Learning Heuristics for the Superblock Instruction
Scheduling Problem

Tyrel Russell, Abid M. Malik, Michael Chase, and Peter van Beek
Cheriton School of Computer Science
University of Waterloo, Waterloo, Canada

Abstract— Modern processors have multiple pipelined func-
tional units and can issue more than one instruction per clock cy-
cle. This places a burden on the compiler to schedule the instruc-
tions to take maximum advantage of the underlying hardware.
Superblocks—a straight-line sequence of code with a single entry
point and multiple possible exit points—are a commonly used
scheduling region within compilers. Superblock scheduling is
NP-complete, and is done sub-optimally in production compilers
using a greedy algorithm coupled with a heuristic. The heuristic
is usually hand-crafted, a potentially time-consuming process. In
this paper, we show that supervised machine learning techniques
can be used to semi-automate the construction of heuristics
for superblock scheduling. In our approach, labeled training
data was produced using an optimal superblock scheduler. A
decision tree learning algorithm was then used to induce a
heuristic from the training data. The automatically constructed
decision tree heuristic was compared against the best previously
proposed, hand-crafted heuristics for superblock scheduling on
the SPEC 2000 and MediaBench benchmark suites. On these
benchmark suites, the decision tree heuristic reduced the number
of superblocks that were not optimally scheduled by up to 38%,
and led to improved performance on some architectural models
and competitive performance on others.

Index Terms— Pipeline processors, compilers, heuristics design,
machine learning, constraint satisfaction

I. INTRODUCTION

Modern processors are pipelined and can issue more than one
instruction per clock cycle. A challenge for the compiler is to find
an order of the instructions that takes maximum advantage of the
underlying hardware without violating dependency and resource
constraints. Depending upon the scope, there are two types of
instruction scheduling: local and global instruction scheduling. In
local instruction scheduling, the scheduling is done within a basic
block!. Performing only local instruction scheduling can lead to
under-utilization of the processor. This has stimulated substantial
research effort in global instruction scheduling, where instructions
are allowed to move across basic blocks.

Figure 1 shows a control flow graph (CFG)—an abstract data
structure used in compilers to represent a program—consisting of
five basic blocks. Instructions in basic block By are independent
of the instructions in basic blocks Bs, B3 and Bs. We can
increase the efficiency of the code and the utilization of the
processor by inserting instructions from B, into the free slots
available in Bg, B3 and Bs. This is only possible if we schedule
instructions in all basic blocks at the same time. Many regions
have been proposed for performing global instruction scheduling.

ISee Section II for detailed definitions and explanations of terms in
instruction scheduling.

By
Dependency
Flowr
e 5t
w1
—l
Exit
Flow B2
............ [h 4
e ez
w:
2 L 4 Ba
B3
-~ £3
w3
Bs
¥

Fig. 1. A control flow graph (CFG) with five basic blocks. Control enters
through ep and can leave through e;, e2, e3 or es. The values wi, w2, w3
and ws are exit probabilities.

The most commonly used regions are traces [1], superblocks
[2] and hyperblocks [3]. The compiler community has mostly
targeted superblocks for global instruction scheduling because of
their simpler implementation as compared to the other regions.
Superblock scheduling is harder than basic block scheduling. In
basic block scheduling, all resources are considered available for
the basic block under consideration. In superblock scheduling,
having multiple basic blocks with conflicting resource and data re-
quirements, each basic block competes for the available resources
[4]. The most commonly used method for instruction scheduling
is list scheduling coupled with a heuristic. A number of heuristics
have been developed for superblock scheduling. The heuristic in
a production compiler is usually hand-crafted by choosing and
testing many different subsets of features and different possible
orderings—a potentially time-consuming process. For example,
the heuristic developed for the IBM XL family of compilers
“evolved from many years of extensive empirical testing at IBM”
[5, p. 112, emphasis added]. Further, this process often needs to
be repeated as new computer architectures are developed and as
programming languages and programming styles evolve.

In this paper, we show that machine learning can be used
to semi-automate the construction of heuristics for superblock
scheduling in compilers, thus simplifying the development and
maintenance of one small but important part of a large, complex
software system. Our approach uses supervised learning. In
supervised learning, one learns from training examples which are
labeled with the correct answers. More precisely, each training

example consists of a vector of feature values and the correct
classification or correct answer for that example. In previous
work, we designed an optimal superblock scheduler [6F. We use
the optimal scheduler here to generate the correct labels for the
training data. Once the training data was gathered, a decision
tree learning algorithm [7] was used to induce a heuristic from
the training data. In a decision tree the internal nodes of the tree
are labeled with features, the edges to the children of a node are
labeled with the possible values of the feature, and the leaves
of the tree are labeled with a classification. To classify a new
example, one starts at the root and repeatedly tests the feature at
a node and follows the appropriate branch until a leaf is reached.
The label of the leaf is the predicted classification of the new
example.

Once learned, the resulting decision tree heuristic was incorpo-
rated into a list scheduler and experimentally compared against
the best previously proposed, hand-crafted heuristics on the SPEC
2000 and MediaBench benchmark suites. On these benchmark
suites, the automatically constructed decision tree heuristic re-
duced the number of superblocks that were not optimally sched-
uled by up to 38% compared to the best hand-crafted heuristic.
As well, when incorporated into a full optimizing compiler, the
decision tree heuristic was always competitive with the best hand-
crafted heuristics and sometimes led to significant improvements
in performance—in the best case, a 20% reduction in the number
of cycles needed to execute a large software package.

II. BACKGROUND

In this section, we briefly review the necessary background in
computer architecture, define the superblock instruction schedul-
ing problem, and describe the list scheduling algorithm for
superblock scheduling and the heuristics used in the algorithm
(for more background on these topics see, for example, [8], [9]).

A. Computer architecture

We consider multiple-issue, pipelined processors. Multiple-
issue and pipelining are two techniques for performing instruc-
tions in parallel and processors which use these techniques are
now standard in desktop and laptop machines. In such processors,
there are multiple functional units and multiple instructions can
be issued (begin execution) in each clock cycle. Examples of
functional units include arithmetic-logic units (ALUs), floating-
point units, memory or load/store units which perform address
computations and accesses to the memory hierarchy, and branch
units which execute branch and call instructions. The number of
instructions that can be issued in each clock cycle is called the
issue width of the processor. As well, in such processors func-
tional units are pipelined. Pipelining is a standard implementation
technique for overlapping the execution of instructions on a single
functional unit. A helpful analogy is to a vehicle assembly line
[8] where there are many steps to constructing the vehicle and
each step operates in parallel with the other steps. An instruction
is issued (begins execution) on a functional unit and associated
with each instruction is a delay or latency between when the

2 Although superblock scheduling is NP-complete, our superblock scheduler
is able to solve 99.995% of all superblocks that arise in the SPEC 2000
benchmarks, a standard compiler benchmark suite. Currently, our optimal
scheduler is too time consuming to be used on a routine basis within a
compiler and fast heuristic methods are still preferred in most settings.

& [&L
) B
@ b)

Fig. 2. Superblock formation: B; is a basic block in a CFG (a) Path B; —
Bg — By has the highest probability of execution; (b) In order to remove
the entrance from B3 to path B; — B2 — By, a copy of By is created,
called tail duplication, and the flow from B3 is directed towards le.

instruction is issued and when the instruction has completed and
the result is available for other instructions which use the result. In
this paper, we assume that all functional units are fully pipelined
and that instructions are typed and execute on a functional unit of
that type. Examples of types of instructions are integer, floating
point, load/store, and branch instructions.

B. Superblock scheduling

A superblock is a straight-line sequence of code with a single
entry point and multiple possible exit points. A basic block is
the special case of a superblock where there is a single exit
point. Superblocks are formed out of basic blocks. Figure 2
shows the formation of a superblock. Basic blocks Bj, B2 and
B, form superblock S;. Basic blocks Bs and Bj form superblock
Sa2. We use the standard labeled directed acyclic graph (DAG)
representation of a superblock (see Figure 3(a)). Each node
corresponds to an instruction and there is an edge from i to
j labeled with a non-negative integer [(4,7) if j must not be
issued until 7 has executed for [(i,j) cycles. Exit nodes are
special nodes in a DAG representing the branch instructions.
Each exit node has an associated weight or exit probability which
represents the probability that the flow of control will leave the
superblock through this exit point. The probabilities are calculated
by running the instructions on representative data, a process
known as profiling.

Given a labeled dependency DAG for a superblock and a target
processor, a schedule for a superblock is an assignment of a clock
cycle to each instruction such that the precedence, latency and
resource constraints are satisfied. The resource constraints ensure
that the limits of the processor’s resources are never exceeded; i.e.,
the resource constraints are satisfied if, at every time cycle, the
number of instructions of each type issued at that cycle does not
exceed the number of functional units that can execute instructions
of that type. The weighted completion time or cost of a schedule
is given by 2?21 w; e;, where n is the number of exit nodes,
w; is the weight of exit ¢, and e; is the clock cycle in which
exit 7 will be issued in the schedule. The superblock instruction
scheduling problem is to construct a schedule with minimum
weighted completion time.

Example 1: Figure 3 shows a small superblock DAG and the
optimal cost schedule for the DAG, assuming a single-issue

Time Slot | Instruction
1 A
2 B
3 C
4 nop
5 nop
6 nop
7 D
8 E
9 F
10 G
(a) (b)

Fig. 3. (a) A simple superblock; (b) Corresponding minimum cost schedule
for a single issue processor. A nop (No OPeration) instruction is used as a
place holder when there are no instructions available to be scheduled.

processor that can execute all types of instructions. The two exits
from the DAG are from instructions F and G and each exit is
marked with a corresponding exit probability. Instruction F is
scheduled at time cycle nine and instruction G is scheduled at time
cycle ten. Thus, the cost of the schedule is 0.40 x 94+ 0.60 x 10 =
9.60 clock cycles.

C. List scheduling with heuristics

Superblock scheduling is known to be NP-complete for realistic
architectures and fast but sub-optimal algorithms are used in
practice. List scheduling is the most commonly used algorithm.
It is a greedy algorithm which builds up a schedule cycle by
cycle, maintaining a queue of instructions which are ready to
be scheduled at a time cycle. The best instruction to schedule
next is chosen using a heuristic. The heuristic in a list scheduler
generally consists of a set of features and an order for testing the
features. Some standard features are as follows. The path length
from a node 7 to a node j in a DAG is the maximum number
of edges along any path from ¢ to j. The critical-path distance
from a node i to a node j in a DAG is the maximum sum of the
latencies along any path from i to j. The descendants of a node 4
are all nodes j such that there is a directed path from ¢ to j. The
earliest start time of a node i is a lower bound on the earliest
cycle in which the instruction ¢ can be scheduled. The latest start
time of a node 4 is an upper bound on the latest cycle in which
the instruction ¢ can be scheduled. The slack of a node ¢ is the
difference between its latest start time and earliest start time.

III. RELATED WORK

There has been previous work on semi-automating the construc-
tion of heuristics for basic block instruction scheduling. However,
to the best of our knowledge, there have been no proposals for
the automatic construction of heuristics for superblock instruction
scheduling, the topic of this paper. In basic block scheduling,
the objective is to minimize the schedule length. In contrast,
superblock scheduling is more difficult as the objective is to min-
imize the weighted completion time and heuristics for superblock

scheduling must carefully take into account the exit points and
their associated probabilities.

For basic block scheduling, Moss et al. [10] were the first
to propose the use of supervised learning techniques for the
semi-automated construction of heuristics. Their idea, which we
adopt in our work, was to use an optimal scheduler to correctly
label the data. However, their approach was hampered by the
quality of their training data; they could only optimally solve
basic blocks of size ten or less and they recorded only five
features in each training. McGovern et al. [11] proposed the use
of rollouts and reinforcement learning to overcome the difficulty
of obtaining training data on larger basic blocks. Rollouts and
reinforcement learning are machine learning techniques which are
non-supervised; i.e., they do not require the data to be correctly
labeled. However, the efficiency of the instruction scheduler is
critical in compilers, and McGovern et al’s scheduler would
be much too expensive to be used in a production compiler.
Further, in McGovern et al.’s work, a known heuristic was used to
guide the reinforcement learning. However, the resulting learned
instruction scheduler was not better than the original heuristic
used to guide the learning. Malik et al. [12] improved on the
work of Moss et al. in several ways. First, they overcame the
limitation on basic block size by using an optimal basic block
scheduler based on constraint programming [13] to generate the
correctly labeled training data. Second, they improved the quality
of the training data by performing an extensive and systematic
study and ranking of previously proposed features (as surveyed
in [14]). Third, they improved the quality of the training data by
synthesizing and ranking novel features. In the current work, we
follow the methodology of Malik et al. [12] regarding producing
test and training data and evaluating the performance of the
learned heuristic.

As well, there has been work on learning heuristics for other
scheduling problems. Li and Olafsson [15], examine learning
heuristics for single machine job shop scheduling using super-
vised learning. In their approach, existing heuristics are used to
label the training examples. However, the heuristics that they learn
were not better than the original heuristics used to label the data.

We make two contributions in this paper beyond previous
work. First, we demonstrate that supervised learning techniques
can be used to semi-automatically learn heuristics for superblock
scheduling that outperform the best existing hand-crafted heuris-
tics. Second, we synthesize many novel and useful features for
superblock scheduling. In contrast to basic block scheduling
where many features have been proposed and studied (see [14]),
there has been relatively little work on features for superblock
scheduling. The novel features that we propose are an important
reason behind the success of our approach. As well, they can be
used in the future for constructing heuristics, both hand-crafted
and automatically derived, for compilers targeted to new computer
architectures.

IV. LEARNING A HEURISTIC

In this section, we describe the methodology we followed to
automatically construct a list scheduling heuristic for scheduling
superblocks by applying techniques from supervised machine
learning. We explain the construction of the initial set of features
(Section IV-A), the collection of the data (Section IV-B), the use
of the data to filter and rank the features to find the most important

TABLE I
TOP FEATURES WITHIN THE SUPERBLOCK DOMAIN ORDERED FROM HIGHEST RANKING TO LOWEST RANKING.

1. Resource-based distance and speculative yield
Maximum distance and speculative yield

3. Weighted sum of maximum of resource-based distance
and critical-path distance to branches

4. Weighted sum of resource-based distances to branches

5. DHASY—Bringmann’s priority function

6. Maximum of resource-based distance to leaf node and
critical-path distance to leaf node

7. Resource-based distance to leaf node

8. Weighted sum of critical-path distances to branches

9. Maximum weighted critical-path distance to a branch

0. Minimum of the slack for each branch weighted by the

exit probabilities

11. Critical-path distance to leaf node

12. Latest start time of the instruction

features (Section IV-C), and the use of the data and the important
features to learn a simple heuristic (Section IV-D).

A. Feature construction

A critical factor in the success of a supervised learning ap-
proach is whether the features recorded in each example are
adequate to distinguish all of the different cases. We began with
hundreds of features that we felt would be promising. The features
can be categorized as either static or dynamic. The value of a static
feature is determined before the execution of the list scheduler;
the value of a dynamic feature is determined or updated during the
execution of the list scheduler. The hundreds of features we began
with were a mixture of previously proposed features and novel
features that we proposed. For previously proposed features, we
adopted all of the features used in basic block scheduling [12],
[14]—since superblocks are generalizations of basic blocks, all of
the features used in basic block scheduling can also be considered
for the superblock scheduling—as well as features that appear in
hand-crafted heuristics for superblock scheduling [16]-[18].

We also created many novel features for superblock scheduling.
A more accurate classifier can sometimes be achieved by synthe-
sizing new features from existing basic features. We constructed
some of the novel features by applying simple functions to basic
features. Examples include comparison of two features, maximum
of two features, minimum of two features, and the average of
several features. A distinguishing feature of superblocks over
basic blocks is that there are multiple exits and a weight or
probability associated with each exit. We constructed more novel
features by using a combination of features from basic blocks
along with the information about the weights of the exits. This
often took the form of multiplying the weight of an exit by
the value of a feature that involved that exit. The intuition is
that exits with high weights are more likely to be taken and
thus features that involve those exits have more importance. In
contrast, exits with low weights are more likely to not be taken—
i.e., the flow of control will just fall through to the instruction
following the branch—and thus features that involve those exits
have less importance.

Table I shows the top features of the hundreds that we
considered. The overall rank of a feature was determined by
averaging the rankings given by three feature ranking methods:

13. Maximum critical-path distance to a branch

14. Weighted sum of path lengths to branches

15. Minimum slack to each branch

16. Path length to leaf node

17. Number of descendants of the instruction

18. Resource delay—number of descendants that cannot
be scheduled between current time and the maximum
critical-path distance

19. Slack—the difference between earliest and latest start
times

20. Cumulative delay

21. Cost of cumulative delay

22. Helped cost—sum of costs to each helped branch

23. Minimum weighted critical-path distance to a branch

24. Path length from the root node

the single feature decision tree classifier, information gain, and
information gain ratio (see [19] for background and details on
the calculations). In the remainder of this section, we describe
only these top-rated features.

Many of the features are based on the concept of distance. The
true distance between two instructions ¢ and j is the minimum
number of cycles which must elapse between when 1 is scheduled
and when j is scheduled in any feasible schedule. The intuition is
that an instruction that is further in distance from, for examples, a
leaf node (one of the final instructions in the superblock that must
be executed before the superblock itself has completed executing)
or an exit node, should be scheduled in an earlier cycle than an
instruction that is closer in distance. Delaying the instruction that
is further in distance could potentially delay the leaf node or the
exit node and thus increase the cost of the resulting schedule for
the superblock.

For basic blocks, several estimates of the true distances have
been proposed. The simplest are the critical-path distance and the
path length. However, both of these distances can dramatically
underestimate the true distance that must separate ¢ and j. Malik
et al. [12] show that taking into account the resources available—
the number of functional units and the types of the functional
units—can considerably improve the estimate. We refer to this
estimate as the resource-based distance (the reader is referred to
[12] for a precise definition of the resource-based distance). As in
basic block scheduling, each of these estimates of the distances
turns out to give an important feature in superblock scheduling.
For example, the resource-based distance to a leaf node for an
instruction ¢ (Table I, feature 7) is the maximum resource-based
distance from ¢ to a node with no successors. The critical-path
distance and path length lead to similar heuristics (Table I, feature
11 and 16, respectively). Taking the maximum of the resource-
based distance and critical-path distances to a leaf node is also a
useful feature (Table I, feature 6).

Some of the most important novel features described in this
section are the weighted estimates based on distances, where we
take into account the exit probabilities of the superblock (see
above in this section for the intuition behind these features). We
adapt the distances to superblocks in two ways. The first way is
to simply take the estimates to every successor branch and weight
them by their exit probability. We define the weighted estimates

as the following,

> w(b)est(i,b),

beB(i)

where B(i) is the set of all branches that are descendants of ¢ and
est(i,b) is an estimate of the true distance between instruction ¢
and branch instruction b. The estimated distance est(i,b) can be
either the resource-based distance (Table I, feature 4), the critical-
path distance (Table I, feature 8), or the maximum of these two
distances (Table I, feature 3).

The second way is to use the concept of dependence height and
speculative yield developed by Bringmann [20] and substitute one
of the estimates of the true distance into the equation. We define
the distance estimate and speculative yield features as,

D w(b)(est(1,n) + 1 (est(1,b) — est(i, b)),

beB(i)

where est(i, j) can again be replaced by either the resource-based
distance (Table I, feature 1), the critical-path distance (Table I,
feature 5), or the maximum of these two distances (Table I, feature
2). In effect, the feature is performing a weighted sum of the latest
start times to each successor branch. The intuition is that the latest
start times measure how much the feature can be delayed without
delaying the branches and thus potentially increasing the cost of
the scheduled for the superblock.

The quality of an instruction can often be determined by mea-
suring a variety of tie breaking features where slight differences
between instructions highlight the overall difference between an
instruction that leads to a good schedule and a poor schedule.
Other features that we created were intended for such tie-breaking
purposes.

The critical-path distances have proven to be important features
in basic block instruction scheduling [14]. Thus, we defined
several critical-path-based features for our superblock scheduling
problem (features 8, 9, 11, 13, and 23). The intuition is to
generalize critical-path to take into account the additional side
exits that are present in superblock scheduling. The weighted sum
of the critical-path distances to branches for an instruction ¢ (Table
I, feature 8) is given by,

fs(@) =Y w(b)ep(i,b),

beB(i)

where B(i) is the set of all branches which are descendants of
instruction 4, w(b) is the exit probability of branch b, and cp(i, b)
is the critical-path distance from ¢ to b. The maximum weighted
critical-path distance to a branch for an instruction ¢ (Table I,
feature 9) is given by,

fo(i) = brengé){w(b) ep(i, b)}.

The critical-path distance to a leaf node for an instruction 7 (Table
I, feature 11) is the maximum critical-path distance from ¢ to a
node with no successors. The maximum critical-path distance to
a branch for an instruction ¢ (Table I, feature 13) is given by,

f13(@) = bglgé){cp(t b}

The minimum weighted critical-path distance to a branch for an
instruction ¢ (Table I, feature 23) is given by,

fa3(i) = bénél(li){w(b) ep(i, b)}.

Similarly to critical-path distances, path lengths have also
proven to be important features in basic block instruction schedul-
ing [14]. Again, we generalized these features to our superblock
scheduling problem (features 14, 16, and 24) to account for side
exits. The weighted sum of the path lengths to branches for an
instruction ¢ (Table I, feature 14) is given by,

fua()) = Y w(b)pi(i,b),

beB(i)

The path length to a leaf node for an instruction ¢ (Table I, feature
16) is the maximum number of edges along any path from ¢ to a
node with no successors. The path length from the root node to
an instruction ¢ (Table I, feature 24) is the maximum number of
edges along any path from the root node to instruction i.

The slack of a task—defined as the difference between the latest
start time and the earliest start time of the task—has proven to be
a useful feature in a diverse set of scheduling problems. Thus, we
defined several slack-based features for our superblock scheduling
problem (features 10, 15, and 19). The minimum slack to a branch
for an instruction i (Table I, feature 15) is given by,

f15(i) = bngiI(li){cp(lvb) - Cp(i,b) - Cp(l,i)}.

The intuition is that the smaller this value, the less chance
the instruction can be delayed without delaying some branch
instruction. Similarly, the weighted minimum slack (Table I,
feature 10) is given by,

fr0(6) = min {w(8)(ep(1,0) — ep(i,) — ep(1,i)}

The resource delay of an instruction ¢ is a dynamic feature
that first measures the number of remaining slots available for
scheduling all of the descendants of the current instruction and
then finds the delay attributed to this measurement (Table I,
feature 18). The resource delay is given by,

f18(2) = mazDelay — currentTime — (desc(i)/issue Width),

where maxDelay is the maximum critical-path distance within
the graph, currentTime is the current time cycle being scheduled,
desc(i) is the number of descendants for instruction ¢ and is-
sueWidth is the number of functional units available for instruction
scheduling.

As instructions within the DAG are delayed from their original
earliest start time, each node acquires an accumulated delay with
respect to each of the branches. This delay can be measured by
finding the difference between the current scheduling slot and
initial estimate of the earliest starting time (Table I, feature 20).
The cumulative delay is given by,

foo(i) = Z cp(i, b) + currentTime — cp(1,1).
beB(i)

Again, as with other superblock features, we extend the cumula-
tive delay to find the cumulative cost by weighting each delay by
the exit probability (Table I, feature 21). The cumulative cost is
given by,

fa1(2) = Z w(b)(ep(i,b) + currentTime — cp(1,1)).
beB(4)

Another new feature was a dynamic feature we called helped
cost (Table I, feature 22). This feature is an extension of the
features developed by Deitrich and Hwu for the speculative hedge

heuristic [17]. Deitrich and Hwu propose two features called
helped weight and helped count. Their idea is to identify those
branches which are helped by scheduling an instruction. These
branches are referred to as the helped branches of an instruction
i (HB(2)). Our helped cost feature uses a slightly restricted version
of the branch identification scheme that allows speculative hedge
to find helpful branches but, instead of just looking at the weight
of the branch, the helped cost feature keeps track of the weighted
critical-path to the identified branch. The helped cost for an
instruction ¢ and the helped branches is given by,

fa2(i) = Z w(b) ep(i, b).

be HB (i)

B. Collecting the training, validation, and testing data

In addition to the choice of distinguishing features (see Sec-
tion IV-A above), a second critical factor in the success of a
supervised learning approach is whether the data is representa-
tive of what will be seen in practice. To adequately train and
test our heuristic classifier, we collected all of the superblocks
from the SPEC 2000 integer and floating point benchmarks
[http://www.specbench.org]. The SPEC benchmarks are standard
benchmarks used to evaluate new CPUs and compiler opti-
mizations. The benchmarks were compiled using IBM’s Tobey
compiler [21] targeted towards the PowerPC processor [5], and the
superblocks were captured as they were passed to Tobey’s instruc-
tion scheduler. The superblocks contain four types of instructions:
branch, load/store, integer, and floating point. The range of the
latencies is: all 1 for branch instructions, 1-12 for load/store
instructions (the largest value is for a store-multiple instruction,
which stores to memory the values in a sequence of registers),
1-37 for integer instructions (the largest value is for division),
and 1-38 for floating point instructions (the largest value is for
square root). The Tobey compiler performs instruction scheduling
before register allocation and once again afterward, and our test
suite contains both kinds of superblocks. The compilations were
done using Tobey’s highest level of optimization, which includes
aggressive optimization techniques such as software pipelining
and loop unrolling.

Following Moss et al. [10], a forward list scheduling algorithm
was modified to generate the data. In supervised learning, each
instance in the data is a vector of feature values and the correct
classification for that instance. Let better(i, 7, class) be a vector
that is defined as follows,

better(i, 7, class) = (f1(3,7), - .., fn(i,7), class),

where i and j are instructions, fi(i,;) is the k' feature that
measures some property of ¢ and j, and class is the correct
classification. Given a partial schedule and a ready list during the
execution of the list scheduler on a superblock, each instruction
on the ready list was scheduled by an optimal scheduler [6] to
determine the weighted completion time of an optimal schedule
if that instruction were selected next. The optimal scheduler was
targeted to a 4-issue processor, with one functional unit for each
type of instruction. Then, for each pair of instructions ¢ and j on
the ready list, where ¢ led to an optimal schedule and j did not,
the instances better(i, 7, true) and better(j, 7, false) were added
to the data set (see the equation above). Note that the goal of
the heuristic that is learned from the data is to distinguish those
instructions on a ready list that lead to optimal schedules from

those instructions that lead to non-optimal schedules. Thus, pairs
of instructions ¢ and j in which both ¢ and j led to an optimal
schedule are ignored; i.e., they do not add any instances to the
data set. Similarly, pairs of instructions in which both 4 and j
led to a non-optimal schedule are also ignored. Once the data
collection process was completed for a particular ready list, the
partial schedule was then extended by randomly choosing an
instruction from among the instructions on the ready list that led
to an optimal schedule, the ready list was updated based on that
choice of instruction, and the data collection process was repeated.

Example 2: Consider once again the DAG and its schedule
introduced in Example 1. Suppose that each instance in our
learning data contains two features: fi(i,;) returns the size of
the DAG and f2 (4,) returns ¢, eq, or gt depending on whether
the critical-path distance of ¢ to the leaf node is less than, equal
to, or greater than the critical-path distance of j to the leaf node
(both are not key features for superblock scheduling; they were
selected for their simplicity). When the list scheduling algorithm
is applied to the DAG, instructions A is the only instruction on
the ready list at time cycle 1. Vector (7, gt,true) is added to
the data. For time cycle 2, we have instructions B and C on the
ready list. Scheduling B first leads to an optimal solution, where
as scheduling C first does not (as it will increase the cost). Thus,
the pair B, C would add the vectors (7, gt, true) and (7, l¢, false)
to the data, since the critical-path distance for B is 7 and for C is
0. The list scheduler then advances to time cycle 3, updates the
ready list and repeats the above process.

Once collected, we divided the data into training, validation,
and test sets. The training set is used to come up with the
classifier, the validation set is used to optimize the parameters of
the learning algorithm and to select a particular classifier, and the
test set is used to report the classification accuracy [19, pp. 120-
122]. Dividing the data in this way is important for obtaining an
accurate heuristic and for obtaining a reliable estimate of how
accurately the heuristic will perform in practice. The SPEC 2000
benchmark suite consists of the source code for 26 benchmark
software packages that are chosen to be representative of a variety
of programming languages and types of applications. We chose
two benchmark packages called galgel and gap to be our testing
and validation sets for two reasons. First, the galgel and gap
instances give approximately ten percent (9.2%) of the superblock
instances and, second, the gap and galgel blocks provide a good
cross section of the data as this includes both integer and floating
point blocks as well as both C and Fortran blocks. The remainder
(90.8%) of the data was reserved as test data.

C. Feature filtering

Once the data was collected but prior to actually learning the
heuristic, the next step that we performed was to filter the features.
The goal of filtering is to select only the most important features
for constructing a good heuristic. The selected features are then
retained in the data and subsequently passed to the learning
algorithm and the features identified as irrelevant or redundant
are deleted. There are two significant motivations for performing
this preprocessing step: the efficiency of the learning process
can be improved and the quality of the heuristic that is learned
can be improved (many learning methods, decision tree learning
included, do poorly in the presence of redundant or irrelevant
features [19, pp. 231-232]).

Several feature filtering techniques have been developed (see,
for example, [22] and the references therein). In our work, a
feature was deleted if both: (i) the accuracy of a single feature
decision tree classifier constructed from this feature was no
better than random guessing on the validation set; and (ii) the
accuracy of all two-featured decision tree classifiers constructed
from this feature and each of the other features was no better
than or a negligible improvement over random guessing on the
validation set. The motivation behind case (ii) is that a feature
may not improve classification accuracy by itself, but may be
useful together with another feature. In both cases, the heuristic
classifier was learned from the galgel training data and evaluated
on the gap validation set. Finally, a feature was also deleted if it
was perfectly correlated with another feature.

Table I shows the top features that remained after filtering.
The features are shown ranked according to their overall value in
classifying the data. The overall rank of a feature was determined
by averaging the rankings given by three feature ranking methods:
the single feature decision tree classifier, information gain, and
information gain ratio (see [19] for background and details on the
calculations). The ranking can be used as a guide for hand-crafted
heuristics and also for our automated machine learning approach,
as we expect to see at least one of the top-ranked features in
any heuristic. For succinctness, each feature is stated as being a
property of one instruction. When used in a heuristic to compare
two instructions ¢ and j, we actually compare the value of the
feature for ¢ with the value of the feature for j (see the use of
the critical-path feature in Example 2).

D. Classifier selection

The next step is to actually learn the best heuristic from
the training data which contains only the features that passed
the filtering step (see Table I). In our work, we used decision
tree learning. The usual criterion one wants to maximize when
devising a heuristic is accuracy. In this study, we also had an
additional criterion: that the learned heuristic be efficient. When
compiling large software projects, the heuristic used by the list
scheduler can be called thousands or even hundreds of thousands
of times and can represent a significant percentage of the overall
compilation time. Since each additional feature used in a heuristic
adds to the overall computation time, we want to learn a heuristic
that is both simple and accurate. We chose decision tree classifiers
for learning a heuristic over other possible machine learning
techniques because of their excellent fit with our goals of accuracy
and efficiency. Fortunately, the goals of accuracy and efficiency
are not necessarily conflicting since it is known that more complex
decision trees often “overfit” the training data, and that simpler
decision trees often generalize better and so perform better in
practice [19].

Ideally then, we want the smallest subset of features such that
a classifier learned using this subset still has acceptable accuracy.
Several methods have been proposed for searching through the
possible subsets of features. We chose forward selection with
beam search, as it works well to minimize the number of features
in a classifier [19], [22] and it proved effective in our previous
work on learning scheduling heuristics for basic block instruc-
tion scheduling [12]. The forward selection with beam search
algorithm begins at level 1 by examining all possible ways of
constructing a decision tree from one feature. The algorithm then
progresses to level 2 by choosing the best of the classifiers from

Algorithm 1: Automatically constructed decision tree heuris-
tic for a superblock list scheduler. The features tested in the
algorithm correspond to features 2, 17, 22, and 24 in Table L.

input : Instructions 7 and j
output: Return true if ¢ should be scheduled before j; false
otherwise
if i.max_dist_spec_yield > j.maz_dist_spec_yield then
| return true;

else if i.max_dist_spec_yield < j.max_dist_spec_yield then
| return false;
else
if i.descendants > j.descendants then
if i.helped_cost > j.helped_cost then
if i.pl_root > j.pl_root then
| return true;

else
| return false;

else if i.helped_cost < j.helped_cost then
| return false;

else
L return true

else if i.descendants < j.descendants then
if i.pl_root > j.pl_root then

| return true;
else if i.pl_root < j.pl_root then

| return false;
else

if i.helped_cost > j.helped_cost then
| return true;

else
| return false;

else
if i.helped_cost > j.helped_cost then
| return true;
else if i.helped_cost < j.helped_cost then
if i.pl_root > j.pl_root then
| return true;

else
| return false;

else
| return false;

level 1 and extending them in all possible ways by adding one
additional feature. In general, the algorithm progresses to level
k+ 1 by extending the best classifiers at level k& by one additional
feature. The search continues until some stopping criteria is met.

As in our previous work on learning basic block scheduling
heuristics [12], the beam search expanded up to a maximum of
30 of the best classifiers at each level. The value of 30 was
chosen as it was found that around this point the quality of the
classifiers had already deteriorated. Thus the value of 30 was
chosen as a conservative value that avoided a brute-force test of
all possible classifiers but with a low risk that we would cutoff
and therefore miss a good classifier. For each subset of features at
each level, a decision tree heuristic was learned from the training
data obtained from the galgel benchmark suite and an estimate

of the classification accuracy of the heuristic was determined by
evaluating the heuristic on the validation set obtained from the gap
benchmark suite. The classification accuracy was used to decide
which subsets to expand to the next level. To learn a classifier,
we used Quinlan’s C4.5 decision tree software [7]. The software
was run with the default parameter settings, as this consistently
gave the best results on the validation set.

Table II shows for each level [(where [corresponds to both
the level in the beam search and to the number of features in the
decision tree), the accuracy of the best decision tree learned with
[features and the corresponding size of the decision tree. The
accuracy is stated as the percentage of instances in the validation
set that were incorrectly classified. When there were ties for best
accuracy at a level, the average size was recorded. The size of
the decision tree is the total number of nodes in the tree.

TABLE II
ACCURACY OF DECISION TREE LEARNED.

level | 1 2 3 4 5 6 7
accuracy | 14 12 1.2 1.1 1.1 1.1 1.1
size 40 70 7.6 490 586 688 78.6

One can see that the best accuracy is achieved at a depth of
four without unnecessarily increasing the size of the tree. The
final tree was constructed by combining both the training and
validation set using the features identified by the beam search.
Algorithm 1 shows the decision tree in algorithmic form, as
would be incorporated into the list scheduler of a production
compiler. The algorithm accepts two instructions i and j and
returns true if ¢ should be scheduled before j and false otherwise.
The algorithm shows that the primary feature is the maximum
distance and speculative yield feature, which is one of the novel
features based on weighted distances described in Section IV-A.
The secondary features are from two different sources. Helped
cost is also described in Section IV-A and is an extension of
the primary features of the heuristic developed by Deitrich and
Hwu [17]. Path length from root and number of descendants are
features carried over from basic block scheduling.

V. EXPERIMENTAL EVALUATION

The learned decision tree heuristic was incorporated into a list
scheduler and experimentally evaluated on all of the test data
reserved from the SPEC 2000 benchmarks. The heuristic was
evaluated using four different architectural models:

l-issue processor executes all types of instructions.

2-issue processor with one floating point functional unit
and one functional unit that can execute integer,
load/store, and branch instructions.

4-issue processor with one functional unit for each type of
instruction.

6-issue processor with the following functional units: two

integer, one floating point, two load/store, and one
branch.

Many hand-crafted heuristics have been proposed including
critical-path [23], dependence height and speculative yield [1],
[20], G* [16], speculative hedge [17], balance scheduling [18],
and successive retirement [16]. We compared our decision tree
heuristic against the critical-path, G*, dependence height and

speculative yield, and speculative hedge heuristics. We did not
compare against the balance scheduling and successive retirement
heuristics because of their high computational cost. We examined
the results in terms of non-optimal schedules generated, and
maximum percentage differences from optimal.

The critical-path heuristic (hcp) used critical-path distance to
a leaf as the primary feature, updated earliest start time as a tie-
breaker, and order within the instruction stream as the next tie-
breaker. The critical-path heuristic is a popular heuristic in basic
block schedule (see, e.g., [2], [23]). However, it does not make use
of any profile information about branch instructions (how often
a side exit is taken). It is nevertheless interesting to compare
against, as it is among the best profile-independent heuristics.

The dependence height and speculative yield heuristic (hgp,qsy)
was developed by Bringmann [20] and is an extension of Fisher’s
work on trace scheduling [1]. Bringmann’s heuristic attempts to
weight the critical-path distances to each branch while accounting
for the maximum delay in the graph. The priority of an instruction
1 1s calculated as,

priovity(i) = > w(b)(cp(1,n) + 1 — ((cp(1,b) — cp(i, b))
beB(i)

where B(i) is the set of exit nodes that are descendants of i,
w(b) is the exit probability of branch b, cp(1,n) is the critical-
path distance between the root and the leaf node, cp(1,b) is the
critical-path distance between the root node and exit node b and
cp(i, b) is the critical-path distance between instruction 7 and exit
node b.

The G* heuristic (hg«) was developed by Chekuri et al. [16]
and uses a profile independent scheduler and a ranking method to
schedule superblocks. In this heuristic, a superblock is scheduled
using the critical-path heuristic. The rank for each exit point is
then calculated by dividing the cycle in which the exit point
is scheduled by the sum of the exit probabilities for the exit
point under consideration and its preceding exit nodes. The exit
nodes are sorted in ascending order. The final schedule for the
superblock is obtained by taking an exit point from the sorted
list one by one and scheduling it as early as possible with its
predecessors.

The speculative hedge heuristic (hspec) determines and weights
for each instruction but only for the branches which are deter-
mined to be useful [17]. This heuristic calculates the priority of an
instruction by the sum of the weights of the branches that it helps
schedule early. Speculative hedge investigates each operation to
determine whether it helps still unscheduled exit nodes or not. An
operation can help an exit point in two ways: (i) the operation is
on the critical-path to the exit point and delaying the operation
will delay the exit point, and (ii) the operation uses a critical
resource that is critical to the exit point, and preferring some
other operation will delay the exit point. An operation’s priority
is the sum of the exit probabilities helped by the operation.

We compared each of the schedules generated by the heuristics
to the optimal schedule and determined the number of schedules
generated that were more expensive than the optimal schedule.
Table III shows the number of non-optimal schedules for each
architectural model broken down by size. We found that the
decision tree heuristic reduced the number of non-optimally
scheduled blocks by as much as 38% and by at least 16%.
The hgpqsy performed second best while hgpec, hep and hgsx
performed significantly worse under this performance measure.

TABLE III
NUMBER OF SUPERBLOCKS IN THE SPEC 2000 BENCHMARK SUITE NOT SCHEDULED OPTIMALLY BY THE DECISION TREE HEURISTIC (hy;), THE
CRITICAL-PATH HEURISTIC (h¢p), BRINGMANN’S HEURISTIC (R ghqsy), THE G* HEURISTIC (hgs«), AND THE SPECULATIVE HEDGE HEURISTIC (hspec)
FOR RANGES OF SUPERBLOCK SIZES AND VARIOUS ISSUE WIDTHS.

1-issue 2-issue
range hat hCP hdhasy h!]* hSPQC hat hCP hdhasy h!]* hSPQC
3-5 104 143 124 129 143 103 126 123 128 126
6-10 437 3,095 720 2,551 1,935 432 3,097 717 2,510 1,938
11-15 869 4,058 1,555 3,902 2,939 883 4,027 1,557 3,804 2,918
16-20 718 3,363 1,469 3,835 2,639 731 3,353 1,479 3,786 2,626
21-30 1,120 4,333 1,802 5,224 3,273 | 1,145 4,350 1,829 5,169 3,272
31-50 1,302 4,168 1,954 4,966 3,299 | 1,302 4,214 2,015 4,985 3,322
51-100 881 2,482 1,321 2,960 2,012 | 1,054 2,680 1,502 3,102 2,149
101-250 379 795 491 861 676 453 909 599 931 756
251-2,600 68 131 80 131 101 99 152 103 148 114
Total 5,878 22,568 9,516 24,559 17,017 | 6,202 22,908 9,924 24,563 17,221

4-issue 6-issue
range hdt hcp hdhasy hg* hspec hdt th hdhasy h!]* hspec
3-5 0 6 1 6 6 0 0 0 0 0
6-10 185 1,009 228 1,075 978 118 159 115 204 120
11-15 494 1,894 788 2,045 1,662 248 470 255 634 398
16-20 517 1,694 759 1,905 1,504 251 497 306 641 394
21-30 876 2,774 1,250 3,166 2,310 488 912 566 1,202 747
31-50 916 2,737 1,444 3,219 2,233 609 1,092 773 1,470 908
51-100 947 2,051 1,385 2,404 1,740 641 984 787 1,228 866
101-250 458 726 603 770 680 327 444 400 510 419
251-2,600 111 129 119 142 118 61 79 74 80 77
Total 4,504 13,020 6,577 14,7732 11,231 | 2,743 4,637 3,276 5,969 3,929

Once we know how many of the schedules are non-optimal, it
is important to know the worst case behavior of the heuristic. We
measured the maximum percentage difference from the optimal
schedule cost for each of the heuristic costs. Table IV shows
the maximum difference of each heuristic schedule from optimal
broken down by size. We found that the hy, heuristic performs
slightly better than or equal to the other heuristics by this measure.

While numbers of non-optimal schedules and worst-case behav-
ior are revealing, ultimately the most important measure of the
decision tree heuristic is whether it leads to improved performance
when incorporated into a full optimizing compiler. To test this,
we used the Trimaran infrastructure, version 4 (December 2007)
running on Linux. Trimaran [24] is a compiler and performance
monitoring infrastructure that consists of three components: the
OpenIMPACT compiler developed at the University of Illinois,
the Elcor VLIW compiler developed by HP Laboratories, and the
Simu simulator, The simulator supports the HPL-PD parametric
architecture and is realistic as it accounts for stalls caused by
cache misses, branch misprediction, spilling, and so on.

Trimaran performs aggressive optimizations such as superblock
formation, software pipelining, loop unrolling, and function in-
lining and is said to be “on par with state-of-the-art compilation
technology.” We used the highly-tuned default optimization set-
tings of Trimaran with one exception: we also turned on classic
optimizations which include common subexpression elimination,
constant propagation, and dead code elimination. The classic opti-
mizations appear to be turned off by default because they degrade
performance with hyperblocks, but that is of no consequence in
this context.

As a test suite, we used the MediaBench suite of applications
[25] which focuses on multimedia and communications appli-
cations®. We chose to use MediaBench for this phase of our
experimental evaluation rather than continuing with the SPEC
benchmarks for two reasons. First, using a different benchmark
suite provides additional evidence of the robustness of the deci-
sion tree heuristic. Second, the Trimaran framework is optimized
towards applications written in the C programming language and
this is the case for all of the MediaBench applications.

In our our experiments, we used the same four architectural
models as in our experiments on the SPEC benchmarks. We used
as our starting point the default architectural model distributed
with Trimaran and only changed the number of functional units
and the latencies of the operations. The latencies of the operations
were changed to closely model the PowerPC architecture (see the
description in Section IV-B).

Trimaran comes with a list scheduling algorithm and imple-
mentations of three heuristics: hcp, hghasy> and hgx. The choice
of heuristics is perhaps not unexpected, as critical path is known
to be a good heuristic for basic blocks [23] and our experiments
on the SPEC benchmarks indicate that hgpesy and hg« are the
two best hand-crafted heuristics available for superblocks. Unfor-
tunately, the list scheduler in Trimaran allows priority functions
with only static features; i.e., features that are determined before
the execution of the list scheduler. However, the decision tree in
Algorithm 1 contains the dynamic feature called helped cost. The

30nly the ghostscript and mesa applications are excluded from our ex-
periments because they were not successfully compiled by Trimaran on our
infrastructure.

TABLE IV
MAXIMUM PERCENTAGE FROM OPTIMAL ON THE SUPERBLOCKS FROM THE SPEC 2000 BENCHMARK SUITE FOR THE DECISION TREE HEURISTIC (hy;),

THE CRITICAL-PATH HEURISTIC (hcp), BRINGMANN’S HEURISTIC (Aghasy)»

THE G* HEURISTIC (hg«) AND THE SPECULATIVE HEDGE HEURISTIC (Aspec)

FOR RANGES OF SUPERBLOCK SIZES AND VARIOUS ISSUE WIDTHS.

1-issue 2-issue
range hat hCP hdhasy hg* hSPQC hat hCP hdhasy hg* hSPEC
3-5 26.9 26.9 269 269 26.9 | 26.9 26.9 269 269 26.9
6-10 37.5 65.8 37.5 37.5 447 | 37.5 65.8 37.5 37.5 44.7
11-15 25.6 82.0 256 256 65.7 | 26.7 82.0 26.7 25.6 65.7
16-20 24.4 98.2 247 26.9 98.2 | 244 98.2 247 269 98.2
21-30 16.7 1593 287 279 1556 | 16.7 159.3 287 279 155.6
31-50 17.6 192.2 352 31.1 1437 | 17.6 192.2 352 31.1 1437
51-100 12.1 246.0 409 37.7 246.0 | 12.1 246.0 40.9 37.7 246.0
101-250 13.8 170.6 13.8 20.5 1335 | 13.8 170.6 13.8 20.5 1335
251-2,600 5.8 86.4 5.8 6.8 24.4 7.3 86.4 73 11.6 15.2
Maximum | 37.5 246.0 40.9 37.7 246.0 | 37.5 246.0 40.9 377 246.0

4-issue 6-issue
range hdt h(;p hdhasy hg* hspec hdt hC;D hdhasy hg* hSPEC
3-5 0.0 22.2 20.0 222 22.2 0.0 0.0 0.0 0.0 0.0
6-10 40.0 41.1 40.0 41.1 40.0 | 22.2 28.6 222 28.6 25.8
11-15 21.1 47.4 333 41.1 474 | 22.2 314 222 222 314
16-20 219 73.7 222 346 73.7 | 219 52.7 219 238 52.7
21-30 19.1 1529 37.8 427 1529 21.1 80.4 21.1 221 80.4
31-50 28.6 136.0 286 350 129.7 | 294 61.5 204 294 61.5
51-100 11.7 136.5 342 39.1 133.0| 149 106.0 29.3 184 48.9
101-250 10.8 556.1 14.5 16.8 5560 | 12.8 2853 9.6 9.6 2853
251-2,600 4.5 962.1 7.6 19.8 962.1 3.2 478.1 3.3 6.4 478.1
Maximum | 40.0 962.1 40.0 42.7 962.1 | 29.4 478.1 204 294 478.1

decision tree in Algorithm 1 was selected as it gave the the best
accuracy without unnecessarily increasing the size of the tree (see
level 4 in Table II). For this set of experiments we chose a decision
tree at level 2 in Table II. This decision tree has only two features,
but all of the features are static as required. The primary feature is
still the maximum distance and speculative yield feature, and the
secondary tie-breaking feature is the number of descendants. This
smaller decision tree potentially represents a small compromise
in performance.

Trimaran performs instruction scheduling both before register
allocation and once again after register allocation. Once speci-
fied, a given heuristic is used to schedule all basic blocks and
superblocks within an application. Thus, a given heuristic has to
work well on superblocks as well as the special case of basic
blocks.

TABLE V
NUMBER OF CYCLES SAVED (X 106) BY DECISION TREE HEURISTIC hg¢
ACROSS ALL MEDIABENCH APPLICATIONS COMPARED TO hcp, hdh,asys
AND hg* HEURISTICS.

Issue Profiling No profiling

width hcp hdh,asy hg* h{:p hdh,asy hy*
l-issue | 2,142.2 30.2 35.5 | 2,080.0 5437 5437
2-issue | 2,143.0 293 34.8 | 2,090.5 5426 542.6
4-issue | 1,778.6 —1.2 1.1 | 1,713.5 89.8 89.8
6-issue | 1,018.1 1.1 5.7 | 1,014.7 15.8 15.8

We performed two sets of experiments: one set with profile
information and one set without profile information. The results
are summarized for the entire MediaBench benchmark suite

in Table V and more detailed results are presented for each
application in the suite in Tables VI & VII.

In profiling, an application is compiled a first time and executed
on sample inputs. During this execution, the run-time behavior of
the application, such as how often a branch is taken or how often
an instruction is executed, is recorded. The application is then
compiled a second time and the recorded run-time information is
used to optimize the application. In the case of superblocks, the
run-time information about how often a branch is taken and how
often an instruction is executed are both used when forming the
superblocks and the information about how often a branch is taken
is often used by the heuristic when scheduling the superblocks. In
our experiments which used profiling, the decision tree heuristic
was better than the best hand-crafted heuristics for superblocks
on the narrow issue architectural models (1-issue and 2-issue)
and was competitive on the wider issue (4-issue and 6-issue).
Even on the wider issue architectural models, the decision tree
heuristic more often gave improvements than not (see Table V
and Table VI). In an examination of the two applications where
the decision tree heuristic led to noticeably poorer performance
(rasta for several issue widths and adpcm encode for the 6-issue)
we found that the decision tree heuristic found shorter schedules
at a ratio of 4:1 compared to the hand-crafted heuristics. However,
it turned out that although the decision tree heuristic was more
consistent at finding better schedules, in these two applications
the hand-crafted heuristics were lucky and found better schedules
for a few blocks that occurred in hot spots in the program.

A significant drawback of profiling, and the reason it is often
not used in practice, is that it is very time consuming. A

TABLE VI
FOR THE MEDIABENCH APPLICATIONS WHEN PROFILING, NUMBER OF CYCLES EXECUTED BY THE APPLICATION USING THE DECISION TREE HEURISTIC
(hg4t CYCLES), AND THE PERCENTAGE REDUCTION WHEN USING hg; COMPARED TO THE CRITICAL PATH HEURISTIC (CF. h¢p), COMPARED TO
BRINGMANN’S HEURISTIC (CF. hgpqsy), AND COMPARED TO THE G* HEURISTIC (CF. hgx), FOR VARIOUS ARCHITECTURAL MODELS.

MediaBench 1-issue 2-issue

package hg: cycles cf. hep cf. hgpasy cf. g« hg: cycles cf. hep cf. hgpasy cf. hgx
adpcm encode 8,446,257 —35.4% —02% —1.6% 8,446,257 —35.4% —02% —1.6%
adpcm encode-short 11,683,649 —35.1% —-0.1% —-13% 11,683,649 —35.1% —0.1% —-1.3%
adpcm decode 7,359,690 —35.2% 0.0% —1.8% 7,359,690 —35.2% —0.0% —1.8%
adpcm decode-short 10,073,797 —35.6% —-0.1% —-1.6% 10,073,797 —35.6% —0.1% —1.6%
epic epic 60,324,059 —26.0% —-0.6% —-13% 56,561,892 —29.2% —02% —-0.7%
epic unepic 9,919,498 —26.8% —0.1% -0.4% 9,837,260 —27.4% —0.1% —-0.4%
g721 encode 238,807,968 —29.9% 0.0% —0.8% 238,807,968 —29.9% 0.0% —0.8%
g721 encode-short 253,450,429 —31.0% -09% —1.5% 253,450,429 —31.0% —09% —1.5%
g721 decode 218,719,192 —30.4% +0.1% —0.8% 218,719,192 —30.4% +0.1% —-0.9%
g721 decode-short 222,624,246 —34.0% —08% —1.8% 222,830,700 —34.0% —08% —1.7%
gsm encode 143,023,619 —24.0% —0.1% —-0.1% 143,023,619 —24.0% —0.1% —-0.1%
gsm decode 51,459,736 —18.8% 0.0% 0.0% 51,459,736 —18.8% 0.0% 0.0%
jpeg encode 13,596,732 —28.2% 0.0% —1.4% 13,596,732 —28.1% —0.0% —1.4%
jpeg decode 3,736,741 —17.9% +0.1% +0.1% 3,736,741 —17.9% +0.1% +0.1%
mpeg2 encode 1,918,955,512 —44.1% —13% —1.0% | 1,912,390,215 —44.2% —13% —1.0%
mpeg2 decode 88,825,839 —25.4% 0.0% —0.1% 83,947,103 —-26.3% —-0.0% —0.1%
pegwit encode 31,785,226 —25.1% —0.1% —-0.1% 31,785,226 —25.1% —0.1% —-0.1%
pegwit decode 18,558,989 —25.2% —-03% —-0.2% 18,558,989 —25.2% —-03% —-0.2%
pgp encode 71,846,623 —24.9% -03% -22% 71,846,623 —24.9% —03% —-22%
pgp decode 58,548,046 —23.6% —05% —1.6% 58,548,046 —23.6% —05% —1.6%
rasta 14,831,067 —26.3% +04% +1.4% 14,289,501 —27.7% +02% +1.2%

MediaBench 4-issue 6-issue

package hgs cycles cf. hep cf. hgpasy cf. hg« hgs cycles cf. hep cf. hgpasy Cf. g«
adpcm encode 6,514,287 —46.6% 0.0% —0.2% 4,136,466 -44.4% —08% +2.1%
adpcm encode-short 9,723,638 —42.3% —02% —-0.3% 5,769,635 -43.9% +0.6% +0.7%
adpcm decode 5,549,901 —46.7% 0.0% —0.5% 3,676,957 -43.3% 0.0% 0.0%
adpcm decode-short 8,270,908 —44.2% +0.1% —1.0% 4,648,922 -48.1% —01% —-1.0%
epic epic 49,672,158 —30.5% 0.0% -0.1% 47,046,505 -18.1% 0.0% —-0.1%
epic unepic 8,838,221 —28.2% 0.0% 0.0% 8,353,363 -15.4% 0.0% 0.0%
g721 encode 171,862,073 —35.6% —02% —0.5% 116,342,237 -34.1% —04% —0.7%
g721 encode-short 188,370,583 —30.0% —-03% —0.8% 120,278,221 -31.1% 0.0% 0.0%
g721 decode 158,969,896 —35.4% —01% -0.4% 109,712,949 -33.5% —02% —0.6%
g721 decode-short 167,856,054 —31.8% 0.0% —0.7% 109,931,351 -31.6% +0.1% —0.1%
gsm encode 117,682,761 —24.4% +0.1% +0.1% 76,602,416 -33.4% —02% —0.4%
gsm decode 45,070,758 —21.4% 0.0% 0.0% 43,805,109 -9.1% 0.0% 0.0%
jpeg encode 10,571,695 —35.9% 0.0% 0.0% 8,539,999 -26.2% 0.0% 0.0%
jpeg decode 3,173,989 —24.3% 4+0.2% +0.4% 2,744,554 -153% —-0.1% +0.4%
mpeg2 encode 1,422,114,563 —46.7% +0.2% +0.4% 857,708,616 -44.4% 0.0% —0.4%
mpeg2 decode 73,575,288 —28.3% 0.0% +0.1% 65,958,913 -18.0% 0.0% 0.0%
pegwit encode 25,343,654 —29.8% +0.1% +0.1% 21,694,143 -17.8% +0.1% +0.1%
pegwit decode 14,610,786 —29.5% 0.0% 0.0% 12,857,396 -16.6% 0.0% 0.0%
pgp encode 60,862,772 —24.3% +0.1% —2.1% 53,157,538 -14.3% —0.1% —0.9%
pgp decode 51,182,360 —22.1% +0.1% —1.7% 45,885,509 -11.5% 0.0% —0.5%
rasta 13,073,481 —25.5% 0.0% +1.0% 11,714,936 -16.1% —-0.1% +40.2%

compilation that can take seconds or minutes when no profiling is
performed can take hours when profiling is performed. As well,
profiling is often not feasible in environments such as embedded
systems [26]. Fortunately, it is still possible to form high-quality
superblocks without profiling information. Instead of determining
the probability that a branch is taken using profiling, heuristics are

used to predict the most likely direction of a branch [26]. Then,
when scheduling the superblock, assumptions are made about the
probabilities or weights that are associated with each exit in the
superblock. Let n be the number of exit nodes in a superblock
and let w;, 1 < i < n, be the associated exit probabilities
of these branches. In Trimaran, for scheduling purposes, the

TABLE VII
FOR THE MEDIABENCH APPLICATIONS WHEN 70 PROFILING, NUMBER OF CYCLES EXECUTED BY THE APPLICATION USING THE DECISION TREE
HEURISTIC (hgs CYCLES), AND THE PERCENTAGE REDUCTION WHEN USING hj; COMPARED TO THE CRITICAL PATH HEURISTIC (CF. hcp) AND
COMPARED TO BRINGMANN’S HEURISTIC (CF. hdhasy)» FOR VARIOUS ARCHITECTURAL MODELS. THE RESULTS FOR THE G* HEURISTIC (hg*) ARE
INDISTINGUISHABLE FROM THOSE FOR hdhusy AND ARE OMITTED.

MediaBench 1-issue 2-issue

package hqs cycles cf. hep cf. hgpasy hgs cycles cf. hep cf. hgnasy
adpcm encode 8,446,257 —35.4% —10.7% 8,446,257 —35.4% —10.7%
adpcm encode-short 12,398,239 —31.1% —8.9% 12,398,239 —-31.1% —8.9%
adpcm decode 7,652,041 —32.6% —7.9% 7,652,041 —32.6% —7.9%
adpcm decode-short 10,695,016 —31.6% —10.0% 10,695,016 —31.6% —-10.0%
epic epic 60,713,821 —25.5% —1.7% 56,785,388 —28.9% —1.2%
epic unepic 10,033,780 —26.0% —1.8% 9,951,543 —26.6% —1.8%
2721 encode 241,502,414 —29.1% —4.9% 241,502,414 —29.1% —4.9%
2721 encode-short 258,921,853 —29.5% —3.6% 258,921,853 —29.5% —3.6%
2721 decode 222,751,063 —29.2% —4.8% 222,751,063 —29.2% —4.8%
€721 decode-short 229,727,151 —-31.9% -3.9% 229,727,585 —31.9% —3.9%
gsm encode 143,515,205 —23.7% —1.7% 143,515,205 —23.7% —1.7%
gsm decode 51,472,235 —18.7% -0.1% 51,472,235 —18.7% —0.1%
jpeg encode 13,698,894 —27.6% —2.9% 13,698,894 —27.6% —-2.9%
jpeg decode 3,759,402 —17.4% —0.9% 3,759,402 —17.4% —-0.9%
mpeg2 encode 1,952,256,429 —43.1% —-20.0% | 1,940,747,811 —43.3% —20.0%
mpeg2 decode 92,304,588 —22.5% —0.3% 83,133,212 —-27.0% +0.3%
pegwit encode 32,304,738 —23.9% —-9.1% 32,304,738 —23.9% —-9.1%
pegwit decode 18,958,844 —23.6% —7.6% 18,958,844 —23.6% —7.6%
pgp encode 73,232,330 —23.5% —1.1% 73,232,628 —23.5% —-1.1%
pgp decode 59,712,532 —22.0% —0.3% 59,712,532 —22.0% —0.3%
rasta 14,634,998 —27.3% —0.7% 14,111,107 —28.6% —0.7%

MediaBench 4-issue 6-issue

package has cycles cf. hep cf. hgpasy hgs cycles cf. hep cf. hgpasy
adpcm encode 6,599,034 —45.9% —0.8% 4,093,509 —45.0% —1.7%
adpcm encode-short 10,038,211 —40.4% —2.4% 5,868,700 —42.9% —2.5%
adpcm decode 5,625,450 —46.0% +0.5% 3,704,820 —42.9% +0.4%
adpcm decode-short 8,591,629 —42.1% —3.7% 4,762,566 —46.8% —0.7%
epic epic 49,685,522 —30.5% —0.2% 47,001,176 —18.2% —0.1%
epic unepic 8,865,562 —28.0% +0.2% 8,337,928 —15.5% 0.0%
2721 encode 175,482,744 —34.2% —0.6% 116,748,973 —33.8% —0.2%
g721 encode-short 192,109,213 —28.7% -0.3% 122,099,509 —30.1% +0.9%
€721 decode 164,271,968 —33.3% —0.1% 110,886,017 —32.7% +0.1%
€721 decode-short 172,376,440 —30.0% —0.4% 112,445,359 —30.0% +0.9%
gsm encode 118,256,651 —24.1% —0.4% 76,748,812 —33.3% —0.6%
gsm decode 45,099,101 -21.3% +0.1% 43,802,221 -9.1% 0.0%
jpeg encode 10,628,241 —35.5% —0.3% 8,550,111 —26.1% —0.1%
jpeg decode 3,201,916 —23.6% +0.4% 2,725,442 —159% —0.1%
mpeg2 encode 1,469,141,286 —44.9% —5.5% 854,908,396 —44.6% —2.0%
mpeg2 decode 73,080,141 —28.8% 0.0% 65,916,614 —18.0% 0.0%
pegwit encode 25,398,614 —29.6% —1.0% 21,732,588 —17.7% 0.0%
pegwit decode 14,616,209 —29.5% —0.6% 12,851,594 —16.6% 0.0%
pgp encode 60,799,546 —24.4% —0.2% 53,150,945 —14.3% 0.0%
pgp decode 51,146,157 —22.2% -0.2% 45,894,022 —11.5% 0.0%
rasta 12,999,267 —25.9% 0.0% 11,724,115 —16.0% 0.0%

probabilities in the case of no profiling are set as follows: w; = €,
1 <i < n, and wy, = 1, where ¢ is a small, non-zero value. In our
experiments which did not use profiling, the decision tree heuristic
was better than the best hand-crafted heuristics for superblocks
on all architectural models with reductions in numbers of cycles

executed of up to 20% on one application (mpeg2 encode) and
significant reductions on many other applications (see Table V and
Table VII). Interestingly, with Trimaran’s probability distribution
over the branch nodes described above, the hgpesy and hgsx
heuristics are, for all practical purposes, indistinguishable. In an

examination of the applications where the decision tree heuristic
gave the most significant performance improvements it appears
that part of the reason for the success of the decision tree heuristic
is that it reduces the number of spills. A spill is the case where
there is an insufficient number of registers available to hold all
intermediate results and some results have to be temporarily saved
in memory and later reloaded back into registers. A second reason
is that the primary feature in our decision tree heuristic, which
is one of the novel features that we constructed, gives a much
better estimate of the true distance between two instructions. This
is especially true on the narrower issue architectural models.

VI. DISCUSSION

A machine learning approach for constructing heuristics for
superblock scheduling has several advantages over hand-crafted
heuristics. The primary advantage is that of efficiency. As was
noted in the introduction, hand-crafting a heuristic has been
reported to be a time-consuming process. In contrast, in a machine
learning approach feature construction needs to be done just once
(as we have done in this paper). In scheduling domains where
an optimal scheduler is available, all of the subsequent stages
can be fully automated. This means that new heuristics can be
easily generated for new architectures and for new programming
languages and programming styles. Note that the efficiency of
the optimal scheduler is not of great importance since the data
gathering stage in machine learning is offline.

A secondary advantage of a machine learning approach is that
hand-crafted heuristics are prone to the well-known pitfall of
overfitting; that is, they work well on the training data to which
they are tuned but not as well on data that has not been seen
before. In contrast, we used techniques from machine learning
which are designed to avoid overfitting. In particular, we used
feature filtering, feature selection, the use of a validation set, and
most importantly, the complete separation of the data used to
discover the heuristic from the data used to evaluate the heuristic.
As was also noted in our previous work on learning basic block
scheduling heuristics [12], some further secondary advantages of
a machine learning approach include: (i) it is possible to test
many more possible combinations of features and orderings of
features than in a hand-crafted approach, (ii) richer forms of the
heuristics can be tested (the form of the decision tree heuristic is
more complex than the form that is usually constructed by hand,
which is a series of tie-breaking schemes), and (iii) the improved
overall performance of the resulting heuristic.

VII. CONCLUSION

We presented, for the first time, a study on automatically learn-
ing a good heuristic for superblock scheduling using supervised
machine learning techniques. The novelty of our approach is in
the quality of the training data—we obtained training instances
from very large superblocks and we performed an extensive and
systematic analysis to identify the best features and to synthesize
new features—and in our emphasis on learning a simple yet
accurate heuristic. We performed an extensive evaluation of
the heuristic that was automatically learned by comparing it
against previously proposed hand-crafted heuristics and against
an optimal scheduler, using superblocks from the SPEC 2000
and MediaBench benchmark suites. On these benchmark suites,
the decision tree heuristic was always competitive with the
previously proposed hand-crafted heuristics and was often better.

In particular, the decision tree heuristic reduced the number of
basic blocks that were not optimally scheduled by up to 38% and
reduced the number of cycles needed to execute a large software
package by up to 20%.

Beyond heuristics for compiler optimization, our results also
provide further evidence for the interest of machine learning
techniques for discovering heuristics. This approach for auto-
matically constructing accurate heuristics can be extended into
any scheduling domain where (a possibly inefficient) optimal
scheduler exists. Job shop scheduling and timetabling are two
such problems that could benefit from this approach.

ACKNOWLEDGEMENTS

This research was supported by an IBM Center for Advanced
Studies (CAS) Fellowship, an NSERC Postgraduate Scholarship,
and an NSERC CRD Grant.

REFERENCES

[1] J. A. Fisher, “Trace scheduling: A technique for global microcode
compaction,” IEEE Transactions on Computers, vol. C-30, pp. 478—490,
1981.

[2] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.
Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G.
Holm, and D. M. Lavery, “The superblock: An effective technique for
VLIW and superscalar compilation,” The Journal of Supercomputing,
vol. 7, no. 1, pp. 229-248, 1993.

[3] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-
mann, “Effective compiler support for predicated execution using the
hyperblock,” in Proceedings of the 25th Annual IEEE/ACM International
Symposium on Microarchitecture (Micro-25), Portland, Oregon, 1992,
pp. 45-54.

[4] J. Hennessy and T. Gross, “Postpass code optimization of pipeline con-
straints,” ACM Transactions on Programming Languages and Systems,
vol. 5, no. 3, pp. 422-448, 1983.

[5]1 S. Hoxey, F. Karim, B. Hay, and H. Warren, The PowerPC Compiler
Writer’s Guide. Warthman Associates, 1996.

[6] A. M. Malik, T. Russell, M. Chase, and P. van Beek, “Optimal
superblock instruction scheduling for multiple-issue processors using
constraint programming,” School of Computer Science, University of
Waterloo, Technical Report CS-2006-37, 2006.

[71 J. R. Quinlan, C4.5: Programs for Machine
Morgan Kaufmann, 1993, the C4.5 software is
http://www.cse.unsw.edu.au/~quinlan/.

[8] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, 3rd ed. Morgan Kaufmann, 2003.

[9]1 R. Govindarajan, “Instruction scheduling,” in The Compiler Design

Handbook, Y. N. Srikant and P. Shankar, Eds. CRC Press, 2003, pp.

631-687.

J. E. B. Moss, P. E. Utgoff, J. Cavazos, , D. Precup, D. Stefanovic,

C. Brodley, and D. Scheef, “Learning to schedule straight-line code,” in

Proceedings of the 10th Conference on Advances in Neural Information

Processing Systems (NIPS), Denver, Colorado, 1997, pp. 929-935.

A. McGovern, J. E. B. Moss, and A. G. Barto, “Building a basic

block instruction scheduler using reinforcement learning and rollouts,”

Machine Learning, vol. 49, no. 2/3, pp. 141-160, 2002.

A. M. Malik, T. Russell, M. Chase, and P. van Beek, “Learning heuristics

for basic block instruction scheduling,” Journal of Heuristics, Accepted

for publication, 2006.

A. M. Malik, J. Mclnnes, and P. van Beek, “Optimal basic block

instruction scheduling for multiple-issue processors using constraint pro-

gramming,” in Proceedings of the 18th IEEE International Conference

on Tools with Artificial Intelligence, Washington, DC, 2006, pp. 279—

287.

M. Smotherman, S. Krishnamurthy, P. S. Aravind, and D. Hunnicutt,

“Efficient DAG construction and heuristic calculation for instruction

scheduling,” in Proceedings of the 24th Annual IEEE/ACM International

Symposium on Microarchitecture (Micro-24), Albuquerque, New Mex-

ico, 1991, pp. 93-102.

X. Li and S. Olafsson, “Discovering dispatching rules using data

mining,” Journal of Scheduling, vol. 8, pp. 515-527, 2005.

Learning.
available at:

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

C. Chekuri, R. Johnson, R. Motwani, B. Natarajan, B. R. Rau, and
M. Schlansker, “Profile-driven instruction level parallel scheduling
with application to superblocks,” in Proceedings of the 29th Annual
IEEE/ACM International Symposium on Microarchitecture (Micro-29),
Paris, 1996, pp. 58-67.

B. Deitrich and W. Hwu, “Speculative hedge: Regulating compile-time
speculation against profile variations,” in Proceedings of the 29th Annual
IEEE/ACM International Symposium on Microarchitecture (Micro-29),
Paris, 1996.

A. E. Eichenberger and W. M. Meleis, “Balance scheduling: Weighting
branch tradeoffs in superblocks,” in Proceedings of the 32nd Annual
IEEE/ACM International Symposium on Microarchitecture (Micro-32),
Haifa, Israel, 1999.

I. H. Witten and E. Frank, Data Mining. Morgan Kaufmann, 2000.
R. A. Bringmann, “Enhancing instruction level parallelism through
compiler-controlled speculation,” Ph.D. dissertation, University of Illi-
nois at Urbana-Champaign, 1995.

R. J. Blainey, “Instruction scheduling in the TOBEY compiler,” IBM J.
Res. Develop., vol. 38, no. 5, pp. 577-593, 1994.

I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. of Machine Learning Research, vol. 3, pp. 1157-1182,
2003.

S. Muchnick, Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

L. N. Chakrapani, J. Gyllenhaal, W. W. Hwu, S. A. Mahlke, K. V.
Palem, and R. M. Rabbah, “Trimaran: An infrastructure for research in
instruction-level parallelism,” in Proceedings of the 17th International
Workshop on Languages and Compilers for High Performance Comput-
ing, West Lafayette, Indiana, USA, 2005, pp. 32-41.

C. Lee, M. Potkonjak, and W. Manginoe-Smith, “MediaBench: A tool
for evaluating and synthesizing multimedia and communications,” in
Proceedings of the 30th Annual IEEE/ACM International Symposium on
Microarchitecture (Micro-30), Research Triangle Park, North Carolina,
1997, pp. 330-335.

R. E. Hank, S. A. Mahlke, R. A. Bringmann, J. C. Gyllenhaal, and
W. W. Hwu, “Superblock formation using static program analysis,” in
Proceedings of the 26th Annual IEEE/ACM International Symposium on
Microarchitecture (Micro-26), Austin, Texas, 1993, pp. 247-255.

