Exact and Approximate Reasoning about
Qualitative Temporal Relations

by

Peter van Beek

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 1990

© Peter van Beek 1990

Abstract

Much temporal information is qualitative information such as “The Cuban Missile crisis
took place during Kennedy’s presidency,” where only the ordering of the end points of
the two events is specified. A point and an interval algebra have been proposed for repre-
senting qualitative temporal information about the relationships between pairs of intervals
and pairs of points, respectively. In this thesis, we address two fundamental reasoning
tasks that arise in these algebras: Given (possibly indefinite) knowledge of the relation-
ships between some intervals or points,

* find a scenario that is consistent with the information provided, and
* find the feasible relationships between some or all pairs of intervals or points.

Solutions to these tasks have applications in natural language processing, planning, plan
recognition, diagnosis, and knowledge-based systems.

For the task of finding consistent scenarios the main results are as follows. For the
point algebra, we develop an O(n?) time algorithm that is an O(n) improvement over the
previously known algorithm, where n is the number of points. For the interval algebra,
finding a consistent scenario has been shown to be (almost assuredly) intractable in the
worst case. We show how the results for the point algebra aid in the design of a back-
tracking algorithm. The algorithm is shown to be useful in practice for planning prob-
lems.

For the task of finding the feasible relationships the main results are as follows. For
the point algebra, we develop the first exact algorithm for finding all the feasible relation-
ships that takes O(n*) time, where n is the number of points, and show that a previously
known algorithm is exact for a subset of the point algebra. For the interval algebra, find-
ing the feasible relationships is again (almost assuredly) intractable. The intractability of
finding exact solutions leads us to develop new algorithms that find approximate solu-
tions. We examine the effectiveness of the approximation algorithms through computa-
tional experiments and determine under what conditions the algorithms are exact. We
also give a simple test for predicting when the approximation algorithms will and will not
produce good quality approximations.

Finally, we survey example applications chosen from the literature to show where
the results of this thesis are useful.

Acknowledgements

This thesis was done under the supervision of Robin Cohen. To her I offer my warmest
thanks for the many hours spent discussing and reading my work. I especially want to
thank her for her encouragement and friendship. I also offer my thanks to the rest of my
committee members: Charlie Colbourn, David Poole, Bill Pulleyblank, and my external
examiner, Alan Mackworth. Charlie and David listened to me at various stages in the
work and offered helpful advice for which I am grateful.

I also wish to thank Peter Ladkin, to whom I owe a large debt for many fruitful dis-
cussions about this and other related work, Marc Vilain for showing how to improve one
of the proofs, Henry Kautz for helpful correspondence concerning work that he had done
with Marc Vilain, and Rina Dechter for asking a question that led to the correction of an
overly strong claim.

I also wish to thank friends made along the way for making the whole thing, for the
most part, a very enjoyable experience: Bruce Spencer, Paul van Arragon, André Trudel,
Fei Song, Scott Goodwin, Fahiem Bacchus, Chrysanne DiMarco, Qiang Yang, Kathy
Broer van Arragon, Joanne Nonnekes, Bruce Cockburn, Dimpy Pathria, Janelle Harms,
Vickie Martin, Faron Moller, Garrick Trowsdale, Harold Mantel, Rolf Edvinsson, Susan
Kindersley, and Dita.

Finally, I wish to thank my parents Dick and Sharon Van Beek, my sister Susan
Peters, brother-in-law Pete Peters, and niece Samantha Peters. To them I will ever be
grateful for their love and support.

Peter van Beek
University of Waterloo
Summer 1990

Introduction

In this chapter we informally introduce the two problems that we address in this thesis
and show why we want to solve these problems. We also summarize the contributions of
the thesis.

1.1. The Problems

Representing and reasoning about temporal information is an essential part of such artifi-
cial intelligence tasks as natural language understanding, planning, plan recognition, and
diagnosis. In these tasks, much of the temporal information that we want to represent is
qualitative information. For example, in natural language we often make statements such
as the following.

a. “The Cuban Missile crisis took place during Kennedy’s presidency.”
b. “Fred put the paper down and drank the last of his coffee.”

c. “Fred was reading the paper while eating his breakfast.”

d. “T’ll come by for a visit either before my class or after it.”

In these examples, no quantitative information such as date or duration information is
specified. Statement (a) only specifies the qualitative information that the interval of time
associated with one event occurred during the interval of time of another event; it speci-
fies the ordering of all the end points of two intervals.

| crisis |

| |

| presidency |

Statement (b) specifies the ordering of only some of the end points of two intervals and
remains indefinite about others.
| paper |
coffee
pomm - |
Statement (c) specifies only that two intervals of time intersect.
| paper |
| |
breakfast

e Foo -

Statement (d) constrains, but remains indefinite about, the ordering of entire intervals.

| visit C class |

or

| class C visit |

Allen (1983) has proposed an interval algebra and Vilain and Kautz (1986) have
proposed a point algebra for representing such qualitative information. In this thesis, we
address two fundamental reasoning tasks that arise in these algebras: Given (possibly
indefinite) knowledge of the relationships between some intervals or points,

. find a scenario that is consistent with the information provided, and
* find the feasible relationships between some or all pairs of intervals or points.

As an example of finding a consistent scenario, consider the following description of
events:

Fred was reading the paper while eating his breakfast. He put the paper down and drank
the last of his coffee. After breakfast he went for a walk.

Not all of the temporal relationships between events are explicitly or unambiguously
given in the description. The description does tell us, for example, that Fred finished
reading his paper before he finished his coffee. However, it is ambiguous about the rela-
tionship between Fred starting to read his paper and starting his coffee or between Fred
starting to read his paper and starting his breakfast. There are several possible scenarios
that are consistent with the description of events. One such scenario is the following.

| paper |

| coffee
[|

| breakfast | | walk |
[| [|

Another possible consistent scenario is one where Fred starts to read his paper before he
starts his breakfast.

As an example of finding the feasible relationships, consider the following descrip-
tion of events:

He informed his friend of the decision during the afternoon but did not inform his family
until after the evening meal.

Again, not all of the temporal relationships between events are explicitly or unambigu-
ously given. But from the given temporal information and the knowledge that the after-
noon is before the evening, we can make the simple inference that the ‘“‘inform friend”
event occurred before the “inform family” event. That is, the only feasible relationship
between those two events is that “inform friend”” occurred before “‘inform family”. All
other temporal relations, such as the two events occurring simultaneously, are infeasible.
As this example illustrates, finding the feasible relationships can be viewed as computing
the deductive consequences of our knowledge.

Specific applications of solutions to these tasks can be found in natural language
processing (Allen, 1984; Almeida, 1987; Song and Cohen, 1988), planning (Allen and
Koomen, 1983; Hogge, 1987), plan recognition (Kautz, 1987), diagnosis (Nakel, 1989),
qualitative simulation (Weld and de Kleer, 1989), and knowledge-based systems
(Koubarakis et al., 1989). In many other applications, what is desired is a general tempo-
ral reasoning system for storing, retrieving, and answering queries about both qualitative
and quantitative information. The techniques developed here could be part of a special
purpose reasoner in such a general system. The system would include other special pur-
pose reasoners for quantitative information such as the distances between intervals or
points (Dechter et al., 1989; Dean and McDermott, 1987), or combinations of qualitative
and quantitative information (Allen and Kautz, 1985; Ladkin, 1989; Malik and Binford,
1983).

1.2. Contributions of the Thesis

We begin with a general discussion of the contributions and the approach taken followed
by a detailed overview of the results in the thesis.

In general terms, the contributions of the thesis are: algorithms for finding a consis-
tent scenario and for finding the feasible relationships, proofs of their correctness, analy-
sis of their complexity, and evaluation of their behavior in practice. For the point algebra,
we are able to give computationally efficient procedures for solving both tasks. Our algo-
rithms are marked improvements over the previously known algorithms. For the full
interval algebra, Vilain and Kautz (1986, 1989) show that both of these tasks are NP-
Complete, where the problem size is the number of intervals. This strongly suggests that
no polynomial time algorithm exists. Supposing that we still wish to solve instances of
the problem, several alternatives present themselves:

* Exact algorithms: Solve the problem exactly but design algorithms that are effi-
cient in practice even though their worst case is exponential.

* Approximation algorithms: Solve the problem approximately but design algo-
rithms that are guaranteed polynomial and do not behave badly—in terms of the
quality of the produced solution—too often, assuming some probabilistic distribu-
tion of the instances of the problem.

* Easy special cases: Identify interesting special cases of the NP-Complete problem
that are solvable in polynomial time. This alternative often takes the form of limit-
ing the expressive power of the representation language.

For finding a consistent scenario we develop an exponential algorithm and give evidence
that the algorithm is efficient in practice for problems that arise in planning. For finding
the feasible relationships we develop new approximation algorithms and give evidence
that the algorithms produce good quality approximations for certain classes of problems.
For both problems we identify ‘“‘easy’ special cases that are solvable in polynomial time.

Below we give a more detailed overview of our results. The discussion is divided
according to the problem being solved.

For the task of finding a consistent scenario the main results are as follows. For the
point algebra we develop an O(n?) time algorithm that is an O(n) improvement over the
previously known algorithm (Ladkin and Maddux, 1988b), where n is the number of
points. For the interval algebra finding a consistent scenario has been shown to be
(almost assuredly) intractable in the worst case. We show how the results for the point
algebra aid in the design of a backtracking algorithm. The algorithm is shown analyti-
cally always to perform better than previous proposals and is shown experimentally to be
useful in practice for planning problems and problems with similar characteristics.

For the task of finding the feasible relationships we consider two versions of the
problem: an all-to-all version where we determine the feasible relationships between all
pairs of intervals or points, and a one-to-all version where we determine the feasible rela-
tionships between one interval or point and every other interval or point.

For the all-to-all version of the task of finding the feasible relations the main results
are as follows. For the point algebra, Vilain and Kautz (1986) claim that the well-known
path consistency algorithm is exact for computing the feasible relationships between
points. However, we present a counter-example to their theorem. We develop the first
exact algorithm for finding all the feasible relationships that takes O(n*) time, where n is
the number of points, and show that the path consistency algorithm is exact for a subset
of the point algebra.

For the interval algebra, finding the feasible relationships is again (almost assuredly)
intractable. The intractability of finding exact solutions leads us to explore algorithms
that find approximate solutions. Allen (1983) gives an O(n’) approximation algorithm
that turns out to be a variant of the path consistency algorithm. We develop a sequence of
better (but more expensive) approximation algorithms. In particular, we develop an
O(n*) algorithm that computes a better approximation to the feasible relationships. To
test the quality of the approximations produced by Allen’s and our algorithms, we per-
formed some computational experiments. We randomly generated instances of the prob-
lem and determined how often the approximate solution differed from the exact solution.
We found that how well the approximation algorithms do is heavily dependent on the dis-
tribution from which the relations between intervals are randomly generated. We present
a simple test for predicting when the approximation algorithms will and will not produce
good quality approximations. We also explore how far we must restrict the expressive
power of the representation language to guarantee that (i) Allen’s algorithm is exact, and
(i1) our approximation algorithm is exact. Vilain and Kautz (1986) show that a class of
feasible relationships problems in the interval algebra can be phrased as feasible relation-
ships problems in their point algebra. We show that our O(n*) approximation algorithm
is exact for the subset of the interval algebra that can be translated into the point algebra.

Finally, for the one-to-all version of the task of finding the feasible relations we
show that a previously known algorithm (Edmonds and Karp, 1972) produces good qual-
ity approximations for certain classes of problems and takes O(n?) time. We also show
that the algorithm is exact for a useful subset of the interval algebra and of the point alge-
bra.

1.3. Outline of the Thesis

An outline of the rest of the thesis is as follows. In Chapter 2 we give definitions and ter-
minology used throughout the thesis. In Chapter 3 we examine algorithms for finding a
consistent scenario, first giving an efficient algorithm for the point algebra and a subset of
the interval algebra and then using those results to develop a backtracking algorithm for
the interval algebra. In Chapter 4 we examine algorithms for the all-to-all version of the
problem of finding the feasible relations. We give efficient algorithms for the point alge-
bra. For the interval algebra we develop new approximation algorithms and identify easy
(polynomial time) special cases where the algorithms are exact. In Chapter 5 we examine
algorithms for the one-to-all version of the problem of finding the feasible relations. We
give an efficient approximation algorithm and show that the algorithm is exact for a use-
ful subset of the interval algebra and of the point algebra. In this chapter, we also give the
results of some computational experiments designed to test the quality of the solutions
produced by the all-to-all and one-to-all approximation algorithms. In Chapter 6, we sur-
vey selected applications of the interval algebra with the intent of showing where the
results of this thesis will be of use. We also summarize the results of the thesis and try to
give some general guidelines for applying the results. In Chapter 7 we discuss possible
future work and give some concluding remarks.

2

Definitions and Terminology

In this chapter we review Allen’s interval algebra and Vilain and Kautz’s point algebra.
We then formalize our reasoning tasks using networks of binary relations (Montanari,
1974) and give an example. We end with the definitions of two new algebras that are
prominent in the rest of the thesis.

2.1. Specification of the Algebras

A set, together with one or more operations on the set, is called an algebra. The set must
be closed under the operations.

Definition 2.1. (Interval algebra, IA; Allen, 1983)

There are thirteen basic relations (including inverses) that can hold between two intervals
(see Fig.2.1). We want to be able to represent indefinite information so we allow the
relation between two intervals to be a disjunction of the basic relations. We use sets to
list the disjunctions. Let I be the set of all basic relations, {eq, b, bi, m, mi, o, o1, d, di, s,
si, f, fi}. IA is the algebra with underlying set 2! the set of all subsets of 1, unary opera-
tor inverse, and binary operators intersection and composition (denoted “‘constraints” in
Allen, 1983). Note that the relation / means there is no constraint between two intervals.

Definition 2.2. (Point algebra, PA; Vilain and Kautz, 1986)

There are three basic relations that can hold between two points <, =, and >. As in the
interval algebra, we want to be able to represent indefinite information so we allow the
relation between two points to be a disjunction of the basic relations. PA is the algebra
with underlying set {J, <, <, =, >, 2, #, 7}, unary operator inverse, and binary operators
intersection and composition (denoted addition and multiplication in Vilain and Kautz,
1986). Note that <, for example, is an abbreviation of {<, =} and ? means there is no con-
straint between two points, {<, =, >}.

Ladkin and Maddux (1988a, 1988b) consider algebras with additional operators
complement and union and show that the algebras are relation algebras.

relation

x before y

X aftery

X meets y

X met-by y

x overlaps y

x overlapped-by y

x during y

X contains y

X starts y

X started-by y

x finishes y

x finished-by y

X equal y

symbol

bi

ol

di

si

€q

Fig. 2.1. Thirteen basic relations between intervals

meaning

X

<

>

<

X

|
y |

10

11

2.2. Formalization of the Reasoning Tasks

We formalize our reasoning tasks using networks of binary relations (Montanari, 1974).
Our development borrows from that found in Dechter et al. (1989) and Ladkin and Mad-
dux (1988a, 1988b). This approach allows us to use some previously known algorithms
and eases the development of new algorithms.

Definition 2.3. (Networks of binary relations; Montanari, 1974)

A network of binary relations is defined as a set X of n variables { X, X»,...,X,,}, a
domain D; of possible values for each variable, and binary relations between variables
that preclude certain combinations of instantiations of the variables. An instantiation of
the variables in X is an n-tuple (x;, x,,..., X,), representing an assignment of x; € D; to
X;. A consistent instantiation of a network is an instantiation of the variables such that
the relations between variables are satisfied. A network is said to be inconsistent if no
consistent instantiation exists.

The relation between variables X; and X; is denoted R;. We require that
X;R;x; = x;R;x;. For the networks of interest here, the R; are disjunctions of the basic

relations from one of the algebras. That is,
leUx/ = xl'Rl.Xj V o+ V xl'Rm.Xj

The basic relations of the algebras are disjoint. Hence, if an instantiation of variables X;
and X ; satisfies Rj;, then one and only one of the disjuncts R, in R;; is satisfied.

An IA network is a network of binary relations where the variables represent time
intervals, the domains of the variables are the set of ordered pairs of real numbers
{<s,e>|s<e}, with s and e representing the start and end points of the interval,
respectively, and the binary relations between variables are disjunctions of the basic inter-

val relations. !

A PA network is a network of binary relations where the variables represent time
points, the domains of the variables are the set of real numbers, and the binary relations
between variables are disjunctions of the basic point relations.?

An TA network or a PA network can be represented by a labeled graph where the
vertices V = (1,...,n) represent the variables X,,..., X,,, and each edge (i, j) € VXV
is assigned an element from the appropriate algebra. We describe the element of the alge-
bra assigned to an edge as its label. The label on an edge (i, j) specifies the binary rela-
tion between variable X; and X ;. That is, the label on edge (i, j)

{Ri,....R,}
specifies the relation

Rij: Xl'RIXjV"'VXiRij

' See van Benthem, 1983 for some of the philosophical implications of modeling time by the
real numbers.

2 With the exclusion of the # relation, a PA network is simply a system of linear inequalities
where each inequality is in two variables and each variable has unit coefficient. This is discussed
further in Chapter 3.

12

A labeled graph is described by an n X n adjacency matrix C where entry C;; is the label
on edge (i, j). Note that Cj; = C,;l.

An adjacency matrix B is a consistent scenario of an adjacency matrix C if

(a) B; Cc Cy,

(b) | B; | = 1, for all i, j, and

(c) there exists a consistent instantiation of B.

Given a consistent instantiation of a PA or IA network, the basic relations between vari-
ables satisfied by that consistent instantiation define a consistent scenario. While there
are either zero or an infinite number of different consistent instantiations of a PA or IA
network, there are only a finite number of different consistent scenarios.

An element R, € Cj is feasible with respect to a network if and only if there exists
a consistent instantiation of the network where R, is satisfied. Given an IA network or a
PA network, the set of feasible relations between two variables X; and X ; in the network
is the set consisting of all and only the R, € C; that are feasible. More succinctly, the
set of feasible relations is also called the minimal label.

The reasoning tasks that we want to solve are finding a consistent scenario and find-
ing the minimal labels.> Depending on the task being addressed, an algorithm is said to
be exact for a class of input if it correctly finds a consistent scenario or correctly finds the
minimal labels, for all instances in that class.

Here is an example of an IA network. Suppose we know that interval A either over-
laps or starts interval B, but we are not sure which, and that interval B meets interval C.
We represent this as follows,

@ {0, s} >® {m} >©

As a graphical convention, we never show the edges (i, i), and if we show the edge (i, j),
we do not show the edge (j, /). As well, we do not always show edges that are labeled
with I, the set of all basic relations. In this example, the relation between A and C is I,
which shows that we have no explicit knowledge of the relation between A and C. There
are two possible answers to the reasoning task of finding a consistent scenario. They are
shown in the diagrams below. In the consistent scenario on the left, A overlaps B, in the
one on the right, A starts B, and in both, B meets C and A is before C.

| B | C | | B | C |

| | | | | |
Thus, in every consistent instantiation of this network, “A before C” is satisfied and “B

3 The terminology is borrowed from (Dechter et al., 1989) where it is used in a different con-
text. Other terminology: a consistent scenario is a consistent singleton labeling (van Beek, 1989),
a consistent instantiation is a satisfying assignment of values to the variables (Ladkin and Maddux,
1988b), and all pairs of feasible relationships is the deductive closure (Vilain et al., 1989) or, as it
arises as a general constraint satisfaction problem, the minimal network (Montanari, 1974).

13

meets C” is satisfied. Further, there exists a consistent instantiation where “A overlaps
B” is satisfied and one where “A starts B” is satisfied. An example of the latter is A <
<1,2>, B « <1,3>, and C « <3,4>4

For an example of our second reasoning task, we find the feasible relationships
between every pair of intervals. The labels shown between A and B and between B and
C are already the minimal labels. The one change is that the minimal label between A
and C is just {b}, the “before’ relation. We see that this is true in the consistent scenar-
ios above. No other relation between A and C is feasible.

2.3. Additional Terminology

Mackworth (1977, 1987) defines three properties of networks that characterize local con-
sistency of networks. A network is node consistent if and only if, for every node i,

Vx(xe D;)) > xR;x

IA and PA networks are always node consistent as R;; is always the equality relation (eq
for IA, = for PA). A network is arc consistent if and only if, for every arc (i, j),

Vx(x € D;)) —» dy(ye D))AxR;y

In words, for every instantiation of X; there exists an instantiation of X; such that R;; is
satisfied. It is clear that IA and PA networks are also always arc consistent. A network is
path consistent if and only if, for every triple (i, k, j) of vertices,

VxVzxR;z — Jy(y € D) AXRyyAYRyz

In words, for every instantiation of X; and X; that satisfies the direct relation, R;;, there
exists an instantiation of X, such that R; and R, are also satisfied. TA and PA networks
are not always path consistent as the example in the previous section can be used to show.
Let A and C both be instantiated as <1,2>. No instantiation of B exists which satisfies the
above formula where A, B, C are substituted for x, y, z, respectively.

Freuder (1978) generalizes this to k-consistency. A network is k-consistent if and
only if given any instantiation of any k — 1 variables satisfying all the direct relations
among those variables, there exists an instantiation of any kth variable such that the & val-
ues taken together satisfy all the relations among the k variables. Node, arc, and path
consistency correspond to one-, two-, and three-consistency, respectively. Freuder (1982)
defines strongly k-consistent as j-consistent for all j < k.

The importance of these definitions is the following. Strong k-consistency implies
that, for every choice of k of the n variables, every pair of values that satisfies a direct
relation appears in some consistent instantiation of the k variables. Hence, if the network
is strongly k-consistent, every basic relation in the relations between variables is feasible
with respect to every possible subnetwork of k variables. In particular, if the network is
strongly n-consistent, the relations between variables are the minimal labels.

4 We are equating the names of the vertices with the variables they represent.

14

2.4. New Algebras from Old

Vilain and Kautz (1986) show that a class of minimal labels problems in IA networks can
be phrased as minimal labels problems in PA networks. Let SA be the algebra with
underlying set restricted to be the subset of IA that can be translated, using only the rela-
tions in PA, into conjunctions of relations between the endpoints of the intervals (see
Appendix A for an enumeration of SA and the translation into PA; also in Giither, 1984;
Granier, 1988; and Ladkin and Maddux, 1988a, where the relations are called the ‘“‘pointi-
sable’ relations). The IA networks that can be so translated are those whose labels are
elements of SA. As an example translation, the IA network

O O

translates into the following PA network (where A~ and A" represent the start and end
points of interval A, respectively)

O s

We define a new point algebra and new corresponding subset of the interval algebra
that is of importance throughout the rest of the thesis. PA, is the algebra with the same
operators and underlying set as PA with the exception that # is excluded from the under-
lying set. The subscript ‘c’ is to indicate that the sets of tuples defining the relations in
PA. are convex. Let SA, be the algebra with the same operators as IA and with underly-
ing set restricted to be the subset of IA that can be translated into relations between the
endpoints of the intervals using only the relations in PA, (see the appendix for an enu-
meration of SA, and the translation into PA, and Nakel, 1988 for a graphical representa-
tion of SA,). Proposition 2.1 lists some of the properties of PA, and SA.. Clause (i) ver-
ifies that PA, and SA, are indeed algebras. Clauses (ii)-(vi) prove useful later in the the-
sis.

Proposition 2.1. Let U be the underlying set of SA, (respectively, PA,) and let I (respec-
tively, ?) be the set of all basic relations of the algebra. The following properties of SA,
(PA,) are easily verified:

(i) U is closed under the operations inverse, intersection, and composition [i.e.,
a'eU,anbe U,anda-be U,foralla, b, ce Ul

(i1) Intersection is associative [i.e., a N (b N c¢) = (a N b) N c], intersection is com-
mutative [i.e., a N b = b M a], intersection is idempotent [i.e., a "a = a], and [

15

(respectively, ?) is the identity for intersection [i.e,aNl = [N"a = al].
(i11)) Composition is associative, {eq} (respectively, {=}) is the identity for composition,
and [(respectively, ?) is an annihilator for composition [i.e.,a - [= I -a = I].
(iv) Composition distributes over intersection, provided the intersection does not give
the empty set [i.e, a-(bnNc) =a-bna-cand(bnc)-a= b-anc-a,for
all a, b, c € U, provided b N ¢ # J].

16

3

Finding a Consistent Scenario

In this chapter we examine the computational problem of finding consistent scenarios for
the point algebra, PA, and for the interval algebra, IA. We first develop an efficient algo-
rithm for PA networks. We then show how the results for the point algebra aid in the
design of a backtracking algorithm for IA networks that is shown to be useful in practice.
We also identify some easy special cases of IA networks.

3.1. The Point Algebra

3.1.1. Related Work

One method of finding a consistent scenario of a PA network is to first find a consistent
instantiation of the network. The basic relations between variables satisfied by the con-
sistent instantiation then give a consistent scenario.

Topological sort (see Knuth, 1973) can be used to find a consistent instantiation if
the temporal information is a strict partial order; i.e., if the allowed relations are restricted
to {<, >, ?}. Topological sort is O(n?).

If the allowed relations are restricted to {<, <, =, >, >, ?}, i.e., we do not allow dise-
quality, PA networks can be viewed as a set of linear equalities and inequalities. The
equalities and inequalities are of the form: x; — x; <0, x; —x; <0, and x; — x; =0. A
solution to the set of linear inequalities is precisely a consistent instantiation of the net-
work. Solving a set of linear inequalities—or recognizing that no solution exists—is eas-
ily done using algorithms for solving linear programs (see Chvatal, 1983). Thus, the sim-
plex algorithm or Karmarkar’s algorithm can be used to find a solution. However, more
efficient algorithms are known if the linear program is of a particular form that arises in
what is known as the shortest-path problem.

The shortest-path problem is to find the shortest path in a labeled graph from a ver-
tex s to a vertex ¢. This can be made into a linear program as follows (see Papadimitriou
and Steiglitz, 1982). Let [;; be the label on the directed edge (i, j) and let x; denote the
length of the shortest path from s to i. The shortest path from s to itself is 0. We want to
minimize x,, the length of the shortest path from s to 7. Since the shortest path from s to
J might pass through i, we must have x; < x; +[;, i.e.,, x; —x; < [;;. The result is a
linear program of the form,

i i

17

min Xx,

xi—ijl i,j=1,...,n

ij>

X; unconstrained
x, =0

PA network Shortest-path graph
Fig. 3.1. Shortest-path example

If all the /; are non-negative then we can use Dijkstra’s (1959) algorithm to find a
solution to this linear program.’ Dijkstra’s algorithm is O(n?). If some of the l; are neg-
ative then we can use the Floyd-Warshall algorithm to find a solution (see Aho et al.,
1974). The Floyd-Warshall algorithm is O(n®). (See Deo and Pang, 1984 for an exten-
sive bibliography of other shortest-path algorithms.)

It remains to show how much of our problem can be translated into a shortest-path
problem. The translation is as follows,

Xi = .Xj — Xi—xj < 0, xj_.xl' < 0
xi S .xj' — xi_.xj' S O, xj'_.xi S + oo
X < X; - Xp—Xx; < —& X;—X; S too

where the left column shows the relation between variables in a PA network and the right
columns shows the translation into constraints for the shortest-path linear program. Note
the use of a small value, ¢, for turning a strict inequality into a weak inequality (see
Chvatal, 1983, p. 451, for how to choose a value for ¢ such that solutions are preserved
and no new solutions are introduced). A graphical representation can be constructed as
follows. For each x; — x; < [; we draw a directed edge from vertex x; to vertex x; and
label the edge with /;;. Fig. 3.1 shows an example translation of a PA network into a
shortest-path graph (the edges labeled with +oo are omitted).

> Dijkstra’s algorithm can be viewed as the simplex algorithm greatly simplified because of the
structure of the shortest path problem (Papadimitriou and Steiglitz, 1982).

18

In summary, if the allowed relations are restricted to {<, =, 2, ?}, then Dijkstra’s
algorithm can be used to find a consistent instantiation in O(n?) time. If the allowed rela-
tions are restricted to {<, <, =, >, =, 7}, then the Floyd-Warshall algorithm can be used to
find a consistent instantiation in O(n°) time.

Finally, Ladkin and Maddux (1988b) give an algorithm for finding one consistent
scenario for PA networks that takes O(r*) time with n points. If no consistent scenario
exists, the algorithm reports the inconsistency. Their algorithm relies on first applying the
path consistency algorithm (Mackworth, 1977; Montanari, 1974) before finding a consis-
tent scenario.

3.1.2. An Improved Algorithm

We develop an algorithm for finding one consistent scenario that takes O(n*) time for PA
networks with n points. Our starting point is an observation by Ladkin and Maddux
(1988b, p.34) that topological sort alone will not work as the labels may be any one of the
eight different PA elements, {J, <, <, =, >, 2, #, 7}, and thus may have less information
about the relation between two points than is required. For topological sort we need all
edges labeled with <, >, or ? (see Knuth, 1973). The “problem’ labels are then {=, &J, <,
>, #}.

Fig. 3.2. Example PA network

The intuition behind the algorithm is that we somehow remove or rule out each of these
possibilities and, once we have, we can then apply topological sort to give a consistent
scenario. Much of the discussion to follow relies on the assumption that looking at paths
(the transitivity information) is sufficient for deciding the minimal label on an edge. The
only exception to the truth of the assumption is that looking at paths sometimes assigns a
label of < instead of < (see Fig. 4.2 and discussion in Chapter 4) but we will note when
this affects the discussion. The (somewhat large) network shown in Fig. 3.2 is used to
illustrate the discussion. As usual, all edges (i, i) and all edges labeled ? are omitted.

The = relation. To remove the = relation from the network, we identify all pairs of
points that are forced to be equal and condense (‘‘identify’”) them into one vertex. When
saying a pair of points is forced to be equal, we mean that, if a consistent scenario exists,
the relation between the two vertices in the consistent scenario is the = relation. More

19

formally, we want to partition the vertices into equivalence classes S;, 1 <i < m, such
that vertices v and w are in the same equivalence class if and only if they are forced to be
equal. However, the vertices v and w are forced to be equal precisely when there is a
cycle of the form

py <o S w< oSy

S, ={1,7,8} S;=1{4,5}
§>=1{2,3) S4 = (6]

Fig. 3.3. Strongly connected components

where one or more of the < can be =. This is the same as saying v and w are in the same
equivalence class if and only if there is a path from v to w and a path from w to v using
only the edges labeled with < or =. This is a well-known problem in graph theory. Deter-
mining the equivalence classes is the same as identifying the strongly connected compo-
nents (SCCs) of the graph and efficient algorithms are known (Tarjan, 1972).

We condense the graph by collapsing each strongly connected component into a sin-
gle vertex. Let {S;, S,,...,S,,} be the SCCs we have found (the §; partition the vertices
in the graph in that each vertex is in one and only one of the §;). We construct the con-
densed graph and its matrix representation, C, as follows. Each S, is a vertex in the
graph. The labels on the edges between all pairs of vertices is given by,

Ci:— N C,, ij=1,..m

As an example, the strongly connected components of the network of Fig. 3.2 are
shown in Fig. 3.3. There are four strongly connected components, S;, S,, S3, and S,.
The condensed graph of the network of Fig. 3.2 is shown in Fig. 3.4. To illustrate, con-
densing the strongly connected component S, gives,

éslsl — CNCigNCyNCg N Cy N Cyy
—{<,=]ln{>,=]n{>,=]n{<,=)n{<,=})n{>,=}

—1=)

20

Fig. 3.4. Condensed PA network

where we have omitted the self loops C;; (these loops are always labeled with {=} and so
do not affect the result). As a further illustration, the labels on the edges between S, and
S5 are given by,

CA152s3 — CyuyNCys NGy NCss
— (<.>]n{<,=.>]n{<,=,>]n{<}

— (<]

The & relation. To rule out the & relation we must determine if the network is
inconsistent. The network is inconsistent precisely when there is a cycle of the form

Vo= =W FE Y,
or of the form,
py <o S w < Sy E W

where some or all of the < can be =, or of the form,
V< e < W< e <Y

where all but one of the < can be < or =. It turns out that the first two cases are already
detected when we identify all pairs of points that are forced to be equal and condense
them into one vertex. That is, the inconsistencies are detected when the strongly con-
nected components are condensed. But we can identify the third case simply by also
looking at edges labeled with < when identifying the strongly connected components. As
before, the inconsistencies are then detected when the strongly connected components are
condensed. For example, suppose the label on the edge (1, 7) in the graph shown in
Fig. 3.2 was < instead of the < shown. Condensing the strongly connected component S,
gives,

Cs5, < CunCignNCyy N Cig N Cyy N Cyy

21

— (<>, =]n{>)n{<,=})n{<,=]n{>,=}
—

where again we have omitted the self loops Cj;.

The <, > relations. To remove the < relation from the network, we simply change
all < labels to <. This is valid because, assuming that the & and = relations have been
removed, we know that a consistent scenario exists and that no remaining edge is forced
to have = as its label in all consistent scenarios. So, for any particular edge labeled with <
there exists a consistent scenario with < as the singleton label. But, changing a < to a <
can only force other labels to become <; it cannot force labels to become =. (Using the
terminology of the algorithm in Fig. 3.5, no new strongly connected components are
introduced by this step; hence no new labels are forced to be equal and no new inconsis-
tencies are introduced.) So, after all the changes, a consistent scenario still exists.

Input: A PA network represented as a matrix C where entry C;; is the label on edge
(i, J)-

Output: A consistent scenario of the network.
procedure CSPAN

Step 1. Identify the strongly connected components (SCCs) of the graph using only the
edges labeled with <, <, and =.

Condense the graph: Let {S,, S,,...,S,,} be the SCCs found and let € be the adjacency
matrix of the condensed graph. The vertices of the condensed graph are the S;’s. The la-
bels on the edges between all pairs of vertices is given by,

Css, &« M Cpe Bj=1...,m

VES,‘
wES;

If the empty label, &, results on any edge, then the network is inconsistent.

Step 2. Replace any remaining < labels in C with < and perform a topological sort using
only the edges in C labeled with <.

Fig. 3.5. Consistent scenario algorithm for PA networks

The # relation. We can now perform topological sort to find one consistent sce-
nario. It can be shown that, because of the previous steps of the algorithm, the # relations
are now handled correctly (and implicitly) by topological sort. The output of topological
sort is an assignment of numbers to the vertices (a mapping of the vertices to a time line)
that is consistent with the information provided. As an example, consider the network
shown in Fig. 3.4. Depending on the particular implementation of topological sort, one

22

possible result is that vertex {6} is assigned the number 0, vertex {1, 7, 8} is assigned 1,
vertex {2, 3} is assigned 2, and vertex {4, 5} is assigned 3. The consistent scenario of the
original network (Fig. 3.2) is easily recovered from this information. The algorithm is
summarized in Fig. 3.5.

Theorem 3.1. The algorithm in Fig. 3.5 correctly finds a consistent scenario of a
PA network in O(n?) time, where 7 is the number of points.

Proof. The proof of correctness is in Appendix C. For the time bound, finding the
strongly connected components is O(n?) (Tarjan, 1972), condensing the graph looks at
each edge only once, and topological sort is O(n?) (Knuth, 1973). O

It can be seen that the algorithm is asymptotically optimal in some sense, as we
must at least examine every edge in the graph, of which there may be as many as O(n?).
If we do not, we can not be sure that the label on that edge is not involved in a contradic-
tion by, for example, being part of a loop that causes a vertex to be less than itself.

3.2. The Interval Algebra

3.2.1. Related Work

Vilain and Kautz (1986, 1989) show that finding a consistent scenario is NP-Complete for
IA networks. Thus the worst cases of the algorithms that we devise will be exponential
and the best we can hope for is that the algorithms are still useful in practice. We discuss
to what extent this is achieved below.

In the previous section we found a consistent scenario by first finding a consistent
instantiation. An alternative method is as follows. Let C be the adjacency matrix repre-
sentation of an IA network. Recall that an adjacency matrix B is a consistent scenario of
Cif

(@) B; cCy,

(b) | B | =1, forall i, j, and
(c) there exists a consistent instantiation of B.

To find a consistent scenario we simply search through the different possible B’s that sat-
isfy conditions (a) and (b)—it is a simple matter to enumerate them—until we find one
that also satisfies condition (c). There are,

different possible B’s. To reduce this search space, Allen (1983) proposes using simple
backtracking search to enumerate the potential B’s and an incremental version of the path
consistency algorithm (see Section 4.1) to decide whether a partial solution found so far
has a consistent instantiation. Valdés-Pérez (1987) gives a dependency-directed back-
tracking algorithm. As well, there has been much work on improving the performance of

23

procedure BACKTRACK (i)

begin
k<0
repeat
k<«—k+1
select kth candidate 3.1)
if (acceptable) then begin 3.2)

record candidate

if (i < m) then begin
BACKTRACK (i + 1)
if (not successful) then

cancel recording
end
end
until (successful or no more candidates)
end

Fig. 3.6. Generic backtracking algorithm (Wirth, 1976)

backtracking that could be applied to this problem (see Haralick and Elliott, 1980; Nudel,
1983; Dechter and Pearl, 1988; Dechter and Meiri, 1989). Freuder (1978) and Seidel
(1981) give algorithms that find all consistent instantiations (see Section 4.3.1).

Finally, it should be noted that Ladkin (1988) shows, by giving a translation, that the
consistency and satisfiability of any arbitrary quantified formula involving the basic rela-
tions of the interval algebra can be decided by an algorithm that is exact for the restricted
statements we can make in the interval algebra. Hence, algorithms that find consistent
scenarios—or report that none exist—have applicability beyond IA networks.

3.2.2. An Improved Algorithm

Here we show how the results for the point algebra can be used to design an algorithm for
finding a consistent scenario that is shown to be useful in practice.

The gist of the algorithm is the following. Rather than search directly for a consis-
tent scenario of an IA network, as Allen and Valdés-Pérez do, we first search for some-
thing more general: a consistent SA subnetwork of the IA network. We then use algo-
rithm CSPAN to find a consistent scenario of the SA subnetwork and, hence, to find a
consistent scenario of the original IA network.

We use backtrack search to find a consistent SA subnetwork. Let C be the adja-
cency matrix representation of an IA network for which we wish to find a consistent sce-
nario. We use backtrack search to find an adjacency matrix B such that,

24

(@ B;cC
(b) B is in the underlying set of SA, for all 7, j, and

i

(c) there exists a consistent instantiation of B.

There are two important decisions to be made in designing a backtracking algorithm: (1)
how to select a next candidate to extend a partial solution of size i to one of size i + 1
(Eq. 3.1 of Fig. 3.6), and (ii) how to test whether a partial solution found so far is accept-
able, i.e, whether it has a chance of being part of a solution to the entire problem (Eq. 3.2
of Fig. 3.6).

To select the next candidate, Allen and Valdés-Pérez choose the next alternative sin-
gleton labeling of an edge. i.e., they choose the next | B;; | = 1. The key idea in our back-
tracking algorithm is that we choose the next candidate by decomposing the labels into
the largest possible elements of SA and taking the next possible decomposition. This can
considerably reduce the size of the domains we are searching through. An example will
clarify this. Suppose the label on an edge is {b, bi, m, o, o1, si}. There are six possible
ways to label the edge with a singleton label: {b}, {bi}, {m}, {o}, {oi}, {si}, but only
two possible ways to label the edge if we decompose the labels into the largest possible
elements of SA: {b, m, o} and {bi, oi, si}. It is easy to see that this is guaranteed to be
better since, for any choice of a singleton label, we can choose a label of larger (or equal)
cardinality that is a superset of the singleton label. If the singleton label is consistent, so
is the larger label. And, of course, there will be times when the larger label is consistent
and the singleton label is not.

To test whether a partial solution found so far is acceptable and so might be part of a
solution to the whole problem we translate the SA network into an equivalent PA network
and use the O(n?) decision procedure for PA networks (Step 1 of Fig. 3.5). As we saw
above, the benefits of the decision procedure go beyond a fast test for acceptability: next
candidates can now be “larger” and thus more likely to be acceptable.

As an example, consider the network shown in Fig. 3.7. The backtrack search will
look at the edges in the order (1,2), (1,3), (2,3), (1,4), (2,4), and (3,4). Fig. 3.8 shows a
record of the search for both methods of selecting a next candidate. Moving to the right
and downward in the figure means a partial solution is being extended, moving to the left
and downward means the search is backtracking. In this example, when searching
through alternative singleton labelings, much search is done before it is discovered that
no consistent scenario exists with edge (1,2) labeled with {eq}, but when decomposing
the labels into the largest possible elements of SA and searching through the decomposi-
tions, no backtracking is necessary (in general, the search is, of course, not always back-
track free).

The result of the backtracking algorithm is a consistent SA subnetwork of the 1A
network (or a report that the IA network is inconsistent). Finally, after backtracking com-
pletes, the resulting SA network is translated into a PA network and then passed to algo-
rithm CSPAN to find a consistent scenario of this network and, hence, a consistent sce-
nario of the original IA network.

25

where [= {eq, b, bi, m, mi, o, oi, d, di, s, si, f, fi}

Fig. 3.7. Example IA network

Here is a somewhat larger example of planning in the blocks world (from Allen and
Koomen, 1983). In general, a planning problem is specified by giving descriptions of the
initial state and the goal state, and specifications of the actions the planning agent can
perform, the effects of the actions, and the conditions under which the actions can be
executed. A plan will be a sequence of actions that will take us from the initial state to
the goal state. In planning, as formulated by Allen and Koomen (1983), actions and
properties are associated with the intervals they hold over and the full interval algebra is
used. Finding one consistent scenario corresponds to finding an ordering of the actions
that will accomplish a goal.

Our specific planning problem is as follows. In the initial state, the three blocks are
all on the table. The goal state is simply a tower of the blocks.

Initial state: Goal state: A
B
A B C C

In this example, there is just one action called “Stack”. The effect of the stack action is
On(x, y): block x is on top of block y. For the action to be successfully executed, the

26

Single:
(1,2 (1,3 23 (4 @24 G
{eq} _
{bi}
{bi}
{b}
{o}
()
{si}
{o}
' (fi)
{oi}
{s} '
{bi}
{oi}
{b}
{bi}
{bi}
{b}
{o}
{b}
SA:
(1,2) (1,3) (2,3) 1,4 24 G4
(1) .
{bi}
{bi,oi}
{b}
{o.fi}
{b}

Fig. 3.8. Record of the backtracking search

conditions Clear(x) and Clear(y) must hold: neither block x or block y have a block on
them. To complete the specification of the action, the relations between the effect, action,
and conditions are as shown in the diagram below.

Stack: . Stack(x,y) | On(x,y) |

Clear(y) |
| |

e Bt) e Bty

27

We do not describe the planning process here, only the resulting temporal network.
Given the initial state and goal state, we can immediately write down the following tem-
poral information.

Initial Conditions Goal Conditions

Initial {d} Clear,(A) Goal {d} Clear,(A)
Initial {d} Clear,(B) Goal {d} On(A,B)
Initial {d} Clear,(C) Goal {d} On(B,C)

Planning introduces two stacking actions and the following temporal constraints.

Stacking Action Stacking Action

Stack(A,B) {bi, mi} Initial Stack(B,C) {bi, mi} Initial
Stack(A,B) {f} Clear,(B) Stack(B,C) {f} Clear,(C)
Stack(A,B) {m} On(A,B) Stack(B,C) {m} On(B,C)
Stack(A,B) {d} Clear;(A) Stack(B,C) {d} Clear;(B)
Proposition Constraints Domain Constraints

Clear;(A) {b,eq,bi} Clear,(A) Clear;(B) {b,bim,mi} On(A,B)
Clear;(A) {b,eq,bi} Clear;(A) Clear,(B) {b,bi,m,mi} On(A,B)
Clear,(A) {b,eq,bi} Clear;(A) Clear;(B) {b,bi,m,mi} On(A,B)
Clear;(B) {b,eq,bi} Clear,(B) Clear,(C) {b,bi,m,mi} On(B,C)
Clear;(B) {b,eq,bi} Clear;(B) Clear,(C) {b,bim,mi} On(B,C)

Clear,(B) {b,eq,bi} Clear;(B)
Clear;(C) {b,eq,bi} Clear,(C)

The subscripted propositions, such as Clear; (A) and Clear,(A), refer to different intervals.
The domain constraints state that a block cannot at the same time be both clear and have
another block on top of it. The proposition constraints state that the intervals of time over
which the different Clear(x) propositions hold are either equal or have no intersection
(see Allen and Koomen, 1983 for details). Note that there are far fewer than O(n?)
explicit constraints, where n is the number of states, actions, and propositions in our net-
work. Our method, because / is in SA and thus treated whole, only searches through
decompositions of these 26 constraints.

28

One possible plan that will accomplish the goal of stacking the three blocks is the
consistent scenario shown below.

Clear(C) On(B, C)

Clear(B) On(A, B)

Clear(A)

Initial |
| |

| Goal
| |

. Stack(B,C) , Stack(A, B) |
| . |

A comparison of implementations of Allen’s proposed backtracking algorithm (denoted
Single) and our new algorithm (denoted CS_BackTrack) applied to the planning problem
just described is shown in the following table.

Single total successful fail
tries: 91 91 0
consistency checks: 314 91 223
total time (sec.): 3.1

CS_BackTrack total successful fail
tries: 91 91 0
consistency checks: 26 26 0
total time (sec.): 0.3

Our algorithm was also tested on larger problems. The problems were random
instances from a distribution designed to approximate planning applications (as estimated
from the block-stacking example above). For a problem size of n = 20, the average time
to find a solution was about seven seconds of CPU time (25 tests performed). For n = 40,
it was 74 seconds (average over 21 tests). This seems surprisingly fast. However, it
should be noted that four of the tests for n = 40 were not included as they were stopped
before completion as a limit on the number of consistency checks was exceeded.

3.2.3. Easy Special Cases

The backtracking algorithm of the previous section finds a consistent scenario—or report
that none exists—for general IA networks but the worst case time of the algorithm is
exponential. In this section we discuss two easy (polynomial time) special cases of the
general problem.

The first easy special case follows from the results for PA networks. We can find a
consistent scenario of an SA network by first translating it into a PA network and using
algorithm CSPAN to find a consistent instantiation. The consistent instantiation of the
PA network also gives a consistent instantiation of the original SA network and hence

29

also defines a consistent scenario of the original SA network. As an example, consider
the (small) SA network below.

@ {d, o, m} >®

The SA network translates into the following PA network (where A~ and A" represent the
start and end points of interval A, respectively)

e

Equating the names of the vertices with the variables they represent, one consistent
instantiation of this PA network is the assignment,

AT 2 B «1
A"« 3 B"« 4
The corresponding consistent instantiation of the original SA network is simply,
Ae—<2,3> B«<1,4>
and the consistent scenario is given by,
A
B

Each of the steps of (i) recognizing that an IA network is the special case of an SA net-
work, (ii) translating it into a PA network, and (iii) finding a consistent scenario, can be
done in O(n?) time.

The second easy special case follows from results on a well-studied class of graphs
called interval graphs (see Golumbic, 1980; Roberts, 1976).

Definition 3.1. (Interval graphs; Roberts, 1976)
A graph G = (V, E) is an interval graph if and only if there is an assignment J of a real
interval J(u) toeachu € V suchthatforallu #v € V,

(u,vye E = JuynJv)#J

It can be seen that interval graphs are the special case of IA networks where all labels are
either {eq,m,mi,o,0i,d,di,s,si,f,fi} (intersects) or {b,bi} (not intersects) and for which
there exists a consistent instantiation. To be more precise, let C be the adjacency matrix
representation of the IA network. The interval graph has an an edge (v, v) € Eif C,, =
{eq,m,mi,o,0i,d,di,s,si,f,fi} and (u, v) ¢ E if C,, = {b,bi}. Booth and Leuker (1976) give
an algorithm that is linear in the number of vertices and edges for recognizing interval
graphs. Roberts (1976) gives a polynomial time algorithm for finding an assignment J (a

30

consistent instantiation).

As an aside, many applications of interval graphs have been identified (see
Golumbic, 1980; Roberts, 1976). It can be argued, however, that IA networks are a better
model for many of these applications. Interval graphs impose often overly strong restric-
tions on what can be stated. It cannot be stated, for example, that the relationship
between two vertices is simply unknown. Further, if something stronger is known about
the relationship, such as “A is before B”, this too cannot be stated.

31

4

Finding the Feasible Relations:
All-to-All Problems

In this chapter we examine the all-to-all version of the computational problem of finding
the feasible relations for the point algebra, PA, and the interval algebra, IA. We first dis-
cuss the well-known path consistency algorithm. For the point algebra we show that,
contrary to a previous claim, path consistency does not guarantee all relations are feasible
and we develop an algorithm that is exact for PA networks. For the interval algebra we
develop new approximation algorithms and identify some easy special cases of the prob-
lem.

4.1. The Path Consistency Algorithm

Allen (1983) gives an O(n’) approximation algorithm for the all-to-all minimal
labels problem that is a special case of path consistency algorithms (Montanari, 1974;
Mackworth, 1977). In this section we describe Mackworth’s (1977) path consistency
algorithm with some small simplifications because of properties of PA and IA networks.

The path consistency algorithm works as follows (see Fig.4.1; a more detailed
description can be found in Allen, 1983 and Mackworth, 1977). The input is the adja-
cency matrix description of a network where entry C;; is the label on edge (i, j). Proce-
dure RELATED_PATHS, given an edge (i, j), returns a set of triples representing all the
paths of length two in which edge (i, j) participates. The labels on these paths of length
two potentially constrain the label on the third edge that completes the triangle. We
maintain a queue of triples that still need to be processed. Each time through the loop we
process a triple. If the path of length two does constrain the third edge we update the
entry. This updated edge may further constrain other edges so its set of
RELATED_PATHS is added to the queue. But note that only those triples not already in
the queue are added. How a triple is selected does not change the result (Mackworth,
1977, p. 113). It does, however, influence the amount of work done. In practice, sorting
the triples at the start according to their labels and adding new triples to the front of the
queue works well. We defer until Chapter 5 a discussion about defining an order over IA.

32

Input: A PA or IA network represented as a matrix C where entry C;; is the label on
edge (i, j).

Output: A path consistency approximation to the minimal labels for Cy,
i,j=1,...,n.

procedure PC
begin
O « {(,k, j)| 1<i<j<n, 1<k<n, k#i, k# j}

while Q is not empty do begin

select and delete a path (i, k, j) from Q 4.1)
if (+ # C;;) then begin
Cj < 1t

C; < INVERSE (7)
Q0 < Q URELATED_PATHS (i, j)
end
end
end

procedure RELATED_PATHS (i, j)
return { (i, j, k), (k, i, j) | 1<k<n, k#i, k+#j}

Fig. 4.1. Path consistency algorithm (Mackworth, 1977)

Theorem 4.1 (Montanari, 1974; Mackworth and Freuder, 1985). The algorithm in
Fig. 4.1 achieves path consistency and requires O(n*) time, where 7 is the number of
intervals or points.

To use the path consistency algorithm we need the operations of inverse, intersec-
tion, and composition of relations. These operations have their usual first-order defini-
tions: inverse: xR'y = yRx, intersection: x(RNS)y = xRy A xSy, and composition:
XR - Sz = dy xRy A ySz. Below we discuss some implementation considerations.
Recall that the operands of the algebraic operations are sets of basic relations. The inter-
section of two labels is simply set intersection. For PA and PA, the tables for the inverse
of a label and the composition of two labels are easily specified explicitly as the underly-
ing sets are small (see Appendix B). Similarly for SA and SA.. For IA, however, the

33

tables for inverse and composition are too large to be practical (2'° and 2" x 2", respec-
tively) but there are alternatives to explicitly specifying them. Hogge’s (1987) method for
inverse is to use a clever bit swapping technique and for composition is to use four
smaller tables with an indexing scheme. Let C; ={R,,..., R,/ be a label. Allen’s
(1983) method for inverse is to use the equivalence, Ci_j1 =/ R]l, cee, R;11 J. This holds
because inverse distributes over union. Allen’s method for composition, which takes less
space but more time than Hogge’s, is to use the equivalence,

Ca Cy = U (S}-(T)h, SeCy TeCy (4.3)

which is the union of the pairwise composition of the basic relations. This holds because
composition distributes over union. See Appendix B for the tables for the inverse and
composition of the basic relations (denoted “transitivity table” in Allen, 1983).

Before giving an example, we first briefly relate the path consistency algorithm to
other well-known algorithms for what has been called the algebraic path problem
(Moller, 1985). In general terms, the algebraic path problem is to find the (infinite) set of
all paths between each pair of vertices in a labeled graph. The graph is labeled with ele-
ments from a path algebra that has a multiplication and a join operator. Depending on the
types of labels and the interpretation given to the operations on the labels of the paths,
algorithms for this problem can, among other things, be used to find the shortest path in a
graph, compute the transitive closure of a Boolean matrix, and solve systems of linear
equations (see, e.g., Aho et al., 1974; Carré, 1979; Moller, 1985; Tarjan, 1981a, 1981b).
It is generally assumed that for the multiplication and join operators of the path algebra,
multiplication distributes over join. Mackworth’s (1977) and Montanari’s (1974) path
consistency algorithms can be viewed as algorithms for path problems where multiplica-
tion does not distribute over join. For IA and PA, multiplication (composition) does not
distribute over join (intersection). But as Proposition 2.1 shows, it is true for SA, and
PA.. Thus, for the special cases of SA, and PA, networks, we can take advantage of
other efficient algorithms, such as that of Aho et al. (1974) or Tarjan (1981a, 1981b), for
achieving path consistency.

As an example of the path consistency algorithm and of finding the feasible rela-
tions, consider the following description of events:

Fred was reading the paper while eating his breakfast. He put the paper down and drank
the last of his coffee. After breakfast he went for a walk.

The first sentence tells us that the interval of time over which Fred read the paper inter-
sects with the interval of time over which Fred ate breakfast. We represent this as ‘““paper
{eq,d,di,0,01,s,s1,f,fi} breakfast.”

The second sentence fixes the relationship between the end points of the intervals
over which Fred read his paper and over which Fred drank his coffee but it remains indef-
inite about the relationship between the start points of the two intervals. We represent
this as “paper {d,0,s} coffee.”® But we also know that drinking coffee is a part of

6 Another possibility is the relation {b,m,d,o0,s}, since the scenario where the coffee drinking

34

breakfast and so occurs during breakfast. We represent this as “coffee {d} breakfast.”

Finally, the information in the third sentence is represented as ‘“‘walk {bi} break-
fast.” Putting this all together into an IA network gives,

breakfast

{eq.,d,di,o0,01,s,s1,f,fi} {b}

{d,o,s}

coffee

where we have drawn the arc from “‘breakfast” to “walk’ and so have labeled the edge
with the inverse of the “‘bi’’ relation.

To illustrate the use of the path consistency algorithm for determining the feasible
relations, we step through an iteration of the while loop. Suppose that the triple (paper,
coffee, breakfast) is selected to be processed next (Eq. 4.1 of Fig. 4.1). Variable ¢ is
assigned,

— Cogperpreaifast O Cpaper.cofee * Ceoffee preakfast

— {eq,d,di,o,oi,s,s1,f,fi} N {d,0,s} - {d}

Using Allen’s method for composition and the composition table found in Appendix B,
we get

«— {eq.d,di0,01s,s1.f,i} N ({d}-{d} U {o}-{d} U {s}-{d})

«— {eq,d,di,o,oi,s,si,f,fi} N ({d} U {d,0o,s} U {d})

«— {d,o,s}

Now, 1 # C ,pper prearfas: SO the entries are updated and the related paths are added to the
queue. The final result of the algorithm is shown below.

occurred entirely before reading the paper is not explicitly ruled out by the sentence.

35

breakfast

coffee

Determining the feasible relations can be viewed as determining the deductive conse-
quences of our temporal knowledge. We are able to derive that Fred went for a walk after
reading his paper and drinking his coffee and that Fred finished his paper before he fin-
ished his breakfast.

4.2. The Point Algebra

For the non-disjunctive subset of the point algebra, i.e., the relations {<, >, =}, algorithm
CSPAN (Fig. 3.5) can be used to find the minimal labels. The minimal labels will simply
be either the original network—corresponding to CSPAN successfully finding a consis-
tent instantiation of the network—or the network with all labels being the empty set—
corresponding to CSPAN reporting the temporal information is inconsistent.

For the full point algebra, Vilain and Kautz (1986, Theorem 4, p. 380) claim that the
path consistency algorithm correctly finds the minimal labels for PA networks. However,
their claim is false. The PA network below is a counter-example demonstrating that the
path consistency algorithm does not correctly find the minimal labels for all PA networks.

Applying algorithm PC of Fig. 4.1 results in no changes; the network is already path
consistent. However, the relation < between A and C is not the minimal label as not

36

every basic relation in the label is feasible. In particular, asserting A = C forces B and D
to also be equal to A and C. But this is inconsistent with B # D. Hence, the = relation is
not feasible as there cannot exist a consistent instantiation of the network in which the =
relation between A and C is satisfied. The label between A and C should be <. To reiter-
ate, the counter-example shows that the path consistency algorithm is not exact for PA
networks.

We next prove that the path consistency algorithm is exact for PA, networks, where
PA. is the point algebra that excludes the # relation. The following theorem on the inter-
section of convex sets will be useful in the proof of exactness (intuitively, a set is convex
if we can draw a line between every pair of points in the set and all the points along that
line are also in the set).

Theorem 4.2 (Helly’s theorem). Let F be a finite family of at least n + 1 convex
sets in R". If every n+ 1 sets in F have a point in common, then all the sets in F
have a point in common (ref. Chvatal, 1983).

Theorem 4.3. The path consistency algorithm correctly finds the minimal labels
between all pairs of points when applied to PA_ networks, where PA, is the point
algebra that excludes the # relation.

Proof. Theorem 4.3 is proved by showing that if all labels are from PA, and the network
is path consistent, then the network is k-consistent for all £ < n. Hence, the network is
strongly n-consistent and the labels between vertices are the minimal labels.

Basis: k=1, 2, or 3. True for k = 1, 2 since PA_ networks are always node and arc con-
sistent and for k = 3 by the assumption of path consistency.

Inductive step: We assume strongly (k — 1)-consistent and show k-consistent, and thus
strongly k-consistent. The domain of variable X; is the set of real numbers. The induc-

tive assumption implies that variables X, ..., X;_; can be consistently instantiated. Let
Xiy,...,X;_; be an instantiation such that
X le Xj i,jzl,...,k_l

is satisfied. To show that the network is k-consistent, we must show that there exists at
least one instantiation of variable X such that

x; Ry X, i=1,.... k-1 (4.4)

is satisfied. We do so as follows. The x, ,..., x;_; restrict the allowed instantiations of
X,. For each i in Eq. (4.4) we get bounds on instantiations of X;. The key is that all
these bounds define convex sets so by Helly’s theorem it is sufficient to show that any two
bounds have a point in common to show that they all have a point in common. But this
follows directly from the definition of path consistency. Hence, all the bounds have a
point in common and there exists at least one instantiation of X, that satisfies Eq. (4.4)
for all i. Because we require that x ;R ;x; = x;R;;x; we have also shown that there exists

LAV}
at least one instantiation of variable X, such that

37

Xk Rki X; lzl,,k_l

is satisfied. Hence, we have shown that, for any consistent instantiation of k — 1 vari-
ables, there exists an instantiation of any kth variable such that

X; RU x]' l,]zl,,k

is satisfied. Hence, the network is k-consistent. This proves the inductive step and thus
the theorem. []

Thus, any algorithm that achieves path consistency is exact for PA, networks (see
Section 4.1 for a discussion of algorithms for ensuring path consistency). In particular,
Aho et al. (1974) give an algorithm that achieves path consistency if certain properties
hold. Proposition 2.1 shows the relevant properties and shows that PA, has these proper-
ties with one provision. Composition does distribute over intersection provided the inter-
section of two labels is not equal to the empty set. Clearly, this is not always true. Does
this restrict the applicability of the algorithm? Fortunately it does not. In the algorithm,
if the intersection of two labels is equal to the empty set, this means the network is incon-
sistent, and the algorithm can halt and report the inconsistency.

In the remainder of this section we develop an algorithm that is exact for PA net-
works. Our strategy for developing an algorithm for PA networks is to first identify why
path consistency is sufficient if we exclude # from the language and is not sufficient if we
include #.

In the proof of Theorem 4.3 for the exactness of path consistency for PA, networks
the inductive step showed that if k — 1 of the variables were consistently instantiated then,
for any choice of a kth variable, that variable could be instantiated such that all £ vari-
ables together were consistently instantiated. Showing this relied on the fact that the
bounds on the instantiations of the kth variable defined convex sets. If # is permitted in
the language of the point algebra, the bounds no longer define convex sets, and we can no
longer show that a path consistent network is also k-consistent for all k < n. In fact, it is
possible to have PA networks that are three-consistent but not four-consistent, i.e., net-
works where the intersection of any two bounds cannot be empty, but the intersection of
three can be empty. Such is the case in the PA network shown in Fig. 4.2.

The network in Fig. 4.2 is path consistent. Let X;, X,, X,, and X,, be the variables
represented by the vertices s, ¢, v, and w, respectively. Further, let X,, X,, and X, be
instantiated as x,, x,, and x, such that x; = x, = x,. The instantiation is consistent. The
bounds on the instantiation of X, are x, < X,,, x, # X,,, and x, = X,,. Using standard
interval notation and substitution of equals the three bounds are [x,, +o0),
(o0, x,) U (x;, +00), and (—oo, x,]. Itis easily seen that any two of the bounds have a
point in common but together the three bounds have no point in common. While it is not
necessary that a network be strongly n-consistent for the labels to be the minimal labels,
the network in Fig. 4.2 is also an example of a path consistent network for which not all
the labels are minimal.

38

Fig. 4.2. “Forbidden” subgraph

Fig. 4.2 shows one counter-example of four vertices to the exactness of path consis-
tency for PA networks. But are there other counter-examples of size n = 4? The follow-
ing theorem answers this question and is the basis of an algorithm for finding the feasible
relations for PA networks.

Theorem 4.4. Any path consistent PA network for which the labels between ver-
tices are not the minimal labels has a subgraph of four vertices isomorphic to the
network in Fig. 4.2.

Proof. The networks under consideration are k-consistent for £k = 1, 2, and 3. If the
labels of a network are not the minimal labels, then there must exist some k& > 4 such that
the network is strongly (k —1) consistent but not k-consistent. That is, any k — 1 vari-
ables can be consistently instantiated but the intersection of the bounds on the instantia-
tion of a kth variable are empty; they do not have a point in common.

Thus, we know that (i) the intersection of all the bounds is empty, (ii) every two
bounds have a point in common, by the assumption of path consistency, and (ii1) at least
one of the bounds must involve a #, otherwise the bounds would define convex sets. But,
the sets defined by the bounds and intersections of the bounds are almost convex: except
for at most k — 1 holes. So, for the intersection of all the bounds to be empty, it must be
that one of the bounds asserts # and the intersection of two or more bounds is exactly a
point, that point being a hole. But if the intersection of a finite number of intervals is a
point then some two of them must also intersect to be a point. Hence, three of the bounds
must be [¢, + o0), (—oo, ¢) U (¢, + o0), and (—oo, c]. And it is easily shown by enumer-
ation that the network in Fig. 4.2 is the only four-vertex path-consistent network that, up
to isomorphism, gives rise to these bounds. []

39

The counter-example then is unique, up to isomorphism, if the network is path con-
sistent. This leads to the following algorithm. We solve the feasible relations problem by
first applying the path consistency algorithm and then systematically searching for *‘for-
bidden™ subgraphs and appropriately changing the labels. The algorithm (see Fig. 4.3)
makes use of adjacency lists. For example, adj.(v) is the list of all vertices, w, for which
there is an edge from v to w that is labeled with ‘<.

Changing the label on some edge (s, ¢) from ‘<’ to ‘<’ may further constrain labels
on other edges. The question immediately arises of whether we need to again apply the
path consistency algorithm following our search for “forbidden” subgraphs to propagate
the newly changed labels? Fortunately, the answer is no. Given a new label on an edge
(s, 1), if we were to apply the path consistency algorithm, the set of possible triangles that
would be examined is given by {(s,t, k), (k,s,t) | 1<k<n,k#s,k#t} (see
RELATED_PATHS in Fig. 4.1). Thus there are two cases. For both, we can show that
any changes that a second application of the path consistency algorithm would make will
already have been made by procedure FIND_SUBGRAPHS.

Case 1: (s, t, k). Changing the label on the edge (s, #) from ‘<’ to ‘<’ would cause
the path consistency algorithm to change the label on the edge (s, k) only in two cases:
s<t,t<k,and s <k
s<t,t=k,and s <k

In both, the label on (s, k) will become ‘<’. For (s, #) to change we must have the situa-
tion depicted in Fig. 4.2., for some v and w. But v <¢ and w <t together with ¢ < k (or
t = k) imply that v < k and w < k (we can assume the relations were propagated because
we applied the path consistency algorithm before the procedure for finding *“forbidden”
subgraphs). Hence, (s, k) also belongs to a “forbidden” subgraph and the label on that
edge will have been found and updated.

Case 2: (k, s, t). Similar argument as Case 1.

Theorem 4.5. The algorithm in Fig. 4.3 correctly finds the minimal labels between
all pairs of points when applied to PA networks and requires O(max(mn?, n’)) time,
where m is the number of edges labeled with ‘#’ and n is the number of points.

Proof. Let P, M, and S be the propositions that “‘the network is path consistent”, “the
labels between the vertices in the network are the minimal labels’, and ‘‘the network
contains a ‘forbidden’ subgraph™, respectively. By Theorem 4.4 we have,
PA-M o §. Taking the contrapositive gives, =S D - P v M. But the algorithm
removes all “forbidden” subgraphs, so = S is true, and, by the case analysis above, the
network remains path consistent, so = P is false. Hence, the labels are the minimal
labels.

For the time bound, the path consistency procedure is O(n*), where n is the number
of points (Theorem 4.1). The FIND_SUBGRAPHS procedure can be seen to be O(mn?),
where m is the number of edges labeled with ‘#’. Hence the overall algorithm is
O(max(mn?, n’)). O

40

A desirable feature of procedure FIND_SUBGRAPHS is that its cost is proportional
to the number of edges labeled ‘#’. But in the worst case, there can be as many as O(n?)
edges labeled with ‘#” and thus algorithm FEASIBLE is also O(n*). However, this worst
case analysis is misleading as the worst cases for the algorithm are contrived and (pre-
sumably) would rarely occur. As preliminary experimental evidence, the algorithm was
implemented in a straightforward way and tested on random problems up to size 100 (see
section 5.3.1 for a description of the method for generating random problems; the
description there is for IA networks but a similar method was employed for PA net-
works). It was found that about 90% of the time was spent in the path consistency algo-
rithm and only about 2% in FIND_SUBGRAPHS. Hence, the O(n?) path consistency
procedure dominated the computation.

Input: A PA network represented as a matrix C where entry C;; is the label on edge
(i J)-
Output: The minimal labels for Cy, i, j=1,...,n.

procedure FEASIBLE
begin
PC
FIND_SUBGRAPHS
end

procedure FIND_SUBGRAPHS
begin
for each edge (v, w) such that w € adj.(v) do begin
S « (adjy(v) M adjy(w))
T < (adj.(v) N adj(w))
for each s € S do
for each ¢ € T do begin
C, « <
C, <« >
end
end
end

Fig. 4.3. Feasible relations algorithm for PA networks

41

4.3. The Interval Algebra

In this section we discuss algorithms for finding the feasible relations for IA networks.
Vilain and Kautz (1986, 1989) show that finding the feasible relations is NP-Complete for
IA networks. Thus the worst cases of the algorithms that we devise will be exponential
in the worst case. Unfortunately, no algorithm was found that works well in practice. We
begin by reviewing two previous algorithms.

4.3.1. Exact Algorithms

Freuder (1978) and Seidel (1981) give algorithms for finding all consistent instantiations
of a network. Hence, their algorithms can be used for finding the feasible relations. A
difficulty is that both algorithms require the domains of the variables to be finite but IA
networks have infinite domains. However, Tsang (1987) points out that an alternative for-
mulation of the feasible relations problem is as a network of ternary constraints with
finite domains: the variables represent the relations between intervals, the domains of the
variables are the set of basic interval relations, and the ternary constraints preclude certain
combinations of relationships between three intervals. Note, however, that if the problem
size is n in our formulation, it is now n’ in this alternative formulation. Seidel’s algo-
rithm (1981) is useful for sparse constraint networks but here the networks are dense,
there being a ternary constraint for every combination of three variables. For the prob-
lems of interest here, both algorithms appear to be practical only for small instances of
the problem.

An exact algorithm for finding the feasible relations between just one pair of inter-
vals is given in Chapter 5. That algorithm can thus, of course, also be used to find all
pairs of minimal labels. Briefly, the algorithm tests whether a basic relation on an edge is
feasible by using the backtracking algorithm CS_BackTrack (Section 3.2.2) to find a con-
sistent instantiation or report that none exists. Initial experience, however, suggests this
method is also practical only for small instances of the problem, or for instances where
only a few of the relations between intervals fall outside of the special subset SA. In
practice, if a consistent instantiation exists, algorithm CS_BackTrack often finds it
quickly. The difficulty occurs when a basic relation is not feasible, i.e., no consistent
instantiation exists. It often takes a long time to discover this. We conclude that in most
cases a better approach than finding exact solutions is to, if possible, accept approximate
solutions to the problem.

4.3.2. Approximation Algorithms

Allen (1983) shows that an algorithm that achieves path consistency can be used to find
approximations to the minimal labels for IA networks (see Section 4.1). In this section
we develop better but more expensive algorithms for determining approximations to the
minimal labels between all intervals. The labels computed by the algorithm, as with the
path consistency algorithm, are always a superset (not necessarily proper) of the minimal
labels. The algorithms compute better approximations in that there are fewer infeasible
relations in the computed labels. The results of some experiments designed to estimate
the quality of the approximate solutions are summarized and discussed in Chapter 5.

42

Where does the path consistency algorithm fail? Determining this helps to develop
better approximation algorithms. Recall that IA networks are guaranteed to be node and
arc consistent. Thus, if an IA network is also made path consistent, then the network is
strongly three-consistent. Strongly three-consistent means that the network has the prop-
erty that every R € C;; is feasible with respect to every possible subgraph of three ver-
tices. For IA networks this is insufficient for even deciding whether the network is con-
sistent. Fig. 4.4 gives an example from Allen (1983) ascribed to Kautz. Applying the
algorithm of Fig. 4.1 results in no changes to the labels; the network is path consistent.
However, the network is inconsistent. The minimal labels are all &.

Fig. 4.4. Kautz’s example

As mentioned, the path consistency algorithm, as an approximation, ensures that the
R € C; are locally feasible—feasible not necessarily with respect to the entire graph, but
with respect to every possible subgraph of three vertices (or 3-cliques in the graph). Note
also that the path consistency algorithm only asks for the composition of labels on edges
that share a vertex.

The simple idea for improving the approximation is to ensure that every R € C;; is
feasible with respect to every possible subgraph of four vertices (or 4-cliques) and we
only ask for the composition of labels on triangles that share an edge. Eq. (4.2a) in
Fig. 4.5 and the definition of composition over triangles (Eq. 4.3a) below ensure that C;
gets updated to be the set of the R € C;; that are feasible with respect to the subgraph of
four vertices (i, k, [, j):

A - Ay = \J (P}-{Q) 0 (S]-(T)), (4.3a)
0 e Cy,
Se Cy, Pe ({S}-{0}) n Cy),
Qe Cy, Te ((0}-{0}) N Cy)

Input: A matrix C where entry C;; is the label on edge (i, j).

Output: An approximation to the minimal labels for C;;, 7, j=1,...,n.
procedure AAC
begin

QO « {(U, kL j | 1Li<j<n, 1Lk<I<n, i,jk,I distinct/
while Q is not empty do begin

select and delete a 4 — tuple (i, k, [, j) from Q

1< Cy N Ay - Ay

if (# C;;) then begin
Cj«t
C;; < INVERSE (¢)
Q < Q U RELATED PATHS (i, j)
end
end
end
procedure RELATED PATHS (i, j)

return { (k, i, j, 1) | 1<k<I<n, k,1,i,jdistinct} U
[G, j 1L k), (ki1 d, j) | 1<k, I<n, k,1,i,] distinct}

43

()

(4.12) (*)
(4.2a) (*)

()
)

Fig. 4.5. New all-to-all consistency algorithm. Changes to the path consistency algo-

rithm are marked (*).

The algorithm (shown in Fig. 4.5) iterates until this property holds for all possible
subgraphs of four vertices. Procedure RELATED PATHS must also be altered. Instead
of returning all paths of length two in which edge (i, j) participates it now must return all
structures of four vertices in which the edge participates, taking into account symmetries

to prevent redundant computation.

To illustrate algorithm AAC, we apply it to the network shown in Fig. 4.4 and step
through one iteration of the while loop. Suppose that the 4-tuple (1, 2, 4, 3) is selected to

be processed next (Eq. 4.1a of Fig. 4.5). Variable 7 is assigned,

— Ciz N Apy Aoy

Using Eq. (4.3a) and the composition table found in Appendix B, we get

«— AL fi} n (U (P} {Q) N (S} {Th,
0 € Cyy,

44

SeCp, Pe (S} [0} n Cy),
Qe Cy, Te ({O)-{0} N Cyp))

«— {tLfi} n (I (S} (T} n {(P}-{O)),
O € {o},
S e {mi,sif, Pe ({S}-{0} N {d,di)}),
Q€ {d, dij, T € ({0}-{Q} N {m,s}))

« {ffi} n (({mi}-{s} N {d}-{d}) v
({mi} - {m} N {d}-{di}) v
({si} - {s} n {di}-{d}) v
({si} - {m} {di} - {di}))
«— {ffi} n(({d,o,f} n {d}) U
({eq, s, si} M {eq, b, bi, m, mi, d, di, o, o1, s, si, f, fi} U
({eq, s, si} M {eq,d,di, 0, 01,s,si,f, fi}) U
({di, o0, fi} N {di}))

— O

Now, t # C,5 so the entries are updated and the related paths are added to the queue (in
practice, the algorithm would halt and report the inconsistency).

Theorem 4.6. The all-to-all consistency algorithm of Fig. 4.5 ensures the labels are
minimal with respect to all subgraphs of four vertices and requires O(n*) time,
where 7 is the number of intervals or points.

Proof . The proof of correctness is in Appendix C. The proof of the time bound is simi-
lar to that for the path consistency algorithm (Mackworth and Freuder, 1985) and is omit-
ted. [

We say an IA network is k-minimal if it has the property that each label is minimal
with respect to all subgraphs of k vertices. Thus, algorithm AAC ensures that a network
is four-minimal. We know that strongly k-consistent implies k-minimal. But is the con-
verse true? If the networks are SA or PA networks, the algorithm also ensures the net-
works are strongly four-consistent (see the inductive proof of Theorem 4.8 and Corollary
4.9). However, it is easy to find examples of IA networks that are four-minimal but not
strongly four-consistent. Fig. 4.6 shows an example. The labels are all the minimal
labels, hence the network is four-minimal. But the network is not strongly four-
consistent. Consider the instantiation X; <—< 1,2 >, X3 < <3,5>,and X, < <4, 6 >.
This instantiation satisfies the relations between the variables. Thus, if the network is
four-consistent, there should also be an instantiation of X, such that all the relations
between variables are satisfied. There is no such instantiation, however. This corrects a
claim in (van Beek, 1989) where algorithm AAC is said to also achieve four-consistency

45

for IA networks.

Fig. 4.6. Minimal but not four-consistent

Freuder (1978) gives an algorithm for achieving strong k-consistency, for any k < n,
in O(n*) time (Seidel, 1983), where n is the number of variables in the network. Thus,
his algorithm can also be used to ensure the labels are k-minimal. Our algorithm has two
advantages over Freuder’s algorithm in this setting. First, formulating the problem so that
Freuder’s algorithm is applicable squares the problem size (see the previous section).
Second, Freuder’s algorithm must construct and manipulate non-binary constraints to
enforce strong k-consistency, making implementation of the algorithm more difficult.

The idea for developing the initial better approximation algorithm can be general-
ized to develop successively more expensive algorithms that compute progressively better
approximations. The algorithms would ensure that each label was k-minimal. For exam-
ple, the next algorithm would define composition of labels on structures that share a trian-
gle. This is only of theoretical interest since higher orders of consistency quickly become
impractical for all but the smallest problems.

4.3.3. Easy Special Cases

In this section we explore how far we must restrict the expressive power of the represen-
tation language to guarantee that (i) the path consistency algorithm is exact, and (ii) the
new all-to-all consistency algorithm is exact.

Easy Special Cases of the Path Consistency Algorithm

Previous work has identified classes of binary relations for which the path consistency
algorithm gives exact answers (Dechter et al, 1989; Montanari, 1974; Valdés-Pérez,
1986). Montanari (1974) shows that the path consistency algorithm is exact for a
restricted class of binary relations. However, the relations of interest here do not fall into
this class as Montanari assumes the domains of the relations are finite but in IA networks
the domains are infinite. Valdés-Pérez (1986) shows that the path consistency algorithm

is exact for IA networks that use only the basic relations of IA.

Recall that Fig. 4.2 shows a PA network for which, contrary to a claim by Vilain and
Kautz, the path consistency algorithm does not find the minimal labels. The implication
in Vilain and Kautz (1986) was that the minimal labels for an SA networks could be
found by translating it into a PA network, finding the minimal labels, and then translating
it back. Here we show that the counter-example of Fig. 4.2 can arise if we translate SA
networks into PA networks. Hence, this method is not exact for SA networks. Below is

the graphical representation of the example SA network.

{b’ d’ 0’ S}

b,d, o, f, fi}

{eq, b, di, o, s, si, fi}

where

L=1{d,di,o,o0im,f, fi}

The adjacency matrix representation of the translation into a PA network is the following.

AT AT|B B"|C C"|D D
A= < |2 < |< < | <
AT | > = > ? # > ?
B < = < < #

B" | > ? > = > > >
c |2 # # < = < ? #
c" | > > ? > = > >
D™ | # < # < ? < = <
DY | > ? # < # < > =

47

Applying the algorithm of Fig. 4.1 results in no changes; the network is already path
consistent. However, the relation < between A~ and B* is not the minimal label; the mini-
mal label is <. Interestingly, the path consistency algorithm is also not exact when
applied to the interval algebra representation of this example, whereas the algorithm we
proposed in the previous section does determine the minimal labels. To reiterate, the path
consistency algorithm is not exact for SA networks, whether applied directly to the net-
work or to a PA network translation of the network.

We next prove that the path consistency algorithm is exact for SA, networks. The
proof parallels the proof of the exactness of path consistency for PA, networks (Theorem
4.3). In the proof of Theorem 4.3 the key step was showing that any two bounds have a
point in common and then applying Helly’s theorem to show that all the bounds together
have a point in common. Here we need to show that any three bounds have a point in
common before we can apply Helly’s theorem.

Theorem 4.7. The path consistency algorithm correctly finds the minimal labels
between all pairs of intervals when applied to SA, networks.

Proof . The theorem is proved by showing that if all labels are from SA, and the network
is path consistent, then the network is k-consistent for all £ < n. Hence, the network is
strongly n-consistent and the labels between vertices are the minimal labels.

Basis: k=1, 2, or 3. True for k = 1, 2 since SA, networks are always node and arc con-
sistent and for k = 3 by the assumption of path consistency.

Inductive step: We assume strongly (k — 1)-consistent and show k-consistent, and thus
strongly k-consistent. The domain of variable X; is the set of ordered pairs of real num-
bers < X7, X; > with X} < X/. The inductive assumption implies that variables
Xi,..., Xy can be consistently instantiated. Let <s,e;>,...,<5;_, €,_; > be an
instantiation such that

<§S; € > Ri]~<sj,€j>, i,jzl,...,k_l

1s satisfied. To show that the network is k-consistent, we must show that there exists at
least one instantiation of variable X such that

<s;, e > Ry <Xi, X;>, i=1,...,k—-1 4.5)

is satisfied. We do so as follows. The < s, e; >,..., < s;_;, €x_; > restrict the allowed
instantiations of X,. These restrictions, because the network is labeled with elements of
SA,, can be expressed as conjunctions of the relations {<,<,=,2>,>, ?} between the
endpoints of the intervals. For example, if the relation R,; is the disjunction of the
“before” and the ‘““meets’’ relations,

(< 51, e, > before < X;, X;>) v (<s,e > meets < X3, X; >)
the bounds on the instantiations of X; and X; are

S1<Xi’ €1SX£, Sl<XIi’ €1<X;, and X2<X]i

48

For each i in Eq. (4.5) we get bounds on instantiations of X; and X;. The key is that all
these bounds define convex sets so by Helly’s theorem it is sufficient to show that any
three bounds have a point in common to show that they all have a point in common.
There are two cases depending on whether one of the three bounds is X; < X}.

Case 1: Each of the three bounds is strictly in one or the other of X; and X}; the bound
that involves both is not included. Because each bound is only in one variable it is suffi-
cient to show that any two bounds have a point in common to show that together the three
bounds have a point in common. But any two bounds are always part of a single triangle
and have a point in common by the assumption of (strong) path consistency.

Case 2: Two of the bounds are strictly in one or the other of X} and X;; the third bound is
X; < X;. In this case, all three bounds are always part of a single triangle and again have
a point in common by the assumption of (strong) path consistency.

Hence, all the bounds have a point in common and there exists at least one instantiation
of X, that satisfies Eq. (4.5) for all i. Because we require that x;R ; x; = x;R;x; we have
also shown that there exists at least one instantiation of variable X, such that

<X, Xi> Ry <s;,e;>, i=1,..., k-1

is satisfied. Hence, we have shown that, for any consistent instantiation of k — 1 vari-
ables, there exists an instantiation of any kth variable such that

<Si’ei> Rij<sj’€j>’ i,jzl,...,k

is satisfied. Hence, the network is k-consistent. This proves the inductive step and thus
the theorem. [

Thus, as is true for PA, networks, any algorithm that achieves path consistency is
exact for SA, networks (see Section 4.1 for a discussion of algorithms for ensuring path
consistency). In particular, Proposition 2.1 shows that Algorithm 5.5 of Aho et al. (1974)
can be used.

Easy Special Cases of the New All-to-All Consistency Algorithm

In the remainder of this section we show that our new all-to-all consistency algorithm
(AAC) is exact for SA networks (and, as a corollary, for PA networks). The strategy is to
identify first why path consistency is not sufficient and where the proof of Theorem 4.7
fails for SA networks.

The inductive step of the proof of Theorem 4.7 required us to show that given an
instantiation of any k — 1 variables satisfying all the direct relations among those vari-
ables, there exists an instantiation of any kth variable such that the k values taken
together satisfy all the relations among the k variables. Showing this relied on the fact
that the relations between variables can be expressed as conjunctions of binary relations
on the end points of the intervals and that these relations place bounds on the instantia-
tions of the kth variable that define convex sets.

49

If the relations between variables are from SA, expressing some of the relations as
conjunctions of binary relations on the end points (or, equivalently, as a PA network)
requires us to use the # binary relation and the bounds no longer define convex sets. As
the example in the previous section shows, the translation into PA relations may give rise
to the PA network shown in Fig. 4.2. Thus, path consistency cannot guarantee that the
intersection of any three bounds have a point in common. However, algorithm AAC can
guarantee that any three bounds have a point in common.

Theorem 4.8. The all-to-all consistency algorithm of Fig. 4.5 correctly finds the
minimal labels between all pairs of intervals when applied to SA networks.

Proof . The proof of Theorem 4.8 follows the inductive proof of Theorem 4.7 except that
we can no longer rely on Helly’s theorem and the convexity of the sets defined by the
bounds to show the bounds have a point in common. The key is that the bounds are
almost convex and, by the discussion in the proof of Theorem 4.4, the only way to have
k = 3 bounds pairwise have a point in common but together not have a point in common,
is to have the three bounds shown in the proof of Theorem 4.4. These bounds cannot
arise if the labels of the SA network are minimal with respect to all subgraphs of four ver-
tices. Hence, the bounds have a point in common. []

Corollary 4.9. The all-to-all consistency algorithm of Fig. 4.5 correctly finds the
minimal labels between all pairs of points when applied to PA networks.

50

5

Finding the Feasible Relations:
One-to-All Problems

In this chapter we examine the one-to-all version of the computational problem of finding
the feasible relations for the point algebra, PA, and the interval algebra, IA. We present
an efficient approximation algorithm and show that the algorithm is exact for a useful
subset of the interval algebra and of the point algebra. We also give algorithms for deter-
mining the feasible relations between just two points or intervals in PA and IA networks.
Finally, for IA networks we experimentally test the quality of the approximations pro-
duced by the all-to-all and one-to-all approximation algorithms.

5.1. An Approximation Algorithm

The algorithms given in the previous chapter compute approximations to the minimal
labels between every interval and every other interval (the all-to-all version of the prob-
lem). If we are only interested in the minimal labels between one interval and every other
interval or between two particular intervals then, in computing the minimal labels
between all intervals, we may be doing too much work. Here we present an efficient
approximation algorithm for the one-to-all version of the problem.

The algorithm (see Fig. 5.1) is an adaptation of Dijkstra’s (1959) algorithm for com-
puting the shortest path from a single source vertex s to every other vertex. The algo-
rithm maintains a list, L, of vertices to be processed that have not yet had their labels
fixed. Each time through the while loop we choose a vertex, v, from L such that the label
on the edge (s, v) is a minimum and use the label to update the remaining unfixed labels.
In Dijkstra’s algorithm this minimum label is now considered fixed. As a result, it pro-
duces poor quality approximations when applied to IA networks.

In the algorithm of Fig. 5.1, a label is allowed to change after it has been tentatively
fixed and perhaps further constrain other labels. This is accomplished through two sim-
ple changes to Dijkstra’s algorithm: (1) the for loop now cycles through all vertices, V,
rather than just through the unfixed vertices and (ii) a vertex is added to L if its edge label
changes. These changes to Dijkstra’s algorithm also appear in Edmonds and Karp (1972)
in the context of finding shortest paths where negative arc lengths are allowed. The algo-
rithm can also be viewed as a special case of the path consistency algorithm. Johnson
(1973) showed that, if the labels are integers, these changes make the algorithm

51

exponential in the worst case. In this context, though, the algorithm is O(n?).

Theorem 5.1. The one-to-all consistency algorithm of Fig. 5.1 requires O(n?) time,
where 7 is the number of intervals or points.

Proof . Initially the free list, L, is all the vertices. A vertex, #, is put back on the free list
only if the label on edge (s, 7) loses one or more of its elements. A label can have at most
13 elements initially, so each vertex can reappear on the free list at most 13 times. For
each element in L we do O(n) work. Hence O(n?). O

Input: A source vertex s and an adjacency matrix C.

Output: An approximation to the minimal labels for C;, j=1,...,n.

procedure OAC
begin
LV -{s}
while L is not empty do begin
select a vertex v from L such that C,, is a minimum
L—L-{v}
for each ¢ in V do begin
l«<C,nNnC,, - -C,
if (I # C,,) then begin
C, «1
L—Lu{t}
end
end
end
end

Fig. 5.1. One-to-all consistency algorithm

The one-to-all consistency algorithm requires the operation of finding the minimum
of a set of labels. The final result of the algorithm is independent of how the minimum is
chosen, but the choice does affect the number of iterations. In practice, the number of
iterations of the algorithm can be halved compared to a random choice by choosing the
minimum based on the following order on the set of all labels. Assign weights to the 13
basic interval relations according to how restrictive the relation is. Restrictiveness is
measured by successively composing the basic relation with every possible label and
summing the cardinalities of the results. With suitable scaling we get the following
weights for the 13 basic relations: 1: eq; 2: fi, f, mi, m, si, s; 3: bi, b, di; and 8: d, oi, o.

52

The weight of a label is then the sum of the weights of its elements.

Here is an example of the one-to-all consistency algorithm and its use in knowledge-
based systems. The temporal information we represent is some Cuban history. We adopt
a suggestion by Vilain (1982) and use dates as time interval constants. This allows
queries about the relationship between an event and a date as well as the relationship
between two events.

{si}

Suppose we now ask, ‘“What events occurred in the year 1962?° To answer this ques-
tion, we use the one-to-all algorithm to determine the feasible relations between the inter-
val 1962 and every other interval. The results are shown below.

{f}

The events that occurred are, “The Cuban missile crisis, the trade embargo, the naval
blockade of Cuba, and the removal of Soviet missiles from Cuba.” From the information
represented, it may or may not be the case that Castro is still in power in 1962 (we only
stated that he came into power in 1959).

5.2. The Point Algebra

Ghallab and Mounir Alaoui (1989) give an incremental method for adding and deleting
temporal information represented in the point algebra. The data structure used is a rooted
tree with an indexing scheme. Their method relies on being able to identify all points
that are part of a < cycle and therefore are equal to each other, but they do not describe
how this would be done. They show experimentally that the method works well in

53

practice.

It is shown in Corollary 5.3 that the one-to-all consistency algorithm (OAC) is exact
for PA, networks, provided the network is consistent (see the next section for a proof and
further discussion). But OAC is not exact for PA networks. The network shown in
Fig. 4.2 with vertex A as the source vertex is an example where OAC does not correctly
find the minimal labels. For PA networks we give an algorithm for finding the minimal
label between just one pair of points (Fig. 5.2). The algorithm is straightforward: for
each possible basic relation r in the label on edge (s,) we test whether r is feasible, i.e.,
whether a consistent instantiation exists with r satisfied. The algorithm is easily seen to
take O(n?) time as the for loop is executed at most 3 times and the test for a consistent
instantiation can be done in O(n?) time using step (1) of algorithm CSPAN (Fig. 3.5).

Input: A source vertex s, a target vertex ¢, and a PA network represented as a matrix
C where entry C;; is the label on edge (i, j).

Output: L, the minimal label for Cj;,.

procedure ML
begin
L « O
for eachr € C,, do

W, « C
W, < r
if (3 a consistent instantiation of W) then

L « Lu/{fr}

i LJj=L....n

end

Fig. 5.2. One-to-one minimal label algorithm for PA networks

5.3. The Interval Algebra

The one-to-all consistency algorithm (OAC) discussed at the beginning of the chapter can
be used to find approximations to the minimal labels for IA networks. (The results of
some computational experiments designed to estimate the quality of the approximate
solutions of OAC and of the all-to-all algorithms of Chapter 4 are summarized and dis-
cussed in the next section). The algorithm is, of course, not exact for general IA net-
works. An exact algorithm for finding the minimal label between just one pair of inter-
vals is easily constructed using the same idea as in the algorithm for PA networks shown
in Fig. 5.2. Whereas in the PA version the test for a consistent instantiation is done using
Step (1) of algorithm CSPAN, the IA version would use algorithm CS_BackTrack (Sec-
tion 3.2.2) to test for a consistent instantiation. The algorithm just described, denoted

54

ML_BackTrack, was implemented and used to find exact solutions for the computational
experiments described in the next section. Our experience suggests ML_BackTrack is
practical for instances of the problem where only a few of the relations between intervals
fall outside of the special subset SA, but takes much time when most of the relations are
outside of SA. In such cases, a better approach is to, if possible, accept approximate
solutions to the problems.

In the remainder of this section we examine how far we must restrict the expressive
power of the representation language to guarantee that the one-to-all consistency algo-
rithm (OAC) is exact. The all-to-all algorithms compute approximations to the minimal
labels between all pairs of vertices. But even the labels we are not interested in help us
by further constraining the labels we are interested in. OAC does not do this; it uses less
information to compute its approximations. Hence, in general its approximations are
poorer than those of the all-to-all algorithms. Surprisingly though, OAC is exact for the
same subset of IA for which the path consistency algorithm (PC) is exact.

Theorem 5.2. The one-to-all consistency algorithm of Fig. 5.1 correctly finds the
minimal labels between a source interval and every other interval when applied to
SA, networks, provided the network is consistent.

Proof. We prove that, for those labels computed by OAC, the results are equivalent to
those of PC. Then, since PC is exact by Theorem 4.7, so is OAC. Let Cy, j=1,...,n
be the labels computed by OAC with source s. At completion of the algorithm the fol-
lowing is true,
Csj c Csk 'ij, j,k=l,...,n (51)
Suppose, to the contrary, that there exists a C,, such that PC would compute a better
approximation than OAC. We know that,
C, cC,-C,, v=1,....n (5.2)

For such a C, to exist, there also must exist some path v, w,, w,, ..., w,,, t that OAC does
not look at but PC would look at, and that constrains the label on the edge (v, t) and
invalidates Eq. (5.2). That is, a path such that

Csv ' (val : Cw1w2 s Cwml M Cvt) - Cst

But by distributivity (clause (iv) of Proposition 2.1) we have,
lLLh.s. = C,,-C,,, -C -C,, N C,-C,

vy " Cwpwg Wi
By associativity (clause (ii1) of Proposition 2.1),

= (((Cy, - Coy) - Cypiy) -+ C) N Cy, - €y
Applying Eq. (5.1) repeatedly,

2 C; N C,-Cy

= Cy

55

A contradiction. [

From clause (iv) of Proposition 2.1 stating a distributivity property of PA., the point
algebra that excludes the # relation, we have also proved that OAC is exact for PA, net-
works.

Corollary 5.3. The one-to-all consistency algorithm of Fig. 5.1 correctly finds the
minimal labels between a source point and every other point when applied to PA,
networks, provided the network is consistent.

The proof of the theorem and the corollary uses the property that composition distributes
over intersection. By Proposition 2.1 this property is true for SA. and PA_, respectively,
only if it can be guaranteed that the intersection of two labels will never result in the
empty set. This corresponds to guaranteeing that the network is consistent. It is easy to
show that the above theorem is false if the network is inconsistent.

Thus, to know whether the algorithm has computed the minimal labels we must first
know the answer to the decision problem: is the network inconsistent? In Chapter 3, we
gave an O(n?) algorithm that answers this decision problem for SA and PA networks (and
thus for SA, and PA, networks) and so can be used effectively with the one-to-all algo-
rithm given here. Alternatively, there are applications where it is safe to assume that the
network is consistent (see Chapter 6 where we discuss an example application where this
is reasonable: extracting the temporal relations between events mentioned in a narrative—
the assumption is that the narrative is coherent).

5.3.1. Experimental Results and a Predictive Test

In this section we present the results of some computational experiments comparing the
quality of the solutions produced by the path consistency algorithm and our approxima-
tion algorithms. The experiments give a partial answer to the question: With what degree
of confidence can we rely on the less expensive approximate solutions? We also present a
simple test for predicting when the approximation algorithms will and will not produce
good quality approximations.

We randomly generated IA networks of size n as follows. We first generated an
“instantiation”” by randomly generating values for the end points of » intervals. This was
turned into a consistent instantiation of an IA network by determining the basic relations
which were satisfied by this instantiation. Finally, we then added indefiniteness to the
relations between intervals by adding basic relations.

We then applied the three approximation algorithms, OAC, PC, and AAC, chose a
particular edge, determined the minimal label on that edge using the exact backtracking
algorithm, ML_BackTrack, and recorded whether the less expensive approximate solu-
tions differed from the exact solution.

We found that how well the algorithms do is heavily dependent on the distribution
from which the indefiniteness is randomly generated. Fig. 5.3 summarizes the results for

56

Distribution 1: About 75% of the time the uncertainty added is /, the set of all basic rela-
tions, and the remaining time consists of sets of from O to 3 of the basic relations.

Distribution 2: All elements of IA are equally likely to be added as uncertainty.

Distribution 1 Distribution 2
n OAC PC AAC | OAC PC AAC

20 6.0 0.0 0.0 727 66.0 36.7
30 10.7 0.0 0.0 88.7 413 9.3
40 180 1.3 0.7 953 12.0 33
50 127 0.0 0.0 90.7 4.0 2.0
60 180 0.7 0.0 84.0 0.0 0.0

Fig. 5.3. Percentage differences between the approximation algorithms and an exact
algorithm for various problem sizes. 150 tests performed for each problem size, n.

two distributions. Distribution one was chosen to approximate instances that may arise in
a planning application (as estimated from a block-stacking example in Allen and
Koomen, 1983). The important parameter in the planning application is that the relations
between most of the actions are originally unconstrained (represented as /, the set of all
basic relations). The values of n were also chosen to represent practical values. Fortu-
nately, for the class of problems that may arise in the planning application, experimental
results suggest that for a reassuringly large percentage of the time we can use the path
consistency algorithm with near impunity: the outcome is the same as that of using an
exact algorithm. With a different distribution, however, up to two-thirds of the labels on
average were not the minimal labels.

We note that the choice of how to generate random instances of the problem was
largely dictated by what kinds of problems could be solved exactly in a reasonable
amount of time. It would be interesting to know if it is true in general that the quality of
the approximation improves as the problem size increases (as exhibited in Fig. 5.3).
There are indications that if some of the labels on edges of a random instance have,
before adding indefiniteness, at least two feasible elements, this is not the case but few
experiments were performed because exact solutions could not be computed in a reason-
able amount of time.

We present a simple test for predicting when the approximation algorithms will and
will not produce good quality approximations. Let SA, be the subset of IA discussed ear-
lier for which the path consistency algorithm is exact. Computational evidence shows a
strong correlation between the percentage of the total labels that are from SA. and how

57

Average difference (%)

OAC algorithm

o PC algorithm
AAC algorithm

Labels in SA, (%)

Fig. 5.4. Percentage differences between the approximation algorithms and an exact
algorithm for various percentage of labels in SA.. 250 tests performed for each subin-
terval; problem size is 25.

well the OAC, PC, and AAC algorithms approximate the exact solution. Recall that The-
orem 4.7 (Theorem 5.2) states that PC (OAC) is exact when all the labels are from SA, so
we cannot improve on that. But, as the percentage of the total labels that are from SA,
nears zero, up to three-fifths of the labels (on average) assigned by PC and more than
four-fifths of the labels assigned by OAC are not the minimal labels (see Fig. 5.4). Thus
we have an effective test for predicting whether it would be useful to apply a more expen-
sive algorithm.

58

6

Applications and
a Practitioner’s Guide

In this chapter we survey three example applications of the point and interval algebras
chosen from the literature to show where the results of this thesis could be useful. Fol-
lowing that we summarize our results and give some more general remarks about how the
results presented could be used in practice.

6.1. Example Applications

Knowledge-Based Systems. The interval algebra is used as part of a language called
Telos for representing knowledge about information systems (Koubarakis et al., 1989;
Topaloglou and Koubarakis, 1989). We focus here on the temporal component of Telos.
The temporal component allows the representation of (and queries about) the history of
the domain and the system’s beliefs about that history. Other features of Telos are that it
provides time interval constants referring to one year intervals (e.g., 1985), one month
intervals (e.g., 1985/12), one day intervals (e.g., 1986/12/25), other finer levels of granu-
larity, and semi-infinite intervals. Here is a small example using the syntax of the Telos
knowledge representation language (Koubarakis et al., 1989).
TELL TOKEN martian
IN paper (at 1986/10..*)
WITH
author
first_author : Stanley (at 1986/10..%);
: LaSalle (at 1987/1..%);
: Wong (before 1987/5)
title : “The MARTIAN System’;
END

The TELL command adds new information to the system. This example states that
(1) ‘martian’ is an instance of the class ‘paper’ and it has been a paper since the beginning
of 1986/10, (i1) the first author Stanley started writing the paper at the beginning of the
same month, (iii) LaSalle became an author of the paper since 1987/1, and (vi) Wong was
an author before 1987/5. The intended meaning of the semi-infinite interval in (ii) is that
Stanley will remain an author of the paper into the indefinite future. Subsequent TELL

59

commands can, of course, update the temporal information in the system if this fact
should become no longer true. We can now ask questions of the system.

ASK : LaSalle € martian.author [during 1988]

ASK : LaSalle € martian.author [during 1988]
BELIEVED at 1985/1/1

The first ASK command queries whether the system currently believes that LaSalle was
an author of the Martian paper during 1988 (Answer: Yes). The second ASK command
queries whether the system believed on January 1, 1985 that LaSalle was an author of the
Martian paper during 1988 (Answer: No). These examples illustrate that the system can
answer queries with respect to its current state and with respect to previous states.

The authors of Telos decided to use only the thirteen basic relations, foregoing rep-
resentational completeness in favor of guaranteed exact answers in quick time. (To be
precise, the system maintains in a PA, network the relations between the end points of
every interval.) Moreover, the Telos system uses the path consistency algorithm to derive
new consequences of the temporal information asserted by the TELL command. The
basic interval relations are a subset of SA.. Hence, our result that the path consistency
algorithm is exact for SA, and PA networks shows that the expressive power of the Telos
temporal language could be expanded without compromising efficiency or exactness. As
well, the one-to-all algorithm, whether we first translate into PA, networks or reason
directly with SA, networks, may be of significant use in a system that allows queries
about the temporal relations between events in the domain. This will be especially true as
the problems to be represented grow larger. Finally, the decision procedure for PA net-
works (Step (1) of algorithm CSPAN) may be of use in the TELL operator to detect if
new temporal information is inconsistent with the temporal information already stored.

Natural Language Processing. Almeida (1987) and Song and Cohen (1988) use
the interval algebra in their solutions to a problem in natural language processing: extract-
ing and representing the temporal relations between the events mentioned in a narrative.
In narrative, the relations between events are sometimes explicitly stated using adverbs or
connectives but at other times are indefinite. Almeida, in his solution, restricts his repre-
sentation language to {b}, {m}, {eq}, {b, m}, {eq, d, s, f}, {eq, s}, {eq, f}, and the
inverses of those relations. Song and Cohen restrict their representation language to the
thirteen basic relations plus {b, o, m} (called precedes) and {eq, d, s, f} (called includes).
Song and Cohen’s algorithm determines the temporal relations between events mentioned
in a narrative by analyzing each new utterance in turn, and determining the relation of the
event in the current utterance to an event in a previous utterance that is currently in focus.
The more vaguely specified relations precedes and includes are used in the absence of
more specific temporal adverbials or connectives. It turns out that both Almeida’s and
Song and Cohen’s representation languages are also subsets of SA.. Thus, once we have
extracted the possibly indefinite relations between some of the events mentioned in the
narrative, we can determine exactly the feasible relations between all pairs of the events
using the path consistency algorithm or between one event and every other event using
the one-to-all algorithm. As well, the consistent scenario algorithm may be of use in

60

more recent work by Song (1990). Song (1990) applies the earlier work in discourse pro-
cessing to the recognition of a speaker’s plan underlying a discourse and the plan’s tem-
poral constraints. The decision portion of the consistent scenario algorithm can be used
as a heuristic to prune away from further consideration any proposed plans that are tem-
porally inconsistent.

In Chapter 4 we gave an example of representing the temporal information in a short
narrative and of drawing inferences using the path consistency algorithm. Drawing these
inferences are part of understanding a story and allow us to answer queries about the rela-
tions between the events in the story that are only implicit. We repeat the narrative below.

Fred was reading the paper while eating his breakfast. He put the paper down and drank
the last of his coffee. After breakfast he went for a walk.

With reference to the example, we can answer queries such as “‘Did Fred finish his coffee
before going for a walk?” (Answer: Yes.), “What is the relationship between Fred read-
ing the paper and going for a walk?” (Answer: Fred read his paper before going for a
walk.), and “Is it possible that Fred finished his paper before starting his breakfast?”
(Answer: No.).

Planning. The interval algebra is used in planning (Allen and Koomen, 1983;
Pelavin and Allen, 1986; Hogge, 1987, and recall the block-stacking example in Chapter
3). In classical planning, actions are viewed as instantaneous and thus the only allowed
relations between actions are <, >, and =. Viewing actions as having temporal extent
and using IA to represent the relations between actions allows plans to have actions that
overlap. In this framework a plan can be represented as an IA network.

Given a plan library with temporal constraints, Hogge gives the following three
steps for using his planner: (i) specify the planning problem as a set of facts, goals, and
temporal constraints between them, (ii) run the planner, (ii1) select among the possible
temporal orderings of the operators applied in the plan. The full interval algebra is used
in Hogge’s planner (whether useful planning can be done with the possible relations
restricted to SA and SA. is worth further exploration).

In step (i), the planner, before starting to search for a plan, tests whether the prob-
lem specification is temporally consistent. During the search for a plan, the planner adds
an operator to the plan if, among other things, the resulting expanded network is tempo-
rally consistent. The all-to-all consistency algorithm (AAC) may be useful here as it
detects inconsistent networks that the path consistency algorithm does not. This may be
useful if it allows us to detect early that a plan is temporally inconsistent before much
work has been expended expanding the plan. This is speculation, however, and actual
experience with a planner is needed to determine whether the planner is made more or
less efficient as a result.

In step (iii), a temporal ordering of the operators must be selected. This corresponds
to finding a consistent scenario of an IA network. Thus, the backtracking algorithm for
finding a consistent scenario (CS_BackTrack) is useful here. In Chapter 3 we gave an
extensive planning example and showed experimentally that the backtracking algorithm
worked well in practice on planning problems.

61

6.2. A Practitioner’s Guide

The following observations may be relevant in deciding where the different results are
applicable.

6.2.1. Finding a Consistent Scenario

A guide to applying the results for finding consistent scenarios is straightforward. The
results themselves are summarized in the table below. The algorithms are the consistent
scenario algorithm for PA networks (CSPAN, Fig. 3.5) and the consistent scenario back-
tracking algorithm (CS_BackTrack, 3.2.2).

Algorithm Exact Cost

CSPAN PA_, PA O(n?)
SA., SA (translate)

CS_BackTrack SA., SA, IA O(n® rk")8

The practitioner must first choose between the point- and interval-based representation
languages. If our representation language is PA or SA, or subsets of them, we can find a
consistent scenario quickly using algorithm CSPAN. If our representation language is IA
the best we can offer is algorithm CS_BackTrack, which is exponential in the worst case.
One bright spot is that the algorithm works well in practice for problems that arise in
planning. The algorithm will work similarly well on any problem with the characteristics
of a planning problem. The characteristics are: we do not have direct knowledge of the
relations between most intervals and we only rarely want to represent relations that are
not in SA. We remark that it is a simple matter to have a procedure that determines
whether an IA network is also the special case of an SA network and then, depending on
the outcome, calls either CSPAN or CS_BackTrack to find a consistent scenario. This
has the twofold advantage that the choice of algorithm can be hidden from the user and
that no commitment need be made at the outset by the user to restrict the representation
language (the more expensive CS_BackTrack algorithm can simply be used as needed).

6.2.2. Finding the Feasible Relations

A guide to applying the results for finding the feasible relations is less straightforward.
The results themselves are summarized in the table below. The algorithms are minimal
label (ML, Fig.5.2), one-to-all consistency (OAC, Fig.5.1), path consistency (PC,
Fig. 4.1), feasible relations (FEASIBLE, Fig. 4.3), all-to-all consistency (AAC, Fig. 4.5),
and minimal label backtracking (ML_BackTrack, Section 5.3). The following methodol-
ogy is suggested for choosing the appropriate algorithm for finding the feasible relations.
First, the practitioner must choose between the point- and interval-based representation

8 Here 7 is the number of edges not labeled with I, the set of all basic relations, and k is the
cardinality of 1.

62

languages.

Algorithm Exact Approximate Cost

ML PA,, PA o(n%)

OAC PA, PA o(n?)
SA, SA, TA

PC PA, PA o(n®)
SA, SA, TA

FEASIBLE PA., PA O(max(mn?, n*))
SA,., SA (translate)

AAC PA,, PA O(n*)
SA., SA 1A

ML_BackTrack SA., SA, IA O(n* rk")

Point-based. If a point-based language is used (PA,, PA) the choice of algorithm is eas-
ily seen in the table above.

PA_: For PA, we would use either the OAC or the PC algorithm, depending on whether
we wanted to determine the feasible relations between just a few points or the feasible
relations between all pairs of points.

PA: For PA we would use either the ML or the FEASIBLE algorithm, depending again
on whether we wanted to determine the feasible relations between just a few points or the
feasible relations between all pairs of points. In some computational experiments it was
found that the cost of the FEASIBLE algorithm is negligibly greater than that of the PC
algorithm. This provides evidence for the argument that, if we want all pairs of feasible
relations, there is little incentive to restrict the representation language from PA to PA, or
to accept approximate solutions in order to use the PC algorithm.

Interval-based. If an interval-based language is used (SA., SA, IA) the choice of algo-
rithm of course again depends on how expressive the representation language must be.
But here we must sometimes also decide whether an exact solution is necessary or
whether an approximate one is acceptable. In the discussion above about finding consis-
tent scenarios, we noted that there the practitioner could, if desired, not commit at the
outset to a restricted representation language. This was true because there it is easy to
determine algorithmically the “‘best” algorithm for solving the problem. Such is not the
case here. For example, if it is determined that an IA network is not one of the special
cases that can be solved efficiently, do we then proceed to solve the problem exactly, per-
haps taking a long time in doing so, or do we use an approximation algorithm? Clearly,
this decision belongs to the practitioner. Further discussion is divided according to the
choice of representation language.

SA.: As for PA,, for SA, we would use either the OAC or the PC algorithm for finding
the feasible relations between a few intervals or between all pairs of intervals, respec-
tively.

63

SA: For SA, if we want exact solutions the choice is between the FEASIBLE and the
AAC algorithm. FEASIBLE is, in practice, much faster than AAC but more difficult to
implement as an SA network must first be translated into a PA network, solved, then
translated back again. If we are willing to accept approximate solutions, the approximate
solutions produced by both PC and OAC are almost always the exact solutions. This
should be balanced against the fact that we can get exact solutions at little extra cost by
translating the SA network into a PA network and using procedure FEASIBLE.

IA: It is generally impractical to compute exact solutions if our representation language is
TIA. The decision to be made then becomes: are we able to restrict our representation
language sufficiently so that exact answers can be tractably computed or, alternatively, do
we accept approximate solutions? In computational experiments it was found that the
approximate solutions are almost always the same as the exact solutions if many (greater
than one-half) of the relations we want to represent are in SA, or SA. Hence, in these
cases the OAC and PC algorithms are useful. However, when most (less than one-fifth)
of the relations we want to represent are outside of SA, or SA the OAC and PC algo-
rithms can produce poor approximations. Given an arbitrary IA network, the predictive
test proposed in Chapter 5 is a useful tool for deciding whether to apply the PC algorithm
or a more expensive approximation algorithm such as AAC. This should be balanced
against the increased cost of AAC. The AAC algorithm is particularly appropriate for
small networks, but these are precisely the cases where the greatest improvement was
found (again, see Chapter 5). Further, large networks can sometimes be partitioned into
several small networks and the algorithm is then applicable. Allen (1983) proposes ‘‘ref-
erence intervals’ for this purpose and Koomen (1989) continues this work. Briefly, refer-
ence intervals are a way of grouping intervals into clusters so that we reason about the
relations between intervals within clusters only.

64

7

Future Work and Conclusion

In this chapter we discuss some potential directions for future work. One direction is
applying and extending the results of the thesis to spatial reasoning. Another is extending
the kinds of temporal information we can represent to include quantitative information.
We end with some conclusions.

7.1. Future Work

Spatial Reasoning. Until now, we have interpreted points and intervals as temporal
objects. However, all of our results apply equally well if we interpret points and intervals
as spatial objects. Thus, it should be investigated how useful the algebras and our results
are for spatial reasoning. An example where PA and IA may be useful is in spatial layout
(Eastman, 1970, 1973; Earl and March, 1979; Baykan and Fox, 1987). Spatial objects
such as desks, lamps, and chairs would be modeled by points or intervals. The relations
between points or intervals would represent constraints on the placement of the spatial
objects such as, the lamp must be beside the chair, or, two objects cannot be in the same
place. A consistent scenario would then correspond to a layout that satisfies all the con-
straints.

Just as the algebra of one-dimensional intervals generalizes the algebra of zero-
dimensional points, an obvious next step is to continue this generalization and develop
algebras for representing and reasoning about the qualitative relationships between two-
dimensional and three-dimensional convex regions.

We may wish to restrict the allowed spatial objects rather than allow arbitrarily com-
plex convex regions. Malik and Binford (1983), in their work on representing quantita-
tive spatial information, suggest representing spatial information about each dimension
separately, taking the projection along the x-axis, y-axis, and z-axis, respectively. This is
equivalent to restricting the allowed spatial objects to be rectangles (2-D) and boxes
(3-D). For qualitative spatial information, we would then use IA to represent each
dimension separately. As an example, the two-dimensional relation, A inside B, is repre-
sented as the conjunction of interval relations, B, during A, and B, during A,.

65

BY |- -

A, By BT A]
We may also wish to restrict the allowed spatial relations along each dimension
rather than allow the full interval algebra. For example, many of the common spatial
relations—such as, inside, to the left of, to the right of, below, above, occludes, in front

of, and behind—can be represented using just SA..

A General Temporal Reasoning System. In this thesis we examined frameworks
for representing and reasoning about qualitative temporal information such as that in
statements that (a, b) specify the relative ordering of end points of intervals, (c) specify
only that two intervals of time intersect, and (d) specify the relative ordering of entire
intervals.

a. The Cuban Missile crisis took place during Kennedy’s presidency.
b. Fred put the paper down and drank the last of his coffee.

c. Fred was reading the paper while eating his breakfast.

d. TI'll come by either before my class or after it.

For some applications we may also want to represent and reason about quantitative tem-
poral information such as that in statements that (e) specify the endpoints of intervals of
time, (f) describe times in terms of their distances from other times, (g) specify the dura-
tion of an event, and (h) describe disjoint uncertainty about the duration of an interval.

e. The concert begins at 2:00.

f. I’ll phone you five minutes before I leave.

g. The meeting lasted for an hour.

h. Fred went to work either by car (30-40 minutes) or by bus (60-75 minutes).

Ideally, what is desired is a general temporal reasoning system for storing, retriev-
ing, and answering queries about both qualitative and quantitative information and that is
useful across applications. Our results can be viewed as a contribution to a special

66

purpose reasoner in such a general system (see Miller and Schubert, 1988). The general
system would include other special purpose reasoners for other kinds of temporal infor-
mation such as quantitative information about the distances between intervals or points
(Dechter et al., 1989; Dean and McDermott, 1987), or combinations of qualitative and
quantitative information (Allen and Kautz, 1985; Ladkin, 1989; Schmiedel, 1988a,
1988b). Building such a general system would be a useful project.

Some interesting problems arise by allowing both qualitative and quantitative infor-
mation as both kinds of information constrain the other. For a simple example, let A~ and
A" be the end points of interval A. Suppose we know that A before or overlap B,
B — A" >0, and A" — B™ > 0. From this we can derive the stronger information that A
overlaps B, B" = A" >0, and A" — B~ >0. Work has been done on these problems
(Ladkin, 1989; Schmiedel, 1988a) but open problems remain.

7.2. Conclusion

Allen (1983) and Vilain and Kautz (1986) give frameworks for representing and reason-
ing about qualitative temporal information. We looked at two reasoning tasks that arise in
these frameworks: Given (possibly indefinite) knowledge of the relationships between
some intervals or points, (i) find a scenario that is consistent with the information pro-
vided, and (ii) find the feasible relationships between some or all pairs of intervals or
points.

For finding one consistent scenario, we give an O(n?) time algorithm for PA and SA
networks. The algorithm is asymptotically optimal and is an O(n) improvement over the
previously known algorithm. The results for the point algebra are shown to aid in the
design of a backtracking algorithm for IA networks. The backtracking algorithm is
shown analytically to always be better than previous proposals and is shown experimen-
tally to be useful for planning problems.

For finding the feasible relationships, we give a counter-example to a result in the
literature and give exact algorithms for PA and SA networks. We also show that for both
the all-to-all and one-to-all versions of the problems, previously known algorithms are
exact for PA, and SA, networks, where PA, and SA, are subsets of PA and SA, respec-
tively. Finally, the intractability of finding exact solutions for IA networks led us to
develop new approximation algorithms. We presented the results of some computational
experiments that attempted to characterize the quality of the approximations. The experi-
ments led us to propose a test for predicting when the approximation algorithms produce
solutions that are close to the exact solutions.

67

Appendix A

In this appendix we enumerate SA, the subset of IA that can be translated, using the rela-
tions {<,<,=,2>,>, 7 #}, into conjunctions of relations between the endpoints of the
intervals. We partition the elements into two sets dependent on whether # is required in
the translation. Thus, SA, is enumerated as well. A~ and A" represent the start and end
points of interval A, respectively, and A~ < A" and B~ < B" are true for every translation.

SA and SA. contain only a small but important and useful subset of the 2'° elements
that IA contains. But what cannot be expressed in SA that can be expressed in IA is
“disjointedness” of intervals. For example, we cannot say that “A {b, bi} B”, i.e., that A
is either before or after B, since this interval relation cannot be expressed as simply a con-
junction of point relations between the endpoints of the two intervals. It also requires dis-
junction.

(A"<B A A <B"AA"<B A A"'<B” v
(AA>B A A >B" A A">B A A*> B
The nearest approximation using only conjunction is the following,
A #B A A #B" A A"#B A A"# B
So, the nearest approximation to “A {b, bi} B”’ using an element of SA is “A {b, bi, d,

di, o, oi} B”. But as can be seen, this allows, for example, A to overlap B, which we did
not intend.

A"B- AB" A'B- A'B* A"B- AB" A'B- A'B*
{eq} = < > = {eq.d,s.f} > < > <
{b} < < < < {eq.di,si,fi} < < > >
{bi} > > > > {eq,0,s,f1} < < > <
{d} > < > < {eq,oi,si,f} > < > >
{di} < < > > {b,o,m,fi} < < ? <
{o} < < > < {bi,oi,mi,f} > ? > >
{oi} > < > > {b,o,m,s} < < ? <
{m} < < = < {bi,oi,mi,si} > ? > >
{mi} > = > > {d,o,m,s} ? < > <
{s} = < > < {di,oi,mi,si} ? < > >
{si} = < > > {d,oi,mi,f} > < > ?
{f} > < > = {di,o,m,fi} < < > ?
{fi} < < > {eq,0,m,s.fi} < < > <
{eq.f} > < > = {eq,01,mi,si,f} > < > >
{eq.fi} < < > = {b,d,0,m,s} ? < ? <
{eq,s} = < > < {bi,di,oi,mi,si} ? ? > >
{eq,si} = < > > {b,di,o,m,fi} < < ? ?
{b,m} < < < < {bi,d,oi,mi,f} > ? > ?
{bi,mi} > > > > {eq,b,0,m,s,fi} < < ? <
{d,f} > < > < {eq,bi,oi,mi,si,f} > ? > >
{di,fi} < < > > {eq.d,o0,s.f.fi} ? < > <
{d,s} > < > < {eq,di,oi,si,f,fi} ? < > >
{di,si} < < > > {eq.d,oi,s,si,f} > < > ?
{o,m} < < > < {eq.,di,o,s,si,fi} < < > ?
{oi,mi} > < > > {eq,d,o,m,s,f,fi} ? < > <
{o,s} < < > < {eq.di,oi,mi,si,f,fi} ? < > >

Appendix A

{oi,si}
{o.fi}
{oi,f}
{eq.ffi}
{eq,s,si}
{b,0o,m}
{bi,oi,mi}
{d,o0,s}
{di,oi,si}
{d,oi,f}
{di,o,fi}
{o,m,fi}
{oi,mi,f}
{o,m,s}
{oi,mi,si}

2>V A IV

VIANV AAV 22V A

INANIANNANNNANNANSANNNNNANNA

VIVVIVVVVVYV<VVYVYVYV

VANVIN >V AV ASI IVINV

{eq.d,oi,mi,s,si,f}
{eq,di,o,m,s,si,fi}
I —{bi,di,oi,mi,si}
I —{b,d,o,m,s}

I —{bi,d,oi,mi,f}
I —{b,di,o,m,fi}

I —{b,bi,m,mi}

I —{b,bi,mi}

I —{b,bi,m}

I —{bi,mi}

D D D D D D D 0 0 IV A 0 2 A IV

DO INIAN DA INA AN S A S A NN

2>V 2VV 2V IVVYV 2V 2SIV

D D D D D Y D D 0 0 0 VA 0 0

Appendix A

{b,o}

{bi,oi}

{d,o}

{d,oi}

{di,o}

{di,oi}

{s,si}

{f.ii}

{b,d,0}
{b,di,o}
{b,0,s}
{b,o,fi}
{bi,d,oi}
{bi,di,oi}
{bi,oi,f}
{bi,oi,si}
{d,o,m}
{d,oi,mi}
{di,o,m}
{di,oi,mi}
{b,d,o,m}
{b,d,o0,s}
{b,di,o,fi}
{b,di,o,m}
{bi,d,oi,f}
{bi,d,oi,mi}
{bi,di,oi,mi}
{bi,di,oi,si}
{d,di,o,oi}
{d,of.fi}
{d,oi,s,si}
{di,o,s,si}
{di,oi,f,fi}
{b,d,di,o,o0i}
{b,d,o0,f.fi}
{b,di,0,s,si}
{bi,d,di,o,oi}
{bi,d,oi,s,si}
{bi,di,oi,f,fi}
{d,di,o,0i,mi}
{d,di,0,0i,m}
{d,o,m,f,fi}
{d,oi,mi,s,si}
{di,o,m,s,si}
{di,oi,mi,f,fi}
{eq.b,0,s.fi}
{eq,bi,oi,si,f}
{b,bi,d,di,o,oi}
{b,d,di,0,0i,mi}
{b,d,di,0,oi,m}
{b,d,o,m,f fi}
{b,di,o,m,s,si}
{bi,d,di,o,o0i,mi}

>
©

HFAHHHHRIVIARKIAVHEHHHFIVEIAKRHENFRIAVHIEHR SR VVAASHEHEAVHIVVHEVAAAKRKITHAVHRVA

>
©

DDA AANANKHEAINANAARNKTEHRHKAAAAAAAANR D OFAAAAINAINAKRHHFEHRAAAAAANAANNNANKRA

i

A'B”

H*

V 99 <9%% %V HVIVVIVNVVVVHEHHVVVVVVVVYVOSHHS5YVIVVIVVVVVHHEHNTHNYVVVVYVYVYV

A'B*

A

HIANFHFHFVIAV HHIAKRHRIVEHRHFIAKRVHEHRIAKRY VH S SAAV HHEAVIVVHRIAANKRAIDT KV HH AV

{bi,d,di,0,0i,m}
{bi,d,oi,mi,s,si}
{bi,di,oi,mi,f,fi}
{d,di,o,0i,f,fi}
{d,di,o0,0i,m,mi}
{d,di,o,0i,s,si}

{b.bi,d,di,0,0i,mi}

{b,bi,d,di,0,0i,m}
{b,d,di,o,0i,f,fi}

{b,d,di,0,o0i,m,mi}

{b,d,di,0,0i,s,si}
{bi,d,di,o0,0i,f,fi}

{bi,d,di,0,0i,m,mi}

{bi,d,di,o,oi,s,si}
{d,di,o0,0i,m,f,fi}

{d,di,0,01,m,s,si}
{d,di,o0,0i,mi,ffi}

{d,di,o0,0i,mi,s,si}

{eq,b,d,0,s,f,fi}
{eq,b.di,0,s,si,fi}
{eq,bi,d,oi,s,si,f}

{eq,bi,di,oi,si,f,fi}

1 —{eq,m,mi,s,si}
1 —{eq,s,si,f,fi}
I —{eq,m,mi,f,fi}
I —{eq,bi,mi,s,si}
I —{eq,bi,mi,f,fi}
I —{eq,bi,m,s,si}
1 —{eq,bi,m,f,fi}
I —{eq,b,mi,s,si}
I —{eq,b,mi,f,fi}
I —{eq,b,m,s,si}
I —{eq,b,m,f fi}
I —{eq,b,bi,s,si}
1 —{eq,b,bi,f.fi}
I —{eq,mi,s,si}

I —{eq,mi,ffi}

I —{eq,m,s,si}

I —{eq,m,f,fi}

I —{eq,bi,s,si}

1 —{eq,bi,f.fi}

I —{eq,b,s,si}

I —{eq,b,ffi}

I —{eq,s,si}

I —{eq.f.fi}

I —{bi,m,mi}

1 —{b,m,mi}

I —{m,mi}

I —{bi,m}

I —{b,mi}

I —{mi}

I —{m}

>
w

ECEECERCENCIECAECEECERUEDE NECCER ISIECER NESCER NIECE SIECER IR TEUER NECUER ' NEDCER NEECE ‘N SEDCH VAR VASUERCER NIECER JEECER 'SR NEDCER N (N N IR T R S AR 1N

>
w

O HIAR A D99 DINIA DO HIANIAN DO HFIANIAAA KT S HHFAANIAAANT SHAINANT SAINA 2SR

T

A'B”

v

2 VHEHVH SOSOVIV IS OoHH 2 oW VVVIVIVNHEH SO SR VVHEHVVIVIVVIVVH SH SHVIVVYVYV

A'B*

*

ECEECIGUINCEBCUEPUEECED SRR | IR | SEECER ‘WSS URPUEE 'R M CER | SEECER 'SESCEE 'NESCEE 'SR ' SESCH \VABCEPUR VNS 'SECCER NIRCIR S U N SEECED ‘N U /U 'SR VAR '8

69

Appendix B

Interval algebra operations (Allen, 1983).

70

Composition of two basic relations (the "equals” relation is omitted; let I be the set of all
basic relations, {eq, b, bi, m, mi, o, oi, d, di, s, si, f, fi}, L be {eq, d, di, o, oi, s, si, f, fi},

M be {b, 0o, m}, and N be {bi, oi, mi}):

b bi d di o oi m mi S si f fi
b b I Mds b b Mds b Mds b b Mds b
bi 1 bi Ndf bi Ndf bi Ndf bi Ndf bi bi bi
d b bi d 1 Mds Ndf b bi d Ndf d Mds
di M di | N di L di diofi di oi si diofi di oi si diofi di di oi si di
fi si
o b N di dos M di M L b di oi si o diofi dos M
si fi
oi || M di bi doif | N di L N diofi bi doif N oi di oi si
fi si
m b N di dos b b dos b eqffi m m dos b
si
mi || M di bi doif bi doif bi eq s si bi doif bi mi mi
fi
S b bi d M di M doif b mi S eq s si d M
fi
si M di bi doif di diofi oi diofi mi eq s si si oi di
fi
f b bi d N di dos N m bi d N f eqffi
si
fi b N di dos di o di oi si m di oi si o di eqffi fi
si
Inverse of a relation:
C eq | b |bi|d|di|o|o | m |mi|s |[si|f/[fi
C'l e |bi|b|di|d|oi|o|m|m)| si|s/[fi]|f

Appendix B

Point algebra operations (Vilain and Kautz, 1986).

Composition of two relations:

= |l < | £ > 2] #
< | < | < | < ? ? ?
< £ < | £ ? ? ?
> | > ? 70> > ?
> =1 ? 270> =1 7?
1 = | ? ? ? ? ?
Intersection of two relations:
) = < < > > #*
= = %) = %) = %)
< (%) < < %) (%) <
< = < < %) = <
> g | | D > > >
> = (%) = > > >
(%) < < > >
Inverse of a relation:
C = | < | £ | >| 2] #
cClll=]>|2|<|<| #

71

72

Appendix C

In this appendix we prove Theorem 3.1 and Theorem 4.6, and we give a proof that the
consistent scenario problem and the minimal labeling problem are NP-Complete.

Theorem 3.1. The algorithm in Fig. 3.5 correctly finds a consistent scenario of a
PA network in O(n?) time, where n is the number of points.

Proof. We prove here statements (a) and (b) below. The rest of the algorithm is justified
by the discussion in the text of Chapter 3.

a. The vertices v and w are forced to be equal precisely when there is a cycle of the

form
v <w< oSy (C.1)
where one or more of the < can be =.
b. The network is inconsistent precisely when there is a cycle of the form
Vo= e =W oE Y, (C2)
or of the form,
v < Sw< - Sy EW, (C.3)
where some or all of the < can be =, or of the form,
V< e K< W< e < (C4
where all but one of the < can be < or =.
We first give some notation. Let P = (v, x;), (xy, X,),...,(x, w) be a simple path

(no vertex is repeated in the sequence) from vertex v to vertex w, v # w, in the graph of
the network. The label /(P) of a path P is defined as the composition of the labels of the
edges of P taken in order, ip(v, w) is defined as the intersection of the labels of all the
simple paths from v to w, and ml(v, w) is defined as the minimal label on the edge (v, w).

The key to the proof is that by Theorems 4.3 and 4.4, the path consistency algorithm
correctly determines the minimal label on an edge if the minimal label is one {J, <, =, >,
#, 7}. This is equivalent to saying that, for each r € {J, <, =, >, #, 7},

ip(v,w)y=r = ml(v,w)=r.
Thus, we need to look at only the simple paths between vertices to prove statements (a)
and (b).

If ml(v, w) = ‘=", then ip(v, w) = °=’, and there must exist simple paths P; and P,
between v and w such that the intersection of the labels of these paths is the = relation.
The following table gives all the possibilities.

[(P;)
I(P))

VAN

v |N

IV IA | @
I

Appendix C 73

By examination of the composition table (Appendix B) it can be seen that these four
cases arise only when there is a cycle of the form in Eq. (C.1).

If ml(v, w) = &, then ip(v, w) = &, and there must exist simple paths P;, P;, and P,
between v and w such that the intersection of the labels of these paths is the empty set.
The following table gives all the possibilities.

1 2 3 4 5 6 7
IP) | < < < =2 = = =
Py |z > > < < >
I(Py) | #

By examination of the composition table (Appendix B) it can be seen that case (1) arises
only when there is a cycle of the form in Eq. (C.3), cases (2)-(6) arise only when there is
a cycle of the form in Eq. (C.4), and case (7) arises only when there is a cycle of the form
in Eq. (C.2). O

Appendix C 74

Theorem 4.6. The all-to-all consistency algorithm of Fig. 4.5 ensures the labels are
minimal with respect to all subgraphs of four vertices and requires O(n*) time,
where 7 is the number of intervals or points.

Proof . A label on an edge (i, j) is minimal with respect to all subgraphs of four vertices
if, for every pair of vertices k and [,

Vx;Vx; x; Ry x; — Jxdx; x, Ry, x,,, u,v=i, j, k,1

Let C be the adjacency matrix representation of an IA or PA network. Somewhat more
informally, we must prove that for every edge (i, j) and every subgraph of four vertices
(i, k, I, j), all of the R € C;; are feasible with respect to the subgraphs.

We show that, given a particular edge (i, j) and subgraph (i, k, [, j), the algorithm
correctly determines only the R € C;; that are feasible with respect to that subgraph.
Then, since the algorithm iterates until this property holds for all such edges and sub-
graphs, the theorem is proved.

Given an edge (i, j) and a subgraph (i, k, [, j), Eq. (4.2a) in Fig. 4.5 determines,
P Cyi N Ay Ay
Using Eq. (4.3a) we have,
« Cy 0 (U (P)-(Q) O (S]-(T)),
0 e Cy,
SeCy, Pe (Cy n [S}-{O)),
Qe Cy, Te(Cy n{0}-{0)

«— U (C; n {P}-{O} N [S}-(T)),
Se€Cy, TeCyy, Pe Cy, Qe Cy, 0 € Cy,
(P} (S)-{O)H#D, (T} n {0}-{0))# D)

<~ (R| Re Cyj, Se Cy, Te Cy, Pe Cy, Qe Cy, O € Cy,
(R} n (P})-{O)H#D, (R} N {S]-{T}) =D,
(P} N (S}-{OH#D, (T} N {0}-{Q))# D}

Recall that an adjacency matrix B is a scenario of a network C if B; € Cj;, and | B; | =1,
for all i, j. The scenario is also a consistent scenario if there exists a consistent instantia-
tion of B. The effect of Eq. (4.2a) then is to, for every R € Cj;, look for a scenario of this
subgraph that involves R. The scenario is checked to ensure it is path consistent. But, by
Theorem 4.7 and the fact that the basic relations are in SA, this is sufficient to test
whether a consistent instantiation exists. Hence, only the R € C;; that are feasible with
respect to this subgraph remain. []

Appendix C 75

We end with a proof that the consistent scenario problem and the minimal labeling
problem are NP-Complete. We do this by first proving that the following decision prob-
lem is NP-Complete.

Interval Algebra Consistency (IAC)
Given a directed graph G = (V, E) with labels on the edges from the set of elements of
IA, does there exist a consistent scenario of the graph?

Kautz (Vilain et al., 1989) gives a proof that IAC is NP-Complete by showing 3-Satisfia-
bility is polynomially transformable to IAC. (An earlier sketch of the proof can be found
in Vilain and Kautz, 1986). We show Graph Coloring is polynomially transformable to
IAC.

Graph Coloring
Given a graph G = (V, E) and an integer k, is there a mapping y : V — {1, 2,..., k}
such that (v, w) € E implies y(v) # y(w)?

Theorem A3. Interval Algebra Consistency is NP-Complete.

Proof. The Interval Algebra Consistency problem is clearly in NP since, for every yes
instance of the problem, there exists a concise certificate, a consistent scenario, that can
be checked in polynomial time for validity. Furthermore, we can polynomially transform
Graph Coloring, a known NP-Complete problem (ref. Aho et al., 1974), to it. Given an
undirected graph G = (V, E) and an integer k we show how to construct a labeled,
directed graph G; = (V;, E;) such that G; has a consistent scenario if and only if there is
a coloring of G using k colors. To begin, we construct k vertices in V; that meet each
other in sequence. (Note that any sensible instance of Graph Coloring will have k < |V |
so the transformation is still polynomial). For each vertex v € V we create a vertex in
V, with the same name and associated edges and labels as follows.

Wy) N) W L P L W7 S L Wy

{eq, bi, mi} {eq, b, m}

The idea is that in any consistent scenario, every vertex v € V is forced to be equal to
only one of the k special vertices. This is the mapping y of vertices to colors. We also
must ensure that any two vertices adjacent in G do not map to the same value. Hence, for
each (v, w) € E we create an edge in E; and label it as follows.

Appendix C 76

@ {b, bi, m, mi} >@

Thus, an efficient algorithm for IAC would imply an efficient algorithm for Graph Color-
ing. Hence, the IAC problem is NP-Complete. But the IAC is a special case of the con-
sistent scenario and minimal labeling problems. That is, finding a consistent scenario or
finding a minimal labeling also answers the decision problem: does a consistent scenario
exist. Hence, the consistent scenario and minimal labeling problems are also NP-
Complete.

Appendix C 77

References

Aho, A. V., J. E. Hopcroft, and J. D. Ullman. 1974. The Design and Analysis of Com-
puter Algorithms. Addison-Wesley.

Allen, J. F. 1983. Maintaining Knowledge about Temporal Intervals. Comm. ACM 26,
832-843.

Allen, J. F. 1984. Towards a General Theory of Action and Time. Artificial Intelligence
23, 123-154.

Allen, J. F., and H. Kautz. 1985. A Model of Naive Temporal Reasoning. In Formal
Theories of the Commonsense World, J. Hobbs and R. Moore (eds.), Ablex,
251-268.

Allen, J. F,, and J. A. Koomen. 1983. Planning Using a Temporal World Model. Pro-
ceedings of the Eighth International Joint Conference on Artificial Intelligence,
Karlsruhe, W. Germany, 741-747.

Almeida, M. J. 1987. Reasoning about the Temporal Structure of Narrative. Ph.D. thesis
available as State University of New York at Buffalo Technical Report 87-10, Buf-
falo, N.Y.

Baykan, C. A., and M. S. Fox. 1987. An Investigation of Opportunistic Constraint Satis-
faction in Space Planning. Proceedings of the Tenth International Joint Conference
on Artificial Intelligence, Milan, Italy, 1035-1038.

Booth, K. S., and G. S. Leuker. 1976. Testing for the Consecutive Ones Property, Inter-
val Graphs, and Graph Planarity Using PQ-tree Algorithms. J. Comput. Syst. Sci.
13, 335-379.

Carré, B. 1979. Graphs and Networks. Clarendon Press.
Chvatal, V. 1983. Linear Programming. W. H. Freeman.

Dean, T., and D. V. McDermott. 1987. Temporal Data Base Management. Artificial
Intelligence 32, 1-55.

Dechter, R., and I. Meiri. 1989. Experimental Evaluation of Preprocessing Techniques in
Constraint Satisfaction Problems. Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, Detroit, Mich., 271-277.

Dechter, R., and J. Pearl. 1988. Network-Based Heuristics for Constraint-Satisfaction
Problems. Artificial Intelligence 34, 1-38.

Dechter, R., 1. Meiri, and J. Pearl. 1989. Temporal Constraint Networks. Proceedings of
the First International Conference on Principles of Knowledge Representation and
Reasoning, Toronto, Ont., 83-93.

Deo, N., and C. Pang. 1984. Shortest-path algorithms: Taxonomy and Annotation. Net-
works 14, 275-323.

Dijkstra, E. W. 1959. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik 1, 269-271.

Appendix C 78

Earl, C. F, and L. J. March. 1979. Architectural Applications of Graph Theory. In
Applications of Graph Theory, R. J. Wilson and L. W. Beineke (eds.), Academic
Press.

Eastman, C. M. 1970. Representations for Space Planning. Comm. ACM 3, 242-250.
Eastman, C. M. 1973. Automated Space Planning. Artificial Intelligence 4, 41-64.

Edmonds, J., and R. M. Karp. 1972. Theoretical Improvements in Algorithmic Effi-
ciency for Network Flow Problems. J. ACM 19, 248-264.

Freuder, E. C. 1978. Synthesizing Constraint Expressions. Comm. ACM 21, 958-966.

Freuder, E. C. 1982. A Sufficient Condition for Backtrack-Free Search. J. ACM 29,
24-32.
Ghallab, M., and A. Mounir Alaoui. 1989. Managing Efficiently Temporal Relations

Through Indexed Spanning Trees. Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, Detroit, Mich., 1297-1303.

Golumbic, M. C. 1980. Algorithmic Graph Theory and Perfect Graphs. Academic
Press.

Granier, T. 1988. Contribution a 1’étude du temps objectif dans le raisonnement. Rap-
port LIFIA RR 716-1-73, Grenoble. Cited in: M. Ghallab and A. Mounir Alaoui,
1989.

Giither, S. 1984. Zur Reprisentation Temporaler Beziehungen in SRL. KIT Report 21,
Fachbereich Informatik, Technische Universitit, Berlin. Cited in: A. Schmiedel,
1988a.

Haralick, R. M., and G. L. Elliott. 1980. Increasing Tree Search Efficiency for Con-
straint Satisfaction Problems. Artificial Intelligence 14, 263-313.

Hogge, J. C. 1987. TPLAN: A Temporal Interval-Based Planner with Novel Extensions.
Department of Computer Science Technical Report UIUCDCS-R-87, University of
[linois.

Johnson, D. B. 1973. A Note on Dijkstra’s Shortest Path Algorithm. J. ACM 20,
385-388.

Kautz, H. A. 1987. A Formal Theory of Plan Recognition. Ph.D. thesis available as
University of Rochester Technical Report 215, Rochester, N.Y.

Knuth, D. E. 1973. The Art of Computer Programming. Volume 1 / Fundamental Algo-
rithms. Addison-Wesley, 258-265.

Koomen, J. A. 1989. Localizing Temporal Constraint Propagation. Proceedings of the
First International Conference on Principles of Knowledge Representation and Rea-
soning, Toronto, Ont., 198-202.

Koubarakis, M., J. Mylopoulos, M. Stanley, and A. Borgida. 1989. Telos: Features and
Formalization. Knowledge Representation and Reasoning Technical Report KRR-
TR-89-4, Department of Computer Science, University of Toronto.

Ladkin, P. B. 1988. Satisfying First-Order Constraints About Time Intervals. Proceed-
ings of the Seventh National Conference on Artificial Intelligence, Saint Paul, Minn.,

Appendix C 79

512-517.

Ladkin, P. B. 1989. Metric Constraint Satisfaction with Intervals. Technical Report
TR-89-038, International Computer Science Institute, Berkeley, Calif.

Ladkin, P. B., and R. Maddux. 1988a. On Binary Constraint Networks. Technical
Report, Kestrel Institute, Palo Alto, Calif.

Ladkin, P. B., and R. Maddux. 1988b. The Algebra of Constraint Satisfaction Problems
and Temporal Reasoning. Technical Report, Kestrel Institute, Palo Alto, Calif.

Mackworth, A. K. 1977. Consistency in Networks of Relations. Artificial Intelligence 8,
99-118.

Mackworth, A. K. 1987. Constraint Satisfaction. In Encyclopedia of Artificial Intelli-
gence, S. C. Shapiro (ed.), John Wiley & Sons.

Mackworth, A. K., and E. C. Freuder. 1985. The Complexity of Some Polynomial Net-
work Consistency Algorithms for Constraint Satisfaction Problems. Artificial Intel-
ligence 25, 65-74.

Malik, J., and T. O. Binford. 1983. Reasoning in Time and Space. Proceedings of the
Eighth International Joint Conference on Artificial Intelligence, Karlsruhe, W. Ger-
many, 343-345.

Miller, S. A., and L. K. Schubert. 1988. Time Revisited. Proceedings of the Seventh
Canadian Conference on Artificial Intelligence, Edmonton, Alta., 39-45.

Moller, F. 1985. A Survey of Systolic Systems for Solving the Algebraic Path Problem.
Department of Computer Science Research Report CS-85-22, University of Water-
loo.

Montanari, U. 1974. Networks of Constraints: Fundamental Properties and Applications
to Picture Processing. Inform. Sci. 7, 95-132.

Nakel, K. 1988. Convex Relations Between Time Intervals. SEKI Report SR-88-17,
Universitit Kaiserslautern, W. Germany.

Nakel, K. 1989. Temporal Matching: Recognizing Dynamic Situations from Discrete
Measurements. Proceedings of the Eleventh International Joint Conference on Arti-
ficial Intelligence, Detroit, Mich., 1255-1260.

Nudel, B. 1983. Consistent-Labeling Problems and their Algorithms: Expected-
Complexities and Theory-Based Heuristics. Artificial Intelligence 21, 135-178.
Papadimitriou, C. H., and K. Steiglitz. 1982. Combinatorial Optimization: Algorithms

and Complexity. Prentice-Hall.

Pelavin, R., and J. F. Allen. 1986. A Formal Logic of Plans in Temporally Rich
Domains. Proceedings of the IEEE 74, 1364-1382.

Roberts, E. S. 1976. Discrete Mathematical Models, with Applications to Social, Biolog-
ical, and Environmental Problems. Prentice-Hall.

Schmiedel, A. 1988a. Temporal Constraint Networks. KIT Report 69, Fachbereich
Informatik, Technische Universitit, Berlin.

Appendix C 80

Schmiedel, A. 1988b. A Temporal Constraint Handler for the BACK System. KIT
Report 70, Fachbereich Informatik, Technische Universitit, Berlin.

Seidel, R. 1981. A New Method for Solving Constraint Satisfaction Problems. Proceed-
ings of the Seventh International Joint Conference on Artificial Intelligence, Van-
couver, B.C., 338-342.

Seidel, R. 1983. On the Complexity of Achieving k-Consistency. Department of Com-
puter Science Technical Report 83-4, University of British Columbia. Cited in: A.
K. Mackworth, 1987.

Song, F., and R. Cohen. 1988. The Interpretation of Temporal Relations in Narrative.
Proceedings of the Seventh National Conference on Artificial Intelligence, Saint
Paul, Minn., 745-750.

Song, F. 1990. A Processing Model for Temporal Analysis with Applications in Plan
Recognition. Ph.D. thesis, University of Waterloo, Waterloo, Ont. In preparation.

Tarjan, R. E. 1972. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput.
1, 146-160.

Tarjan, R. E. 1981a. A Unified Approach to Path Problems. J. ACM 28, 577-593.

Tarjan, R. E. 1981b. Fast Algorithms for Solving Path Problems. J. ACM 28, 594-614.

Topaloglou, T., and M. Koubarakis. 1989. Implementation of Telos: Problems and Solu-
tions. Knowledge Representation and Reasoning Technical Report KRR-TR-89-8,
Department of Computer Science, University of Toronto.

Tsang, E. P. K. 1987. The Consistent Labeling Problem in Temporal Reasoning. Pro-
ceedings of the Sixth National Conference on Artificial Intelligence, Seattle, Wash.,
251-255.

Valdés-Pérez, R. E. 1986. Spatio-Temporal Reasoning and Linear Inequalities. Memo
875, MIT Artificial Intelligence Laboratory.

Valdés-Pérez, R. E. 1987. The Satisfiability of Temporal Constraint Networks. Proceed-
ings of the Sixth National Conference on Artificial Intelligence, Seattle, Wash.,
256-260.

van Beek, P. 1989. Approximation Algorithms for Temporal Reasoning. Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence, Detroit,
Mich., 1291-1296.

van Beek, P. 1990. Reasoning about Qualitative Temporal Information. Proceedings of
the Eighth National Conference on Artificial Intelligence, Boston, Mass., 728-734.

van Beek, P, and R. Cohen. 1990. Exact and Approximate Reasoning about Temporal
Relations. Computational Intelligence. In press.

van Benthem, J. F. A. K. 1983. The Logic of Time. Reidel.

Vilain, M. 1982. A System for Reasoning About Time. Proceedings of the Second
National Conference on Artificial Intelligence, Pittsburgh, Penn., 197-201.

Vilain, M., and H. Kautz. 1986. Constraint Propagation Algorithms for Temporal Rea-
soning. Proceedings of the Fifth National Conference on Artificial Intelligence,

Appendix C 81

Philadelphia, Pa., 377-382.

Vilain, M., H. Kautz, and P. van Beek. 1989. Constraint Propagation Algorithms for
Temporal Reasoning: A Revised Report. In Readings in Qualitative Reasoning
about Physical Systems, D. S. Weld and J. de Kleer (eds.), Morgan-Kaufman,
373-381.

Wirth, N. 1976. Algorithms + Data Structures = Programs. Prentice-Hall.

Weld, D. S., and J. de Kleer. 1989. Introduction to Chapter 4, History-Based Simulation
and Temporal Reasoning. In Readings in Qualitative Reasoning about Physical
Systems, Morgan-Kaufman, 351-352.

