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Many embedded processors use clustering to scale up instruction level parallelism in a cost effective manner.
In a clustered architecture, the registers and functional units are partitioned into smaller units and clusters
communicate through register-to-register copy operations. Texas Instruments, for example, has a series of
architectures for embedded processors which are clustered. Such an architecture places a heavier burden
on the compiler, which must now assign instructions to clusters (spatial scheduling), assign instructions
to cycles (temporal scheduling), and schedule copy operations to move data between clusters. We consider
instruction scheduling of local blocks of code on clustered architectures to improve performance. Scheduling
for space and time is known to be a hard problem. Previous work has proposed greedy approaches based on
list scheduling to simultaneously perform spatial and temporal scheduling, and phased approaches based on
first partitioning a block of code to do spatial assignment and then performing temporal scheduling. Greedy
approaches risk making mistakes that are then costly to recover from and partitioning approaches suffer
from the well-known phase ordering problem. In this paper, we present a constraint programming approach
for scheduling instructions on clustered architectures. We employ a problem decomposition technique that
solves spatial and temporal scheduling in an integrated manner. We analyze the effect of different hardware
parameters—such as the number of clusters, issue-width and inter-cluster communication cost—on applica-
tion performance. We found that our approach was able to achieve an improvement of up to 26%, on average,
over a state-of-the-art technique on superblocks from SPEC 2000 benchmarks.
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1. INTRODUCTION

Optimizing code for embedded processors is becoming increasingly important because
of their pervasive use in consumer electronics. For example, millions of cellular phones
are powered by a member of the ARM11 processor family. Similar processors are widely
used in consumer, home and embedded applications. Their low power and speed opti-
mized designs (350MHz-1GHz) makes them feasible for mobile devices, media process-
ing and real-time applications. Billions of the ARM processors are shipped each year
by manufacturers [ARM 2011].
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Fig. 1. Datapath model of a dual-cluster processor. The functional units are clustered into two identical sets
each having a separate set of registers. In the given model communication between clusters is through an
interconnect. (Adapted from [Fisher et al. 2005].)

With the increasing complexity of embedded processor designs, clustering has been
proposed to organize the functional units on the processor (see Figure 1). A clustered
architecture has more than one register file with a number of functional units asso-
ciated with each register file called a cluster. Clusters are connected to each other
with some interconnection topology [Fisher et al. 2005]. Among recent examples of
clustered architectures are the Texas Instruments TMS320C6x family of DSPs [Texas
Instruments 2011]. In particular, the TMS320C64x features two clusters with four
functional units each and a 32x 32 register file (32 registers, each of 32 bits). Data can
be moved between two clusters through inter-cluster interconnect using an explicit
copy operation.

A compiler for a clustered architecture is responsible for scheduling instructions to
both time cycles (temporal scheduling) and clusters (spatial scheduling). The primary
goal of scheduling on a clustered architecture is to identify parts of the program which
can be executed concurrently on different clusters in the processor and exploit instruc-
tion level parallelism. Previous work has proposed heuristic approaches to partition
straight-line regions of code for clustered architectures (see [Aleta et al. 2009] and the
references therein; for some recent work, also see [Ellis 1986; Rich and Farrens 2000;
Lee et al. 1998; 2002]). Chu et al. [2003] describe a hierarchical approach to find bal-
anced partitions of a given dependence graph for a block which is a state-of-the art
technique we compare against (see the Related Work section for details).

In this article, we present a constraint programming approach for spatial schedul-
ing for clustered processors where clusters can communicate with each other using the
cluster inter-connect with some non-zero cost. Our approach is robust and searches
for an optimal solution. In a constraint programming approach, a problem is modeled
by stating constraints on acceptable solutions, where a constraint defines a relation
among variables, each taking a value in a given domain. The constraint model is usu-
ally solved using backtracking search. The novelty of our approach lies in the decompo-
sition of the problem and our improvements to the constraint model in order to reduce
the effort required to search for the optimal solution. Our approach is applicable when

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A Constraint Programming Approach for Integrated Spatial and Temporal Scheduling A:3

larger compile times are acceptable. In contrast to previous work we assume a more
realistic instruction set architecture containing non-fully pipelined and serializing in-
structions.

In our experiments we evaluated our approach on superblocks from the SPEC 2000
integer and floating-point benchmarks, using different clustered architectural config-
urations. We compared our results against the hierarchical partitioning scheme for
spatial and temporal scheduling, RHOP [Chu et al. 2003]. We experimented with var-
ious inter-cluster communication costs from one to eight cycles to analyze the effects
of inter-cluster communication on program performance. We found that in our experi-
ments we were able to improve schedule costs of superblocks in the SPEC2000 bench-
marks up to 26% on average over RHOP, depending on the architectural model. Also in
our experiments we were able to solve a large percentage of blocks optimally with a ten
minute time limit for each block. This represents a significant improvement over ex-
isting solutions. Furthermore, there is no current work that systematically evaluates
the impact of communication cost on the amount of extractable parallelism.

The rest of this article is organized as follows. An overview of the background ma-
terial is given in Section 2. Section 3 gives details of our approach and improvements
to a basic constraint model. Section 4 describes the experimental setup, the results,
and an analysis of the results. Section 5 gives an overview of related work. Finally, the
article concludes with Section 6.

2. BACKGROUND

This section provides the necessary background required to understand the approach
described in the rest of the article. It also gives a statement of the problem that this
article solves along with the assumptions and the architectural model.

For the purposes of this article the following architectural model is assumed. We
consider a clustered architecture, which has a small number of clusters and register
values can be transferred between clusters over a fast interconnect using explicit move
operations. In general, the following holds for our architecture model.

— Clusters are homogeneous. This means that all clusters have the same number of
identical functional units and the same issue-width.

— The instruction set architecture is realistic in the sense that in addition to pipelined
instructions, the instruction set contains non-pipelined instructions as well as seri-
alizing instructions. A serializing instruction needs the entire cluster in which it is
issued in the cycle it is issued. Thus, both of these are instructions which may disrupt
the instruction pipeline.

— Clusters can communicate with each other with a constant non-zero cost of ¢ cycles.
After the result of an instruction is available, it would take ¢ cycles to transfer the
resultant value to a different cluster where it is needed. We assume no limit on the
inter-cluster communication bandwidth; i.e., the number of inter-cluster moves that
can occur in a given cycle. Our interest is in smaller clustered architectures and as a
result we assume that clusters are fully connected.

The assumptions given above are similar to those used to test RHOP [Chu et al.
2003] with the difference being that RHOP does not assume homogeneous clusters
and does not consider non-pipelined or serializing instructions which are common fea-
tures of realistic instruction set architectures. In addition RHOP has so far only been
evaluated with an inter-cluster communication cost of one.

Communication between clusters is a well studied problem. Terechko and Corpo-
raal [2007] present a comparative evaluation of five different techniques for inter-
cluster communication including dedicated issue slots, extended operands, and mul-
ticast has been presented. Parcerisa et al. [2002] discuss an evaluation of various
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Fig. 2. (a) DAG representation of a superblock, where G and H are branch instructions with exit prob-
abilities of 20% and 80% respectively. B is a serializing instruction and C is a non-pipelined instruction.
(b) A possible schedule for the superblock given in (a) for a single-cluster which is dual-issue and has two
functional units. One functional unit can execute clear instructions and the other can execute shaded in-
structions. The weighted completion time for the schedule is 8x0.2 + 9%x0.8 = 8.8 cycles. (c) A possible
schedule for the same superblock for a dual-cluster processor where the clusters can communicate with unit
cost and each cluster is the same as the cluster in (b) The assignment of C, E and G to cluster c1 and the
rest of the instructions to c0 results in a schedule with weighted cost of 6x0.2 + 8 x0.8 = 7.6 cycles.

cluster-interconnect topologies including mesh, ring and bus interconnects and their
variants. Aggarwal and Franklin [2005] examine hierarchical interconnects. The im-
portant item to note here is that, while inter-cluster communication is small on some
popular architectures, it is not always negligible in practical clustered architectures.

Instruction scheduling is done on certain regions of a program. A basic block is a
region of straight-line code with a single entry point and a single exit. A superblock
is a sequence of instructions with a single entry point and multiple possible exits.
We use the standard directed acyclic graph (DAG) representation for basic blocks and
superblocks. Each vertex in the DAG corresponds to an instruction and there is an edge
from vertex i to vertex j labeled with a non-negative integer (i, j) which represents
the delay or latency between when the instruction is issued and when the result is
available for the other instructions on the same cluster. The critical path distance from
a vertex i to vertex j in a DAG is the maximum sum of the latencies along any path
from i to j. The earliest start time of a vertex i is a lower bound on the earliest cycle
in which the instruction i can be scheduled. Exit vertices are special nodes in a DAG
representing branch instructions in superblocks. Each exit vertex i is associated with
a weight w(i) representing the probability that the flow of control will leave the block
through this exit point. These have been calculated through profiling. See Figure 2(a)
for a DAG representing a superblock.

With the given architectural model and the dependency DAG for a basic block or a
superblock, the spatial scheduling problem can be described as an optimization prob-
lem where each instruction has to be assigned to a clock cycle and also assigned to a
cluster such that the latency and resource constraints are satisfied.
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Table I. Notation.

k number of clusters

c cost of an inter-cluster move operation
1(3,7) latency between instructions i and j

ep(i,7) critical path distance from : to j

w(i) exit probability of a node 7 in the superblock
S(17) clock cycle in which ¢ is issued

A(t) cluster assignment for instruction ¢
x;,Yi,2i;  variables for defining the constraint model
dom(v) domain of variable v

Definition 2.1 (Temporal Schedule). The temporal schedule S for a block is a map-
ping of each instruction in a DAG to a time cycle.

Definition 2.2 (Weighted Completion Time). The weighted completion time for a su-
perblock schedule is given by the summation )", w(i)S(i), where n is the number of
exit nodes, w(i) is the weight of exit < and S(7) is the clock cycle in which i is issued in
a schedule.

Given the definition of weighted completion time, which applies to both basic blocks
and superblocks, the spatial scheduling problem can be stated as follows. Here, it
should be noted that basic blocks are special superblocks with a single exit, with the
flow of control guaranteed to leave the block from the same instruction.

Definition 2.3 (Spatial Schedule). The spatial schedule for a superblock is an as-
signment A giving a mapping of each instruction in a DAG to a cluster.

Thus the purpose of spatial scheduling is to find a cluster assignment for each in-
struction in the block while minimizing the weighted completion time of the block.

Definition 2.4 (Spatial and Temporal Scheduling). Given the dependence graph
G = (V, E) for a superblock and the number of available clusters k in a given architec-
tural model, the spatial and temporal scheduling problem is to find an assignment A
and a schedule S for all vertices in the graph G such that A(i) € {0,...,k — 1} for each
instruction 7 in the block and start time S(i) € {1, ..., 00} that minimizes the weighted
completion of the code block. The assignment and schedule must satisfy resource and
communication constraints of the given architectural model.

Temporal scheduling on realistic multiple issue processors is known to be a hard
problem and compilers use heuristic approaches to schedule instructions. On clustered
architectures the compiler has an additional task of spatial scheduling, partitioning in-
structions across the available computing resources. The compiler has to carefully con-
sider the tradeoffs between parallelism and locality because a small spatial mistake
is more costly than a small temporal mistake. For example, if a critical instruction is
scheduled one cycle late then only a single cycle is lost. But if the same is scheduled on
a different cluster then multiple cycles may be lost from unnecessary communication
delays and resource contention. The combination of spatial and temporal scheduling
is a much harder problem than simple temporal scheduling alone. The main idea be-
hind our approach is to partition the DAG and schedule each partition on a cluster.
To overcome the well-known phase ordering problem, we backtrack over the possible
partitions, searching for a partition that leads to an optimal schedule. The key to our
approach is a set of techniques for speeding up the search sufficiently to make our
approach useful in practice.
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Definition 2.5 (Balanced Graph Partitioning). The balanced graph partitioning
problem consists of splitting a graph G into & disjoint components of roughly equal
size such that the number of edges between different components is minimized.

When k£ = 2, the problem is also referred to as the graph bisection problem. The
balanced graph partitioning problem is known to be NP-hard for £ > 2 [Andreev and
Récke 2004]. The spatial scheduling problem described above can be harder than bal-
anced graph partitioning because the feasible partitions of the DAG can also be fewer
than £ (so it would need to consider solutions with number of partitions from 1 to k).

We use constraint programming to model and solve the integrated spatial and tem-
poral scheduling problem. Constraint programming is a methodology for solving hard
combinatorial problems, where a problem is modeled in terms of variables, values and
constraints (see [Rossi et al. 2006]).

Definition 2.6 (Constraint Model). A constraint model consists of a finite set of vari-
ables X = {1, -+, x,}, a finite domain of values dom(z;) that each variable z; € X can
take and a set of constraints C = {C, - -, C,,} where each constraint is defined over a
subset of variables in X. A solution to the constraint model is an assignment of a value
to each variable in X such that all of the constraints in C are satisfied.

Once the problem has been modeled such that the variables along with their do-
mains have been identified and the constraints specified, backtracking over the vari-
ables is employed to search for a solution. At every stage of the backtracking search,
there is some current partial solution that the algorithm attempts to extend to a full
solution by assigning a value to an uninstantiated variable. One of the keys behind
the success of constraint programming is the idea of constraint propagation. During
the backtracking search when a variable is assigned a value, the constraints are used
to reduce the domains of the uninstantiated variables by ensuring that the values in
their domains are consistent with the constraints.

3. CONSTRAINT PROGRAMMING APPROACH

In this section we present a constraint model for the spatial scheduling problem. Each
instruction is represented by a node in the superblock DAG. Each node i in the graph
is represented by two variables in the model, z; and y;. The variable z; € {1,...,m} is
the temporal variable representing the cycle in which the instruction is to be issued.
The upper-bound m to these variables can be calculated using a heuristic scheduling
method for a single cluster. The variable y; € {0,...,k — 1} is the spatial variable
that identifies the cluster to which instruction 7 is to be assigned. The key is to scale
up to large problem sizes. In developing an optimal solution to the spatial scheduling
problem we have applied and adapted several techniques from the literature including
symmetry breaking, branch and bound and structure based decomposition techniques.
It should be noted here that spatial scheduling cannot be feasibly and reliably solved
independently as it heavily relies on temporal scheduling to determine the cost of a
given cluster assignment. This leads us to an integrated solution design.

The main technique is to solve the problem using a master-slave decomposition
which preserves optimality. We model the spatial scheduling as master which solves
multiple slave problems to schedule instructions for a given cluster assignment. The
master problem determines the assignment to the y variables (i.e. the cluster assign-
ment to each instruction) and the slave problem schedules each instruction to a time
cycle.

Example 3.1 (Example Basic Block). Figure 3(a) shows a simple dependency DAG
for a basic block. The search tree for a simple constraint model for a 4-cluster archi-
tecture is shown in Figure 3(b) where the assignment of each instruction to a cluster
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find temporal schedule find temporal schedule
for y=(0,0,0,2) for y=(3,2,2,0)

(a) (b)

Fig. 3. (a) Example basic block. (b) Search tree for the simple constraint model associated with the basic
block.

is determined at the leaf nodes and the optimal scheduler is used to calculate the tem-
poral schedule for the given assignment. We use this as our running example.

The design was inspired by Benders [1962] and Dantzig-Wolfe [1960] decomposition
techniques in integer programming, where an integer program is decomposed into a
master-slave problem and the master problem generates many subproblems (or slave
problems) which are solved hierarchically.

3.1. Symmetry Breaking

Symmetry can be exploited to reduce the amount of search needed to solve the prob-
lem. Backtracking over symmetric states does not improve the solution and consumes
valuable computation time. If the search algorithm is repeatedly visiting similar states
then recognizing and excluding equivalent states can significantly reduce the size of
the search space. Using the technique of symmetry breaking, we aim to remove prov-
ably symmetric assignments to instructions. An example of symmetry breaking would
be assigning the first instruction to the first cluster and thus discarding all the solu-
tions where the first instruction is on any other cluster. This guarantees the preserva-
tion of at least one optimal assignment.

Our approach to symmetry breaking is to reformulate the problem such that it has a
reduced amount of symmetry. We model the problem such that each edge (v;,v;) in the
DAG is represented by a variable z;; € {=, #}. Our model inherently breaks symmetry
by using backtracking search to assign values to the z variables, which represent the
edges in the blocks. For a variable z;;, assigning a value of = means that variables y;
and y; must take the same value and assigning a value of # means that y; and y; must
take different values.

Example 3.2 (Improved Model for Running Example). Consider the basic block of
our running example given in Figure 3. The search tree for the improved model for the
example is shown in Figure 4.

The improved model reduces the size of the search tree significantly. It should be
noted here that the improved model holds for an architecture where the inter-cluster
communication cost is the same for each pair of clusters. This results in the equiva-
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determine v, determine v,
find temporal schedule find temporal schedule
for y=(0,0,0,0) for y=(0,1,1,0)
same as y=(1,1,1,1) etc. same as y=(2,3,3,2), y=(0,2,2,3) etc.

Fig. 4. Search tree of the improved constraint model.

lence of spatial schedules such as y = (2,3,3,2) and y = (0,2,2,3) where it does not
matter if instructions A and D are assigned to the same cluster or not because there
is no direct dependency between A and D and hence no constraint between variables
ya and yp.

Once the variables z;; € {=,#} are set, an assignment to all instructions can be
determined, i.e. values can be assigned to all variables y; for i € {1,..,n}. Once an
assignment to all instructions is available, an existing optimal temporal scheduler
[Malik et al. 2008] is used to compute the best weighted completion time for the block
for the given cluster assignment. The backtracking algorithm continues exhaustively,
updating the minimum cost as it searches the solution space. In the case where an
assignment is not possible for the given values of z variables, a conflict is detected (see
Figure 5).

3.2. Branch and Bound

During the search for a solution, the backtracking algorithm can determine a complete
assignment at the leaf nodes of the search tree. But certain branches of the search tree
can be pruned if it can be guaranteed that all of the leaf nodes in that branch can
be safely eliminated without eliminating at least one optimal solution. There are two
cases in which an internal node of the search tree can be labeled as such.

1. The first case is where an assignment to the y variables is not possible for the
partial assignment to the z variables. This can be detected if even one of the y vari-
ables cannot be assigned a value in {0, ...,k — 1} without violating the constraints
given by the z variables. An example of such a violation is given in Figure 5. To
discover such violations early in the search, the z variables are assigned in a fixed
order that corresponds to a breadth-first traversal of the DAG.

2. The second case is where the partial assignment to the y variables can be proven to
result in a temporal schedule with a cost greater than the established upper bound
and any assignment that contains the given subset of cluster assignment cannot
result in a better schedule. The search space can be reduced by eliminating all
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Fig. 5. An example of inconsistent assignment to z variables for which valid values cannot be assigned to
the y variables.

such assignments containing this sub-assignment. Also note that the upper bound
is gradually improved upon as better solutions are found.

In both the above mentioned cases the backtracking algorithm does not descend
further in the search tree. This is done continuously during the algorithm as upper-
bounds are improved upon.

3.3. Connected Sub-structures

The amount of search done by the algorithm can be reduced if it can be pre-determined
that certain instructions are connected and would be assigned to the same cluster
in at least one optimal solution to the assignment problem. To this end we define a
connected sub-structure as follows.

Definition 3.3 (Connected Sub-structure). A connected sub-structure of a depen-
dency DAG is a set of instructions with the properties: (i) there is at most a single
instruction in the set with external incoming dependency edges; (ii) there is at most
a single instruction in the set with external outgoing dependency edges; and (iii) the
set of instructions can be scheduled on a single cluster such that the latency and re-
source constraints are satisfied and each instruction can be scheduled at its earliest
start time.

The definition implies that the given set of instructions, if considered separately,
cannot have a better schedule even if there are more functional units in the cluster
or if there are more clusters. Some examples of connected sub-structures are given in
Figure 6. For example, in Figure 6(a) the two connected sub-structures in the block are
identified with boxes. A chain is a totally ordered set of three or more instructions in
the dependency DAG. It should be noted that to preserve optimality we consider the
pre-assignment chain optimization only if the number of concurrent chains is less than
the number of available clusters.

LEMMA 3.4. A chain is a connected sub-structure in our restricted architectural
models.

Proof: As a chain consists of a set of totally ordered instructions, the second instruc-
tion in the chain cannot be executed until the result of the first is available. Similarly,
the third instruction cannot begin execution until the second instruction has completed

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 M. Beg and P. van Beek

Fig. 6. Examples of connected sub-structures in blocks. Each of the connected sub-structures is marked by
bounding box. Chains like the ones given in (a) and (b) form connected sub-structures in all architectures
where as complex connected sub-structures may also exist like in (¢) where the connectedness is conditional
upon the types of instructions and the architectural configuration for which the code is being compiled.

execution and so forth. The simplest architectural model is a single issue clustered
architecture having a single functional unit. The instructions in the chain can be exe-
cuted on this functional unit one by one. Now consider that the number of functional
units on this cluster are increased along with the issue-width. There is no better sched-
ule for the chain compared to the previous architecture since there is no instruction
level parallelism (ILP) that can be exploited by extending the architecture. Similarly,
if we increase the number of clusters, there is no more ILP that can be exploited by the
additional clusters. Hence the number of cycles required to execute the chain remain
the same regardless of the architectural model. O

THEOREM 3.5. Given a superblock with one or more chains, if the number of chains
is less than or equal to the number of available clusters, the instructions within each
chain can be assigned to the same cluster without eliminating at least one optimal
assignment of the instructions to clusters.

Proof: There are two scenarios to consider. The first scenario is where a chain contains
one or more exits. An assignment of any two instructions in this chain to different
clusters could increase the weighted completion time associated with the exits in the
chain. (To see this, consider the block in Figure 6b. Scheduling the instructions B and C
on different clusters would add the communication latency to the critical path, hence
delaying the final exit and increasing the weighted completion time.) On the other
hand a distributed assignment would not improve the weighted completion time and
therefore could eliminate an optimal assignment. Hence, any optimal solution will
assign the instructions in the connected sub-structure to the same cluster. The second
scenario is where the sub-structure does not contain any exit instruction. There will
exist a path from the last instruction to an exit in the superblock. From the proof in
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ALGORITHM 1: Spatial Scheduling

Input: DAG G, an architectural model.
Output: The spatial and temporal schedule of G.
1 Construct constraint model for edge assignment;
2 U < Establish upper bound using list-scheduler extension;
3 L «— Establish lower bound using optimal scheduler;
4 E «— Edges in G with domain{=, #};
5 Identify connected sub-structures and set edges to {=};
6 // start backtracking on the first edge;
7 backtrack( E[0],U, L );
8 return schedule and assignment given by U,

the previous scenario any distributed assignment of the instructions in the connected
sub-structure will possibly delay the last instruction and hence increase the weighted
cost of the subsequent exit.
O
For the purpose of the experiments reported in this article we only consider chains
as connected sub-structures.

3.4. Solving an Instance

Given an architectural model which consists of the number of clusters &, the communi-
cation cost ¢, the issue width, and the number and type of the functional units, solving
an instance of the spatial scheduling problem proceeds with the following steps (see
Algorithm 1). First, a constraint model for edge assignment is constructed. The lower-
bound and the upper-bound on the cost of the schedule on the given number of clusters
is established. The lower bound is computed using the optimal temporal scheduler
[Malik et al. 2008]. To compute the lower-bound for the given clustered architectural
model, we schedule for a simpler architecture that has no serializing instructions and
a single cluster. The single cluster has the same total number and types of functional
units as all of the clusters in the given architectural model combined. Effectively this
simulates a communication cost of zero between clusters and gives us a lower bound
on the true cost of the schedule. The upper-bound is initially established using an ex-
tension to the list-scheduling algorithm. The extension to the list scheduler consists
of a fast greedy heuristic to assign superblock instructions to clusters. The algorithm
greedily assigns instructions to clusters as soon as the dependency, resource and com-
munication constraints are satisfied. The lower and upper bounds are passed on to the
backtracking algorithm along with the constraint model.

The backtracking search interleaves propagation of branch and bound checks with
branching on the edge variables (see Algorithm 2). During constraint propagation the
validity check of an assignment at each search node is enforced. Once a complete as-
signment can be computed, it is passed on to the optimal instruction scheduler to de-
termine the cost of the block (line 7). The optimal scheduler computes the cost of the
schedule using an extended constraint model of the problem considering the cost of
inter-cluster communication. If the schedule cost is equal to the lower-bound then an
optimal solution has been found. On the other hand if the cost is better than the exist-
ing upper-bound, the upper-bound as well as the upper-bound assignment is updated.
This is repeated, until the search completes. The returned solution is the final upper-
bound assignment. If the algorithm terminates, a provably optimal solution has been
found. If, instead, the time limit is exceeded, the existing upper-bound solution is re-
turned as the best result. Consistency check (line 3), which examines the search node
for the first case in sub-section 3.2 and bounds check (line 12) are intended to prune the
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ALGORITHM 2: Backtrack

Input: E[i] the current edge, architectural model, an upper bound on the schedule cost U,
and a lower bound on the schedule cost L.
Output: Spatial and temporal schedule associated with U.
1 for all values that can be assigned to the current edge do

2 n « search node corresponding to the current assignment of variables;
3 consistency_check( n );
4 if n is a leaf node of search tree then
5 if n is consistent then
6 A « generate assignment for n;
7 S «— determine schedule for assignment A;
8 U < update (U ) using S;
9 end
10 end
11 if n is an internal node of search tree then
12 bounds_check(n ) ;
13 if n is consistent and within bounds then
14 // continue onto the next edge;
15 ‘ backtrack( E[i +1],U, L );
16 end
17 end
18 if U = L then
19 | return A, S for U as solution;
20 end
21 end

22 return A, S for U as solution;

search tree and save search time. The following step-by-step execution on the running
example provides a better description of the algorithms.

Example 3.6 (Solving the Running Example). Consider the basic block DAG from
our running example given in Figure 3(a) on a 4-cluster 1-issue architecture with inter-
cluster communication cost of 1. Spatial scheduling (Algorithm 1) proceeds by creating
a constraint model. Determining the upper bound U on the schedule length yields 4
(i.e. U < 4) and lower bound (L) is determined to be 3 (L « 3). Since there are no
connected sub-structures in the DAG, the algorithm proceeds by backtracking on the
edges (AC, BC and CD). Algorithm 2 iteratively assigns {=,#} to the z variables.
For example, initially it z4¢ is assigned =. Then a consistency check is run to make
sure that it is possible to assign the y variables valid values if 24 <= constraint
is added to the model. This corresponds to the first case in subsection 3.2. Since the
current search node (n) is an internal node of the search tree (corresponding to the left
child of the root in the search tree shown in Figure 4) the second condition starting
at line 11 is executed. It runs a bounds check on n which computes a lower bound
for a partial assignment (which is 2) where y4 = yc making sure that it does not
exceed U. Backtracking continues recursively on the edges. Consider the search node
where {z4c <=, 2pc —#, zcp —=}. The algorithm finds it to be consistent, generates
an assignment (0, 1,0,0), and determines the optimal schedule for the given spatial
assignment (lines 6, 7). The optimal scheduler uses an extended model with the inter-
cluster communication constraints for instructions which are scheduled on different
clusters. The condition on line 18 determines that since U = L the assignment is an
optimal solution and hence returns it without searching the entire tree.
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4. PERFORMANCE EVALUATION

In this section, we present an empirical evaluation of our scheduler for clustered ar-
chitectures.

4.1. Experimental Setup

We evaluated our integrated solution to the spatial and temporal scheduling prob-
lem on superblocks from the SPEC 2000 integer and floating point benchmarks. Our
approach works just as well for the basic blocks, but we present only the results for su-
perblocks as these consistently show better improvements than the basic blocks. The
benchmark suite consists of source code for software packages chosen to represent a
variety of programming languages and types of applications. The results given in this
article are for superblocks. The benchmarks were compiled using the IBM Tobey com-
piler [Blainey 1994] targeted towards the PowerPC processor [Hoxey et al. 1996], and
the superblocks were captured as they were passed to Tobeys instruction scheduler.
The compiler also marks serializing instructions and non-pipelined instructions. Here,
it is worth noting that on the PowerPC, for example, 15% of the instructions in the
superblocks are serializing instructions.

Table Il. Architectural models and their composition in terms of the number and types of
functional units.

issue width | integer units | memory units | branch units | floating point units
1-issue 1
2-issue 1 1 1 1
4-issue 2 1 1 1

The compilations were done using Tobey’s highest level of optimization, which in-
cludes aggressive optimization techniques such as software pipelining and loop un-
rolling. The Tobey compiler performs instruction scheduling once before global reg-
ister allocation and once again afterward. Spatial scheduling is performed on the
superblocks after register allocation. The results given are for the most frequently
executed superblocks in the benchmarks but previous experiments have shown that
the overall result of experiments remain the same in general. In the experiments we
present our results relative to a baseline configuration which is an architecture with
a single cluster having the same number of functional units and same issue width
as a single cluster in the multi-cluster configuration being experimented with, as in
[Faraboschi et al. 1998]. We use this baseline in order to remain consistent with the
presentation of data from the experiments.

We compare against two versions of the RHOP implementation; the first using the
regular list scheduler for scheduling (rhop-ls), as in Trimaran, and the second using
the optimal scheduler (rhop-opt) also being used by our algorithm.

We conducted our evaluation using the three architectural models for each cluster
shown in Table II. We experimented with 2-8 fully connected homogeneous clusters
[Terechko 2007] with issue widths ranging from 1 to 4 on each cluster. In these ar-
chitectures, the functional units are not fully pipelined, the issue width of the cluster
is not always equal to the number of functional units, and there are serializing in-
structions. We assume homogeneous clusters; i.e., all clusters have exactly the same
number and type of functional units. Additionally we also assume that clusters can
communicate with each other with a non-zero latency. In our model, communication
between clusters happens via an inter-cluster interconnect which is an explicit copy
operation. A realistic bus model has a 4-cycle latency on a four cluster and 6-cycles on
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Fig. 7. Average speedups of superblocks in SPEC 2000 for a 2-cluster 2-issue architecture with inter-cluster
communication cost of one and four cycles respectively. Note the non-zero origin.

an eight cluster processor [Parcerisa et al. 2002]. We also study the impact of various
communication latencies on performance.

4.2. Performance Results & Analysis

In this section we present the results of our experiments. We structure the presenta-
tion of the results and our analysis as follows. First, we perform a general comparison
of our constraint-programming-based integrated spatial and temporal scheduler, re-
ferred to as cp, with two versions of RHOP: RHOP using the regular list scheduler
for scheduling (rhop-ls) and RHOP using the optimal instruction scheduler (rhop-opt),
which is also being used by our algorithm. Second, we perform a detailed compari-
son that examines the impact of the number of clusters on the performance of the
algorithms. Third, we perform a detailed comparison that examines the impact of the
communication cost due to the different cluster-interconnect topologies on the perfor-
mance of the algorithms. Finally, as our integrated scheduler is more costly in terms of
scheduling time, we examine the time taken to schedule the superblocks in the various
benchmarks. The speedups given are reductions in cycle count improvements over the
baseline.

A general comparison of our integrated spatial and temporal scheduler with RHOP.
In Figures 7 and 8 we present detailed performance results for for the constraint pro-
gramming algorithm cp as compared to the two flavors of the RHOP algorithm, rhop-
Is and rhop-opt. Note that rhop-ls is the original approach presented in [Chu et al.
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Fig. 8. Average speedups of superblocks in SPEC 2000 for a 4-cluster 2-issue architecture with inter-cluster
communication cost of one and four cycles respectively. Note the non-zero origin.

2003] and that our results for rhop-Is closely match the experimental results presented
therein. We include rhop-opt to factor out the contribution of the optimal instruc-
tion scheduler and examine the contribution of our partitioning scheme in improving
performance. We compare the algorithms on a 2-cluster-2-issue architecture and a 4-
cluster-2-issue. In our experiments c¢p always performs better than rhop-opt which in
turn always performs better than rhop-Is. It can also be noted that the speedups from
cp never fall below 1.0—i.e., cp never results in a slowdown over the baseline—whereas
RHOP often results in slowdowns.

Consider the 2-cluster configurations (Figure 7). On the benchmark applu, our cp ap-
proach attains a speedup of 60% compared to 20% for rhop-opt when the inter-cluster
communication cost is one cycle, a performance gap of 40%, and our cp approach attains
a speedup of 40% compared to 20% for rhop-opt when the inter-cluster communication
cost is four cycles, a performance gap of 20%. On average across all 26 benchmarks
the performance gap between cp and rhop-opt is close to 15% when the communication
cost is one cycle and approximately 10% when the communication cost is four cycles.

Consider next the 4-cluster configurations (Figure 8). On the benchmark ammp, our
cp approach attains a speedup of 15% compared to 2% for rhop-opt when the inter-
cluster communication cost is one cycle, a performance gap of 13%, and our cp approach
attains a speedup of 10% compared to —20% for rhop-opt when the inter-cluster com-
munication cost is four cycles, a performance gap of 30%. On average across all 26
benchmarks the performance gap between cp and rhop-opt is close to 7% when the
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communication cost is one cycle and approximately 12% when the communication cost
is four cycles.

The impact of the number of clusters on the performance of the algorithms. We ex-
amine the scalability of the algorithms as the number of clusters increases. Figure 9
presents the average improvements over all the benchmarks for various architectural
configurations with inter-cluster communication latency varying from one to eight cy-
cles. In general, in our experiments as the number of clusters increases the perfor-
mance gap between cp and rhop-ls and rhop-opt increases. As well, the speedups for
cp increases with the number of clusters whereas the speedups of rhop-ls and rhop-opt
decreases as the number of clusters increase.

Consider the configurations where the communication cost is four cycles (see Fig-
ure 9, bottom left). On the architectures with an issue width of one, as the number of
clusters o = 2, 4, 8 increases—i.e., architectural models 2—1, 4-1, and 8—1—the perfor-
mance gap of our ¢p approach over rhop-opt increases from approximately 10% to more
than 40%. As well, as the number of clusters increases, cp achieves increasing speedups
over the baseline, whereas both rhop-opt and rhop-Is decrease in performance. In gen-
eral, similar observations can be made for the architectures with larger issue widths
and for the architectures with different communication costs.
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Fig. 10. Average speedups of superblocks for the applu benchmark for different architectures with inter-
cluster communication cost of one, two, four and eight respectively. On the z axis « — 3 means « clusters,
a =2,4,8, and issue width of 3, 3 = 1,2, 4.

The impact of the inter-cluster communication cost on the performance of the algo-
rithms. Figure 9 also presents some results on what performance improvements we
can obtain with various inter-cluster topologies which have different communication
latencies. In our experiments, as inter-cluster communication cost increases speedups
for all algorithms decrease, but the gap in performance of ¢p over rhop-ls and rhop-opt
increases. This is because once RHOP makes poor decisions it is expensive to recover—
a well-known drawback of a phased approach. It is worth noting here that even with
a high communication cost, speedups increase with the number of clusters. However,
as expected, topologies with faster inter-cluster communication always yield higher
performance.

Consider the configurations with four clusters and an issue width of one (see Fig-
ure 9). As expected, as the communication costs increases the performance of all of the
schedulers cp, rhop-opt, and rhop-ls decreases. More surprisingly, as the communica-
tion cost ¢ increases, the gap between the performance of ¢p and rhop-opt increases
from 20% when ¢ = 1 to more than 35% when ¢ = 8 (see architectural model 4-1 in
Figure 9, for ¢ = 1 top left, ¢ = 2 top right, ¢ = 4 bottom left, and ¢ = 8 bottom right).
In general, similar observations can be made for the architectures with larger issue
widths and for the architectures with different numbers of clusters.
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Fig. 11. Average speedups of superblocks for the gzip benchmark for different architectures with inter-
cluster communication cost of one, two, four and eight respectively. On the z axis « — 3 means « clusters,
a =2,4,8, and issue width of 3, 3 = 1,2, 4.

Figures 10 and 11 present the breakdown of performance improvements for two
specific benchmarks—applu and gzip, respectively—for various architectural configu-
rations. The applu benchmark (a floating point benchmark) is an example for which
cp gets the best speedups that approach a factor of 2.8 on an eight cluster architec-
ture. Conversely, the gzip benchmark (an integer benchmark) is an example where the
speedups are more modest and approach 15% on an eight cluster architecture, which
is due to the lack of instruction-level parallelism (ILP) in most SPEC integer bench-
marks.

The scheduling time and percentage of provably optimal schedules. Table III lists the
time it takes for the benchmarks to compile on two architectural configurations along
with the percentage of superblocks on which our algorithm proved optimality within
the ten minute timeout. The good news is that for almost all benchmarks cp can solve a
majority of the superblocks in the SPEC benchmark to optimality. However this comes
at a cost of increased compilation time with some benchmarks requiring more than
a day to schedule all the superblocks in the benchmark. Also note that even in the
case where most of the schedules are not provably optimal, we still get speedups. For
example, for the benchmark eon (see Table III), only 37% of the superblocks are solved
optimally yet cp yields a speedup of 15% on eon (see Figure 7). The scheduling times for
RHOP alone are not given as they are negligible and the scheduling times for RHOP-
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Table Ill. For each SPEC 2000 benchmark, total number of superblocks (num.), average size of
superblocks (ave.), maximum size of superblocks (max.), total scheduling time for our scheduler,
percentage of superblocks for which a provably optimal schedule was found, for various architec-
tural models and communication costs ¢ = 1, 2.

superblocks 2-cluster-2-issue (c = 1) | 4-cluster-2-issue (c = 2)
benchmark | num. | ave. | max. | comp. time % solved | comp. time % solved
ammp 94 35 332 4h:51m 70% 4h:52m 70%
applu 21 58 200 Oh:31m 86% Oh:31m 86%
apsi 156 28 95 11h:3m 58% | 11h:41m 57%
art 29 16 40 0h:33m 90% 0h:33m 90%
bzip2 113 21 157 7h:43m 62% 9h:4m 56%
crafty 508 25 160 | 26 h:28 m 68% | 28h:32m 67%
eon 132 39 225 14h:9m 37% | 14h:31m 35%
equake 26 40 213 0h:33m 89% 0h:33m 89%
facerec 57 29 159 2h:11m 78% 2h:12m 78%
fma3d 389 26 586 | 11h:20m 85% | 11h:28m 84%
galgel 71 23 75 3h:32m 71% 3h:33m 71%
gee 2383 23 219 27h:1m 94% | 28 h:26 m 93%
gzip 136 19 221 4 h: 55 m 79% 4 h: 58 m 79%
lucas 43 20 31 2h:40 m 63% 2h:41m 63%
mef 64 21 94 1h:57m 80% 2h:12m 80%
mesa 74 37 226 5h:2m 63% 5h:13m 59%
mgrid 28 17 69 1h:22m 72% 1h:23m 72%
parser 628 19 681 | 20h:59m 82% | 22h:31m 80%
perlbmk 878 26 278 | 28 h:49m 81% | 29 h:60m 80%
sixtrack 95 34 108 4h:1m 75% 3h:51m 76%
swim 6 31 77 Oh:1m 100% Oh:1m 100%
twolf 186 25 380 11h:1m 64% | 11h:36m 65%
vortex 476 41 303 | 14h:41m 82% | 14h:25m 82%
vpr 229 26 173 8h:5m 80% 8h:19m 80%
wupwise 47 31 157 4h:36m 43% 4h:60m 45%

opt are similar to the scheduling times for the optimal temporal scheduler alone (see
[Malik et al. 2008]).

Overall, our experimental results show that our constraint programming approach
scales better than RHOP, both in terms of the number of clusters and the inter-cluster
latency. RHOP sometimes partitions the superblocks more aggressively than necessary
which results in slowdowns instead of speedups, whereas our approach always results
in speedups. The application of constraint programming to the spatial scheduling prob-
lem has enabled us to solve the problem to near optimality for a significant number of
code blocks. Solving the spatial scheduling problem with constraint programming has
an added value over heuristic approaches in instances where longer compilation time
is tolerable or the code-base is not very large. This approach can be successfully used
in practice for software libraries, digital signal processing in addition to embedded
applications. Our approach can also be used to evaluate the performance of heuristic
techniques. Our solution also gives an added performance benefit by distributing the
workload over clusters and the ability to utilize resources that might otherwise remain
idle.

5. RELATED WORK

Traditionally, instruction scheduling has been employed by compilers to exploit in-
struction level parallelism in straight-line code in the form of basic blocks [Heffernan
and Wilken 2005; Malik et al. 2008] and superblocks [Heffernan et al. 2006; Shobaki
and Wilken 2004; Malik et al. 2008]. In this section we review the different approaches
towards solving the spatial scheduling problem.
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The most well known solutions for spatial scheduling are greedy and hierarchical
partitioning algorithms which assign the instructions before the scheduling phase in
the compiler. The bottom-up greedy, or BUG algorithm [Ellis 1986], which is the ear-
liest among spatial scheduling algorithms, proceeds by recursing depth first along the
data dependence graph, assigning the critical paths first. It assigns each instruction to
a cluster based on estimates of when the instruction and its predecessors can complete
execution at the earliest. These values are computed using the resource requirement
information for each instruction. The algorithm queries this information before and
after the assignment to effectively assign instructions to the available clusters. This
technique works well for simple graphs, but as the graphs become more complex the
greedy nature of the algorithm directs it to make decisions that negatively affect future
decisions. Chung and Ranka [1995] also gave an early solution to spatial scheduling for
distributed memory multiprocessors based on heuristics for list scheduling algorithms.
Leupers [2000] present a combined partitioning and scheduling technique using sim-
ulated annealing. Lapinskii et al. [2002] propose a binding algorithm for instructions
which relies on list scheduling to carry out temporal scheduling.

Lee et al. [2002] present a multi-heuristic framework for scheduling basic blocks,
superblocks and traces. The technique is called convergent scheduling. The scheduler
maintains a three dimensional weight matrix W, .., where the ith dimension repre-
sents the instructions, ¢ spans over the number of clusters and ¢ spans over possible
time slots. The scheduler iteratively executes multiple scheduling phases, each one of
which heuristically modifies the matrix to schedule each instruction on a cluster for
a specific time slot, according to a specific constraint. The main constraints are pre-
placement, communication minimization and load balancing. After several passes the
weights are expected to converge. The resultant matrix is used by a traditional sched-
uler to assign instructions to clusters. The framework has been implemented on two
different spatial architectures, RAW and Chorus clustered VLIW infrastructure. The
framework was evaluated on standard benchmarks, mostly the ones with dense ma-
trix code. An earlier attempt was made by the same group for scheduling basic blocks
in the Raw compiler [Lee et al. 1998]. Inter-cluster moves on RAW take 3 or more
cycles and the Chorus infrastructure assumes single cycle moves in its simulation.
This technique iteratively clustered together instructions with little or no parallelism
and then assigned these clusters to available clusters. A similar approach was used
to schedule instructions on a decoupled access/execute architectures [Rich and Far-
rens 2000]. These techniques seem to work well on selective benchmark suits with
fine tuned system parameters which are configured using trial and error. It is diffi-
cult to evaluate the actual effectiveness of these technique mainly because it attempts
to solve the temporal and spatial scheduling intermittently. In contrast our approach
attempts to solve spatial scheduling first. In an earlier attempt on spatial scheduling
[Amarasinghe et al. 2002] presented integer linear formulations of the problem as well
as an 8-approximation algorithm for it. The evaluation in the unpublished report only
included results from heuristic algorithms and were from a simulation over a select
group of benchmarks.

Chu et al. [2003] describe a region-based hierarchical operation partitioning algo-
rithm (RHOP), which is a pre-scheduling method to partition operations on multiple
clusters. In order to produce a partition that can result in an efficient schedule, RHOP
uses schedule estimates and a multilevel graph partitioner to generate cluster assign-
ments. This approach partitions a data dependence graph based on weighted vertices
and edges. The algorithm uses a heuristic to assign weights to the vertices to reflect
their resource usage and to the edges to reflect the cost of inter-cluster communication
in case the two vertices connected by an edge are assigned to different clusters. In the
partitioning phase, vertices are grouped together by two processes called coarsening
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and refinement [Hendrickson and Leland 1995; Karypis and Kumar 1998]. Coarsening
uses edge weights to group together operations by iteratively pairing them into larger
groups while targeting heavy edges first. The coarsening phase ends when the number
of groups is equal to the number of desired clusters for the machine. The refinement
phase improves the partition produced by the coarsening phase by moving vertices
from one partition to another. The goal of this phase is to improve the balance between
partitions while minimizing the overall communication cost. The moves are considered
feasible if there is an improvement in the gain from added parallelism minus the cost
of additional inter-cluster communications. The algorithm has been implemented in
the Trimaran compiler and simulation framework. The framework has the capability
to model homogeneous as well as heterogeneous architectures and assumes a single
cycle cost for inter-cluster moves. Their technique was evaluated on the SPEC bench-
mark and compared against BUG, which RHOP always outperforms. Subsequent work
using RHOP partitions data over multi-core architectures with a more complex mem-
ory hierarchy [Chu et al. 2007; Chu and Mahlke 2006]. Unlike other approaches which
are mostly evaluated on basic blocks, RHOP has also been evaluated over hyperblocks.

Nagpal and Srikant [2004; 2008] give an integrated approach to spatial and tempo-
ral scheduling by binding the instructions to functional units in clusters. The approach
extends the list scheduling algorithm to incorporate a resource need vector for effective
functional unit binding. Their scheme utilizes the exact information about the avail-
able communication requirements, functional units and the load on different clusters
in addition to the constraints imposed by the architecture to prioritize instructions
that are ready to be scheduled. The algorithm and its variations have been imple-
mented for Texas Instruments VelociTI architecture using SUIF compiler framework.
They evaluated their technique using the TI simulator for TMS320C6X on the most
frequently executed benchmark kernels from MediaBench and report speedups of up
to 19%.

In contrast to our work, which presents an optimal integrated approach for spatial
and temporal scheduling, Kessler, Bednarski, and Eriksson [2006; 2006; 2009] pursue
a much more ambitious agenda of integrating spatial and temporal scheduling with
instruction selection, register allocation, and software pipelining. Although successful
on smaller basic blocks, their fully integrated approaches, which use dynamic pro-
gramming and integer linear programming, do not scale beyond blocks of size 20—40
instructions using a timeout of one hour (our constraint programming technique scales
consistently to blocks with up to 100 instructions using a timeout of 10 minutes).

Other related works have also dealt with software pipelining techniques for clus-
tered VLIW architectures [Nystrom and Eichenberger 1998; Sanchez and Gonzalez
2000; Codina et al. 2001]. Most of these techniques extend the greedy scheduling algo-
rithms and apply them after unrolling frequently executed loops.

6. CONCLUSIONS

This article presents a constraint programming approach to the instruction assign-
ment problem for taking advantage of the parallelism contained in local blocks of code
for multi-cluster architectures. We also study the effect of different hardware parame-
ters including issue-width and cost of inter-cluster communication performance.

Our approach takes advantage of the problem decomposition technique to solve spa-
tial scheduling in two stages, yet it is integrated with temporal scheduling. We also
employ various constraint programming techniques including symmetry breaking and
branch-and-bound to reduce the time in searching for a solution. Reformulation of the
problem model in terms of the edges of the DAG instead of the vertices breaks the
symmetry nicely to reduce the search space. In addition we also use techniques from
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graph theory to predetermine instructions which can be grouped together before the
search algorithm starts.

We compared out implementation against RHOP on various architectural configura-
tions. We found that our approach was able to achieve an improvement of up to 26%, on
average, over the state-of-the-art techniques on superblocks from SPEC 2000 bench-
marks. Clustered architectures are becoming increasingly important because they are
a natural way to extend the embedded processors without significant increase in power
utilization, which is vital for these architectures. Also many of the applications which
run on embedded devices are compiled once and usually run throughout the lifetime
of the device without recompilation and hence reasonably long compile times are also
acceptable. Our approach provides good speedups with a lower-bound on the speedup
that can be obtained.
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