive explanations for why heavy tails occur. After enumerating the various
ways of randomizing a backtrack search algorithm we explain in more details the promi-
nent restart strategies. Specifically, we review the fixed-cutoff, Luby’s universal, geomet-
ric, Frisch’s combined and dynamic restart strategies and provide theoretical results when
available. We also briefly mention the algorithm portfolio idea that is closely related to
randomization and restart.

3.1 Motivation and Background

Backtrack search algorithms have been widely observed to exhibit great variability in run-
time for seemingly small changes in the variable and value ordering heuristics. The reason
is that heuristics are not perfect and do make mistakes. The severity of the consequence
depends on the number as well as the timings of the mistakes and is reflected in the observed
runtime. A randomized backtrack solver would show a similar variability in performance
due to the built-in perturbations.

The technique of randomization and restart was proposed to take advantage of such
variability and help improve average performance. The idea is to capitalize on the fact
that runtime distributions in practice have non-trivial probability mass for small t that is
associated with solving an instance quickly, as shown in Figure 2.2.

Specifically, one would introduce restarts in the backtrack algorithm where during each
run the algorithm stops once a certain cutoff threshold is exceeded and restarts the search
from the beginning with a different random seed until the problem is solved. The modified
algorithm is given in Figure 3.1.

One refers to a particular sequence of cutoff values as a restart strategy and there
are many things to consider in an implementation. For example, the cutoff value can be a

13

Function Search(CSP)
If (Cutoff Reached()) return Timed out
If (Propagate(CSP) = failure) return Unsatisfiable
If (CSP is empty) return Satisfiable
Choose Variable(CSP)
While (Choose and Assign Value(CSP) �= exhausted)

status := Search(CSP)
If (status �= Unsatisfiable) return status

return Unsatisfiable

Function Restart Wrapper(CSP)
While (Search(CSP) = Timed out)

Reinitialize()
Choose Seed()

Figure 3.1: Backtrack search algorithm with restart.

constant or differ from run to run, and the number of restarts can be either finite or infinite.
Note that the completeness of the algorithm is no longer guaranteed in general when the
cutoff value is fixed. It is possible to have a cutoff value that is so small that the probability
of finding a solution is zero even when one exists. Similarly, the cutoff value may not be
enough to finish exploring a minimal refutation tree when the problem is unsatisfiable.
In either case the algorithm will never terminate. One solution is to have cutoffs that
increase over time so that a complete search is performed asymptotically. Moreover, it is
also necessary to have an infinite number of restarts to guarantee completeness.

The technique of introducing randomization and restart into the backtrack search al-
gorithm started at least as early as in the work of Harvey [23]. Harvey found that the
consequences of early mistakes can be largely avoided by restarting the backtrack search
periodically with different variable orderings. The observation led Harvey to propose a
randomized algorithm in which the search terminates when the distance backtracked from
a dead-end exceeds some fixed cutoff and is restarted with a different ordering until the
problem is solved. The new algorithm, an implementation of a fixed-cutoff strategy, was
shown to give improved performance over a deterministic backtrack search algorithm on job
shop scheduling problems.

At the same time, in the study of Las Vegas algorithms, Alt et al. [2, 3] were one
of the first to analyze the effects on the tail when applying infinite restarts to arbitrary
runtime distributions. They proved that there exists a probabilistic strategy guaranteeing
an exponentially decaying tail and they obtained a slightly weaker result on deterministic
strategies. Luby et al. [35] later expanded on this early work and showed that for any

14

runtime distribution there exists a fixed-cutoff infinite strategy that is optimal. They also
proposed a universal strategy and proved that it is optimal amongst all possible universal
strategies.

Gomes et al. [18, 19, 20] have since done much to popularize and advance the restart
technique within backtrack search algorithms. Their large body of work on this topic
includes demonstrations of the wide applicability of restarts, drawing connections to existing
work on Las Vegas algorithms, as well as contributions to an understanding of when and
why restarts help.

To intuitively understand the effect of restarts, it helps to graphically examine the
relationship between the original probability distribution and that which is transformed
by a restart strategy. Suppose we have an input distribution with cumulative distribution
function F (t) and we apply a restart strategy with a sequence of cutoffs (t1, t2, t3, . . .). The
resulting cumulative distribution function F ′(t) can then be defined recursively as,

F ′(t) =

{
F (t) t ≤ t1

F ′(ti) + (1 − F ′(ti))F (t − ti) ti < t ≤ ti+1.

In other words, the final probability mass function is comprised of successive copies of
segments of the original distribution with lengths (t1, t2, t3, . . .). Each segment is scaled
down by how much of the cumulative probability remains at the restart point. An example
of such a transformation is illustrated in Figure 3.2.

Figure 3.2: Effect of restart strategy on runtime distribution when the sequence of cutoffs
is (t, t, t, . . .).

One thing to note is that the randomness introduced in converting the deterministic
solver into a Las Vegas algorithm will sometimes weaken the heuristics. When the heuristic
is particularly good for the problems at hand, it should not be surprising that the expected
performance of even an optimal restart strategy can be inferior to that of the deterministic
solver.

15

3.2 When Do Restarts Help?

This section examines the questions of when and why restart strategies are helpful from
two angles: For what kinds of runtime distributions are restarts useful and what are the
underlying causes for these runtime distributions?

3.2.1 Runtime Distributions For Which Restarts Are Useful

Gomes et al. [18] were the first to suggest the use of heavy tail in the modeling of the
observed runtime distribution, specifically on those problems that are neither too trivial
nor too hard. Figure 3.3 gives a sample log-log plot of such a runtime distribution in solving
a crossword puzzle instance. Gomes et al. showed that randomization and restarts were
particularly effective on such distributions through the elimination of the tail section and
capitalizing on the early probability mass. It should be noted, however, that the problems
observed to exhibit heavy tail are all satisfiable problems and it has been suggested that
unsatisfiable instances do not have heavy tails and so may not benefit from randomization
and restarts [4].

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

log(t)

lo
g(

1−
F

(t
))

Heavy tail
Expoential

Figure 3.3: Heavy-tailed distribution in solving crossword puzzle.

Hoos [25] observed that restarts will not only be effective for heavy tails, but that its
effectiveness depends solely on there existing some point where the cumulative runtime
distribution is increasing slower than the exponential distribution. It is at this point, where
the search is most likely to be stagnating, that a restart would be helpful.

Van Moorsel and Wolter [43] provided a necessary and sufficient condition for restarts
to be useful. Their work can be seen as a formalization of Hoos’ insight and its extension
from one restart to multiple restarts. Let T be a random variable that models the runtime

16

of a randomized backtracking algorithm on an instance. Let E[T] be the expected value of
T . Under the assumption that successive runs of the randomized algorithm are statistically
independent and identically distributed, van Moorsel and Wolter showed that any number
of restarts using a fixed cutoff of t is better than letting the algorithm run to completion if
and only if,

E[T] < E[T − t | T > t],

holds; i.e., if and only if the expected runtime of the algorithm is less than the expected
remaining time to completion given that the algorithm has run for t steps. Ó Nualláin
et al. [38] obtained a similar but more explicit condition stating that restart should be
performed at time t whenever,

E[T] <

∑
t′>t t′f(t′)
1 − F (t)

− t.

Of course, these conditions are only sensible when the expected value of the original runtime
distribution actually exists.

Van Moorsel and Wolter observed that heavy-tailed distributions would satisfy this
condition for at least some values of t whereas for an exponential distribution the condition
becomes equality implying that restarts neither help nor hurt. In practice, however, there
is a cost associated with initializing each restart, so the performance in the latter case is in
fact worse. Zhan [47] showed that restarts can indeed be harmful for many problems.

3.2.2 Underlying Causes For Heavy Tail

Various theories have been postulated for explaining why restarts are helpful; i.e., why run-
time distributions arise for which restarts are beneficial. It is superficially agreed that an
explanation for this phenomenon is that ordering heuristics make mistakes [18]. For exam-
ple, a critical error in an early branching decision could lead the search into an unsatisfiable
part of the search tree that is exponentially large and would take an impractical amount
of time to refute. However, the theories differ in what it means for an ordering heuristic to
make a mistake.

Harvey [23] defines a mistake as follows.

Definition 3.1. A mistake is a node in the search tree that is a nogood but the parent of
the node is not a nogood.

A nogood is a node where the sub-problem is unsatisfiable. When a mistake is made, the
search has branched into a subproblem that does not have a solution. The result is that the
node has to be refuted and doing this may require a large subtree to be explored, especially
if the mistake is made early in the tree. In this definition, value ordering heuristics make
mistakes, variable ordering heuristics do not. However, changing the variable ordering

17

can mean either that a mistake is not made, since the value ordering is correct for the
newly chosen variable, or that any mistake is less costly to correct. Harvey constructed
a probabilistic model to predict when a restart algorithm will perform better than its
deterministic counterpart. With simplifying assumptions about the probability of a mistake,
it was shown that restarts are beneficial when the mistake probability is small.

As evidence in support of this theory, Hulubei and O’Sullivan [28] considered the dis-
tribution of refutation sizes to correct mistakes (the size of the subtrees that are rooted at
mistakes). They showed that when using a poor value ordering in experiments on quasigroup
completion problems, heavy-tailed behaviour was observed for every one of four different
high-quality variable ordering heuristics. However, the heavy-tailed behaviour disappeared
when the same experiments were performed but this time with a high-quality value ordering
heuristic in place of the random value ordering.

Williams, Gomes and Selman [46] (hereafter just Williams) define a mistake as follows.

Definition 3.2. A mistake is a selection of a variable that is not in a minimal backdoor,
when such a variable is available to be chosen.

A backdoor is a set of variables for which there exists value assignments such that the
simplified problem (such as after constraint propagation) can be solved in polynomial time.
Backdoors capture the intuition that good variable and value ordering heuristics simplify
the problem as quickly as possible. When a mistake is made, the search has branched into
a subproblem that has not been as effectively simplified as it would have been had it chosen
a backdoor variable. The result is that the subproblem is more costly to search, especially
if the mistake is made early in the tree. In this definition, variable ordering heuristics
make mistakes, value ordering heuristics do not. Williams constructs a probabilistic model
to predict when heavy-tailed behaviour would occur as well as when there will exist a
restart strategy with polynomial expected runtime. With simplifying assumptions about
the probability of a mistake, it was shown that both of these occur when the probability of
a mistake and the size of the minimal backdoor are sufficiently small. The theory can also
explain when restarts would be beneficial for unsatisfiable problems, through the notion of a
strong backdoor. However, the theory does not entirely account for the fact that a random
value ordering together with a restart strategy can remove heavy-tailed behaviour. In this
case the variable ordering remains fixed and so the probability of a mistake also remains
unchanged.

Finally, there is some work that contributes to an understanding of why runtime distri-
butions arise where restarts are helpful while remaining agnostic about the exact definition
of a mistake. Consider the probability distribution of refutation sizes to correct mistakes. It
has been shown both empirically on random problems and through theoretical, probabilistic
models that heavy tails arise in the case where this distribution decays exponentially as the
size of the refutation grows [6, 15]. In other words, there is an exponentially decreasing
probability of making a costly (exponentially-sized) mistake.

18

3.3 Randomization Techniques

There are several different ways of introducing randomization into a deterministic backtrack
search algorithm. Harvey [23] was the first to propose randomizing the variable ordering.
Gomes et al. [20, 19] suggest specific strategies for randomizing a variable ordering heuristic
by either breaking ties or picking from top scorers randomly. They show that with restarts
the randomized algorithm led to orders of magnitude improvement on a wide variety of
problems from both SAT and CSP versions of scheduling, planning, and quasigroup com-
pletion problems. Other alternatives are to choose a variable with probability proportional
to the heuristic score or to pick randomly from a suite of different heuristics.

One pitfall to be aware of is that the randomization method must give enough different
choices near the top of the search tree for maximum effectiveness. For example, simple
random tie-breaking sometimes is not ideal because the heuristic scores are sufficiently
distinct near top of the tree. Harvey [23] also proposed randomizing the value ordering
so that each possible ordering is equally likely. The randomization techniques for variable
ordering heuristic would apply equally well in this case.

Zhang [48], however, pointed out that randomizing the heuristic would also weaken its
discriminating power, an undesirable side effect. He instead proposed an alternative way
of randomization called random jump method. The idea is simply to skip large subtrees
randomly during systematic search. Specifically, if by estimate a subtree cannot be ex-
haustively searched during a restart interval then it is considered too large and is skipped,
and the notion of large depends on each cutoff value. The completeness of the search is
guaranteed as the cutoff value increases and fewer subtrees are skipped.

A shortcoming of the random jump approach is that it is much more difficult to analyze.
The runtime distribution depends critically on the quality of the estimate for the subtree
sizes which at best is a challenging problem in itself. Moreover, there is no longer a separa-
tion between the runtime distribution of the randomized algorithm and that after applying
the restart strategy. Therefore one is unable to easily study the general effect of a restart
strategy independent from the problem instance.

3.4 Restart Strategies

Implementing a restart strategy involves running a randomized algorithm up to some cutoff
time, stopping it, and then repeating the process until the problem is solved or is given
up after a deadline has passed. The intuition is to take advantage of the left mass of the
run-time distribution and trim off long runs. Formally, a restart strategy S is defined by a
sequence of cutoffs:

S = (t1, t2, t3, . . .).

19

In practice, one also needs to decide on the primitive operation or time unit with which to
measure cutoffs. Harvey [23] used the distance the algorithm has backtracked from a dead-
end. Gomes et al. [19] counted the total number of backtracks. Kautz et al. [30, 40] measured
the number of nodes or choice points visited. In addition, the natural measurement of time in
seconds can also be used. The latter is of more practical interest since runtime performance
is often the true objective measure and it may be only weakly correlated with the other
measurements. This weak correlation is due to different amounts of processing done at
nodes located at different depths of the search tree.

There are many different restart strategies depending on how the cutoffs change, and
they can be classified as either static or dynamic. Static strategies are parameterized where
a sequence of cutoffs is described by a few parameters and is fixed before the search begins.
The optimal parameters depend on the combination of problem instance and the algorithm.
Dynamic strategies on the other hand generate the sequence of cutoffs at runtime.

The following subsections present an overview of several classes of existing restart strate-
gies and highlights the available theoretical results. From now on, we denote the runtime
random variable, the probability density function, and the cumulative distribution function
for the original runtime distribution and that after applying a restart strategy by T and
TS , f(t) and fs(t), F (t) and Fs(t) respectively. One assumption for the static strategy is
that the number of restarts is unbounded and the strategy is infinite. Another assumption
is that each restart is independent.

3.4.1 Fixed-cutoff Strategy

Fixed-cutoff strategies are simple static strategies of the form S = (tc, tc, tc, . . .) where tc is
a constant. It is easy to show that a fixed-cutoff strategy removes heavy tail as shown in
Theorem 3.1.

Theorem 3.1. For arbitrary distribution f(t), the strategy (tc, tc, tc, . . .) guarantees an ex-
ponential tail.

Proof. The result follows from the inequality,

P [TS > t] ≤ P [TS > tcn], where n = � t

tc
	

= (1 − F (tc))n

≤ (1 − F (tc))
t
tc
−1.

Similarly we can show the tail is also bounded below by an exponential distribution.

The removal of the heavy tail guarantees the existence of the mean for TS as given
in Theorem 3.2. Van Moorsel and Wolter have derived similar results independently in
[43]. Luby et al. [35] obtained a different expression that can be shown to be equivalent:
E[TS] = 1

F (tc)
(tc −

∑
t′<tc

F (t′)).

20

Theorem 3.2. The mean of the runtime for fixed-cutoff strategy with cutoff tc is,

E[TS] =
tc(1 − F (tc)) + Etc

F (tc)
,

where Etc =
∫ tc
0 tf(t)dt.

Proof. The expression Etc is the partial mean of the original distribution on the interval
[0, tc]. It is also the mean of the first segment in the runtime distribution after applying the
restart strategy as shown in Figure 3.2. Each subsequent segment is of equal length but
with successively smaller area. The partial mean for the (m + 1)st segment is given by,

Em
tc =

∫ tc

0
(mtc + t)f(t)(1 − F (tc))m, where m = 0, 1, . . .

= mtc(1 − F (tc))m
(∫ tc

0
f(t)dt

)
+ (1 − F (tc))m

(∫ tc

0
tf(t)dt

)
= mtc(1 − F (tc))mF (tc) + (1 − F (tc))mEtc .

The derivation of the mean then becomes straightforward:

E[TS] =
∫ ∞

0
tf(t)dt

=
∞∑

m=0

Em
tc

= F (tc)tc

(∞∑
m=0

m(1 − F (tc))m
)

+ Etc

(∞∑
m=0

(1 − F (tc))m
)

= F (tc)tc

(
1 − F (tc)
F (tc)2

)
+
(

Etc

F (tc)

)

=
tc(1 − F (tc)) + Etc

F (tc)
.

For a sanity check, observe that tc → 0 ⇒ F (tc) → 0 ⇒ E[TS] → ∞ by l’Hopital’s
rule.

With the expression for the mean we can apply simple calculus to find an implicit
expression for the optimal fixed cutoff t∗c . Van Moorsel and Wolter [43] also obtain a similar
result independently.

Theorem 3.3. The cutoff t∗c > 0 is optimal when,

E[TS] =
1 − F (t∗c)

f(t∗c)
.

21

Proof. We take the derivative of the mean with respect to tc and set it to 0 and obtain,

0 =
d

dtc
E[TS] ⇔

0 =
F (tc)((1 − F (tc)) − tcf(tc) + tcf(tc)) − (tc(1 − F (tc)) + Etc)f(tc)

F (tc)2
⇔

F (tc)(1 − F (tc)) = (tc(1 − F (tc)) + Etc)f(tc) ⇔
1 − F (tc)

f(tc)
=

tc(1 − F (tc)) + Etc

F (tc)
⇔

1 − F (tc)
f(tc)

= E[TS].

The simple intuitive interpretation is that the optimal strategy is obtained when the
expected runtime after applying the restart strategy equals the inverse hazard rate of the
original distribution at the cutoff point. Luby et al. [35] proved that t∗c always exists and
the resulting strategy is optimal in the absolute sense that no other static restart strategy
of any kind can do better.

Van Moorsel and Wolter [44] observed that for some runtime distributions, such as the
lognormal distribution, a wide range of cutoffs performed well. They further observed that
it was safer for the cutoff to be too large rather than too small.

Figure 3.4 shows an example of how the performance of the fixed-cutoff strategy on a
heavy-tailed distribution changes as a function of the cutoff values.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
5.5

6

6.5

7

7.5

8

8.5

9

Fixed cutoff

lo
g(

m
ea

n
ru

n
tim

e)

alpha = 0.1
alpha = 1
alpha = 1.9

fraction = 0.65

fraction = 0.95

Figure 3.4: Simulation result showing the performance of fixed-cutoff strategy. Input run-
time distributions are constructed by attaching a Pareto tail to an empirical runtime distri-
bution from solving a crossword puzzle instance (using |dom|/deg heuristic where ties are
broken randomly). The total probability mass given to the tail section is determined by
(1−fraction). Three Pareto tails of different α values are used for each fraction setting.

22

3.4.2 Luby’s Universal Strategy

The fixed-cutoff strategy is not robust in the sense that one must find a good cutoff value
either through trial-and-error or by having knowledge about the runtime distribution. Luby
et al. [35] asked the question of how well one can do when absolutely no information is
known or can be accrued about the original runtime distribution. They were able to devise
a universal strategy based on the fixed-cutoff strategy but with a guaranteed performance
bound.

Luby’s universal strategy S = (t1, t2, t3, . . .) is defined by the recurrence equations [35]:

ti =

{
2k−1 if i = 2k − 1
ti−2k−1+1 if 2k−1 ≤ i < 2k − 1.

(3.1)

and when expanded the strategy looks like,

S = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, . . .).

In form the strategy resembles a mixed set of fixed-cutoff strategies with exponentially
increasing cutoffs, as if they are running in “parallel”. This highlights the underlying idea
that the universal strategy is searching for the optimal cutoff but at the same time keeping
the running time taken up by each of the embedded fixed-cutoff strategies roughly equal.
By the time the optimal cutoff (or something slightly larger) is found and the corresponding
optimal fixed-cutoff strategy has executed enough times to give a high stopping probability,
the total amount of time spent is bounded and surprisingly small, as given in Theorem 3.4.

Theorem 3.4 (Luby et al. [35]). For arbitrary distribution f(t),

E[TS] ≤ 192l∗(log2(l
∗) + 5)

where l∗ is the expected runtime of the optimal fixed-cutoff strategy on distribution f(t).

Since the essence is in keeping a balanced effort between the “parallel” set of fixed-cutoff
strategies, the factor 2 in Equation 3.1 can in fact be replaced with any positive integer and
the asymptotic performance guarantee would still hold, albeit with a different logarithmic
base. This factor or Luby factor can be considered a parameter for the family of generalized
Luby universal strategies. Luby et al. also gave a tail bound for their new strategy shown
in Theorem 3.5. The tail is not quite exponential, as in the case of fixed-cutoff strategy,
but it decays significantly faster than heavy tail.

Theorem 3.5 (Luby et al. [35]). The probability that Luby’s universal strategy runs for
more than t steps is at most,

exp{−t/64l∗ log2(t)}.

23

Luby et al. [35] completed the development of the universal strategy by proving that the
bound in Theorem 3.4 is the best that can be achieved by any universal strategy on arbitrary
unknown distributions up to a constant factor. The proof was based on a constructed family
of pathological distributions. The question of how well Luby’s universal strategy performs
on specific classes of runtime distributions remains open. Some of our empirical studies
suggest that the performance depends greatly on the choice of parameters and can differ
by orders of magnitude. In some cases, even a small change in the parameters produced
large differences in performance. A common observation is that the sequence of cutoffs in
Luby’s universal strategy grows too slowly and often does not greatly improve performance
[19, 30, 40].

The basic form of Luby’s universal strategy can be extended by introducing a scaling
factor 1/s to account for different time scales. Figure 3.5 shows an example of how the
performance of Luby’s universal strategy changes as a function of the Luby factor when
applied to a heavy-tailed input distribution.

20 40 60 80 100 120 140 160 180 200

6.8

7

7.2

7.4

7.6

7.8

Luby factor

lo
g(

m
ea

n
ru

n
tim

e)

alpha = 0.1
alpha = 1
alpha = 1.9

fraction = 0.65

fraction = 0.95

Figure 3.5: Simulation result showing the performance of Luby’s universal strategy, where
the scale factor is set to 1. Input runtime distributions are constructed by attaching a
Pareto tail to an empirical runtime distribution from solving a crossword puzzle instance
(using |dom|/deg heuristic where ties are broken randomly). The total probability mass
given to the tail section is determined by (1−fraction). Three Pareto tails of different α
values are used for each fraction setting.

3.4.3 Geometric Strategy

In response to the sometimes dismal performance of Luby’s universal strategy on practical
problems, Walsh [45] proposed a new strategy that adopted the idea of exponentially in-
creasing cutoffs but abandoned the tedious repetitions. The new strategy seems to work

24

robustly in many situations and give good performance gains. The geometric strategy has
the general form,

S = (r, r2, r3, . . .),

where geometric factor r controls how fast the cutoff values grow. It is always assumed that
r > 1 since a shrinking sequence of cutoffs does not guarantee algorithm completeness or
remove heavy tail.

Although the geometric strategy can be argued to have been derived from Luby’s uni-
versal strategy, it has discarded the central idea needed to guarantee a performance bound,
namely that of finding the optimal cutoff and executing it repeatedly.

Although it has been observed that an optimally tuned geometric strategy sometimes
performs slightly inferior to an optimally tuned Luby’s universal strategy, the geometric
strategy shows remarkable robustness and tends to work well over a large range of geometric
factors. In practice, a geometric factor in the range 1 < r < 2 often works well on both
SAT and CSP instances [45, 47]. This may be a result of the peculiarities of the runtime
distributions of many real world problems in that they require no more than a handful of
restarts to finish with high probability.

As for Luby’s universal strategy, the geometric strategy can also be extended to include
a scaling factor 1/s. Figure 3.6 shows an example of how the performance of the geometric
strategy changes as a function of just the geometric factor when applied to a heavy-tailed
input distribution.

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Geometric factor

lo
g(

m
ea

n
ru

n
tim

e)

alpha = 0.1
alpha = 1
alpha = 1.9

fraction = 0.65

fraction = 0.95

20 40 60 80 100 120 140 160 180 200

6

6.5

7

7.5

8

8.5

9

9.5

Geometric factor

lo
g(

m
ea

n
ru

n
tim

e)

alpha = 0.1
alpha = 1
alpha = 1.9

fraction = 0.65

fraction = 0.95

Figure 3.6: Simulation result showing the performance of geometric strategy, where the
scale factor is set to 1. Input runtime distributions are constructed by attaching a Pareto
tail to an empirical runtime distribution from solving a crossword puzzle instance (using
|dom|/deg heuristic where ties are broken randomly). The total probability mass given to
the tail section is determined by (1−fraction). Three Pareto tails of different α values are
used for each fraction setting.

More results on the geometric strategy can be found in the next chapter.

25

3.4.4 Frisch’s Combined Strategy

A novel restart strategy proposed by Frisch and Zhan [13] is one that combines Luby’s
universal and the geometric strategies. The basic Frisch’s combined strategy has two pa-
rameters, one for the geometric factor and one for the repetition count in Luby’s universal
strategy. For example, a Frisch’s combined strategy with geometric factor of 3 and a repe-
tition factor of 2 would look like,

S = (1, 1, 3, 1, 1, 3, 9, 1, 1, 3, 1, 1, 3, 9, 27, 1, . . .).

Frisch’s combined strategy can also be extended to include a scaling factor as the third
parameter.

Frisch’s combined strategy is interesting because it is a superclass that encompasses
all three parameterized strategies discussed above. By setting both the geometric and
the repetition factor to 1, we have the fixed-cutoff strategy. Luby’s universal strategy
is obtained by setting both the geometric and the repetition factor to 2. The geometric
strategy is constructed with a repetition factor of 1.

Although an elegant construct, the added parameter dimension makes analysis especially
difficult. So far, no theoretical results are available and it has not seen much practical use
either. One thing we have observed in preliminary experiments is that the performance
of Frisch’s combined strategy is often dominated or is the same as that of the geometric
strategy when the geometric factor is larger than the repetition factor. When the relative
sizes of these two parameters are reversed the performance tends to become much worse,
and Frisch’s combined strategy starts to resemble the fixed-cutoff strategy. In this case, the
performance is governed by the scale parameter which is roughly equivalent in effect to the
fixed cutoff value.

3.4.5 Dynamic Strategy

Static strategies are simple to implement and generally help improve performance on difficult
problems. The theoretical results and worst case bounds provide a peace of mind to some
degree. However, even with the same asymptotic guarantees, being able to solve a problem
in under an hour and in over a day have different feasibility implications to practitioners.
The real question then is: how much better can we do on real problems? Some of the
assumptions made in the study of static strategies severely limit their effectiveness and
deserve a re-examination.

Kautz et al. [30, 40] noted that two of the assumptions may not hold in practice. First,
the assumption that the successive runs of the randomized algorithm are statistically in-
dependent and identically distributed becomes invalid in the case where each run is drawn
from one of two distributions. Second, the assumption that no prior knowledge is available
on the runtime distribution or on each individual run is false as there are an abundance of

26

indirect observations.
Generally, real world problems are not as pathological as in some of the theoretical

constructions but instead show remarkable and consistent structures. Knowledge about
what distinguishes these problems as coherent subclasses out of all possible problems is
available and can be made useful in improving the effectiveness of restarts in a context
specific fashion. A systematic approach that has been proven in practice in extracting such
knowledge is based on correlation ideas. For problems that are closely related, we would
expect there to be some similarities in runs that finish early and also in runs that seem to
go on forever, as well as a marked distinction between the two types of runs.

The extraction of features for quantifying such correlation can be done with machine
learning techniques. There are basically two sources of information available. Statically,
one can look at aspects of the SAT or CSP encodings such as the number of variables and
constraints, the sizes of variable domains and constraints, as well as some graph theoretical
measures of the constraint relationships. Dynamically, one can observe how the search
progresses over time and how some of the data structures change and evolve. Generally,
the static information is much less helpful and only serves as a supplement to the dynamic
observations. For example, static features can sometimes give an indication of the inherent
hardness of an instance and help in biasing the likelihood of long and short runs.

Having established a runtime classifier, it is then straightforward to build a restart
strategy based on it. The algorithm would be restarted whenever a run is predicted to take
a long time to finish. The resulting dynamic restart strategy would improve the empirical
performance over a static strategy whenever the runtime prediction is sufficiently accurate.

Kautz et al. [26] investigated the problem of building runtime classifiers for quasigroup
completion problems using Bayesian models. The features they gathered included summary
statistics of generic as well as domain specific attributes recorded over an observation horizon
of 1000 search tree nodes. For example, one attribute was the number of Boolean variables
assigned the value true and the summary statistics were the initial, minimum, maximum
and average values. Machine learning technique is applied to the collected features and a
decision tree is constructed.

The reported prediction accuracy was 60% for single-instance setup and 72% for multi-
instance setup. The single instance setup is one in which the same instance is used in all
the restarts whereas in the multi-instance setup a different problem is drawn randomly each
time a restart takes places. The subtle implication of the multi-instance setup is that the
result may be severely skewed. It is possible that the easy instances are solved over and
over again but the hard one are simply skipped. This is not a realistic scenario since we are
often more interested in the number of unique instances that can be solved.

In a series of later papers, Kautz et al. developed various hybrid static-dynamic restart
strategies based on the runtime classifier. The multi-instance setup was used in all of their
work. In one paper [30], instances were picked independently from an ensemble of sub-classes

27

during each run. The algorithm was restarted when the classifier predicted the run to be
long. Otherwise, the search continued up to an optimal cutoff calculated offline and then
restarted. In another paper [40] the independence assumption was dropped and instances
were picked from the same sub-distribution each time. A Markov chain model was used to
update the belief at each restart about from which sub-distribution the instances came from.
The corresponding optimal cutoffs are then applied as appropriate. In all these experiments,
Kautz et al. observed significant performance improvements in terms of expected runtime
when compared to Luby’s universal strategy and even the optimal fixed-cutoff strategy on
the entire problem set.

Another related study of note is that of Leyton-Brown et al. [32] for predicting hardness
of combinatorial auction problems. Their technique used purely static features including
many of interest to general CSP problems such as clustering coefficient, minimum path
length and many other graph based measures. The prediction model was based on linear
regression. Although allowing a finer degree of discrimination when compared to decision
trees, the continuous models are often much worse in terms of robustness particularly on a
mixed collection of runtime distributions.

3.5 Other Related Work

An idea closely related to restart strategy is that of algorithm portfolio. Instead of running
a single randomized algorithm repeatedly, an algorithm portfolio consists of several distinct
algorithms. The two types of algorithm portfolios are multiprocessor portfolio and single
processor portfolio. In the multiprocessor setup, different numbers of each algorithm are
run on a corresponding number of processors. In the single processor setup, not only can
one have several copies of a given algorithm but one is also able to adjust the fraction
of CPU time assigned to each copy. These two portfolio parameters have very different
effect and scale the component distributions vertically and horizontally respectively. The
runtime distribution for the entire portfolio is then the summation of these scaled compo-
nent distributions. Thus a single processor portfolio may not have a simple corresponding
multiprocessor portfolio.

Example 3.1. Consider a setup with no deadline where the portfolio runs until one of
the algorithms find a solution. A simple single processor portfolio is one consisting of
two algorithms A1 and A2 that are given 1/3 and 2/3 of CPU time respectively and run
concurrently with context switching. The runtime distribution would generally be different
qualitatively from that of a multiprocessor portfolio where A1 runs on one CPU and two
copies of A2 run on one CPU each.

Hogg and Williams [24] looked at the case of applying a single-processor portfolio to
hard computational problems and observed a counter-intuitive result. When the runtime

28

distribution of one algorithm is not strictly dominated by that of another, then it is of-
ten beneficial to keep such an algorithm in the portfolio even though its mean is much
worse than the others. This result was further confirmed by Gomes and Selman [17, 18].
The intuitive explanation is that, as with restart strategies, portfolios prefer risk-seeking
algorithms that contribute to the early probability mass. This trend becomes increasingly
evident when the number of algorithms allowed in the portfolio increases. Lastly, we note
that portfolios, although they do not provably remove heavy tails, may be more robust than
restart strategies due to the added variability in algorithm choices.

3.6 Summary

This chapter has presented the general technique of randomization and restart. This tech-
nique is effective at diminishing the consequences of early heuristic mistakes. Specifically,
restarts help on runtime distributions that decay more slowly than the exponentials. An
example is the heavy-tailed distribution. Randomization can be introduced through the
heuristics or by skipping parts of the search tree.

The first restart strategy studied was the fixed-cutoff strategy that guarantees an ex-
ponential tail and can be made optimal for arbitrary known runtime distributions. Luby’s
universal strategy was based on the fixed-cutoff strategy with guaranteed asymptotic perfor-
mance on arbitrary unknown distributions. The geometric strategy tackles the problem of
slow growth in Luby’s universal strategy and often has more robust empirical performance.
All three static strategies can be seen as special cases of Frisch’s combined strategy.

Dynamic restart strategies are able to outperform static ones by using information gath-
ered during runtime. Machine learning techniques can be used to classify the length of each
run on which the restart decisions are based, and the resulting predictor is used to guide
the selection of cutoffs to use.

An idea related to randomization and restart is that of algorithm portfolio. It shares
with restart strategies the common underlying principle for improving performance, namely
in the preference for risk seeking algorithm; i.e., in taking advantage of early mass in the
runtime distribution.

In the next two chapters, we will present new results we have obtained on the static and
dynamic strategies, respectively.

29

Chapter 4

New Results on Static Restart

Strategies

Previously, restart strategies were studied with the assumption of arbitrary runtime distri-
butions. In this chapter, we present new results that expand the theoretical framework by
focusing on a practically relevant class of distributions, the heavy-tailed distributions. We
analyze the fixed-cutoff strategy and provide bounds on the expected performance. For the
geometric strategy we show that its performance in general is not bounded with respect to
the optimal fixed-cutoff strategy. We also prove for the first time that it removes heavy
tail. Later in the chapter, we examine in detail several idealized assumptions made in pre-
vious studies about deadline, restart overhead cost and minimum solution effort. We assess
the effect and impact of removing these assumptions and the resulting observations are of
interest to practitioners.

4.1 Fixed-cutoff Strategy

It has been mentioned previously in Section 3.2.1 that the runtime distributions encountered
in solving real world instances can be modeled reasonably well with heavy tails [19]. It
is therefore of interest to develop the theoretical results further using this special class of
runtime distributions. Specifically, we shall examine the pure Pareto distribution introduced
in Section 2.3. Although this simple model does not capture the intricate details in real
world runtime distributions prior to the tail section, it nevertheless allows us to make
qualitative observations and to obtain asymptotic results.

Theorem 4.1. For the Pareto distribution with density function f(t) = αt−α−1, α >

0, α �= 1, t > 1, the expected runtime after applying a fixed-cutoff strategy with cutoff t is
given by,

E[TS] =
t(αtα−1 − 1)

(tα − 1)(α − 1)
.

31

Proof. From Theorem 3.2,

E[TS] =
1

F (t)
(t(1 − F (t)) + Et)

=
1

F (t)

(
t(1 − F (t)) +

∫ t

1
t′f(t′)dt′

)

=
1

1 − 1
tα

(
1

tα−1
+
∫ t

1
t′αt′(−α−1)

dt′
)

=
tα

tα − 1

(
1

tα−1
+

α

α − 1

(
1 − 1

tα−1

))

=
t(αtα−1 − 1)

(tα − 1)(α − 1)
.

Moreover, for a discrete Pareto distribution it can be shown that E[TS] < Ediscrete[TS] <

E[TS] + 1.

As a sanity check, observe that as t → ∞ the strategy becomes degenerate and the run-
time distribution approaches that of the Pareto; E[TS] becomes divergent and unbounded
for α ≤ 1. This agrees with the fact that the Pareto distribution has no finite mean for such
α values. When α > 1, E[TS] → α

α−1 as t → ∞ and this is just the mean for the Pareto
distribution. Figure 4.1 shows how the function E[TS] behaves and also how it is similar to
the expected runtime plot generated from empirical data in Figure 3.4.

10

6

8

4

cutoff

3530252010 155 40

Figure 4.1: The function E[TS] for increasing cutoffs where α = 1.1. The horizontal line
shows the asymptote α

α−1 .

Theorem 4.2. For 0 < α < 2, α �= 1, the cutoff value that minimizes the function E[TS]
is t∗ ∈ [2, 4]. Moreover, when α > 2, |E[TS(t∗)] − E[TS(3)]| < 0.268 where TS(t) denotes the

32

random variable that models the runtime distribution of a fixed-cutoff strategy with cutoff t.

Proof. Differentiating E[TS] we get,

dE[TS]
dt

=
−α2t(α−1) − (1 − α)tα + 1

(α − 1)(tα − 1)2

We want to show that dE[TS]
dt < 0 for t < 2 and dE[TS]

dt > 0 for t > 4. In other words,
dE[TS]

dt = 0 for some t∗ ∈ [2, 4].
First consider the case when 1 < t < 2 and 0 < α < 1. The denominator is negative.

The numerator is an inverted quadratic function in α for any value of t so its minimum
value occurs on the interval boundary. Observe that,

lim
α→0+

−α2t(α−1) − (1 − α)tα + 1 = 0+

and,

lim
α→1−

−α2t(α−1) − (1 − α)tα + 1 = 0+

Thus, dE[TS]
dt < 0 in this case.

Next, consider the case when 1 < t < 2 and 1 < α < 2. The denominator is positive. We
want to find the maximum value for the numerator so we first differentiate it with respect
to α and get,

∂(numerator)
∂α

= −2αtα−1 − α2tα−1 ln(t) + tα − (1 − α)tα ln(t)

Setting to 0 and solving for α we get,

α(t) =
−2 + ln(t)t +

√
4 + ln(t)2t2 − 4 ln(t)2t
2 ln(t)

> 0

With the help of Maple, we find that α(t) < 1 over the interval 1 < t < 2. Thus, the
maximum value for the numerator occurs on the interval boundary of α. We observe that,

lim
α→1+

−α2t(α−1) − (1 − α)tα + 1 = 0−

and,

lim
α→2−

−α2t(α−1) − (1 − α)tα + 1 < 0

Thus, dE[TS]
dt < 0 in this case as well.

Similarly, we find that dE[TS]
dt > 0 for t > 4 and the first result follows.

33

When α ≥ 2, the difference |E[TS(t∗)] − E[TS(3)]| is given by,

∫ t∗

2

∣∣∣∣dE[TS]
dt

∣∣∣∣ <

∫ ∞

2

∣∣∣∣dE[TS]
dt

∣∣∣∣
which is maximum when α = 2 and is less than 0.268 shown using Maple.

Theorem 4.2 states that over the range of α’s of interest, the optimal cutoff is very
much constant and is close to the value 3. When α is much larger and heavy tail is less
of a problem, a cutoff value in the narrow range of [2, 4] will still give performance that is
bounded closely to that of the optimal cutoff. This is in spite of the fact that the optimal
cutoff approaches ∞ as α tends to ∞ .

However, the result does not mean that the fixed-cutoff strategy is a robust universal
strategy in implementation by always choosing a cutoff value of 3. It is important to remem-
ber that the runtime distributions of real problems may be very different from the simple
Pareto distribution. They would most notably be stretched or compressed horizontally and
have an early probability mass portion that is more complex. Thus, the time unit associated
with the magical number 3 would vary greatly from instance to instance. The implication
is that if machine learning techniques can be used, for example, to predict the stretch and
compression factor needed in transforming a given runtime distribution into a reasonable
fit with the Pareto, then there may be a way of applying the fixed-cutoff strategy more ro-
bustly in practice. In this case, the arbitrary choice of α can be taken advantage to account
to some degree for the general shape of the early probability mass portion. Similarly, we
can also consider using a mixture of several Pareto distributions as the template in order
to obtain a better fit. In such case, an analogous result to Theorem 4.2 can be derived.

4.2 Geometric Strategy

The geometric strategy is qualitatively very different from Luby’s universal strategy, as
metioned in Section 3.4.3, and a new set of theoretical results are needed to characterize
this fast growing strategy. The first notable property we establish in Theorem 4.3 is that
the geometric strategy does not have any performance guarantee and is therefore not a
universal strategy.

Theorem 4.3. The expected run-time of the geometric strategy can be arbitrarily worse
than that of the optimal strategy.

Proof. For any given geometric strategy of the form (1, r, r2, · · ·), r > 1, define a probability
distribution as follows,

f(t) =




1
l t = 1
1 − 1

l t = ∞
0 otherwise

34

where l = r/(r − 1). Note that the optimal fixed-cutoff strategy (1, 1, 1, · · ·) has expected
run-time l. The expected run-time E[TS] of the geometric strategy is given by,

E[TS] =
1
l

+ (1 − 1
l
)
(1 + 1)

l
+ (1 − 1

l
)2

(1 + 1 + r)
l

+ · · ·

=

(∞∑
i=0

(1 − 1
l
)i
)(

1
l

+
1
l
(1 − 1

l
) +

r

l
(1 − 1

l
)2 + · · ·

)

= l

(
1
l

)(
1 + (1 − 1

l
) + r(1 − 1

l
)2 + · · ·

)

= 1 + (1 − 1
l
)

∞∑
i=0

(r − r

l
)i

= 1 + (1 − 1
l
)

∞∑
i=0

1i.

Thus the expected run-time E[TS] is unbounded with respect to that of the optimal fixed-
cutoff strategy.

Notation-wise, the condition t = ∞ can also be formulated as t = rk and a similar result
on E[TS] can be derived by letting k → ∞.

Note that for real CSP and SAT problems there always exists a t for which P (T ≤ t) = 1;
i.e. the runtime distributions are finite. In such case, the result in Theorem 4.3 no longer
holds and the performance of the geometric strategy is always bounded. However, such a
bound cannot be easily parameterized and depending on the original runtime distribution
it can be exponentially large compared to that of the optimal fixed-cutoff strategy.

In a theoretical sense, this initial result in Theorem 4.3 is a setback to the general
applicability of the geometric strategy and raises question about its value. As mentioned
in Section 3.2.1, the runtime distributions likely encountered in practice are much less
pathological and can often be modeled reasonably well with heavy-tailed distributions. It
is therefore of theoretical and practical interest to study the behaviour of the geometric
strategy in this more specific context. Theorem 4.4 shows, for the first time, that the
geometric strategy does indeed remove heavy tail from Pareto distributions and guarantees
an expected performance gain. The expressions are given in terms of the strategy parameters
which would help in understanding how the performance of the strategy changes with respect
to parameter tuning.

Theorem 4.4. For the Pareto distribution with cumulative probability distribution F (t) =
1 − Ct−α, t ≥ 1, α > 0, C > 0, the geometric strategy S = 1/s(r, r2, r3, . . .) has the
following tail,

P [TS > t] ≤ M(st)−
α
2

logr st+R

(4.1)

35

where R = α
2 + logr(sαC), M =

{
(sαC)−1 for sαC < 1
1 for sαC ≥ 1.

Proof. Without loss of generality, we assume t ≥ r
s . This helps to simplify the derivation

although the general result holds regardless.
The idea is to first bound the tail probability function from above by a piecewise linear

function which is further bounded by a smooth function that decays faster than heavy tail.

P [TS > t] ≤ P [TS >
rit

s
], where it = arg max

i
(
ri

s
≤ t) = �logr st	

=
it∏

l=1

(
1 − F

(
rl

s

))

=
it∏

l=1

sαCr−αl

= (sαC)�logr st�
�logr st�∏

l=1

r−αl

= (sαC)�logr st�r−α
P�logr st�

l=1 l

Since
∑�logr st�

l=1 l = 1
2(1 + �logr st)�logr st	 ≥ 1

2(1 + (logr st − 1))(logr st − 1) = 1
2(log2

r st −
logr st), together with the fact that r > 1 we have,

P [TS > t] ≤ (sαC)�logr st�r−
α
2
(log2

r st−logr st)

= (sαC)�logr st�(st)−
α
2
(logr st−1)

In the case where sαC < 1 we have,

P [TS > t] ≤ (sαC)logr st−1(st)−
α
2
(logr st−1)

= (st)logr(sαC)(sαC)−1(st)−
α
2
(logr st−1)

= (sαC)−1(st)−
α
2

logr st+(α
2
+logr(sαC))

= (sαC)−1(st)−
α
2

logr st+R

In the case where sαC ≥ 1 we have,

P [TS > t] ≤ (sαC)logr st(st)−
α
2
(logr st−1)

= (st)logr(sαC)(st)−
α
2
(logr st−1)

= (st)−
α
2

logr st+(α
2
+logr(sαC))

= (st)−
α
2

logr st+R

The basic form of the tail probability is e− log2 t. Although slower than e−t, it no longer
decays polynomially and thus is not heavy tailed.

36

Moreover, it is quick to check that both the mean and variance are finite for the cumu-
lative probability function P [T ≤ t] = 1 − e− log2 t.

The result in Theorem 4.4 can be extended beyond a pure Pareto distribution to include
those that have tails following a gradual transition to heavy tail. In such case, we can
assume without loss of generality that the tail begins at a switch-over point t′. The mean
and variance can then be approximated by combining contributions from both the initial
and tail sections. Both moments are guaranteed to be finite under the geometric restart
strategy.

An interesting question to ask is whether the results can also be generalized to strategies
similar in form to the geometric strategy? In particular, what happens when the exponent is
a polynomial function? Theorem 4.5 states that this general form of the geometric strategy
would also eliminate heavy tail, as long as the polynomial has bounded degree. The mean
and variance would also be finite. Of course, the larger the degree the slower the tail decay
and the larger the mean and variance.

Theorem 4.5. For the Pareto distribution with cumulative probability distribution F (t) =
1−Ct−α, t ≥ 1, α > 0, C > 0, the geometric strategy S = 1/s(rh(1), rh(2), rh(3), . . .) where
h(·) is a polynomial of degree m has tail of the basic form e−(log t)1+

1
m .

The logical follow-up question is how good is the geometric strategy at improving perfor-
mance on heavy-tailed distributions, for example, when compared to the base-line optimal
fixed-cutoff strategy which always exists (Section 3.4.1)? Is there a performance bound sim-
ilar to that for Luby’s universal strategy as given in Section 3.4.2? The question remains
open in general but some simple observations can be made. In the case when the value of
α is bounded away from 0 there is an upper bound on the mean for any geometric strategy
with fixed parameters as shown in Theorem 4.4. In other words, when applying a fixed
geometric strategy to the class of distributions where α ≥ ε > 0 for some fixed ε, there is
an absolute bound on the performance. However, when α is allowed to approach 0 then the
mean for both the geometric strategy and optimal fixed-cutoff strategy would tend to ∞,
but the relationship between the two is unknown.

We also observe that the optimal geometric strategy on any given problem instance
has trivially bounded performance by letting the geometric factor r approach 1 and adjust
the scale factor to give the optimal fixed-cutoff. We therefore have constructed a strategy
that simulates an optimal fixed-cutoff strategy. Similarly, the worst geometric strategy
would trivially have no performance bound by letting the geometric factor r approach ∞,
effectively removing restarts. These observations apply to other parameterized strategies
as well.

37

4.3 Constraints on Parameterized Restart Strategies

In the last chapter, several parameterized families of static restart strategies were studied
under idealized conditions. The assumptions and simplifications helped to make the analysis
straightforward so that a qualitative idea could be quickly grasped. However, real world sit-
uations are not as simple. The factors that have an impact on any practical implementation
of restart strategies need to be examined more closely.

First, the restart strategies in Chapter 3 were assumed to continue forever until the
instance is solved. In practice, an algorithm would never be allowed the luxury of an
indefinite amount of time. The value of the solution often becomes negligible or zero if it
cannot be reached in a reasonable amount of time. Second, the cost of performing each
restart such as doing memory clean-up and re-initialization can no longer be neglected
when the cutoff value is small and the number of restarts numerous. Third, there is always
a minimum amount of time required to have any chance of solving a real problem and this
tmin can have an impact when the cutoff value selected happens to be smaller. The following
sections will examine each of these factors in more detail.

4.3.1 Deadline

When solving real world problems such as scheduling problems, there is always a realistic
deadline D at which point the problem must be abandoned if a solution has not been
reached. Assuming the performance measure is still the expected runtime, the previous
theoretical results must be re-worked with this consideration in mind.

The fixed-cutoff strategy with deadline needs to be redefined and would have the general
form Sn

t = (t, t, . . . , t, t0). The new form is comprised of n equal restart values t and a left
over bit t0 < t. Here, n = �D/t	 and t0 = D − nt. The expected running time of the
strategy Sn

t for a discrete runtime distribution is given by the recurrence,

E[TSn
t
] =

{
0 for n = 0∑t

t′=1 t′f(t′) + (1 − F (t))(t + E[TSn−1
t

])) for n ≥ 1.

The solution to the recurrence is given in Theorem 4.6.

Theorem 4.6. When given a deadline D, the expected runtime of the fixed-cutoff strategy
Sn

t = (t, t, . . . , t, t0) where n = �D/t	 and t0 = D − nt is given by,

E[TSn
t
] = E[TS](1 − (1 − F (t))n) + (1 − F (t))n

(
t0 −

t0−1∑
t′=1

F (t′)

)
,

where E[TS] is the expected runtime of the infinite fixed-cutoff strategy St = (t, t, t, . . .).

38

Moreover, the probability a solution is found within the deadline D is given by,

L[TSn
t
] = (1 − (1 − F (t))n) + (1 − F (t))nF (t0).

Proof.

E[TSn
t
] =

t∑
t′=1

t′f(t′) + (1 − F (t))(t + E[TSn−1
t

])

Since,

t∑
t′=1

t′f(t′) = t
t∑

t′=1

f(t′) −
t∑

t′=1

(t − t′)f(t′)

= tF (t) −
t−1∑
t′=1

t−t′∑
j=1

f(t′)

= tF (t) −
t−1∑
t′=1

t−t′∑
j=1

f(j)

= tF (t) −
t−1∑
t′=1

t′∑
j=1

f(j)

= tF (t) −
t−1∑
t′=1

F (t′)

Substituting and we get,

E[TSn
t
] = tF (t) −

t−1∑
t′=1

F (t′) + (1 − F (t))(t + E[TSn−1
t

])

= t −
t−1∑
t′=1

F (t′) + (1 − F (t))E[TSn−1
t

]

Furthermore, applying the identity E[TS] = 1
F (tc)

(tc −
∑

t′<tc
F (t′)) (Luby et al. [35]) we

have,

E[TSn
t
] = E[TS]F (t) + (1 − F (t))E[TSn−1

t
]

Now, we unroll the recurrence equation using the fact that E[TSi
t
] = E[TS]F (t) + (1 −

F (t))E[TSi−1
t

] except at the very end where E[TS1
t
] = E[TS]F (t)+(1−F (t))

(
t0 −

∑t0−1
t′=1 F (t′)

)

39

and we get,

E[TSn
t
] = E[TS]F (t)

(
n−1∑
i=0

(1 − F (t))i
)

+ (1 − F (t))n
(

t0 −
t0−1∑
t′=1

F (t′)

)

= E[TS]F (t)
1 − (1 − F (t))n

F (t)
+ (1 − F (t))n

(
t0 −

t0−1∑
t′=1

F (t′)

)

= E[TS](1 − (1 − F (t))n) + (1 − F (t))n
(

t0 −
t0−1∑
t′=1

F (t′)

)
.

The derivation for the solution probability L[TSn
t
] is similar.

L[TSn
t
] = F (t) + (1 − F (t))L[TSn−1

t
]

Again, we unroll the recurrence equation and get,

L[TSn
t
] = F (t)

(
n−1∑
i=0

(1 − F (t))i
)

+ (1 − F (t))nF (t0)

= 1 − (1 − F (t))n + (1 − F (t))nF (t0).

The expression for E[TSn
t
] in Theorem 4.6 is a weighted sum where (1 − (1 − F (t))n)

gives the probability that the search with restart strategy Sn
t returns an answer within the

deadline D. Van Moorsel and Wolter have independently obtained a similar result in [43]
for the simpler case where an integral number of restarts fit within the deadline.

To further explore the relationship between the finite and infinite fixed-cutoff strategies,
we can ask the question of whether the optimal cutoff in one is also optimal for the other.
In general, the answer is no. If t∗ is the optimal cutoff for the infinite strategy and t∗∗

that of the finite strategy, then the two optimal cutoffs can be very different as shown in
Example 4.1. Examples can also be constructed where t∗∗ > t∗, but the difference between
the two may be tightly bounded in this case. Asymptotically, as n → ∞ or F (t) → 1, we
have t∗∗ → t∗.

Example 4.1. Consider the run-time distribution given by,

f(t) =




1
m t = 1
1 − 1

m t = m

0 otherwise

and note that t∗ = m.

40

Consider the case where m = 100 and D = 200. Although it appears to make more
sense if t∗∗ = m as well, but actually t∗∗ = 1, since E[TS200

1
] = 86.6 and E[TS2

100
] = 99.01.

Interestingly, the solution probability L[TS200
1

] is 0.866, whereas L[TS2
100

] = 1. This illustrates
the fact that a strategy minimizing the expected runtime does not in general maximize the
probability that the problem is solved, and vice-versa.

It is important to point out that finite fixed-cutoff strategy Sn
t in the new form shown

above is no longer optimal in general. There is no guarantee that there exists a strategy
Sn

t with the best expected runtime amongst all potential finite static restart strategies.
This in part is due to the inability in fitting an integral number of cutoffs in the allotted
time. The effect of the left-over piece is best demonstrated with examples. Given a runtime
distribution f(t) with f(2) = 0.4, f(3) = 0.1, f(∞) = 0.5 and a deadline D = 5. The optimal
strategy is found to be (2, 3), an increasing sequence. For a second runtime distribution
with f(1) = 0.05, f(2) = 0.15, f(4) = 0.8 plus a deadline of D = 11. The optimal strategy
is (4, 4, 2, 1), a decreasing sequence. In neither example does there exist an optimal strategy
of the form Sn

t .
The left-over piece only has a localized effect and we may therefore consider the class

of augmented fixed-cutoff strategies comprised of equal restarts except at the very end.
More precisely, the new form of strategy would be a monotonically decreasing sequence of
restart values except for the last cutoff. We conjecture that this generalization would help
restore the optimality condition; that is, there always exists a finite strategy of the new
form with the best expected runtime. The intuition is that increasing pairs not at the very
end of the strategy can always be replaced with a decreasing subsequence so that the mean
either improves or remains unchanged. For example, segments such as 1, 1, 2 can always be
replaced by something equivalent or better. The reasoning is that if 1, 1 is “better” than
2 then the strategy 1, 1, 1, 1 can be no worse than 1, 1, 2. Similarly, if 1, 1 is “worse” than
2 then 2, 2 would be a better alternative. The two new segments are both monotonically
decreasing.

A significant result by van Moorsel and Wolter [44] is the observation that the cutoffs in
an optimal finite strategy must coincide with equi-hazard intervals. That is, the performance
of a restart sequence (t1, t2, . . . , tn) is a local extremum if and only if,

f(t1)
1 − F (t1)

=
f(t2)

1 − F (t2)
= · · · =

f(tn)
1 − F (tn)

.

A special case that satisfies this condition is when t1 = t2 = · · · = tn = D/n, i.e., when
t′is are equi-distant intervals, which is just the traditional fixed-cutoff strategy. Unfortu-
nately, these strategies do not always give global maxima as already demonstrated. Finding
the optimal strategy by enumeration of all possible sequences of equi-hazard intervals would
require complete knowledge of the runtime distribution and even then it is computation-
ally prohibitive. However, for the special class of lognormal distributions van Moorsel and

41

Wolter showed by empirical observation that the traditional fixed-cutoff strategies often give
global optima and only take polynomial time to find. Such observation may be extended
to other distributions of practical interest but at present remains an open question.

For Luby’s universal and the geometric strategies, the existing theoretical results given
in Section 3.4.2 and 3.4.3 cannot be easily adapted when a deadline is present. The analysis
relied entirely on the asymptotic behaviour of the tail which is no longer a sensible notion
when a deadline is present. Thus the asymptotic results as well as performance bounds
previously derived are not valid anymore. In particular, Luby’s universal strategy may not
have enough time to find the optimal fixed cutoff by exponential search. Similarly, the
embedded optimal fixed-cutoff strategy is unlikely to execute enough times to guarantee
sufficient stopping probability.

Lastly, it should be stressed again that when given a deadline, optimality in solution
probability does not correspond to optimality in expected runtime. Since the ultimate aim
is in solving problems, this new objective measure is really the one that should be used to
compare performance in practice. This issue has been consistently overlooked and the mean
runtime has become the de facto standard in evaluating effectiveness of restart strategies
in existing work. The difference and similarity between the mean runtime and solution
probability measure for the fixed-restart strategy with different cutoff values is illustrated
in Figure 4.2. The two curves are qualitatively similar and are mirror images of each other.
Thus maximizing one tends to minimize the other. However, the two extrema points do
not coincide unless the deadline D is sufficiently large. In Example 4.1 this happens around
D > D0 ∼ 10m. Thus the discrepancy between the two measures is especially severe for
small deadline values and should be duly noted.

4.3.2 Restart Overhead Cost

Unlike the implicit assumption in Chapter 3, performing restarts is not free in practice
and requires restoring the data structures back to their initial states. Depending on the
implementation, this may involve resetting pointers, reinitializing variables, and possibly
some memory copy operation. The impact of this added cost on the expected performance
of a fixed-cutoff strategy is captured in Theorem 4.7.

Theorem 4.7. When an overhead cost c is associated with each restart then the expected
run-time of the infinite fixed-cutoff restart strategy S with cutoff t is,

E[TSc] = E[TS] + c

(
1 − F (t)

F (t)

)
,

where E[TS] is the expected runtime of the infinite fixed-cutoff strategy without overhead
cost.

Proof. In the following derivation, TS′
c

denotes the same strategy as TSc except with the

42

10 20 30 40 50 60 70 80 90

4.43

4.44

4.45

4.46

4.47

lo
g(

ex
pe

ct
ed

 r
un

tim
e)

10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

cutoffs

so
lu

tio
n

pr
ob

ab
ili

ty

Figure 4.2: Comparison of performance measured in terms of mean runtime and solution
probability for different fixed cutoffs. The runtime distribution comes from a crossword
puzzle instance and the deadline is 100.

first cutoff omitted.

E[TSc] =

(
t∑

t′=1

t′f(t′)

)
+ (1 − F (t))(t + c + E[TS′

c
])

=

(
tF (t) −

t−1∑
t′=1

F (t′)

)
+ (1 − F (t))t + (1 − F (t))c + (1 − F (t))E[TS′

c
]

= t −
t−1∑
t′=1

F (t′) + (1 − F (t))c + (1 − F (t))E[TS′
c
].

We are working with infinite strategies so TSc = TS′
c

and E[TSc] = E[TS′
c
]. Thus,

F (t)E[TSc] = t −
t−1∑
t′=1

F (t′) + (1 − F (t))c

E[TSc] =
1

F (t)
(t −

t−1∑
t′=1

F (t′)) +
1 − F (t)

F (t)
c

E[TSc] = E[TS] +
1 − F (t)

F (t)
c.

43

The implication is that as t → ∞ the second term goes to 0 and the effect of the overhead
cost diminishes. But for small t values, the cost has a dramatic impact on the expect
runtime. The new optimal fixed cutoff will also be greater than the original one.

For better comparison with the previous result in Theorem 3.2, the expression in The-
orem 4.7 can also be written in the form,

(t + c)(1 − F (t)) + Et

F (t)
.

The impact of the overhead can be more clearly seen to be on par with that of the cutoff
t both of which have equal weighted contribution to the expected runtime. Van Moorsel
and Wolter have independently obtained a similar result in [43]. Figure 4.3 shows that as
the cutoff t increases the effect of the overhead cost becomes negligible.

2 4 6 8 10 12 14 16 18 20
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

cutoffs

E
xp

ec
te

d
ru

nt
im

e

no overhead
with overhead

Figure 4.3: Effect of overhead cost c on expected performance of the fixed-cutoff strategy
on heavy-tailed distribution.

Theorem 4.8. When given both a deadline D and an overhead cost c, the expected run-time
of the fixed-cutoff restart strategy Sn

t = (t, t, . . . , t, t0) where n = �D/t	 and t0 = D − nt is
given by,

E[TSn
t
] =

(
E[TS] + c

1 − F (t)
F (t)

)
(1 − (1 − F (t))n) + (1 − F (t))n

(
t0 −

t0−1∑
t′=1

F (t′)

)
.

where E[TS] is the expected runtime of the fixed-cutoff strategy without overhead cost.

44

Proof.

E[TSn
t
] =

t∑
t′=1

t′f(t′) + (1 − F (t))(t + c + E[TSn−1
t

])

= tF (t) −
t−1∑
t′=1

F (t′) + (1 − F (t))(t + c + E[TSn−1
t

])

= t −
t−1∑
t′=1

F (t′) + (1 − F (t))c + (1 − F (t))E[TSn−1
t

]

=

(
t −

t−1∑
t′=1

F (t′) + (1 − F (t))c

)(
1 + (1 − F (t)) + · · · + (1 − F (t))n−1

)

+(1 − F (t))n
(

t0 −
t0−1∑
t′=1

F (t′)

)

=

(
t −

t−1∑
t′=1

F (t′) + (1 − F (t))c

)
1 − (1 − F (t))n

F (t)
+ (1 − F (t))n

(
t0 −

t0−1∑
t′=1

F (t′)

)

=
(

E[TS] + c
1 − F (t)

F (t)

)
(1 − (1 − F (t))n) + (1 − F (t))n

(
t0 −

t0−1∑
t′=1

F (t′)

)
.

For Luby’s universal and the geometric strategies, the essence of the analysis lies in
the asymptotic behaviour. Neither the asymptotic tail characterization nor the associated
performance bounds would change qualitatively for any finite overhead cost c. Thus we
omit the lengthy derivation that shows difference only in the constant multipliers.

4.3.3 tmin

The minimum amount of time required to solve a problem instance on a physical machine
is non-zero and can be denoted as tmin. The best case scenario when solving a satisfiable
instance is a linear search without backtrack. Depending on the propagator and heuristics
used, even such a linear plunge down the search tree can incur a measurable cost. For more
realistic instances the likelihood of finding a solution by linear plunge is negligible, and tmin

can be interpreted to be the amount of time needed before the solution probability becomes
significant. The next sub-section looks at how tmin is affected when cutoff is measured in
units other than time.

The effect of tmin was never explicitly analyzed in previous work presented in Chapter
3. But restart strategies can be made more efficient with knowledge of tmin. It would be
possible to avoid restart cutoffs that are smaller than tmin, as there is no chance of solving
the problem and the effort is only wasted. However, such knowledge is often unavailable in
practice and the issue is thus frequently overlooked. We now examine the impact of tmin on

45

the static restart strategies thus revealing the cost of ignoring this factor in implementation.
Specifically, we look at the amount of effort wasted as a function of the total time spent
on a strategy. The case for the fixed-cutoff strategy is easily seen to be tmin/t. The result
for Luby’s universal strategy is given in Theorem 4.9 and that for the geometric strategy is
given in Theorem 4.10.

Theorem 4.9. When applying Luby’s universal strategy of length D (i.e. with a deadline
of D) to a runtime distribution with tmin, the fraction of search effort wasted is given by,

log2 tmin�
log2 D

≤ fractionwasted ≤ 2

log2 tmin�

log2 D
.

Proof. (Sketch) For a Luby’s universal strategy that runs for a duration D, the unique
number of cutoff values used is at least log2 D and at most log2 D/2. It can be shown that
the total time spend on each of these cutoffs is at least D/ log2 D and at most 2D/ log2 D

because of the balanced nature of the strategy. Now, the number of unique cutoff values
that are smaller than tmin is at most
log2 tmin�. The expression for the fraction of total
time wasted on runs that are shorter than tmin thus follows.

Theorem 4.10. When applying the geometric strategy of length D (i.e. with a deadline of
D) and scale factor s = 1 to a runtime distribution with tmin ≥ 1, the fraction of search
effort wasted is given by,

fractionwasted =
r�logr tmin�+1 − 1

D(r − 1)
.

Proof. Given a geometric strategy S = (1, r, r2, . . .), the number of runs wasted is at most

logr tmin�. Thus the upper bound on the amount of time wasted is given by,

�logr tmin�∑
i=0

ri =
r�logr tmin�+1 − 1

r − 1
.

If the strategy runs for length D then the fraction of effort wasted is just,

fractionwasted =
r�logr tmin�+1 − 1

D(r − 1)
.

4.3.4 Other Constraints

The most immediate issue when implementing a restart strategy is in assigning a time unit
to the sequence of cutoff values. The two popular time unit choices are the number of
seconds and the number of backtracks amongst others given in Section 3.4. When using

46

seconds, the actual runtime is the performance measure of concern which reflects more
accurately the perceived effectiveness of the algorithm. The backtrack measure, although
sometimes only weakly related to the runtime measure, has the advantage that it implicitly
takes tmin into consideration. When using backtrack count, the probability of finding a
solution is non-zero at “time” = 0 which is in contrast to the case when time is measured
in seconds. However, such probability may be negligible depending on the combination
of algorithm and problem instance. Sufficiently significant probability mass may emerge
only after a large number of backtracks have been performed. Thus the backtrack measure
does not entirely solve the tmin problem. There is also the additional disadvantage that
improving the backtrack count does not necessarily translate into an improvement in actual
runtime.

Another practical constraint is that no matter how difficult, a given problem is always
finite and is therefore not a true heavy-tailed distribution in the theoretical sense. The
bounded and finite nature of the runtime distribution compromises the notion of asymptotic
analysis at the heart of existing results. Chen et al. [6] studied the problem with a model of
simple binary search trees and established a correspondence between properties of bounded
and unbounded heavy-tailed distributions. They showed that the infinite mean and variance
translate into exponentially large mean and variance, and that the finite mean becomes a
polynomial mean.

Lastly, a related question is whether the widely accepted heavy-tailed model is really
the right choice. Perhaps the heavy-tailed like behaviour can be described equally well with
a simpler model. Hoos [25] performed some preliminary experiments in which he found that
the runtime distributions can be better modeled as a mixture of generalized exponential dis-
tributions. When taking the bounded nature of distributions into consideration, such claim
seems particularly plausible. In fact, the Pareto distribution can itself be characterized as
a gamma mixture of exponential distributions. Frost et al. [14] on the other hand demon-
strated evidence that runtime distributions of solving satisfiable and unsatisfiable random
CSPs can be modeled by Weibull and lognormal distributions respectively. However, the
implication of such alternative modeling on restart strategies, either theoretical or practical,
remains an open question.

4.4 Summary

In this chapter we presented new results on the study of the fixed-cutoff and the geometric
strategies by assuming a simple Pareto runtime distribution. The Pareto distribution be-
longs to the class of heavy-tailed distributions that have been used successfully in modeling
runtime distributions encountered in the real world.

For the fixed-cutoff strategy, we were able to establish a bound on the expected runtime
in terms of the Pareto parameter α. The interesting observation is that the optimal cutoff

47

remains relatively stable regardless of the value of α. The implication is that a fixed-cutoff
strategy can potentially be made into a robust static strategy on real world problems.

The geometric strategy, although it can be arbitrarily worse than the optimal fixed-
cutoff strategy, is proved to remove heavy tail. The results can be also extended to the
more general class of strategies where the geometric factor is a finite polynomial.

We also examined the various practical factors neglected in previous work and noted their
impact. When a deadline is imposed, there no longer exists an optimal fixed-cutoff strategy
in general. Moreover, there is a disagreement between optimality in expected runtime and
optimality in solution probability. The latter is in fact a more suitable performance measure.

We gave expressions showing the performance impact of overhead cost and tmin. These
results would be helpful to practitioners when making trade-off decisions. We also briefly
discussed other constraints and issues such as the time unit, the finite nature of runtime
distribution and the various possible models for runtime distributions.

48

Chapter 5

New Results on Dynamic Restart

Strategies

The series of work by Kautz et al. [26, 30, 40] was innovative. But in spite of an effort
at comprehensiveness, there remain areas where results are missing and improvements are
possible. In this chapter, we address some of the deficiencies in their work and present a new
method of building a runtime classifier that has significantly improved prediction accuracy.
We also propose a new hybrid strategy that is shown to be competitive in performance and
with enhanced robustness.

5.1 Hybrid Geometric-Dynamic Strategy

The foremost deficiency in the work of Kautz et al. [26, 40, 30] was the use of the highly
artificial multi-instance setup, introduced in Section 3.4.5, that was favourably biased to-
wards easy instances. In real world situations, it is much more valuable to have an overall
performance improvement instead of just a performance improvement on the easier prob-
lems. A solver that solves more easy problems more quickly is not as interesting as one
that can solve more difficult ones. Instead, our work is aimed at improving the runtime
prediction accuracy in the single-instance setup which is also introduced in Section 3.4.5.
For this particular setup, Kautz et al. [26] were able to predict whether a run is short, i.e.
completes before the median runtime for the dataset, with an accuracy of 60.3%.

Our approach applies similar machine learning techniques but uses a much longer ob-
servation horizon in collecting features. Moreover, our feature extraction method is geo-
metrically motivated. This is based on the observation that runs that seem to go on forever
often show a stagnating runtime search depth profile. Such profiles have long flat regions
indicating very little progress over an extended period of time. The depths oscillate over
a narrow range as the solver tries different value assignments for the variables but only
finds them infeasible a couple of levels down. Such a behaviour might be attributed to an

49

early mistake in value assignment that has rendered the current subtree unsatisfiable. At
the same time, the mistake is subtle enough that the refutation proof cannot be quickly
obtained. Figure 5.1 illustrates a typical comparison of a profile that shows stagnation and
one that does not.

0 200 400 600 800 1000
0

10

20

30

D
ep

th

Short run

0 200 400 600 800 1000
0

10

20

30
Long run

Node

D
ep

th

Figure 5.1: Sample depth profiles of short (solved in 1200 seconds) and long runs (timed
out in 3600 seconds) for a instruction scheduling problem instance. The instance is given
as a set of 68 instructions with constraints such as latency and processor resource. The aim
is to schedule the instructions within the given optimal schedule length of 64 time slots.

Based on this observation, it is expected that such a difference in shape can be summa-
rized with suitable metrics and become helpful in distinguishing long and short runs. To
make such an approach feasible, the observation horizon needs to be of sufficient length and
in our work is set at 50 seconds. Our choice differs qualitatively from the work of Kautz
et al. where they had settled on a small observation horizon of 10 search tree nodes [30].
The features collected from such a small horizon is probably inadequate in capturing the
characteristics in the search dynamics and is thus more static than dynamic in nature.

Besides helping improve the prediction accuracy, the longer observation horizon also
delays the restart decision. This is an undesirable side-effect since many easy problems can
be solved with non-trivial probability in time shorter than the observation horizon. For
such problems, waiting a long time before making a decision is rather wasteful whereas a
few rapid short restarts is much more effective. This is the motivation behind our simple
hybrid strategy which starts with a short geometric strategy followed by a dynamic strategy

50

as follows:

(sr, sr2, . . . , srk, d, d, . . . , dlast).

In our experiments, we used s = 1 and r = 2.
The parameter d is the observation horizon length at which point a restart decision is

made. If the run is predicted to be long then a restart is performed immediately, otherwise
it is allowed to continue until the problem is either solved or the total time allocated to
the instance is used up. For easy problems, the geometric strategy portion would ensure
efficiency as well as improve the expected runtime. On more difficult problems, i.e. where
short runs are generally longer than the observation horizon, the dynamic strategy would
help improve the chance of finding a solution.

The last part of our improvement is in the evaluation of performance. Kautz et al. [26,
40, 30] have used expected runtime as the exclusive measure of performance in all of their
work. But as mentioned before in Example 4.1, this measure can be misleading when a
deadline is imposed, as when solving real problems, because the best expected runtime does
not always correspond to the maximum number of problems actually solved. Instead, we
evaluate performance both in terms of expected runtime as well as in the number of unique
instances solved. This will give a more accurate indication of the practical effectiveness of
an algorithm.

5.2 Setup for Predictor Inference

A brief overview of the predictor inference workflow was given in Section 2.4 and is restated
here for our problem. First, we select as our problem set the QCP, which is defined in the
next sub-section. We collect runtime observations for a set of instances from which feature
vectors are extracted and filtered. The processed dataset is then split into training and
validation data. The training data is used to build a decision tree based predictive model.
We adopt an iterative learning procedure using beam search to build the decision tree in
which increasing number of features are used. The validation data is then used for selecting
the appropriate size of the features set. The learned decision tree is then incorporated into
a SAT solver to control when to restart and is evaluated on a separate set of novel instances.

Problem Set

The problem domain we chose for our study is the quasi-group completion problem (QCP).
QCP was first introduced by Gomes and Selman [16] as a crossover between random and
structured problems. The synthetic nature of QCP allows a large number of instances to be
generated easily and quickly in a controlled fashion so that machine learning techniques can
be effectively applied. At the same time, the instances also possess the structured nature

51

of real world problems so the results have practical significance [16].
Graphically, a quasigroup of cardinality N corresponds to an N × N Latin square in

which the N symbols are arranged so that each occurs once and only once in each row
and each column. A partially filled Latin square corresponds to a partial quasigroup. The
problem of filling in the blanks to obtain a complete Latin square is known as the quasigroup
completion problem. And like many other benchmark problems, the QCP has been shown
to be NP-complete [1, 8].

As in the work of Kautz et al., our study focuses on satisfiable instances. The reason,
as previously suggested, is that unsatisfiable problems appear not to have heavy tails [4]
and do not benefit from restart strategies. One way to extend the framework to cover all
problems would require constructing a satisfiability predictor. But that would be the focus
of a separate study.

Satisfiable QCP instances, also known as quasigroup with holes (QWH), can be easily
created by poking holes in randomly generated complete Latin squares. The hardness of the
resulting instance is controlled through the size of the problem, the number of holes and
whether the distribution of holes is balanced. The problem becomes significantly harder
when the number of holes is balanced in the rows and columns [26] and this is the setting we
chose to use. Kautz et al. on the other hand had used the easier instances of non-balanced
QCPs.

We use the program lsencode to create the data set which was developed by Gomes
et al. [26] and is available from Gomes’s website at http://www.cs.cornell.edu/gomes/new-
demos.htm. The QCPs generated are of order 34 with 33% holes and are balanced. The
dataset files are in the standard .cnf format used by most public domain SAT solvers.

Data Generation

Our SAT solver is a modified version of Satz (version 2.15) developed by Li and Anbulagan
[33, 34] and it is one of the fastest SAT solvers. It was also the base solver chosen by Kautz
et al. Therefore any performance improvements can be attributed to the restart strategy
rather than other algorithmic components.

Modifying the base solver involves several aspects. The first step is in adding random-
ization to the variable ordering heuristic through random tie-breaking amongst the top
30% high-scorers. This was the setting also used by Kautz et al. [26]. The second aspect
is in the recording of runtime observations at each search tree node. We focus on simple
measures that are readily available and avoid computationally intensive ones such as the
graph constraintness λ used by Kautz et al. that measures the constraintness of the binary
clause subproblem [26]. The list of measures we record during runtime is given in Table
5.1. We strive for efficiency in the implementation so as to minimize the impact on solver
performance. In fact, the processing time taken up by the recording code is always well
under a second compared to the minutes and hours required to solve most instances.

52

lv depth of current node

bnd var total number of instantiated variables

pos vars number of variables set to ‘true’

clauses number of remaining clauses

clause2 number of remaining binary clauses

score1 heuristic scores based on look-ahead probing

score2 another heuristic scores based on look-ahead probing using weighted sum

mono number of variables that appear only as positive or only as negative literals

fixed number of variables that became instantiated through look-ahead probing

unit number of unit propagations performed

Table 5.1: List of runtime observations recorded.

Lastly, code is added to implement different restart strategies including the fixed-cutoff,
the geometric, Luby’s universal and the dynamic strategies so that empirical evaluation and
comparison can be easily made.

We ran the modified Satz solver with a problem set consisting of 300 instances on a
Pentium 4 running at 2.0 GHz with 2 GB of memory. Each instance is repeatedly solved
30 times with different random seeds for a total of 9000 data points. Each run is given a
deadline of 3 hours at which point the run is terminated if a solution has not been found.

Feature Processing

From the basic set of dynamic observations collected, various secondary and composite
features are generated. For example, the number of instantiated variables can also be
expressed as a fraction of the total number of variables. The latter is probably a more
robust measure when problems are of different sizes. Also, we calculate ratios such as the
number of variables to the number of active constraints. This measure gives an indication
of the constraintness or the difficulty of the subproblems as the search progresses. Another
interesting measure is the estimated size of the portion of the complete search tree that has
been pruned. There are a total of 22 features after this initial expansion.

The features generated up to this point are given as a collection of time series. For
these features to be useful in predictor inference, we need to extract summary statistics for
each of these profiles. In addition to the simple min, max, mean and standard deviation we
also include metrics aimed at quantifying the shapes of the time series. For example, we

53

calculate the total spectral power for each of the time series using FFT. We also compute the
spectral power in just the lowest 10 frequency components (excluding the zero frequency
component). The motivation is again based on the stagnation characteristics mentioned
previously. Stagnating profiles often show less oscillation and consequently a lower power
signature. At the same time the long flat regions tend to shift the power to the lower
frequency domain. We also devise a way to explicitly extract the flat regions from the
profiles using a Gaussian filter. Thresholding is used to detect the jumps between regions.
An example is shown in Figure 5.2 where jittering is effectively removed by low-pass filtering
and only the significant changes remain. The extracted regions are then used to build several
metrics including exponentially weighted score on the lengths of the regions, the standard
deviation in the region lengths and the total number of regions. In total, there are 207
summary features. Class labels are also assigned to each feature vector separating the
solved instances from timed-out instances.

0 100 200 300 400 500
0

5

10

15

20

25

D
ep

th

node

Figure 5.2: Extracting the general shape from time series using Gaussian filtering.

The next step is the filtering of features and removal of the ones deemed redundant or
irrelevant. The problem of feature selection and its importance has been widely studied
in machine learning and there is a large pool of literature available on the subject (e.g.,
[21, 29, 31]). We implement a two stage approach for computational efficiency. The first
stage involves simple elimination based on correlation and discriminant power. For each
pair of features that behave similarly, say with a correlation coefficient of greater than
0.65, only one is kept. Fischer’s linear discriminant [11] score, which calculates the ratio of
between-class to within-class scatter, is used to decide which one of the two features is kept.
The same set of scores is also used to remove features that are really poor discriminators on
their own. Depending on the thresholds used, this first stage of feature selection generally
removes between 80% to 90% of the features. A sample feature that remains is shown in

54

Figure 5.3. Observe how it separates the two classes to some degree where the short runs
tend to have smaller values for the feature than the timed-out runs.

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

F
re

qu
en

cy

Max. binary constraints

solved
timed out

Figure 5.3: A feature that partially discriminates between short and long runs.

Predictor Learning

It is important to point out that normalization is not done on any of the features. The
reason is that when the predictor is applied on novel instances in real-time, the features
collected cannot be sensibly normalized without the context of a data set. Thus skipping
normalization makes our algorithm applicable in practice.

The second stage of feature selection is integrated into the predictor learning phase
where we implement a beam search with a decision tree as the target model [41]. The data
is first balanced with down-sampling by randomly removing samples from the class with
more samples. The resulting data set has roughly the same number of samples from each
class and is then split into 2/3 for the training set and 1/3 for the validation set. During
the first epoch, a decision tree is fitted using single features from the feature set and 10-fold
cross validation error is calculated for each of the trees. The top 10 features whose trees had
the smallest errors are kept. In the second epoch, the features retained from the first epoch
are used to form all possible combinations with other original features. A new decisions
tree is constructed for each of these 2-feature sets. Thus, the size of the feature subsets are
increased by one at each epoch and the process continues for 7 epochs. There is no need
to continue further since the error curve is seen to flatten out at epoch 5. The core of our
implementation makes use of the tree building functions in Matlab running with default
parameter settings (i.e., the use of Gini’s diversity index in choosing the split).

Although the accuracy of prediction on the training set continues to increase as the

55

feature set is expanded, it is not a good idea to use the largest model due to problems
of overfitting and cost consideration. It is more desirable to have a succinct model that
offers a good trade-off between performance and complexity. The first step of selection is
in deciding on the size of the feature set to use. A plot of the error as a function of feature
set size is given in Figure 5.4 that offers useful clues. We find that a feature set of size 3
gives a satisfactory compromise.

1 2 3 4 5 6 7
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Features

E
rr

or

maximum cross validation error
maximum training error

Figure 5.4: Maximum errors as functions of feature set size.

Table 5.2 gives a tally of how frequently each of the features occurs in the 10 feature sets
of size 3. It is interesting to observe that some of the most relevant features are based on the
raw measures that have been shown to be significant in previous work. For example, Kautz
et al. found that the nogood, an estimate of the fraction of the complete search tree that
has been pruned, is an important feature in their models [26]. Also, the binary constraint
metric has always been crucial to SAT solvers and has been used extensively in heuristics
and look-ahead algorithms.

Similarly, the 10 decision trees need to be pruned with the same trade-off consideration
in mind. Figure 5.5 shows a typical error curve as a function of the number of leaves in the
tree. By inspection, a good choice is a tree with 3 leaves. It is worth noting in Figure 5.6
that the timed out instances are predicted much more accurately than the solved instances.
Thus, the long runs with the most devastating consequences are effectively removed. This
is an important fact that helps ensure the good performance of the restart strategy. An
example of the learned decision tree is given in Figure 5.7. The final prediction accuracy
on the test set is observed to be between 80% and 90% for the collection of decision trees.
This is a significant improvement over the 60.3% accuracy reported by Kautz et al. in the
single-instance setup. The improvement can be attributed to a longer observation horizon,
a different choice of features in capturing stagnation, as well as a more sophisticated feature
selection method. Also, we have used a different dataset consisting of larger and more
difficult instances. It should be noted that it is possible that predicting runtime is easier

56

Feature Frequency
* Spectral power of the time series on the number of remaining

binary constraints
10

Minimum value of the nogood time series 8

Mean value of the nogood time series 2

* Minimum value of the time series on the % of total future
vars instantiated through propagation

2

* Low-frequency spectral power of the time series on the num-
ber of nogoods

1

Minimum value of the search depth time series 1

* Low-frequency spectral power of the time series on average
score2

1

Maximum value of the time series on the number of remaining
binary constraints

1

Maximum value of the time series on the number of total
remaining constraints

1

* Maximum value of the time series on the average variable to
constraint count ratio

1

Maximum value of the time series on the number of unin-
stantiated variables

1

Table 5.2: Feature frequencies in the top 10 feature sets of size 3. The features marked
with (*) are new features that Kautz et al. have not used. The unmarked ones might have
appeared in their work.

on these problems.

5.3 Results

To evaluate the performance of our hybrid strategy against static strategies, we generated
another 200 QCP problems. When solving these instances, the modified Satz solver first
performs a series of geometric restarts until the total time exceeds the given observation
horizon. The solver then starts recording runtime observations. At the end of the obser-
vation horizon the solver invokes Matlab library functions to extract the required summary
features and apply the hard-coded predictor to make the restart decision. The procedure
typically takes only 1 or 2 seconds and is negligible compared to the observation horizon
length. The process is repeated until the problem is solved or the 3 hour deadline is reached.
Table 5.3 shows a comparison of performance averaged over 10 trials with different random
seeds.

As can be seen, the hybrid strategy is able to solve more instances than Luby’s universal
strategy, the geometric strategy and even the optimal fixed-cutoff strategy. The hybrid

57

1 2 3 4 5 6 7 8 9 10

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Tree size

E
rr

or
Figure 5.5: Example of cross validation error as a function of tree size.

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tree size

E
rr

or

Timeout samples
Solved samples

Figure 5.6: Example of cross validation error as a function of tree size for the two different
classes of samples.

strategy is also better than a similar strategy that performs fixed-cutoff restart with cutoff
50 after the geometric portion has completed. This illustrates that the performance gain
for the hybrid strategy is indeed due to accurate runtime predictions. When comparing the
hybrid strategy against a pure dynamic strategy the results are similar. This is expected
since it is the dynamic strategy portion that helps improve the chance of finding a solution
on problems of intermediate difficulty.

To show the effect of the geometric strategy component, we identified 26 problems that
are deemed easy in that they have a nontrivial chance of completing within the observation
horizon. Table 5.4 shows a comparison of the expected runtime. It is evident that on easy
problems the hybrid strategy outperforms the pure dynamic strategy. This advantage would
be significantly amplified on large data sets containing mostly easy problems as is typical
in real world situations. Thus the robustness of the hybrid strategy is evident.

To further demonstrate the power of the new runtime predictor we performed a second

58

Figure 5.7: One of the learned decision trees.

Hybrid Dynamic Geometric Hybrid (Fixed) Optimal Fixed Luby
Solved count 180.5 181.0 165.5 142.3 171.0 129.4

Mean runtime (hr) 20.93 20.28 26.63 33.16 22.67 43.59

Table 5.3: Comparative results for various restart strategies averaged over 10 trials. Data
set consist of 200 balanced QCP instances of order 34 with 33% holes. The Hybrid and
Dynamic strategies use an observation horizon of 50 seconds. The Hybrid (Fixed) is a
strategy that performs fixed restart with cutoff 50 after the geometric portion completes.
The Hybrid and geometric strategies use a geometric factor of 2 and scale factor 1. Default
parameters are used for Luby’s universal strategy.

study on a set of much more difficult problems. We generated a set of 100 balanced QCPs
of order 37 with 33% holes such that the chance any one of these problems can be solved
within the 3 hour deadline is between 3% and 20%. The small size of the dataset is due
to the huge increase in computational cost where most of the runs would timeout. Using
similar setups as before we are able to obtain a runtime prediction accuracy of around 75%.
The decrease in accuracy can be attributed to the smaller data set as well as a particularly
short deadline (50 seconds) compared to the average solution time. But when evaluated
on a 60 instance test set, the improvement in the number of solved instances is still quite
remarkable as shown in Table 5.5.

It is worth noting that we have attempted a similar study using real world scheduling
problems. The bottle-neck was in obtaining a large set of homogeneous instances of the
right difficulty (i.e. takes on the order of hours to solve). However, focusing on a small set
of 4 problems from the mesa problem set of the SPEC CPU2000 benchmark, which is a
collection of instruction scheduling problems that would be solved within a compiler, where
each instance was repeatedly solved 1000 times to generate enough data, we were able to

59

Hybrid Dynamic Geometric Hybrid (Fixed) Optimal Fixed Luby
Mean runtime (s) 19.0 350.8 19.4 19.3 18.3 81.2

Table 5.4: Comparative results for various restart strategies on 26 easy instances averaged
over 10 trials.

Hybrid Dynamic Geometric Hybrid (Fixed) Optimal Fixed Luby
Solved count 36.7 38.1 14.5 5.8 18.9 6.2

Mean runtime (hr) 22.90 22.21 27.59 29.16 26.41 29.58

Table 5.5: Comparative results for various restart strategies on hard instances averaged
over 10 trials. Data set consists of 60 balanced QCP instances of order 37 with 33% holes.

achieve a prediction accuracy of 95%. Such a high accuracy was due in part to the fact that
we used a CSP encoding for the problems. Such an encoding offers much more information
than SAT problems. We were able to feasibly compute certain graph based features such
as smallness, eccentricity and the distribution of shortest paths. Thus, with appropriate
features and inference techniques, it is promising that dynamic and hybrid strategies can
be applied not only to synthetic problems but to real world problems as well. This, however,
remains as part of future work.

5.4 Summary

The problem settings used in previous studies were scrutinized. We argued that the single-
instance setup is more realistic even though it is also more difficult. Moreover, performance
measures should be given in terms of the number of problems solved and not just the
expected runtime. This is especially important for the multi-instance setup. Thus we
tackled the problem of building runtime predictor in the single-instance setup and adopted
the more comprehensive evaluation criteria.

We implemented a new inference procedure for building a runtime predictor. The new
method differs from existing work in feature collection and selection. Through the use of
a longer observation horizon and geometrically-based processing, the features we collected
reveal more of the search dynamics. The new feature selection process is more robust
by integration with decision tree learning. The result is significantly improved runtime
prediction accuracy QCPs compared to previous work.

We further improved solver robustness over pure dynamic strategy by combining it with
a geometric strategy. The resulting hybrid strategy showed good performance on both easy
and hard problems and far surpasses the existing static strategies.

60

Chapter 6

Conclusions

This chapter summarizes our contributions to the static and dynamic restart strategies. We
also briefly offer some recommendations for future work.

Contributions

A wide variety of physical problems can be modeled as CSP and SAT instances. The
resulting combinatorial problems can be solved by systematic backtrack search but there
is often a great variation in runtime performance. The difficulty lies in the heuristics for
making branching decisions and a mistake made near the top of the search tree can result
in an exponential increase in search effort.

Randomization and restart is an effective technique for alleviating the impact of bad
heuristic decisions, particularly on problems that suffer from heavy tails. Under special
ideal conditions, a simple fixed-cutoff strategy can be made optimal and Luby’s universal
strategy has the best worst-case performance on general problems [35]. However, Luby’s
universal strategy has been shown in empirical studies to converge slowly [19, 30, 40]. The
geometric strategy [45] is an answer to the slow convergence of Luby’s strategy and has
shown good empirical performance [45, 47].

The runtime distributions encountered when solving CSP problems are in fact not ar-
bitrary, but can be reasonably modeled with a heavy-tail distribution. Thus, we analyzed
the fixed-cutoff and geometric strategies on the Pareto distributions. For the fixed-cutoff
strategy we found that the optimal cutoff is stable regardless of the heaviness of the tail.
For the geometric strategy, we proved for the first time that it removes heavy tail. However,
we also showed that for general runtime distributions, the worst-case performance of the
geometric strategy is not bounded.

We also examined the effects of various factors encountered in applying restart tech-
niques in practice that have been overlooked in previous work. We gave an expression for
the expected performance of the fixed-cutoff strategy when a deadline is imposed and found

61

that it is no longer optimal. Moreover, the strategy that minimizes the expected runtime
does not always maximize the solution probability. We argued that the latter is in fact a
more relevant measure of performance. We also gave an expression showing the effect of
restart overhead on the expected runtime of the fixed-cutoff strategy and observed that it
has a similar weight as the fixed cutoff used. Lastly, results were given for Luby’s universal
and geometric strategies quantifying the effort wasted when the starting cutoff is smaller
than tmin, where tmin is the minimum amount of time needed in finding a solution.

The dynamic restart strategy is a more sophisticated restart technique which applies ma-
chine learning techniques to build runtime predictors from runtime evidence. The runtime
predictions are then used to guide restart decisions. The current state-of-the-art dynamic
restart strategy uses a short observation horizon and simple features. The performance can
be poor in a single-instance setup. The performance in the multi-instance scenario is much
better but is marred by the pitfall that the difficult instances are simply skipped.

We extended the dynamic restart technique to the single-instance setup. The new pro-
cedure for building a runtime predictor uses a longer observation horizon and geometrically
based features. We also performed iterative feature selection during inference. The resulting
improvement in performance is significant. However, in a practical application, non-trivial
effort is needed in collecting runtime features and making predictions. This becomes a con-
cern for easy problems that can be much more quickly solved by a few rapid short restarts.
Thus we proposed a hybrid strategy that combines the geometric and dynamic strategies.
The new strategy is robust on both easy and more difficult instances compared to pure
dynamic strategy. We compared the performance of various strategies on quasi-group com-
pletion problems both in terms of expected runtime and, more relevantly, on the number
of instances solved. The new strategy is able to improve the expected runtime on easy
instances and solution probability on hard instances. The hybrid strategy is also shown to
out-perform the optimal fixed-cutoff strategy.

Future Work

Static strategies are easy to implement and will probably continue to see wide usage thus
justifying further research. From a theoretical perspective, one interesting open question is
whether the geometric strategy removes the heavy tail for arbitrary runtime distributions.
A positive result would significantly boost practitioners’ confidence in applying a geometric
strategy which has already demonstrated good empirical performance. A related question
is whether the performance of a geometric strategy with fixed parameters can be bounded
with respect to that of the optimal fixed-cutoff strategy on the Pareto distribution.

Further analysis of various restart strategies on other relevant distributions, i.e. ones
which can be used to model real world runtime distributions, would also be useful in offering

62

interesting insights. Some candidates include the gamma distribution and mixed general-
ized exponential distributions. Recall that an interesting fact we learned for the Pareto
distribution is the relatively constant optimal fixed cutoff. If inference techniques can be
used to guess the correct time unit then we may be able to effectively apply the fixed-cutoff
strategy in practice. It is also plausible to infer tmin which will help improve performance
of static strategies on real world problems.

A more sophisticated research direction involving machine learning is in examining the
consistencies or lack thereof in runtime distributions within and across problem subclasses.
We would like to associate with each type of runtime distribution a restart strategy that is
particularly effective, possibly because of some special features of the distribution. We will
then be able to apply instance specific static strategies. A special case would be to build a
satisfiable/unsatisfiable predictor and avoid restarts on problems that are unlikely to have
solutions.

For the dynamic strategies, which already outperform the static ones, there are also
several possible improvements. For example, a confidence measure can be associated with
each runtime prediction. When it is below some threshold, we would like to delay the restart
decision until further evidence can be gathered. Also, a hierarchical runtime predictor can
be constructed in which features are introduced successively to improve the prediction
confidence but take more and more computational resource to compute. For example,
efficiency would be improved if one can avoid a large number of FFT operations and use
mainly min and max.

Lastly, studies on the dynamic strategies should be expanded to real world problem
sets, particularly that of CSPs. Our preliminary results suggest that the performance can
be greatly improved since the CSP encoding allows more sophisticated features that are
unavailable or impractical for SAT. For example, distributions of shortest path metrics in
the constraint graph and distributions of domain sizes have been found to be very prominent
features on scheduling problems. The issue in using real world problems is that they are
exceedingly heterogeneous, and there are often only a few instances for each subclass of
sufficient homogeneity.

63

Bibliography

[1] D. Achlioptas, C. P. Gomes, H. Kautz, and B. Selman. Generating satisfiable problem
instances. In Proceedings of the 17th National Conference on Artificial Intelligence,
pages 256–261, 2000.

[2] H. Alt, L. J. Guibas, K. Mehlhorn, R. M. Karp, and A. Wigderson. A method for
obtaining randomized algorithms with small tail probabilities. Research Report MPI-
I-92-110, Max-Planck-Institut für Informatik, Im Stadtwald, D-66123 Saarbrücken,
Germany, March 1992.

[3] H. Alt, L. J. Guibas, K. Mehlhorn, R. M. Karp, and A. Wigderson. A method for ob-
taining randomized algorithms with small tail probabilities. Algorithmica, 16(4/5):543–
547, 1996.

[4] C. Bessiere, C. Fernandez, C. P. Gomes, and B. Selman. To be or not to be heavy-tailed.
Unpublished manuscript, 2003.

[5] J. R. Bitner and E. M. Reingold. Backtrack programming techniques. Communications
of the ACM, 18:651–656, 1975.

[6] H. Chen, C. P. Gomes, and B. Selman. Formal models of heavy-tailed behavior in
combinatorial search. In Proceedings of the 7th International Conference on Principles
and Practice of Constraint Programming, pages 408–421, 2001.

[7] X. Chen. A theoretical comparison of selected CSP solving and modeling techniques.
PhD thesis, University of Alberta, Department of Computing Science, 2000.

[8] C. Colbourn. The complexity of completing partial latin squares. Discrete Applied
Mathematics, 8:25–30, 1984.

[9] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394–397, 1962.

[10] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7:201–215, 1960.

65

[11] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification, 2nd Ed. John Wiley
& Sons, Inc., New York, 2001.

[12] J. W. Freeman. Improvements to propositional satisfiability search algorithms. PhD
thesis, University of Pennsylvania, 1995.

[13] A. M. Frisch and Y. Zhan. Restart strategies for constraint satisfaction problems.
Automated Reasoning Workshop, pages 67–100, 2001.

[14] D. Frost, I. Rish, and L. Vila. Summarizing CSP hardness with continuous probability
distributions. In Proceedings of the 14th National Conference on Artificial Intelligence,
pages 327–333, 1997.

[15] C. P. Gomes, C. Fernandez, B. Selman, and C. Bessiere. Statistical regimes across
constrainedness regions. Constraints, 10:317–337, 2005.

[16] C. P. Gomes and B. Selman. Problem structure in the presence of perturbations. In
Proceedings of the 14th National Conference on Artificial Intelligence, pages 221–226,
1997.

[17] C. P. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence, 126:43–62,
2001.

[18] C. P. Gomes, B. Selman, and N. Crato. Heavy-tailed distributions in combinatorial
search. In Proceedings of the 3rd International Conference on Principles and Practice
of Constraint Programming, pages 121–135, 1997.

[19] C. P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomenon in satisfi-
ability and constraint satisfaction problems. Journal of Automated Reasoning, 24:67–
100, 2000.

[20] C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through ran-
domization. In Proceedings of the 15th National Conference on Artificial Intelligence,
pages 431–437, Madison, Wisconsin, 1998.

[21] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal
of Machine Learning Research, 3:1157–1182, 2003.

[22] R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for constraint satis-
faction problems. Artificial Intelligence, 14:263–313, 1980.

[23] W. D. Harvey. Nonsystematic backtracking search. PhD thesis, Standford University,
1995.

66

[24] T. Hogg and C. P. Williams. Solving the really hard problems with cooperative search.
In Proceedings of the 11th National Conference on Artificial Intelligence, pages 231–236,
1993.

[25] H. Hoos. Heavy-tailed behaviour in randomised systematic search algorithms for SAT.
Technical Report TR-99-160, Computer Science Department, The University of British
Columbia, 1999.

[26] E. Horvitz, Y. Ruan, C. P. Gomes, H. Kautz, B. Selman, and D. M. Chickering. A
bayesian approach to tackling hard computational problems. In Proceedings of the 17th

Conference on Uncertainty and Artificial Intelligence, pages 235–244, 2001.

[27] B. A. Huberman, R. M. Lukose, and T. Hogg. An economic approach to hard compu-
tational problems. Science, 27:51–53, 1997.

[28] T. Hulubei and B. O’Sullivan. Search heuristics and heavy-tailed behaviour. In Pro-
ceedings of the 11th International Conference on Principles and Practice of Constraint
Programming, pages 328–342, Stiges, Spain, 2005.

[29] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection
problem. In International Conference on Machine Learning, pages 121–129, 1994.

[30] H. Kautz, E. Horvitz, Y. Ruan, C. P. Gomes, and B. Selman. Dynamic restart policies.
In Proceedings of the 18th National Conference on Artificial Intelligence, pages 674–681,
2002.

[31] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence,
97(1-2):273–324, 1997.

[32] K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning the empirical hardness of
optimization problems: The case of combinatorial auctions. In Proceedings of the 8th

International Conference on Theory and Practice of Constraint Programming, pages
556–572, 2002.

[33] C. M. Li. A constraint-based approach to narrow search trees for satisfiability. Infor-
mation Processing Letters, 71(2):75–80, 1999.

[34] C. M. Li and Anbulagan. Heuristics based on unit propagation for satisfiability prob-
lems. In Proceedings of the 15th International Joint Conference on Artificial Intelli-
gence, pages 366–371, 1997.

[35] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas algorithms.
Information Processing Letters, 47:173–180, 1993.

[36] B. B. Mandelbrot. The Pareto-Levy law and the distribution of income. International
Economic Review, 1:79–106, 1960.

67

[37] B. B. Mandelbrot. The fractal geometry of nature. Freeman: New York, 1983.

[38] B. Ó Nualláin, M. de Rijke, and J. van Benthem. Ensemble-based prediction of SAT
search behaviour. Electronic Notes in Discrete Mathematics, 9, 2001.

[39] Y. Ruan. Hardness-aware restart policies. 18th International Joint Conference on
Artificial Intelligence: Workshop on Stochastic Search, 2003.

[40] Y. Ruan, E. Horvitz, and H. Kautz. Restart policies with dependence among runs: A
dynamic programming approach. Proceedings of the 8th International Conference on
Principles and Practice of Constraint Programming, pages 573–586, 2002.

[41] T. Russel, A. M. Malik, M. Chase, and P. van Beek. Learning basic block scheduling
heuristics from optimal data. In Proceedings of the 2005 Conference of the Centre for
Advanced Studies on Collaborative Research, pages 242–253. IBM Press, 2005.

[42] E. P. K. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[43] A. van Moorsel and K. Wolter. Analysis and algorithms for restart. In Proceedings
of the 1st International Conference on the Quantitative Evaluation of Systems, pages
195–204, Washington, DC, USA, 2004. IEEE Computer Society.

[44] A. van Moorsel and K. Wolter. Meeting deadlines through restart. In Proceedings of
the 12th GI/ITG Conference on Measuring, Modeling and Evaluation of Computer and
Communication Systems, pages 155–160, Dresden, Germany, 2004.

[45] T. Walsh. Search in a small world. In Proceedings of the 16th International Joint
Conference on Artificial Intelligence, pages 1172–1177, 1999.

[46] R. Williams, C. P. Gomes, and B. Selman. Backdoors to typical case complexity. In
Proceedings of the 18th International Joint Conference on Artificial Intelligence, pages
698–701, 2003.

[47] Y. Zhan. Randomization and restarts on a state of the art SAT solver - SATZ. Master’s
thesis, University of York, Department of Computing Science, 2001.

[48] H. Zhang. A random jump strategy for combinatorial search. In Proceedings of the 7th

International Symposium on Artificial Intelligence and Mathematics, 2002.

68

