
A Framework for Soliciting Clarification
from Users During Plan Recognition

Robin Cohen         Ken Schmidt          Peter van Beek
Computer Science         Computing Science          Computing Science

University of Waterloo   University of Alberta       University of Alberta
     Waterloo, Ontario, Canada     Edmonton, Alberta, Canada Edmonton, Alberta, Canada

rcohen@dragon.uwaterloo.ca    kens@cs.ualberta.ca      vanbeek@cs.ualberta.ca

Abstract
In previous work, we used plan recognition to improve re-
sponses to users in an advice-giving setting. We then charac-
terized when it was worthwhile to engage a user in clarifica-
tion dialogue--the cases where plan ambiguity mattered to
the formulation of a response. Our current research develops
detailed algorithms for selecting what to say during the
clarification dialogue. We propose a default strategy for se-
lecting a clarifying question, together with a variety of op-
tions to reduce the length of the clarification dialogue. Each
clarifying question is introduced in order to prune the set of
possible plans. But the system will never overcommit in
recognizing the user's plan and thus will never have to back-
track into a debugging dialogue with the user. In all, we now
have a more precise formulation for what to say during clari-
fication dialogues, and valuable characterizations of deci-
sions which an advice-giving system must make in generat-
ing a dialogue with a user.

Introduction
In previous work, we examined the role of plan recognition
in the generation of responses from advice-giving systems.
We first presented an algorithm for critiquing possible
plans of the user (van Beek 1987, van Beek and Cohen
1986), in order to provide clearer explanations for system
responses. Simple "yes" or "no" responses were expanded
to include reasons and suggestions for better alternatives,
based on the user's profile.

Our next research effort (van Beek et al. 1993) studied
more closely the effort expended in plan recognition, which
typically attempts to determine the most likely plan of the
user through heuristics (Allen 1979, Carberry 1983). Since
these plan recognition systems sometimes had to backtrack
from incorrect assumptions, we proposed a more cautious
approach. All possible plans of the user were identified and
then critiqued. Then, we asked whether it was necessary to
identify the actual plan of the user, in order to provide an
appropriate response. We discovered that in some cases,
the same response would be generated, regardless of the
specific user plan. Plan recognition systems could therefore
be designed to stop processing when the ambiguity no
longer mattered for the response being generated. Further,
when it was clear that ambiguity about the user's plan had
to be resolved, we proposed entering into a clarification

dialogue with the user, in order to facilitate the process of
plan recognition and to provide the most effective response
for the user. This approach of involving the user in the pro-
cessing was consistent with other papers of ours, which
generally advocated more participation from users in cer-
tain automated reasoning systems (Cohen et al. 1990).

This earlier work  made important progress on the gen-
eral topic of clarification dialogues, suggesting one ap-
proach for when to initiate  clarification in advice-giving
settings and what to say in these dialogues.  In order to gain
insight into the criteria for clarification dialogues, we built
a small implementation in the course advising domain, re-
ported in (van Beek et al. 1993).

This paper goes beyond the previous work, focusing on
the sub-topic of clarification in advice-giving systems. We
have studied various alternatives for traversing the plan li-
brary, in order to generate appropriate questions during
clarification dialogues. Our aim has been to develop algo-
rithms which will reduce the length of these dialogues, ei-
ther by asking fewer questions (identifying instances where
certain questions which would have been proposed by our
earlier algorithm were unnecessary) or by selecting key
distinguishing questions more readily (in order to prune
away part of the search space more effectively).

This paper therefore presents new insights into designing
systems to include clarification dialogues, advancing im-
proved algorithms for the generation of clarifying ques-
tions. These algorithms are employed in a context of plan
recognition, continuing our earlier approach of critiquing
plans and performing plan recognition to the point where
ambiguity no longer matters. Through our work, the impor-
tance of including plans in user models and of directing the
generation of explanations to specific user profiles is em-
phasized. In addition we now have a more precise formula-
tion for what to say during clarification dialogues, and
valuable characterizations of decisions which an advice-
giving system must make in generating a dialogue with a
user.

Background
In this section, we summarize briefly the framework for
plan recognition of (van Beek et al. 1993), which includes
provision for initiating a clarification dialogue with the
user.



The clarification process depends on two critical factors.
First, the recognized plans are represented in a hierarchical
plan library  in the style of (Kautz 1987).  For example,
Figure 1 shows a graphical representation of a part of the
plan library  for a course-advising example1.  The thick,
gray arrows represent abstraction  (or "isa") links and the
thin, black arrows represent decomposition (or "subtask")
links.  Second, the plans are critiqued prior to clarification.
Critiquing serves to label possible user plans with a fault
annotation, from the following catalogue: (i) faultless (ii)
failure of preconditions (iii) temporally inconsistent (iv)
there exists a better plan.

Plan recognition can then be used to generate a response
to a user in an advice-giving setting, augmenting "yes" or
"no" answers with information about possible faults. There
may be ambiguity about the user's plan, but if all possible
plans have the same fault annotation or are faultless, then it
is not necessary to resolve the ambiguity in order to formu-
late the response. In cases where the ambiguity matters, a
clarification dialogue with the user is initiated.

The general algorithm for responding to a user question
is as follows:

procedure GENERATE_RESPONSE(Query)
begin

Check if Query is possible
if Query fails then

Output: "No, [Query] is not possible as [reason for 
failure]"

else begin
S <-- PLAN_RECOGNITION(Query)
S <-- CRITIQUE(S)
if AMBIGUITY_MATTERS(S) then

S <-- CLARIFY(S)
RESPOND(S)

/* answer Query with a cooperative response */
end

end

The clarification procedure traverses the plan library in a
top-down order, maintaining a current branch point from
which to select events (parts of possible plans) to ask the
user.  Initially, the current branch point is the end event, a
distinguished node that is the root of the hierarchical plan
library (see Figure 1). Based on the user's response, certain
plans are eliminated from consideration. The process stops
when ambiguity no longer matters to the final response.
The clarification procedure makes use of a set S of possible
plans, and is presented below:

procedure CLARIFY (S)
begin

CB <-- end   /* set the current branch point */
while AMBIGUITY-MATTERS(S) do
begin

1 In this paper, we use the phrase "plan library" to refer to the
subset of the entire domain library which has been isolated by the
plan recognizer as the set of possible plans of the user.

if CB has only one child or one remaining event2 then
CB <-- next disjunctive branch point in top-down 

order
select a disjunctive event (E) of CB to ask the user
if user's answer is "yes" then

S <-- (plans having E)
CB <-- E

else S <-- (S - (plans having E))
end
return (S)

end

Augmenting the Clarification Procedure
The algorithms of (van Beek et al. 1993) have some short-
comings. In particular, the criterion for selecting an event
to ask about was left underspecified. We illustrated the
possible use of likelihood factors, as a heuristic for selec-
tion, and mentioned the desirability of reducing the number
of questions being asked overall.

We decided to examine more closely possible strategies
for traversing the plan library in asking clarifying ques-
tions, and for selecting events to ask the user about. Our
aim was to minimize the clarification dialogue, retaining
coherence, in order to make the advice-giving session as
agreeable as possible for the user.

The following capabilities have been introduced into our
algorithms:

1. We have studied the options of continuing with
"yes/no" questions from the system, as in (van Beek et al.
1993) or allowing menu-type selections from users. Our
algorithms currently allow a general toggle into menu
mode at the start of the system.

2. We have proposed a set of rules to determine the order
in which the different alternatives of a current branch point
are selected for clarification (in the case that menus are not
used). We allow for likelihoods to be used in determining
the selection. When these are impractical to introduce, we
develop a default strategy, which determines the partitions
of possible plans for a "no" reply to each alternative and
then asks the user about the alternative which leaves the
fewest remaining partitions. This is designed to eliminate
as rapidly as possible, narrowing in on the plan of the user
with a minimal number of questions asked.

3. We have studied the desirability of labeling certain
events of the plan library as "key events", ones which will
either substantiate or eliminate all plans of a fault partition.
Key events can also be used as a selection criterion during
clarification.

4. We have developed a strategy for avoiding pointless
clarification, in the case that a user is intending a certain
action which is inappropriate for an observation. An
"overriding fault" is associated with such an action, and a
response is provided which addresses the overriding fault.

2CB is used to determine which event to select; if CB has only
one alternative, then there is no selection to be made and we
update the branch point.



This strategy serves to reduce the length of the clarification
dialogue.

5. We have developed a criterion for when it is possible
to skip branch points in the event hierarchy, when
traversing the library for clarifying events. Whenever each
alternative of a current branch point is present in all
remaining fault partitions, there is the possibility of
skipping that branch point. We have also determined when
we should skip branch points. Skipping branch points
reduces the number of questions asked, and improves the
former algorithm, while retaining the top-down order of
traversal.

6. We have also developed a general algorithm, which
can deal with complex hierarchical plans (ones where a
conjunction of actions is necessary or multiple plans are
being pursued). By maintaining the event hierarchy in a
tree-like structure and placing conjunctive children onto a
branch-point stack, we can clarify the alternatives of
different sub-branches of complex plans in a depth-first
manner. This more general algorithm is directly applicable
to cases without complex plans (i.e. the same control and
data structures may be used for the simpler cases as well).

In the sub-sections below, we summarize briefly each of
the improvements described above, including examples for
motivation.

The new basic clarification procedure
We first concentrated on specifying more precisely how to
select an event to ask the user about, with our algorithm
currently pointing to a current branch point (CB) of the
plan library.

Van Beek et al. (1993) had assumed that "yes/no" ques-
tions would be asked, throughout the dialogue. With sev-
eral alternatives at a current branch point, a selection must
be made. Having a menu listing all possible selections
avoids this issue. Yet, menus may be infeasible; for in-
stance, in a dialogue over the telephone, it is unreasonable
to expect a user to process a list of options. In fact, when
menu lists become large, single questions may be prefer-
able. If menus are not adopted, it is still possible to tie the
selection of events to statistical information. This option
was explored in the course advising implementation of (van
Beek et al. 1993). If a system designer feels that these
statistics are unreliable or unavailable, a separate selection
criterion is required.

Our general clarify procedure accepts three options:
CLARIFY_MENUS, CLARIFY_LIKELIHOOD, and
CLARIFY_BASIC.  The remaining discussion pertains to
the CLARIFY_BASIC procedure. The GENERATE
RESPONSE procedure is first augmented to track partitions
of possible plans. After plans are critiqued, all plans with
the same fault annotation are grouped into one partition.
This results  in n fault partitions. We then determine the
partitions for a "yes" reply to each alternative of CB
(termed a "yes" result). If every alternative does not have n
partitions for its "yes" result, then we determine the "no"
result for each alternative; i.e., the number of partitions that
remain on a "no" reply to that alternative, and select to min-

imize dialogue as follows: a) select the event having the
minimal "no" result; b) if there is a tie, select the event
having the minimal "yes" result from among the tied
events; c) otherwise, select randomly.

The rationale for selecting the event with the minimal
"no" result is that if the reply is "yes", we are on the right
track and if "no", we have eliminated the maximum num-
ber of partitions in comparison to any other alternative.

An example illustrates this heuristic most effectively.
We have experimented with a course advising system, in-
spired by the actual division of departments at the
University of Alberta. The example below employs a part
of the plan library of Figure 1. Assume that the system has
as a current branch point the event Area of Science
Concentration. The user is asking a question about the
course Calculus 102. His actual plan involves a specializa-
tion program in Computing Science, (but the system does
not know this yet).

end

get degree

Engineering BSc. BA.

Area of Science
Concentration

Mathematical
Sciences

Physical
Sciences

Earth
Sciences

Biological
Sciences

Mathematics Statistics
Computing
Science

Honors
Math

Honors
Stat

Honors
Cmput

Special
Math

Special
Stat

Special
Cmput

12 

434

11

Figure 1  A portion of the hierarchy  of the course-advisor
There are 17 remaining plans (from our example library of
40). The plans were partitioned according to the fault
annotations assigned by the plan critiquing phase, where all
plans in a given partition are labeled with the same fault
annotation.  There are 8 remaining partitions for these
plans, depicted below with the abbreviations (H) for honors
and (S) for specialization.  For example, all of the plans in
partition p8 have the same single fault annotation of  "there
exists a better plan: Calculus 104" as it is strongly
recommended that Mathematics and Computing Science
students take Calculus  104 instead of Calculus 102, the
course the user asked about.



p1: H-Genetics(BioSci) p2: S-Genetics(BioSci)

p3: H-Microbiology(BioSci) p4: H-Statistics(MathSci)

p5: S-Statistics(MathSci) p6: H-Cartography(EarthSci)
S-Microbiology(BioSci) S-Cartography(EarthSci)

p7: H-Chemistry(Physical) p8: H-Mathematics(MathSci)
S-Chemistry(Physical) S-Mathematics(MathSci)
H-Physics(Physical) H-CompSci (MathSci)
S-Physics(Physical) S-CompSci(MathSci)
S-Geology(EarthSci)

In this example, the CLARIFY_BASIC procedure is given
the branch point event of Area of Science Concentration,
which has four alternatives. With this particular situation,
we have 8 remaining fault partitions (n = 8). In this case,
the 'yes' result and 'no' result of each alternative is:

Yes  No
Physical Sciences: 1 8 (a 'No' leaves 8 partitions)
Mathematical Sciences: 3 6
Earth Sciences: 2 7
Biological Sciences 4 5

Since all alternatives do not have a 'yes' result of n parti-
tions (n = 8), we calculate the "no" results. We must now
clarify the alternatives.

The minimum 'no' result is the one for the alternative of
Biological Sciences. Asking this event will leave us with 5
remaining fault partitions on a 'No' reply, and 4 remaining
fault partitions on a 'Yes' reply. According to our proposed
rules, we would select the event of Biological Sciences to
first ask the user (i.e., the minimal 'no' result). With this ex-
ample, the user's reply would be 'No'. As a result of this
reply, the possible plans are reduced to those plans which
do not involve the event of Biological Sciences.  When ad-
justing the plans, three partitions are eliminated, and one
partition has a "Biological plan" removed. At this point the
remaining partitions are as shown below.

p4: H-Statistics(MathSci)

p5: S-Statistics(MathSci) p6: H-Cartography(EarthSci)
S-Cartography(EarthSci)

p7: H-Chemistry(Physical) p8: H-Mathematics(MathSci)
S-Chemistry(Physical) S-Mathematics(MathSci)
H-Physics(Physical) H-CompSci (MathSci)
S-Physics(Physical) S-CompSci(MathSci)
S-Geology(EarthSci)

In the algorithm, we determine the new set of possible
plans. We are left with 5 partitions (n = 5). Since more than
one alternative remains, another branch point has not yet
been established and ambiguity still matters. Another alter-
native must be asked. The 'yes' result of the remaining al-
ternatives does not change, but the 'no' results are now dif-
ferent. The results are:

Yes No
Physical Sciences: 1 5
Mathematical Sciences: 3 2

Earth Sciences: 2 4

Based on the new 'no' results, the next alternative to ask
about is that of Mathematical Sciences. A 'No' reply to this
event will leave two partitions (eliminating more partitions
than any other alternative). In this case, the user's reply will
be 'Yes'. The possible plans are now those plans which in-
volve the event of Mathematical Sciences. After adjusting
the plans, three partitions remain, as shown below.

p4: H-Statistics(MathSci) p5: S-Statistics(MathSci)

p8: H-Mathematics(MathSci)
S-Mathematics(MathSci)
H-CompSci (MathSci)
S-CompSci(MathSci)

The CLARIFY_BASIC procedure returns the next branch
point event of Mathematical Sciences, and we again need
to clarify the alternatives of this event. The 'yes' and 'no' re-
sults for these alternatives are:

Yes No
Mathematics 1 3
Statistics 2 1
Computing Science 1 3

Using the selection rules, we first ask the user about enter-
ing the department of Statistics (rather than Mathematics or
Computing Science). Since the user is planning to enter
Computing Science, the reply is 'No'. After adjusting the
plans, we are left with one partition (partition p8) with four
remaining possible plans. Whenever we have only one
partition, ambiguity no longer matters, so a response is
provided.  In this example, the response addresses the fault
of the plans in partition p8: "The course Calculus 102 is
permitted, but Calculus 104 is strongly recommended for
students in Mathematics and Computing Science."

Focusing on key events during clarification
Once fault partitions have been identified, it is sometimes
possible to identify key events, those which are shared by
all the plans of a particular partition, and not shared by
plans in other partitions. Selecting one of these events for
clarifying questions may reduce the dialogue considerably.
The following example illustrates the potential benefit of
employing key events.

Suppose a user in the course advising domain has inter-
acted with a menu-like interface and according to the user's
profile, the 40 possible plans have been partitioned into two
fault partitions. Partition-1 contains two faultless plans
(honors and specialization Computing Science) and parti-
tion-2 contains the 38 other plans, each of which has the
same fault annotation with respect to CMPUT-165. The ba-
sic approach would result in the following dialogue:

User: Should I enroll in CMPUT 165?
(The query results in 40 plans divided into 2 partitions.)
System: Do you intend to obtain

1. an Engineering degree
2. a Bachelor of Science degree



3. a Bachelor of Arts degree
User reply: 2.
(The reply eliminates Engineering and Arts plans, leaving
17 possible Bachelor of Science plans which are still di-
vided into two partitions.)
System: Will you be concentrating in the area of

1. Physical Sciences
2. Mathematical Sciences
3. Earth Sciences
4. Biological Sciences

User reply: 2.
(The reply results in 6 remaining plans which all involve
Mathematical Sciences, but we still have two fault parti-
tions. Partition-1 still has two plans, but partition-2 now
contains only 4 plans)
System: Do you intend to enter the department of

1. Mathematics
2. Statistics
3. Computing Science

User reply: 2.
(The reply eliminates all plans involving Mathematics and
Computing Science, leaving only two Statistics plans.
Partition-1 is now empty and is eliminated, leaving only
partition-2, with the two possible plans. Since there is only
one remaining partition, ambiguity no longer matters.)
System response: CMPUT 165 has a computing science

prerequisite requirement and a computing science co-
requisite requirement.

Exploiting the key event of Computing Science, which is
shared by the two plans of partition-1, results in:

User: Should I enroll in CMPUT 165?
(The query results in 40 plans divided into 2 partitions.)
System: Do you intend to enter the department of

Computing Science?
User reply: No.
(The reply eliminates all plans involving Computing Sci-
ence. This eliminates partition-1, leaving only partition-2
with 38 possible plans. But ambiguity no longer matters.)
System response: CMPUT 165 has a computing science

prerequisite requirement and a computing science co-
requisite requirement.

If the user's reply were to be 'Yes', i.e., the user did intend
to enter the department of Computing Science, rather than
Statistics, the following dialogue would occur:

User: Should I enroll in CMPUT 165?
(The query results in 40 plans divided into 2 partitions.)
System: Do you intend to enter the department of

Computing Science?
User reply: Yes.
(The reply eliminates all plans which do not involve Com-
puting Science. This eliminates partition-2, leaving parti-
tion-1 with the remaining 2 possible plans. Ambiguity no
longer matters.)
System response: CMPUT 165 is a good choice.

Thus, a single clarifying question is sufficient for providing
a response.

Key events are not problem free to incorporate into the
general clarification algorithms. When there are numerous
fault partitions and thus numerous key events, there are
cases where the overall coherence of the dialogue seems at
risk, with a control structure which can now move freely to
events within the plan hierarchy. Our current solution is to
limit the use of key events to cases where there are three or
less remaining fault partitions. Further details are provided
in (Schmidt 1994).

Allowing overriding faults to avoid pointless clari-
fication
The basic clarification algorithm will assume a top-down
traversal of the plan library, from the top until ambiguity
no longer matters. In some cases, critiquing may uncover a
very serious fault which should be brought to the attention
of the user; all further clarification questions are in some
sense "pointless". We propose to terminate clarification in
the presence of one of these "overriding faults", even
though there is unresolved plan ambiguity which affects the
precise response desired.

The following example illustrates overriding faults. In a
cooking domain, the following exchange may occur:

User: Is it okay to make marinara sauce?
System: Are you making a meat dish?
User reply: Yes.
System: Do you intend to make a poultry dish?
User reply: No.
System: Do you intend to make a sea food dish?
User reply: No.
System: Regarding a beef dish, will you be serving steak?
User reply: Yes.
System: Do you intend to choose flank steak?
User reply: Yes.
(Assume that ambiguity no longer matters at this point)
System response: Yes, you can make marinara sauce, but

your guest is a vegetarian, and you are out of flank
steak, but the corner store has some.

In this dialogue, the additional information about flank
steak might be appreciated, but it is pointless in light of the
user's goal of entertaining a guest. A better dialogue is:

User: Is it okay to make marinara sauce?
System: Are you making a meat dish?
User reply: Yes.
(Ambiguity still matters, but the meat dish event should not
be pursued)
System response: Yes, you can make marinara sauce, but

your guest is a vegetarian.

The event "making a meat dish" has a serious fault so that
the user should be warned directly.

The clarification procedure can be augmented to include
overriding faults as follows. Overriding faults can be asso-
ciated with the events that produce them during the cri-
tiquing process. Whenever we check to see if ambiguity
still matters, we also check the event that is to be the next



branch point to see if it has an overriding fault, and if so,
terminate with a response which attends to this fault.

Skipping branch points
Another setting where top-down traversal may be worth re-
laxing is one where a series of intervening questions will
all eventually lead to a later question, necessary for the res-
olution of ambiguity. We characterize the set of plans in
this case as one with a "diamond shape", where the paths in
the hierarchy diverge from one event and later converge to
another event (as illustrated in Figure 2).  The problem is
that not all diamond shapes allow questions to be skipped,
without possibly missing the user's plan. We therefore had
to develop a characterization of those settings in which
diamond shaped plan sets should result in skipped branch
points, during clarification.

A

B C D

E F G H

I J K L M

N

O P Q

(Diamond Top)

(Diamond Bottom)

(Intervening
paths)

Figure 2  A diamond configuration

We only describe our solution briefly here. A situation in
which each alternative of the current branch point has a
"yes" result of n partitions and a "no" result of n partitions
is one which may be skippable. We first determine a
diamond bottom. We can only skip branch points to a
diamond bottom if we can resolve the ambiguity without
resorting to intervening events. That is, we determine if we
can reduce the partitions to one partition by only asking
those events which occur below the diamond bottom.  As a
result of this characterization, the basic clarification
algorithm can be augmented to check for skippable set-
tings, resulting in further reductions to the clarification dia-
logue.  See (Schmidt 1994) for a full algorithm and further
discussion.

Allowing complex plans
Another direction for improving our clarification dialogue
algorithms is to extend the coverage to process complex
plans (ones where conjuncts of events are necessary). For
example, we might allow multiple events to be specified by
users. In a cooking advice domain, a user may ask: "Is it
okay to serve French wine with a marinara sauce?". The
possible plan of the user may still be ambiguous (is he
planning pasta or meat?) and further clarification may be
important (perhaps a red wine or a white wine is a restric-
tion). In cases such as these, the challenge in designing a
clarification procedure is to track multiple branch points in
a plan hierarchy, deciding which branch to pursue first, in
order to minimize the length of the dialogue.

We have developed an extended algorithm, which allows
complex events. Moreover, all the improvements intro-
duced for the single event case can be easily incorporated
into this more general framework (e.g. can check for key
events in fault partitions). The solution requires a new data
structure, the branch point stack, to retain conjuncts of
plans. We omit the details of this part of our work, but see
(Schmidt 1994) for further elaboration.

Summary
The algorithms of (van Beek et al. 1993) for generating
clarification dialogue were modified, to allow the dialogues
to be reduced. Data structures for fault partitions and a
stack of branch points were introduced. A default criterion
for selecting events was outlined, based on partitions.
Cases for circumventing the top down traversal of the plan
library, to focus on key events, terminate the dialogue pre-
maturely or skip insignificant parts of the dialogue were all
identified and incorporated into the overall procedure.
Complex events could now be handled and design options
of employing menus or likelihoods easily accommodated.

Discussion
In this paper, we have presented a framework for soliciting
clarification from users during plan recognition.

We have proposed several improvements to earlier algo-
rithms. These improvements have been made possible pri-
marily through the specification of a new data structure, the
fault partition, and a thorough investigation of how fault
partitions may be exploited to select clarifying events.

Our system has been designed to prefer a top-down
traversal of the set of possible plans. One reason why this
makes sense is to improve dialogue coherence. In our test-
ing of the course advising and cooking domains, we dis-
covered examples where the hierarchy was quite "bushy".
These cases would result in either very long menus of ques-
tionable coherence or lengthy "yes/no" dialogues, if control
were bottom-up. The ability to prune from generalization to
specialization in the top-down order was clearly defined
and useful for extending to the case of complex plans.



In general, it is important to consider the overall coher-
ence of a clarification dialogue. At present, there are few
theoretical measures to evaluate how understandable a ses-
sion will be for a user. We have encoded a subset of the ac-
tual course advising domain of the University of Alberta.
As a next step, we can approach sample users and then per-
haps an empirical  evaluation of coherence could be con-
ducted.

Calistri-Yeh (1991) has also advocated the introduction
of user models to handle plan ambiguity. He introduces
probabilities in order to determine the user's plan. Although
this solution is effectively user-specific (like ours), it ad-
mits incorrect selection during plan recognition, leading to
a debugging dialogue with the user. Our approach is to re-
duce possibilities by engaging in clarification, never over-
committing. Likelihoods are used to assist in selecting
questions for the user, but it is the user's answers to these
questions which determines whether to prune away a pos-
sible plan.

Wu (1991) has proposed engaging in clarification with
users, with his approach of "actively acquiring" knowledge
from the user in various circumstances, including cases of
plan ambiguity and novel plan recognition. The focus of
this work is somewhat different, allowing plan recognition
to fail entirely. The paper addresses when clarifying ques-
tions are necessary to introduce. There is, however, no in-
dependent proposal for selecting effective clarifying ques-
tions or reducing the length of the clarification dialogue.

Nonetheless, the topic of allowing novel plans to be rec-
ognized is important. Our implementation has built on
Kautz's style of plan recognition. Goodman and Litman
(1992) criticize this plan recognition system for assuming a
complete plan library. For future work, we can study how
to extend our clarification dialogue algorithm to allow
users with novel plans (ones not initially recorded in the
plan library). This would be valuable for improving the in-
terface of a system designed to allow updates to the plan li-
brary during plan recognition, such as that of (Cohen and
Spencer 1993).

In fact, effective design of a plan library is critical for
producing coherent clarification dialogues of reasonable
length. For example, a hierarchy with very few specializa-
tion levels may lead to an impoverished "context" for user
comprehension (e.g.  "Are you planning to go to univer-
sity?", "Are you considering the math with minor in
physics option?"). Developing guidelines for the designers
of plan libraries would be another valuable research topic.

Our framework for generating clarifying questions iden-
tifies the nodes of a plan hierarchy which should be used
for each question. We have not studied deeper natural lan-
guage generation issues, such as selecting the appropriate
linguistic form of the question or of the final response. This
is another avenue for future work. As a starting point, we
could look at systems for natural language generation such
as that of McKeown (1985) or text planners such as that of
Moore and Paris (1993).

In summary, we have gained important insights into how
to engage users in clarification during plan recognition.

With our expanded algorithms and a practical domain in
hand we are ready to experiment to uncover new directions
and improvements.

References
Allen, J.; A plan-based approach to speech act recognition;
Technical Report 131, Department of Computer Science,
University of Toronto, 1979.

Calistri-Yeh, R.; Utilizing user models to handle ambiguity
and misconceptions in robust plan recognition; User
Modeling and User-Adapted Interaction, 1:289-322, 1991.

Carberry, S.; Tracking user goals in information-seeking
environment; In Proceedings of the National Conference on
Artificial Intelligence, pages 59-63, 1983.

Cohen, R., Spencer, B. and van Beek, P.; In search of prac-
tical specifications - allowing the user a more active role;
AAAI Spring Symposium on Implemented KR and
Reasoning Systems, March 1991.

Cohen, R. and Spencer, B.; Specifying and updating plan
libraries for plan recognition; Proceedings of 9th IEEE con-
ference on AI applications (CAIA 93), March 1993.

Goodman, B. and Litman D.; On the interaction between
plan recognition and intelligent interfaces; User Modeling
and User-Adapted Interaction , 2:83-115, 1992.

Kautz, H.; A Formal Theory of Plan Recognition. ; PhD
thesis, University of Rochester, 1987. Available as:
Department of Computer Science Technical Report 215.

McKeown, K.; Text generation: using discourse strategies
and focus constraints to generate natural language text;
Cambridge University Press, 1985.

Moore, J. and Paris, C.; Planning text for advisory dia-
logues: capturing intentional and rhetorical information;
Computational Linguistics, 19:651-694, 1993.

Schmidt K.; Clarification dialogues for plan recognition in
advice-giving settings; M.Sc. thesis, Dept. of Computing
Science, University of Alberta,  April 1994.

van Beek, P.; A model for generating better explanations;
In Proceedings of the 25th Conference of the Association
for Computational Linguistics, pages 215-220, 1987.

van Beek, P. and Cohen, R.; Towards user-specific expla-
nations from expert systems; In Proc. of the Sixth Canadian
Conference on Artificial Intelligence, pages 194-198, 1986.

van Beek, P., Cohen, R., and Schmidt, K.; From plan cri-
tiquing to clarification dialogue for cooperative response
generation; Computational Intelligence, 9:132-154,  1993.
An earlier version appears in  IJCAI-91, pages 938-944.

Wu, D.; Active acquisition of user models: implications for
decision-theoretic dialog planning and plan recognition;
User Modeling and User-Adapted Interaction, 1:149-172,
1991.


