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Abstract

Plan recognition is the process of inferring a plausible set of
plans that explain an agent’s actions. In this paper, I use a
small example to focus on some non-probabilistic heuristics
proposed in the literature for preferring one plan over an-
other. I show some of the conditions or constraints on the
probability distributions so that the plan that is preferred by
the heuristics is also the most probable plan and I look at
some of the implications of these conditions. I also show
that if the conditions do not hold there exist cases where the
results of the heuristics clash with that of probabilities. One
of the most interesting results of the analysis is that, given
the assumption that the plan library is complete, the heuris-
tics examined can be given a probabilistic interpretation or
justification if and only if any two basic plans in the plan
library which share a step are equally likely. The usefulness
of the analysis is that we can test whether the conditions hold
in a particular domain and so gain more insight into whether
our choice of heuristic is appropriate to that domain. Further,
this work can be seen as providing an alternative justification
of the heuristics.

Introduction

Knowing the plan an agent is pursuing is useful if we wish
to intentionally help or hinder that agent. For example, in
question-answering systems recognizing the plan underly-
ing a user’s query aids in both understanding the query (e.g.,
(Carberry 1988)) and in generating an appropriate response
(e.g., (Allen 1983; Cohen, Schmidt, & van Beek 1994;
McKeown, Wish, & Matthews 1985)). Assuming, how-
ever, that we have no direct access to an agent’s plan, the
best that we can do is to postulate one or more plans, based
on observation of the agent’s actions, that are plausible can-
didates for being the agent’s plan. The process of inferring
a plausible set of plans from observation of an agent’s phys-
ical or speech actions is called plan recognition.

A planis said to explain a set of actions if it contains those
actions. Given a representation of the possible plans in a
domain and a set of observed or described actions, the plan
recognition problem in its most general form is to determine
the set of all plans that explain the actions. Four principal
methods for plan recognition have been proposed in the lit-
erature. The methods are plausible inference (Allen 1983;
Calistri 1990; Carberry 1988; 1990; Charniak & Gold-

man 1993; Litman & Allen 1987), parsing (Sidner 1985;
Vilain 1990), circumscribing a hierarchical representation
of plans and using deduction (Kautz 1987), and abduction
(Charniak & McDermott 1985; Konolige & Pollack 1989;
Lin & Goebel 1991; Poole 1989). The set of all plans
that explain a set of actions may be large and many
methods for selecting or preferring one plan over an-
other have been proposed in the literature: action- and
search-based heuristics (Allen 1983), a focusing heuris-
tic based on discourse coherence considerations (Carberry
1985), levels of likelihood (McKeown, Wish, & Matthews
1985), probabilities (Bauer et al. 1993; Carberry 1990;
Charniak & Goldman 1993; Charniak & McDermott 1985;
Neufeld 1989), asking the user to distinguish (Cohen,
Schmidt, & van Beek 1994), temporal consistency (Kautz
1987), assuming as few top level goals as is consis-
tent (Carver, Lesser, & McCue 1984; Kautz 1987), and
abductive or theory preference heuristics such as speci-
ficity (Konolige & Pollack 1989; Lin & Goebel 1991;
Poole 1985).

In this paper, I focus on non-probabilistic heuristics pro-
posed by Carberry (1985), Carver et al. (1984), McKeown
et al. (1985), and Kautz (1987) for preferring one plan over
another. These four heuristics, while varying in motivation,
broadly agree on which plans to prefer. I take as my starting
point the view that probability theory is a normative theory
of plausible reasoning. As such, I use it to analyze the four
heuristics. I examine, using a small example, some condi-
tions under which the heuristics can be given a probabilistic
interpretation; that is, I show some of the conditions or
constraints on the probability distributions so that the plan
that is preferred by the heuristics is also the most probable
plan. I also show that if the conditions do not hold there
exist cases where the results of the heuristics clash with
that of probabilities. One of the most interesting results
of the analysis is that, given the assumption that the plan
library is complete, the heuristics examined can be given
a probabilistic interpretation or justification if and only if
any two basic plans in the plan library which share a step
are equally likely. The usefulness of the analysis is that we
can test whether the conditions hold in a particular domain
and so gain more insight into whether our choice of heuris-
tic is appropriate to that domain. This is important as the



heuristics are applied every time we get a new observation
of an agent’s actions, and the output of the plan recognition
systems—the plan that the systems posit as the plan that the
user is pursuing—depends on the heuristic. If we are going
to use the output of a plan recognition system to, for ex-
ample, provide some sort of automatic plan completion, we
will want it to be correct as often as possible. As well, this
work can be seen as providing an alternative justification of
the heuristics.

Four heuristics and a plan library

In this section I briefly describe the heuristics proposed
by Carberry (1985), McKeown et al. (1985), Carver et
al. (1984), and Kautz (1987). All four of these heuristics are
methods for combining multiple observations. I then give a
small plan library which is used to illustrate the analysis.

Carberry (1985) gives a focusing heuristic that is moti-
vated by discourse coherence considerations. For each new
utterance (observation) a set of candidate plans is hypothe-
sized. The focusing heuristic is then used to select a “best”
candidate and incorporate it into a structure, called a context
model, that represents the plan inferred from the preceding
dialogue.

current focused goal

current focused subgoal

G

Figure 1: Illustration of Carberry’s heuristic

A focused goal and a focused subgoal—the most recently
expanded subgoal of the focused goal—are tracked. The
heuristic is to test first if a candidate is part of an expansion
of a plan for the current focused subgoal and, if not, to next
try the current focused goal, on up to the root, stopping
after the first successful test. So, in the example above,
the candidate plans would be tested at position C1, then at
C2, on up until a test succeeds. If all of these tests fail,
we test whether the root is an expansion of a candidate
plan or if some other plan can be expanded to include both
a candidate and the root. It should be noted that in my
analysis I do not capture these preferences—I simplify the
analysis by assuming all of the C; are equally preferred.

McKeown et al. (1985) give a similar heuristic. They de-
scribe their heuristic as essentially determining the lowest
common ancestor of the candidate plans determined from

the new observation and the plan determined from the pre-
vious observations.

Carver et al. (1984) propose a heuristic that prefers to
fit a new observation into a plan already in progress over
initiating a new top-level goal.

Kautz (1987) gives a similar heuristic that prefers plans
which require the agent to have as few unrelated intentions
as possible. Without going into the details of the representa-
tion for plans that Kautz develops, the heuristic can also be
expressed as preferring the plan with the smallest number
of end events, where an end event is an event that is pursued
for itself.

I use a small library of possible plans to investigate some
of the underlying conditions such that the four heuristics can
be given a probabilistic interpretation. The example library
is shown in Figure 2. In this example, there are three end
events (dy, d», and d3) and two actions (s; and s,). The
arrows represent decomposition. Each plan has exactly one
decomposition so there are also only three basic plans. For
example, the plan to accomplish end event d, consists of
both action s; and action s,. I refer to a basic plan by the
name of its end event. I also allow an agent’s plan to be
a conjunction of basic plans such as, for example, the plan
di A dp.

Figure 2: Small plan library

Examining the heuristics

In this section I examine all of the cases within the small plan
library where the heuristics prefer one plan over another.
Each of the cases contributes new constraints to the set of
overall constraints which must be satisfied for the heuristics
to be given a probabilistic interpretation. As a corollary, I
also demonstrate that there are reasonable cases where the
heuristics do not favor the most probable plan. Three of the
cases are examined in detail. To make the intuition more
clear, consider the interpretation of the plan library shown
in Figure 3.

In Case 1, one plan explains all of the observations and
the other plan does not. Here the heuristics favor the plan
that does explain all of the observations. As an example,
suppose we observe an agent getting a gun and going to
the bank (see Figure 3). It seems reasonable to assume the
agent is robbing the bank rather than going hunting.

In Case 2, both plans explain all of the observations but
one plan is larger (in terms of the number of end events)
than the other. Here the heuristics favor the smaller plan.
As an example, again suppose we observe an agent getting



a gun and going to the bank. Without any knowledge of
the agent performing the action or any other background
knowledge, it seems reasonable to assume that the agent is
robbing the bank. We prefer the simpler explanation for the
agent’s actions rather than the more complex explanation
where the agent is going hunting and going to the bank to
cash a check. Preferring the simpler explanation is con-
sistent with Occam’s razor—a well-known scientific and
philosophical rule which states that entities should not be
multiplied unnecessarily and so we should prefer the simpler
explanation over the more complex explanation. However,
suppose that we are supplied with the background knowl-
edge that the agent is a law enforcement officer. It now
seems that the more complex explanation may be preferred.
Contrast this with the background knowledge that the agent
is an anti-vivisectionist which seems to reinforce the belief
that robbing a bank is the “right” answer. I examine this in
more detail below.

In Case 3, both plans explain all of the observations and
both plans are of equal size (in terms of the number of end
events). Here the heuristics do not distinguish between the
two plans; that is, both plans are equally preferred. As an
example, suppose we observe an agent getting a gun. It
seems reasonable to not prefer the plan where the agent
is going hunting over the plan where the agent is robbing
the bank, and vice versa, and to perhaps wait for further
observations to help distinguish between the two.

Rob Bank Cash Chec@

Go To Bank

Figure 3: One interpretation of the plan library (adapted
from (Kautz 1987))

Before we examine the heuristics in detail, we first need
to specify a probabilistic model. A probabilistic model is a
specification of probabilistic information such that the prob-
ability of every well-formed sentence can be computed. Our
example is small enough that we can specify a probabilistic
model by specifying a joint probability distribution. That
is, we assign a probability to every elementary event in the
language such that the probabilities p; sum to one.

P(_'dla _'dZa _'d3a -8, _'52) = Po
P(_'dla _'dZa _'d3a 51, 52) = P1
P(_'dla _'dZa _'d3a S1, _'52) =P

P(dy, dy, d3, s1,782) = p3o
P(dla dz; d3a S1, 52) = P31

Such a set of mutually exclusive and exhaustive events is
often called a frame of discernment.

Almost all work on plan recognition makes the assump-
tion that the plan library is complete in the sense that it is as-

sumed to contain all valid events and all valid relationships
between events. Pollack (1986) was the first to recognize
that this assumption was implicit in previous work and to
characterize it as a type of closed-world assumption. While
recognizing that it can be an overly strong assumption in
some domains, Pollack also makes this assumption in her
work. Kautz (1987) also explicitly makes this assumption
and an important contribution of his work is a formaliza-
tion of this sort of closed-world assumption. I will make
the probabilistic equivalent of Kautz’s assumptions. I show
how making these assumptions strongly constrains the joint
probability function. I wish to be clear about why I am
making the probabilistic equivalent of the closed-world as-
sumption. The aim of this work is to determine when the
four non-probabilistic heuristics can be given a probabilistic
interpretation as they are used in existing plan recognition
systems. The four heuristics which I am examining in this
paper were all proposed in the context of a system or a
framework and in all four of these systems the closed-world
assumption is made either explicitly or implicitly. Note that
at the moment we make no additional assumptions such
as unconditional or conditional independence or mutually
exclusive top-level events.

Assumption 1: The plan library is assumed to contain
all possible ways to achieve an end event. That is, every
possible decomposition of a plan is represented in the plan
library. In our example plan library, this is equivalent to
asserting that P(s; | di) = 1, P(s; A sy | d2) = 1, and
P(s2 | d3) = 1. In words, the assertion P(s; | d1) = 1 says
that, given that we are achieving event d; it is a certainty
that we are also performing action sy, since that is the only
way to accomplish d;. Together these assertions constrain
many of the p; to be zero. To illustrate,

P(52|d3)
P(Sz/\d3)
P(d3)
_ 8%
a4 ps+tpet P2t piatpo+pn+ps+po
= 1

bl

where o = ps + p7 + p13 + p1s + pa1 + p23 + p2o + p31 and
where in the first step we used the definition of conditional
probabilities and in the second the specified joint probability
distribution. Hence,

P4, D6, P12, P14, P20, P22, P28, p3o = 0.

To make clear the intuition, let us consider as an exam-
ple why p3p must equal O given our assumption; i.e., why
P(dy, da,ds, s1,7182) = p3p = 0. In words, this elementary
event is purportedly a plan to, among other things, achieve
d3 but without performing the action s,. But since s; is the
only possible way to achieve d3, this event is impossible.

Assumption 2: The plan library is assumed to contain all
possible reasons to perform an action and it is assumed that
there are no useless actions. In our example plan library,
this is equivalent to asserting that P(d; V ds | s;) = 1 and



P(dy vV d; | s2) = 1. In words, the assertion P(d; V d, |
s1) = 1 says that, given that we are performing action s, it
is a certainty that we are also achieving either d; or d; or
both, since those are the only reasons to perform s;. These
assertions also constrain many of the p; to be zero. To
illustrate,
P(d] vV dz | 51)
P((di As1)V (daAsy))
P(Sl)
o
a+p+p3+pr
= 1

where o = p11 + p15 + pis + p1o + p23 + p27 + p31. Hence,

bl

p2,p3,p7 = 0.

To make clear the intuition, let us consider as an exam-
ple why p, must equal O given our assumption; i.e., why
P(—dy, —dy, ~ds, —s1, s2) = po = 0. In words, this ele-
mentary event says that action s, is being performed but
that it does not accomplish any end event. But since no
action is useless, this event is impossible.

Given the above closed-world assumptions, the following
elementary events have non-zero probabilities (where T have
renamed the probabilities on the right hand sides).

P(_'dla _'dZa _'d3a 51, _'52) = Po
P(_'dla _'dZa d3a 51, 52) = P1
P(_'dla dZa _'d3a S1, 52) =P
P(_'dla dZa d3a S1, 52) =pP3

P(dla _'dZa _'d3a S1, _'52) = P4
P(dla _'dZa d3a S1, 52) =Ps5

P(dla dz; _'d3a S1, 52) = Pe6
P(dladZa d3a51a52) = p7

Let us now examine in detail the three cases outlined
above.

Case 1: If one plan explains all of the observations and
another plan does not explain all of the observations, the
heuristics favor the plan that does explain all of the obser-
vations. Thus, in order for there to be a probabilistic inter-
pretation of the heuristics, we must consistently constrain
the joint probability distribution such that the probability of
a plan that does explain all of the observations is greater
than the probability of a plan that does not. For example,
suppose that our plan library is as shown in Figure 2 and
that we observe both s; and s;. The heuristics all prefer
plan d, over the plan d;. Thus,

P(dz | £ /\52)
P(dy A si A s2)
P(s1 A s2)
P2+ p3+ps+pr
P2+ p3+ps+pet+pr

and
P(d] | 51 A 52)

P(d] A 51 A 52)
P(s1 A s2)
Ps + ps + p7
p2+p3+ps+ pe+ p7
and thus,
P(dz | ER /\52) > P(dl | S1 /\52)
if,
p2+p3 > ps.

That is, the constraint p, + p3 > ps must be satisfied for the
heuristics to favor the plan with the highest probability ..

Case 2a: If two plans both explain all of the observations,
the heuristics favor the plan with the smallest cardinality.
Thus, we must consistently constrain the joint probability
distribution such that the probability of the plan with the
smaller cardinality is greater than the probability of the plan
with the larger cardinality. For example, suppose that our
plan library is as shown in Figure 2 and that we observe s
and s,. The heuristics all prefer plan d;, over the plan d; A d3
(the result is independent of the order the observations are
made in)?. Thus,

P(dz | £ /\52)
P(dy A s1 A s2)
P(s1 A s2)
P2+ p3+ps+ pr
P2+p3+ps+pe+pr

and
P(dl/\d3 | S1 /\52)
P(diANd3s Asi Asy)
P(s1 A s2)
p5s +p7
P2+ p3+ps+ ps+ pr
and thus,
P(dz | 51/\52) > P(dl/\d3 | 51/\52)
if,
P2+ p3+pe > ps.

'In some of the literature, especially the diagnostic litera-
ture, we only compute the probability of mutually exclusive and
exhaustive hypotheses such as P(—d,d2,~d3 | si A s2) and
P(di, ~dy, —ds | s1 A s2). Tam still not sure whether this is what
is wanted in this context. It seems to me that what most people in
plan recognition are saying when they give a method for perform-
ing plan recognition is that the plan that is proposed by the method
is one plausible plan for an agent but not excluding the possibility
that the agent is performing other plans.

’In the general case, Carberry’s and McKeown’s heuristics are
sensitive to the order of the observations. Kautz represents tempo-
ral information in the plan library and allows temporal information
to be part of the input. Thus all three can capture that different
plans are sometimes suggested depending on the order of the ob-
servations. This is not straightforward to capture in a probabilistic
setting.



That is, the constraint p, 4+ p3 + pe > ps must be satisfied
for the heuristics to favor the plan with the highest proba-
bility. This constraint can be stated without reference to the
observations. We simply want that P(d2) > P(d; A d3).
In words, it must be more likely that we are pursuing the
single plan d, than that we are pursuing the conjunctive
plan d; and d3. It is clear that this may or may not hold in
any particular domain, and thus the heuristics may or may
not have a probabilistic interpretation or justification in that
domain.

Case 3: If two plans both explain all of the observations and
both plans are of equal size (in terms of the number of end
events) the heuristics do not distinguish between the two.
That is, they are equally preferred explanations. Thus, we
must consistently constrain the joint probability distribution
in such a case so that the probabilities of the two plans are
equal. For example, suppose that our plan library is as
shown in Figure 2 and that we observe s;. The heuristics
all equally prefer plan d; and plan d,. Thus,

P(d] | 51) = P(dz | 51)
if,
D2+ p3 = ps+ps.

That is, the constraint p, + p3 = pa + ps must be satisfied
for the heuristics to equally favor these two plans with equal
cardinality that both explain the observation.

The three cases above illustrate how constraints on the
probability distribution are derived. The complete set of
non-redundant constraints is as follows (constructed by de-
termining for each possible observation, s1, s, and s1 A s3,
the preferred explanation(s) from the set of all possible ex-
planations dy, dp, d3, di Ady, dy Ad3, dyAd3, and dy Ady Ad3,
and the associated constraints).

PL+PpP3 > pe

P2+ p3 > ps

P2+ P6 > Ps

P4+ pe > p3

pr+ps=p2+ps

P2+ p3=psa+ps
po+pi+p2+pi+pst+ps+ps+pr=1

It can be seen that if all of the elementary events are
equally likely, all of the constraints are satisfied and the
heuristics will favor the plan that is the plan with the high-
est probability. Thus, one way for the heuristics to be given
a probabilistic interpretation is if we can assume that the el-
ementary events are equally likely. This assumption can
be seen to follow from a powerful and general statisti-
cal principle called the principle of maximum entropy (see
(Davis 1990) and references therein). The principal of max-
imum entropy states that if there are n elementary events
€1, ..., e, Which form a frame of discernment, we should
assign probabilities to the elementary events in such a way
that, subject to any constraints on the probabilities we may
know, the values give us the least information about which

of the events occurs. In our setting, if we assume that the
only information we have is that some of the events are
impossible, then the minimum information assumption is to
assume that each elementary event that is not impossible is
equally likely. Thus, the principle of maximum entropy can
be viewed as an alternative justification of the heuristics.

A consequence of the principal of maximum entropy,
and in particular a consequence of making each elementary
event equally likely, is that the basic plans are independent of
each other. Independence of basic plans means that knowing
that one plan is occurring does not change the probability
that another plan is also occurring. In some domains this
may be a reasonable assumption, in others itis not. I discuss
this further in the last section.

It is also possible for the elementary events to not be all
equally likely and for the constraints still to be satisfied. For
example, here is one such assignment of probabilities that
satisfies the constraints: py = 0, py = 8/32, p» = 4/32,
p3 =5/32,p4=7/32,p5 =2/32, ps = 6/32,and p; = 0.
However, even though the elementary events are not all
equally likely, the basic plans are all equally likely; that
is, P(d) = P(d,) = P(d3). It can be seen that for this
particular plan library, there is a probabilistic justification
or interpretation of the heuristics if and only if all of the
basic plans are equally likely. In particular, if not all basic
plans are equally likely, then no probabilistic justification or
interpretation can be given to the heuristics and, in fact, the
plans preferred by the heuristics clash with those preferred
by a probabilistic criteria.

The above analysis was done with respect to a small
example plan library. What can be concluded about the
heuristics applied to arbitrary plan libraries? Consider the
set of all constraints shown above. In general, equality
constraints will be asserted between pairs of plans for which
the heuristics do not prefer one over the other. Such equality
constraints will be asserted between every pair of basic
plans that share a step. Thus in general we can conclude
that there is a probabilistic justification or interpretation of
the heuristics if and only if every pair of basic plans which
share a step are equally likely. This is a strong condition, for
as was shown for the small example plan library, one plan
may share a step with a second plan which in turn shares a
step with a third plan and as a result all three plans must be
equally likely.

The plan library as a Bayesian network

In general, specifying a joint probability distribution can
require us to specify many probabilities. A technique for
reducing the number required is to explicitly capture actual
or assumed irrelevance by representing conditional inde-
pendence relationships. One way to do this is by using
a graphical representation of a joint probability distribu-
tion called Bayesian networks. Bayesian networks are di-
rected acyclic graphs in which the nodes represent random
variables (in our context, the variables are propositional
variables that can be either true or false). An arc be-
tween two variables in a Bayesian network means that the
one variable directly influences the other variable and the



strength of the influence is expressed by conditional prob-
abilities. The overall structure of the network encodes the
conditional independence assumptions (see (Charniak 1991;
Pearl 1988)).

Bayesian networks have been applied to plan recogni-
tion. Neufeld (1989) suggests interpreting the plan library
as a Bayesian network. Similarly, Charniak and Goldman
(1993) use the observations to retrieve candidate plans and
then construct a Bayesian network for plan recognition from
the candidate plans. Bayesian updating is then used to
choose the most likely interpretation for the set of observed
actions. Let us follow this work and interpret our example
plan library as a Bayesian network. In our example, this is
equivalent to making the following assumption.

Assumption 3: The basic plans in the plan library are
assumed to be independent.

Bayesian networks encode certain conditional indepen-
dence assumptions which make it straightforward to write
down a joint probability distribution. By inspection of the
network in Figure 2 we can immediately write down that,

P(dla dz; d3a S1, 52)
= P(dl)P(dz)P(d3)P(51 | d], dz)P(Sz | dz, d3)
Let us make the same closed-world assumptions as before.
Once again many of the probabilities of the elementary
events are forced to be zero and the probabilities of the

elementary events that are not necessarily zero can be sim-
plified. For example, using the equation above we get that,

P(dl, —|d2, —|d3, 1, 52)
= P(d\)P(~dy)P(—d3)
P(S] | d], ﬁdz)P(Sz | —|d2, —|d3)
=0
since P(s, | =d2, —d3) = 0 by Assumption 2. The com-
plete results are shown below.

P(=dy, —~dy, ~d3, =51, m82) = P(=dp) P(—dy) P(—d3)
(=dy1, ~dy, d3, =51, 52) = P(=
(=dy, da, —d3, 51, 82) = P(=dy) P(da) P(—d3)
(mdi, dy, d3, 51, 52) = P(=dy)P(d2) P(d3
(
(
(

S
>
~—~
J
U
%)
>
~—~
=
3
~—

)
( (
di, ~dy, d3, 51, 82) = P(d1)P(~d2)P(d3)
dy,dy, ~d3, s1,52) = P(di)P —d3)
P(dy,da, d3, 51, 82) = P(d1)P(d2) P(d3)

So, we need to specify only the priors of the three basic
plans in order to be able to compute the probability of any
well-formed sentence.

Let us now examine a case similar to that of Case 2a
except that here we have two mutually exclusive hypotheses
with different cardinalities (based on counting the variables
that are true).

Case 2b: Suppose that our plan library is as shown in
Figure 2 and that we observe s; A sp. As can perhaps be

expected, I show that the plan with the smallest cardinality
is not necessarily the most probable plan. We have that,

P(=di,dy, ~ds | 51, 0) = ( 1;(5(1 25)2)( :
and
P(d)P(~dy)P(d
P(dl,—!dz, ds | 51,52): ( I)P((S 822)) ( 3)
1,

and thus,

P(dy,—da, d3 | s1,82) > P(—dy, dy, —ds | 51, 52)
if,

P(d))P(~dy)P(ds) > P(=dy) P(ds) P(~ds).

This inequality holds, for example, when d;, d3 > 1/2 and
dy < 1/2. Thus, there exist reasonable cases where the
heuristics will favor a plan that is not the plan with the
highest probability. Note how sensitive the result is to even
slight changes in the prior probabilities of the plans.

Let us briefly reconsider Cases 1 and 2a—where the hy-
potheses are not mutually exclusive—using the new proba-
bility distribution specified by the Bayesian network where
the basic plans are all independent.

Kautz (1987) states that if we also assume the basic plans
are all equally likely, then for both Case 1 and Case 2a the
most likely plan is also the one preferred by the heuristics.
For example, in Case 2a we getthat P(d, | s1As2) = P(d2)
and P(dy Ads | s1 A s2) = P(d1)P(d3). Thus, if the
basic plans are all equally likely, we have that P(dy) >
P(d)P(d3) and the heuristics favor the most probable plan.

Neufeld (1989), in his work on giving a probabilistic se-
mantics to heuristics for preferring one plan over another,
interprets the diagram shown in Figure 2 as a Bayesian
network and examines which explanation in Case 2a is pre-
ferred.

Definition (Neufeld 1989): afavoursb, if P(b | a) > P(b).

Neufeld argues that intuition prefers d, as an explanation
of the observation s; A s, over the explanation d; A d3 and
states that, indeed, s; A s, favours d, but does not favour
d; N d3. However, given the closed-world or complete-
knowledge assumptions we made earlier, we can show that
s1 A sp favours both explanations and thus neither is pre-
ferred. First, s; A s, favours d; since, by Bayes’ law and
Assumption 1, we have that,

P(dz | EAY 52)
P(S] A 8y | dz)P(dz)
P(s1 A s2)
P(dy)
P(s1 A s2)
>  P(d),
if P(s; A s2) < land P(d) > 0. Second, s; A s, favours
dy A d3 since,
P(dl/\d3 | S1 /\52)




P(S] D) | di A d3)P(d1 A d3)
P(s1 A s2)

P(dl A d3)
P(s1 A s2)

> P(dl A d3),
if P(s1 A s2) < 1 and P(d; A d3) > 0. Thus, under our
closed-world assumptions, s; A s, favours both explanations
aslong as s; As; is not a certainty and the plans d, and d; Ad3
are not impossible. In other words, except by imposing

very strong conditions, Neufeld’s method does not aid us in
selecting among the two plans.

Discussion and conclusion

The question arises, Why not just use probabilistic reason-
ing itself to come up with the best plan rather than try to give
a probabilistic semantics to heuristics used in plan recog-
nition? In a recent paper, Charniak and Goldman (1993)
argue that a probabilistic approach is the only approach
that is likely to succeed. A standard argument against a
probabilistic approach is that too many numbers are needed
and the numbers are not available. Charniak and Goldman
counter that, by using Bayesian networks, only a modest
set of numbers is needed and only reasonable independence
assumptions are required. Let us in turn consider the asser-
tions that the numbers are available and the independence
assumptions are reasonable.

Charniak and Goldman do not counter the argument that
the numbers that are required are not always available. That
this is true is clear from their own examples, where at one
point they give a particular probability as 1/[liquor-store|;
that is, 1 divided by the number of liquor stores. (If this at
first seems reasonable to you, suppose that you had to actu-
ally compute this value. Exactly which liquor stores would
you count up?) A subjective probabilist would counter
that probabilities are always available since probabilities
are just degrees of belief. It seems though that what is
wanted in some domains is to make qualitative statements
such as “prefer the simplest explanation,” and asking any
more is to ask for false precision and sometimes mean-
ingless numbers from a domain perspective. (Consider
Case 2b where changing the probabilities by an epsilon
will change the most probable plan.) Of course, in some
domains frequency-based probabilities are available. For
example, Bauer et al. (1993) show how to use probabilistic
knowledge specific to a user, where the statistics are gath-
ered from the domain and from observation of the user in
the past in a UNIX mail application. Carberry (1990) uses
a probabilistic approach to augment her focusing heuristic,
(to distinguish the case where there is more than one pos-
sibility at a particular position in the context model) and in
the example domain of course-advising the necessary statis-
tics on how frequently students in particular programs take
particular courses are readily available.

Now, let us consider the assumption that the basic plans
are independent—as noted above, this assumption is made
by Charniak and Goldman (1993) and Neufeld (1989) in
their Bayesian network accounts of plan recognition and is

also implied if we adopt the maximum entropy justification
of the heuristics. Does it hold in every domain and if it does
not, isit stilla good approximation? Consider two plans that
share a step such as d, and d3 in our example plan library.
The assumption of independence means that knowing that
an agent is pursuing plan d3 is irrelevant or unconnected
to whether the agent is also pursuing plan d,. Formally,
it means that P(d, | d3) = P(d). This assumption does
not hold in some domains. For example, suppose that there
is a plaza near my house with a video store and a pizza
store. My having a plan of watching a video tonight and
as a result going to the plaza increases the probability that
I’ll also adopt a plan to eat pizza tonight, since I'm right
there anyways. Thus the two plans are dependent. (This is
an example of action overloading (Pollack 1992); see that
reference for an extensive discussion and further references
to the literature that show that humans frequently make use
of this strategy.) In other domains, the assumption may
hold. Unfortunately, the assumption of independence is
often a difficult one to verify in the real world.

Finally, the conclusions I wish to draw are two-fold: (i)
that the answer to whether a probabilistic approach or a non-
probabilistic approach to plan preference is better depends
on the specific domain of application, and (ii) in both ap-
proaches, we need to be aware of underlying assumptions
and to test whether they are applicable in our particular
domain.
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