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Abstract� Local consistency has proven to be an important concept in
the theory and practice of constraint networks� In this paper� we present
a new de�nition of local consistency� called relational consistency� The
new de�nition is relation�based� in contrast with the previous de�nition of
local consistency� which we characterize as variable	based� We show the
conceptual power of the new de�nition by showing how it uni�es known
elimination operators such as resolution in theorem proving� joins in rela	
tional databases� and variable elimination for solving linear inequalities�
Algorithms for enforcing various levels of relational consistency are in	
troduced and analyzed� We also show the usefulness of the new de�nition
in characterizing relationships between properties of constraint network	
sand the level of local consistency needed to ensure global consistency�
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� Introduction

Constraint networks are a simple representation and reasoning framework� A
problem is represented as a set of variables� a domain of values for each variable�
and a set of constraints between the variables� A central reasoning task is then
to �nd an instantiation of the variables that satis�es the constraints�

In general� what makes constraint networks hard to solve is that they can
contain many local inconsistencies� A local inconsistency is a consistent instan�
tiation of k � � of the variables that cannot be extended to a kth variable and
so cannot be part of any global solution� If we are using a backtracking search
to �nd a solution� such an inconsistency can lead to a dead end in the search�
This insight has led to the de�nition of conditions that characterize the level
of local consistency of a network ���� ��	 and to the development of algorithms
for enforcing local consistency conditions by removing local inconsistencies 
e�g��
���� ��� ��� ��� �	��

In this paper� we present a new de�nition of local consistency called relational



consistency�� The virtue of the new de�nition of local consistency is that� �rstly�
it removes the need for referencing the arity of the constraints when discussing
relationships between the properties of the constraints and local consistency�
Secondly� it is operational� thus generalizing the concept of the composition
operation de�ned for binary constraints� and can be incorporated naturally in
algorithms for enforcing desired levels of relational consistency� Thirdly� it uni�
�es known operators such as resolution in theorem proving� joins in relational
databases� and variable elimination for solving equations and inequalities� thus
allowing the formulation of an elimination algorithm that generalizes algorithms
appearing in each of these areas� Finally� it allows identifying those formalisms
for which consistency can be decided by enforcing a bounded level of relational
consistency� like propositional databases� linear equalities and inequalities� and
crossword puzzles from general databases requiring higher levels of relational
consistency� We also demonstrate the usefulness of the new de�nition in charac�
terizing relationships between various properties of constraint networks
domain
size and acyclicity
 and the level of local consistency needed to ensure global
consistency�

Following de�nition and preliminaries 
section ��� relational local consistency
is de�ned and algorithms for enforcing such conditions are introduced 
section ���
Section � shows that the algorithms unify algorithms appearing in propositional
databases and linear inequalities� Finally� section � describes new associations
between constraint properties and relational local consistency needed for global
consistency� Discussion and conclusions are given in sections � and � respectively�

� De�nitions and Preliminaries

De�nition� �constraint network�� � A constraint network R is a set of n
variables X � fx�� � � � � xng� a domain Di of possible values for each variable xi�
� � i � n� and a set of t relations RS� � � � � � RSt � where Si � X� � � i � n�
A constraint or relation RS over a set of variables S � fx�� � � � � xrg is a subset
of the product of their domains 
i�e�� RS � D� � � � � � Dr�� The set of subsets
fS�� � � � � Stg on which constraints are speci�ed is called the scheme of R� A
binary constraint network is the special case where all constraints are over pairs
of variables� A constraint graph associates each variable with a node and connects
any two nodes whose variables appear in the same constraint�

De�nition� �solution to a constraint network�� An instantiation of the vari�
ables in X� denoted XI � is an n�tuple 
a�� � � � � an�� representing an assignment
of ai � Di to xi� � � i � n� A consistent instantiation of a network is an instan�
tiation of the variables such that the constraints between variables are satis�ed�
A consistent instantiation is also called a solution�

� A preliminary version of this de�nition appears in �����
� Note that all the de�nitions and algorithms are applicable to relations without the
�niteness assumption� a point we make explicit in section ���

�



The order of the variables constrained by a relation is not important� that
is� we follow the set�of�mappings formulation of relations 
see ���	�� The notion
of a consistent instantiation of a subset of the variables can be de�ned in several
ways� We use the following de�nition� an instantiation is consistent if it satis�es
all of the constraints that have no uninstantiated variables�

De�nition� �consistent instantiation of subsets of variables�� Let Y and
S be sets of variables� and let YI be an instantiation of the variables in Y � We de�
note by YI �S	 the tuple consisting of only the components of YI that correspond
to the variables in S� An instantiation YI is consistent relative to a network R
i� for all Si in the scheme of R such that Si � Y � YI �Si	 � RSi � The set of all
consistent instantiations of the variables in Y is denoted �
Y ��

One can view �
Y � as the set of all solutions of the subnetwork de�ned by
Y � We now introduce the needed operations on constraints adopted from the
relational calculus 
see ���	 for details��

De�nition� �operations on constraints�� Let R be a relation on a set S of
variables� let Y � S be a subset of the variables� and let YI be an instantiation
of the variables in Y � We denote by �YI 
R� the selection of those tuples in R

that agree with YI � We denote by �Y 
R� the projection of the relation R on
the subset Y � that is� a tuple over Y appears in �Y 
R� if and only if it can
be extended to a full tuple in R� Let RS� be a relation on a set S� of variables
and let RS� be a relation on a set S� of variables� We denote by RS� � RS� the
natural join of the two relations� The join of RS� and RS� is a relation de�ned
over S� � S� containing all the tuples t� satisfying t�S�	 � RS� and t�S�	 � RS� �

Two properties of constraint networks that arise later in the paper are domain
size and row convexity�

De�nition� �k	valued domains�� A network of constraints is k�valued if the
domain sizes of all variables are bounded by k�

De�nition
 �row convex constraints ����
��� A binary constraint R on a
set fx�� x�g of variables with associated domains D� and D�� is row convex
if there exists an ordering of D� such that� for every a� � D�� the set fx� j

a�� x�� � Rg can be ordered such that the elements appear consecutively in the
ordering of D�� An r�ary relation R on a set S of variables fx�� � � � � xrg is row
convex if for every subset of r � � variables Y � S and for every instantiation
YI of the variables in Y � the binary relation ��S�Y �
�YI 
R�� is row convex� A
constraint network is row convex if all its constraints are row convex�

Example �� We illustrate the de�nitions using the following network R over
the set X of variables fx�� x�� x�� x�g� The network is ��valued� The domains of
the variables are Di � fa�b�cg� � � i � �� and the relations are given by�

RS� � f
a�a�a�� 
a�a�c�� 
a�b�c�� 
a�c�b�� 
b�a�c��

b�b�b�� 
b�c�a�� 
c�a�b�� 
c�b�a�� 
c�c�c�g�

RS� � f
a�b�� 
b�a�� 
b�c�� 
c�a�� 
c�c�g�
RS� � f
a�b�� 
a�c�� 
b�b�� 
c�a�� 
c�b�g�

�



where S� � fx�� x�� x�g� S� � fx�� x�g� and S� � fx�� x�g� The projection of
RS� over fx�� x�g� is given by

�fx��x�gRS� � f
a�a�� 
a�c�� 
a�b�� 
b�c�� 
b�b�� 
b�a�� 
c�b�� 
c�a�� 
c�c�g�

The join of RS� and RS� is given by�

RY � RS� � RS� � f
a�a�b�� 
a�b�b�� 
a�c�b�� 
b�c�a�� 
b�a�c�� 
c�c�a�� 
c�a�c�g�

where Y � fx�� x�� x�g� The set of all solutions of the network is given by�

�
X� � f
a�a�a�b�� 
a�a�c�b�� 
a�b�c�a�� 
b�a�c�b��

b�c�a�c�� 
c�a�b�b�� 
c�b�a�c�� 
c�c�c�a�g�

Let Y � fx�� x�� x�g be a subset of the variables and let YI be an instantiation
of the variables in Y � The tuple YI � 
a�c�b� is consistent relative to R since
YI �S�	 � 
a�b� and 
a�b� � RS� � and YI �S�	 � 
c�b� and 
c�b� � RS� � The tuple
YI � 
c�a�b� is not consistent relative to R since YI �S�	 � 
c�b�� and 
c�b� �� RS� �
The set of all consistent instantiations of the variables in Y is given by�

�
Y � � f
a�a�b�� 
a�b�b�� 
a�c�b�� 
b�a�c�� 
b�c�a�� 
c�a�c�� 
c�c�a�g�

� Local Consistency

Local consistency has proven to be an important concept in the theory and
practice of constraint networks� In this section we �rst review previous de�nitions
of local consistency� which we characterize as variable�based� We then present
new de�nitions of local consistency that are relation�based and present algorithms
for enforcing these local consistencies�

��� Variable	based consistency

Mackworth ���	 de�nes three properties of networks that characterize local con�
sistency of networks� node� arc� and path consistency� Freuder ���	 generalizes
this to k�consistency�

De�nition� �k	consistency� Freuder ���� ��
�� A network is k�consistent if
and only if given any instantiation of any k � � distinct variables satisfying all
of the direct relations among those variables� there exists an instantiation of any
kth variable such that the k values taken together satisfy all of the relations
among the k variables� A network is strongly k�consistent if and only if it is
j�consistent for all j � k�

Node� arc� and path consistency correspond to one�� two�� and three�consistency�
respectively� A strongly n�consistent network is called globally consistent� Glob�
ally consistent networks have the property that any consistent instantiation of
a subset of the variables can be extended to a consistent instantiation of all the
variables without backtracking ��	� It is frequently enough to have a globally con�
sistent network along a single ordering of the variables as long as this ordering
is known in advance�

�



De�nition� �globally solved�� We say that a problem is globally solved if
it is consistent� and if there is a known ordering of the variables along which
solutions can be assembled without encountering deadends� that is� the network
is strong n�consistent relative to the given ordering� An algorithm globally solves
a problem if it generates a globally solved network�

A globally solved representation is a useful representation of all solutions when�
ever such a representation is more compact than the set of all solutions�

��� Relation	based consistency

In ���	� we extended the notions of arc and path consistency to non�binary re�
lations� and used it to specify an alternative condition under which row�convex
non�binary networks are globally consistent� The new local consistency condi�
tions were called relational arc� and path�consistency� In ���	 we generalized
relational arc� and path�consistency to relational m�consistency and used it to
specify conditions under which tight binary constraints are globally consistent�
In the de�nition of relational�consistency� the relations rather than the variables
are the primitive entities� In particular� this allows expressing the relationships
between properties of the constraints and local consistency in a way that avoids
an explicit reference to the arity of the constraints� In this section we revisit the
de�nition of relational consistency and augment it with the option of having also
an explicit reference to a constraint�s arity� to allow polynomial algorithms for
enforcing those conditions�

De�nition� �relational arc� and path	consistency�� LetR be a constraint
network over a set of variables X� and let RS and RT be two relations in R�
where S� T � X� We say that RS is relationally arc�consistent relative to a sub�
set of variables A � S i� any consistent instantiation of the variables in A has
an extension to a full tuple in RS � that is� i�

�
A� � �A
RS��


Recall that �
A� is the set of all consistent instantiations of the variables in
A�� A relation RS is relationally arc�consistent if it is relationally arc�consistent
relative to every subset A � S� A network is relationally arc�consistent i� every
relation is relationally arc�consistent� We say that RS and RT are relationally
path�consistent relative to a subset of variables A � S � T i� any consistent
instantiation of the variables in A has an extension to the variables in S�T that
satis�es RS and RT simultaneously� that is� i�

�
A� � �A
RS � RT ��

A pair of relations RS and RT is relationally path�consistent i� it is relationally
path�consistent relative to every subset A � S � T � A network is relationally
path�consistent i� every pair of relations is relationally path�consistent�
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De�nition�� �relational m	consistency�� Let R be a constraint network
over a set of variables X� and let RS� � � � � � RSm be m distinct relations in R�
where Si � X� We say that RS� � � � � � RSm are relationally m�consistent relative
to a subset A �

Sm

i�� Si i� any consistent instantiation of the variables in A�
has an extension to

Sm
i�� Si that satis�es RS� � � � � � RSm simultaneously� that is�

if and only if
�
A� � �A
�

m
i�� RSi��

A set of relations fRS� � � � � � RSmg is relationally m�consistent i� it is relation�
ally m�consistent relative to every A �

Sm

i�� Si� A network is relationally m�
consistent i� every set of m relations is relationally m�consistent�

Note that if a network is relationally m�consistent then it is also relationally
m��consistent for every m� � m� Relational arc� and path�consistency correspond
to relational �� and ��consistency� respectively�

We next re�ne the de�nition of relational consistency to be restricted to
subsets of bounded size� This restriction is similar to the original restriction
used for variable�based local consistency� In relational 
i�m��consistency de�ned
below� m always indexes the cardinality of a set of relations and i corresponds
to the constraint�s arity tested for local consistency�

De�nition�� �relational 
i�m�	consistency�� A set of relations fRS� � � � � � RSmg
is relationally 
i�m��consistent i� it is relationally m�consistent relative to ev�
ery subset A of size i� A �

Sm
i�� Si� A network is relationally 
i�m��consistent

i� every set of m relations is relationally 
i�m��consistent� A network is strong
relational 
i�m��consistent i� it is relational 
j�m��consistent for every j � i�
Strong relational 
n�m��consistency is identical to relational m�consistency�

The relational based de�nition of arc�consistency given in ���	 is identical to
relational 
�����consistency�

De�nition�� �directional relational consistency�� Given an ordering of the
variables� o � x�� � � � � xn� a network is m�directionally relationally consistent i�
for every l� every subset of relations fRS� � � � � � RSmg whose largest index vari�
able is xl� and for every subset A � fx�� � � � � xl��g� every consistent assign�
ment to A can be extended to xl while satisfying all the relevant constraints
in fRS�� � � � � RSmg simultaneously� Directional relational 
resp�� strong� 
i�m��
consistency is de�ned accordingly� by restricting the cardinality of A to i�

Revisiting the de�nition of a globally solved problem�

De�nition�� �globally solved�� A problem is globally solved i� there is a
known ordering along which the problem is e�directionally relationally consistent�
where e is the maximum number of constraints�

Example �� Consider the constraint network over the set of variables fx�� x��
x�� x�� x�g� where the domains of the variables are all Di � fa�b�cg� � � i � ��
and the relations are given by�

�



R������� � f 
a�a�a�a�� 
b�a�a�a�� 
a�b�a�a�� 
a�a�b�a�� 
a�a�a�b� g�
R����� � f 
b�a�b�� 
c�b�c�� 
b�a�c� g�

The constraints are not relationally arc�consistent� For example� the instantia�
tion x� � a� x� � b� x� � b is a consistent instantiation as it satis�es all the
applicable constraints 
trivially so� as there are no constraints de�ned strictly
over fx�� x�� x�g or over any subset�� but it does not have an extension to x�
that satis�es R�������� It is not even 
�� ���consistent since the value x� � b is
consistent� but is not consistent relative to R�������� Similarly� the constraints are
not relationally path�consistent� For example� the instantiation x� � c� x� � b�
x� � a� x� � a is a consistent instantiation 
again� trivially so�� but it does not
have an extension to x� that satis�es R������� and R����� simultaneously� If we
add the constraints R� � R� � R� � fag and R� � R� � fbg 
namely� if we
enforce 
�����consistency� the set of solutions of the network does not change�
and the network is both relationally arc� and path�consistent� The reason being
that all the variables� domains have a singleton value and therefore� the set of
solutions over every subset of variables will contain a single tuple only� the one
that is extended to a full solution�

By de�nition� relational k�consistency implies relational 
i� k��consistency
for i � k � �� which� for binary constraints� implies strong variable�based k�
consistency� The virtue in the relational de�nition 
relative� for instance� to the
one based on the dual graph ���	�� is that it is easy to work with� it can be
incorporated naturally into algorithms for enforcing desired levels of relational
consistency�

Below we present algorithmRelational�Consistency or RC�i�m�� a brute�
force algorithm for enforcing relational 
i�m��consistency on a network R� Note
that RA stands for the current unique constraint speci�ed over a subset of vari�
ables A� If no constraint exists� then RA denotes the universal relation over A�
Algorithm RCm is the unbounded version of algorithm RC�i�m� in which the
recorded constraints arity is not restricted�

Relational�Consistency
R� i�m�
RC�i�m��

�� repeat

�� Q�R

�� for every m relations RS� � � � � � RSm � Q

�� and every subset Ai of size i� Ai �
Sm

j�� Sj do

�� RAi
� RAi

	 �Ai

�mj�� RSj �

�� if RAi
is the empty relation

�� then exit and return the empty network
�� until Q � R

We call the operation in Step � extended composition� since it generalizes the
composition operation de�ned on binary relations�

De�nition�� �extended composition�� The extended composition of rela�
tion RS� � � � � � RSm relative to a subset of variables A �

Sm
i�� Si� denoted

�



ECA
RS� � � � � � RSm� is de�ned by�

ECA
RS� � � � � � RSm� � �A �
m
i�� RSi

When the operator is applied tom relations� it is called extended m�composition�
If the projection operation is restricted to a set of size i� it is called extended

i�m��composition�

AlgorithmRC�i�m� computes the closure ofR with respect to extended 
i�m��
composition� Its complexity is O
exp
i �m�� 
see Theorem ��� which is clearly
computationally expensive for large i and m though it can be improved in a
manner parallel to the improvements of path�consistency algorithms ���	�

As with variable�based local�consistency� we can improve the e�ciency of
enforcing relational consistency by enforcing it only along a certain direction�
In Figure � we present two versions of algorithm Directional�Relational�

Consistency� DRC�i�m�� 
DRCm� respectively� which enforces directional rela�
tional 
i�m��consistency 
m�consistency� respectively� on a network R� relative
to a given ordering o � x�� x�� � � � � xn� We call the network generated by the al�
gorithm the �i�m��directional extension 
m�directional extension� respectively� of
R� denoted E�i�m�
R� 
Em
R�� respectively�� Given an ordering of the variables�
the algorithm partitions the relations into buckets� In the bucket of xj it places
all the relations whose largest indexed variable is xj� Buckets are subsequently
processed in descending order� and each is closed under the extended 
i�m��
composition relative to subsets that exclude the bucket�s variable� The resulting
relations are placed in lower buckets� Since the operation of extended composi�
tion computes constraints that eliminate certain variables it is often called an
elimination operator� Indeed� as we discuss later� algorithm DRCm belongs to
the class of variable elimination algorithms�

In addition to the main operation of extended composition we propose two
optional steps of simpli�cation and instantiation� These steps are targeted to
provide a more e�cient implementation and allow the identi�cation of some
tractable classes� The simpli�cation step ensures that each bucket contains re�
lations de�ned on distinct subsets of variables that are not included in each
other� The instantiation step exploits the property that whenever one of the
relations in the bucket is a singleton tuple we need not perform the full ex�
tended m�composition� Instead we can restrict each relation to those tuples that
are consistent with the singleton tuple and move each restricted relation to its
appropriate buckets� This is equivalent to applying extended ��composition be�
tween each relation and the singleton relation� This special case�handling for
instantiation exploits the computational e�ect of conditioning as described in
��� ��	�

In step � of the algorithm� if the size of
Sj

t�� St � fxpg is smaller than i� we

apply the operation to A �
Sj
t�� St � fxpg� In step �� if more than one relation

is recorded on the same subset of variables� a subsequent simpli�cation step will
combine all such relations into one� Algorithm DRCm is identical to DRC�i�m�

except that constraints are recorded on all the variables in the bucket excluding

�



Directional�Relational�Consistency�R� i�m� o� �DRC�i�m��

�� Initialize
 generate an ordered partition of the constraints� bucket�� � � � � bucketn�
where bucketi contains all constraints whose highest variable is xi�

�� for p� n downto � do

�� simpli�cation step

for every Si� Sj � bucketp� such that Si � Sj do

RSi � �Si�RSi � RSj �

�� instantiation step

if bucketp contains the constraint xp � u then

for every Si � bucketp do

A� Si � fxpg

RA � �A��xp�uRSi�

if RA is not the empty relation then

add RA to its appropriate bucket
else exit and return the empty network

�� else �the general case�
j � minfcardinality of bucketp� mg

�� for every j relations RS� � � � � �RSj in bucketp do

Fj � �
j
t�� RSt

�� for every subset A of size iA �
Sj

t��
St � fxpg do

�� RA � �AFj

�� if RA is not the empty relation then

�
� add RA to its appropriate bucket
��� else exit and return the empty network
��� return E�i�m��R� �

Sn

j�� bucketj

Fig� �� Algorithm DRCi�m

xp� that is� step � is modi�ed to�

�a� for A�
Sj

t�� St � fxpg do

Theorem��� Let R be a network processed by DRC�i�m� �DRCm� respectively�
along ordering o� then the directional extension E�i�m�
R� �Em
R�� respectively�
is directionally relationally 
i�m��consistent �m�consistent� respectively� relative
to o�

Proof� Clear�

Theorem�
� The complexity of DRC�i�m� is O
ni
k � n��im�� where k bounds
the domain sizes and n is the number of variables� The complexity of RC�i�m� is

O

n � k�i � ni
k � n��im��

Proof� The main step of the algorithm 
lines ���� relates to the processing of a
bucket� The number of relations in each bucket is bounded by e � ni where e

�



is size of the initial set of relations and O
ni� bounds the number of possible
relations of arity i out of n variables� The new relations are of size ki at the
most since they are recorded on at most i variables only� The number of subsets
of size m out of ni relations 
assuming e � O
ni�� is O
nim�� Performing an
m�way join when each relation is of size at most ki takes O
kim�� leading to an
overall complexity of O

n � k�im�� Applying a projection over all subsets of size
i 
step �� adds a factor of ni leading to an overall bound of O
ni
n � k�im�� The
complexity of RC�i�m� can be derived similarly� One loop of the algorithm 
steps
���� may require O
ni
n � k�im� using a similar analysis� Since the number of
loops is bounded by the total number of tuples that can be removed in all the
i�ary constraints� which is O
niki�� the result follows� �

The complexity of the nonrestricted version of the algorithms�DRCm� is not
likely to be polynomial even for m � � since� as we will see� it can solve NP �
complete problems� Like similar algorithms for enforcing directional consistency�
the worst�case complexity of Directional�Relational�Consistency can be
bounded as a function of the topological structure of the problem via parameters
like the induced width of the graph ���	� also known as tree�width ��� �	�

De�nition�� �width� tree	width�� A constraint network R can be associ�
ated with a constraint graph� where each node is a variable and two variables
that appear in one constraint are connected� A general graph can be embed�
ded in a chordal graph�� This is normally accomplished by picking a variable
ordering o � x�� ���� xn� then� moving from xn to x�� recursively connecting all
the neighbors of xi that precede it in the ordering� The induced width 
or tree
width� of this ordered graph� denoted w�
o�� is the maximal number of earlier
neighbors in the resulting graph of each node� The maximal cliques in the newly
generated chordal graph form a clique�tree and may serve as the subproblems
in a procedure called tree�clustering ���	� The size of the smallest induced width
over all the graph�s clique�tree embeddings is the induced width� w� of the graph�

It is known that �nding the induced width of a graph is NP�complete ��	�
nevertheless every ordering of the variables o� yields a simple to compute up�
per bound denoted w�
o� 
see ���	�� The complexity of DRCm along o can be
bounded as a function of w�
o� of its constraint graph� Speci�cally ���	�

Theorem��� The time complexity and size of the network generated by DRCm

along ordering o is O
nm � 
�mk���w
��o������ In particular� the time complexity

of DRC� is O

�k���w
��o������

Proof� Observe that the number of variables mentioned in any bucket is at most
w�
o���� and thus the number of relations in a bucket is bounded by O
�w

��o����
and the number of subsets of size m is O
��w

��o����m�� Also� the number of
tuples in each relation is bounded by kw

��o���� The complexity of an m�way join
of relations of size kw

��o��� can be bounded by O
m � k��w
��o����� since the size

� A graph is chordal if every cycle of size � or more has a chord�
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of the relation resulting from every pair�wise join is still bounded by kw
��o���

and thus� m consecutive joins do not multiply but only add� Projection adds a
factor of kw

��o���� Consequently� the overall complexity is O

nm� ���w
��o����m �

k��w
��o����� which equals the claim� �

The only case for which DRCm is tractable occurs when m � ��

Lemma��� The complexity of DRC� is O
n � e� � t�� when e is the number of
input relations� and t bounds the number of tuples in each relation�

Proof� We have n buckets to process� Each bucket will not contain more then
e relations� at any time� The reason is that extended ��composition involves
projections and intersections only� which add only a linear number of constraints
and which takes O
t � e� steps� Simpli�cation of a bucket takes O
e� � t�� yielding
the result� �

Example �� Crossword puzzles have been used experimentally in evaluating
backtracking algorithms for solving constraint networks ���	� We use an example
puzzle to illustrate algorithmDRC� 
see Figure ��� One possible constraint net�
work formulation of the problem is as follows� there is a variable for each square
that can hold a character� x�� � � � � x��� the domains of the variables are the al�
phabet letters� and the constraints are the possible words� For this example� the
constraints are given by�

R��������� � f
H�O�S�E�S�� 
L�A�S�E�R�� 
S�H�E�E�T�� 
S�N�A�I�L�� 
S�T�E�E�R�g

R��	�
��� � f
H�I�K�E�� 
A�R�O�N�� 
K�E�E�T�� 
E�A�R�N�� 
S�A�M�E�g

R������ � f
R�U�N�� 
S�U�N�� 
L�E�T�� 
Y�E�S�� 
E�A�T�� 
T�E�N�g

R��
��
��� � R��	�
���

R�
��� � f
N�O�� 
B�E�� 
U�S�� 
I�T�g

R����� � R�
���

1 2 3 4 5

6 7

8 9 10 11

12 13

Fig� �� A crossword puzzle
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Let us perform a few iterations ofDirectional�Relational�Consistency�
with m equal to � and o as the ordering of the variables x��� x��� � � � � x�� Thus�
x� is the highest variable in the ordering and x�� is the lowest� The bucket for
x� contains the single relation R���������� Processing bucket� adds the relation�

R������� � ��������
R����������

� f
O�S�E�S�� 
A�S�E�R�� 
H�E�E�T�� 
N�A�I�L�� 
T�E�E�R�g�

to the bucket of variable x� which is processed next� The bucket for x� contains
the single relation R�������� Processing bucket� adds the relation�

R����� � ������
R�������� � f
S�E�S�� 
S�E�R�� 
E�E�T�� 
A�I�L�� 
E�E�R�g�

to the bucket of variable x� which is processed next� This bucket contains the
relations R����� and R��	�
���� Processing bucket� adds one relation�

R����	�
��� � �����	�
���
R����� � R��	�
����

� f
E�S�A�M�E�� 
E�R�A�M�E�� 
E�T�A�R�N�� 
I�L�R�O�N�� 
E�R�A�R�N�g�

to the bucket of variable x�� The bucket for x� now contains the relationR����	�
����
Processing bucket� adds the relation�

R��	�
��� � f
S�A�M�E�� 
R�A�M�E�� 
T�A�R�N�� 
L�R�O�N�� 
R�A�R�N�g�

The bucket for x� contains now the relations R��	�
���� and R������� Processing
bucket� adds the relation�

R	���
������ �f
A�E�R�N�N�� 
A�U�M�N�E�� 
A�U�R�N�N�� 
R�E�O�T�N�g�

The bucket for x	 contains only the newly generated relation R	���
������� Pro�
cessing bucket	 adds the relation�

R��
������ � f
E�R�N�N�� 
U�M�N�E�� 
U�R�N�N�� 
E�O�T�N�g�

to the bucket for x�� Processing bucket� adds the relation�

R
������ � f
R�N�N�� 
M�N�E�� 
O�T�N�g�

to the bucket of x
� The bucket of x� contains only the original relationR��
��
����
and when processed it adds the relation�

R
��
��� � f
I�K�E�� 
R�O�N�� 
E�E�T�� 
A�R�N�� 
A�M�E�g�

The bucket for x
 contains the relations R
��
���� R
������� Processing bucket

adds the relation�

R�
������ � f
O�N�N�g�

The bucket for x�
 contains the relationsR�
������� andR�
���� Processing bucket�

adds the empty relation� Since the empty relation was derived� the algorithm
stops and reports that the network is inconsistent�
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Finally� we propose algorithmAdaptive�Relational�Consistency 
ARC�
which is the relational counter�part of algorithm adaptive�consistency ���	� Like
algorithm DRCm� it processes the buckets in order from last to �rst� When
processing the bucket of xj� it applies extended composition relative to all the
relations in that bucket� and with respect to the whole set of variables appearing
in the bucket excluding xj � It then places the resulting relation in its appropriate
bucket� Algorithm ARCi is a restricted version of ARC that records relations
of arity i only� It is identical to ARC accept that step � and � are modi�ed to
record constraints on subsets of size i at the most� Algorithm ARC generates a
globally�solved problem and it can be viewed as a compilation algorithm since it
yields a representation from which the set of solutions can be recovered in linear
time� It is identical to DRCm when m is not bounded� For brevity� we omit the
full steps of simpli�cation and instantiations�

Adaptive�Relational�Consistency
R� o�

�� Initialize� generate an ordered partition of the constraints� bucket�� � � � �
bucketn� where bucketi contains all constraints whose highest variable is xi�

�� for p� n downto � do

�� simplify�
�� instantiate�
�� for all the relations RS� � � � � � RSj in bucketp do

�� A�
Sj

i�� Si � fxpg

�� RA � RA 	 �A
�
j
i�� RSi�

�� if RA is not the empty relation then
�� add RA to its appropriate bucket
��� else exit and return the empty network
��� return Eo
R� � bucket� � bucket� � � � � � bucketn

Theorem��� Algorithm Adaptive�Relational�Consistency �ARC� glob�
ally solves any constraint network� The complexity of the algorithm when pro�
cessed along ordering o is bounded by O
n � 
�k��w

��o�����

Proof� The algorithm is clearly generating a backtrack�free representation� The
number of relations in each bucket will increase to at most �w

��o��� relations�
The arity of each relation is bounded by w�
o��� and thus its size is bounded by
O
kw

��o����� Consequently the overall complexity is bounded by the cost of join�
ing at mostO
�w

��o���� relations of size O
kw
��o���� which� when adding a factor

of O
kw
��o���� for projection� can be bounded by O
n ��w

��o��� �k��w
��o������ �

Finally we can show that some NP�complete problems are solved by DRC��

Theorem��� Crossword puzzles can be globally solved by DRC� in any variable
ordering and its complexity is O
n � k��w

��o������

Proof� Let R be a crossword puzzle instance� We will show that the buckets of
the network generated by ARC have at most two relations� Therefore� for such
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problems ARC reduces to DRC�� Since ARC generates a backtrack�free prob�
lem it follows that so will DRC�� We will now prove that there are at most two
relations in each bucket of the crossword puzzle at any time during processing
by ARC� Let us annotate each variable in a constraint by a � if it appears
in a horizontal word and by a � if it appears in a vertical word� Clearly� in
the initial speci�cation each variable appears in at most two constraints and
each annotated variable appears in just one constraint 
with that annotation��
We show that this property is maintained throughout the algorithm�s perfor�
mance� It could be the case that the two annotated variables will appear in
the same constraint� The annotation of the variables in the constraint resulting
from extended ��composition inherits the annotation in the parent constraints�
If a variable appeared with annotation ��� in one� and annotation ��� in the
other� its annotation in the resulting constraint will be ������ The claim can
be proved by induction on the processed buckets� Assume that after processing
buckets xn� � � � � xi all the constraints appearing in the union of all the buck�
ets from bucketi�� to bucket�� satisfy that each annotated variable appears in
at most one constraint� When processing bucketi��� since it contains only two
constraints 
otherwise it will contain multiple annotations of variable xi���� it
generates a single new constraint� Assume that the constraint is added to the
bucket of xj � Clearly� if xj is annotated positively 
respectively negatively� in
the added constraint� bucketj cannot contain already a constraint with a pos�
itive 
respectively� negative� annotation of xj� Otherwise� it means that before
processing bucket i � �� there were two constraints with positive 
respectively
negative� annotation of xj � one in the bucket of xi�� and one in the bucket of
xj � which contradicts the induction hypothesis� A very similar argument can
be applied to the multiple annotation case� The complexity of DRC� for the
crossword puzzles is bounded by O
n � k��w

��o����� thus reducing the base of the
exponent by a factor of �w

��o� relative to the general bound of DRC�� �

� Variable elimination operators

The extended m�composition operator uni�es known operators such as resolution
in theorem proving� joins in relational databases� and variable elimination for
solving equations and inequalities�

��� Variable elimination in propositional CNF theories

We denote propositional symbols� also called variables� by uppercase letters
P�Q�R� � � �� propositional literals 
i�e�� P�
P � by lowercase letters p� q� r� � � �� and
disjunctions of literals� or clauses� by �� �� � � �� A unit clause is a clause of size ��
The notation 
� � T �� when � � 
P �Q �R� is a shorthand for the disjunction

P �Q�R� T �� and �� � denotes the clause whose literal appears in either �
or �� The resolution operation over two clauses 
��Q� and 
� �
Q� results in
a clause 
� � ��� thus eliminating Q� A formula � in conjunctive normal form

CNF� is a set of clauses � � f��� � � � � �tg that denotes their conjunction� The
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set of models of a formula �� denoted models
��� is the set of all satisfying
truth assignments to all its symbols� A Horn formula is a CNF formula whose
clauses all have at most one positive literal� Let ECQ�
RA� RB� denote the rela�
tion generated by extended ��composition of RA and RB relative to A�B�fQg�
Q � A 	 B� It is easy to see that pair�wise resolution is equivalent to extended
��composition�

Lemma��� The resolution operation over two clauses 
��Q� and 
��
Q�� re�
sults in a clause 
���� satisfying�models
���� � ECQ�
models
���models
����

Proof� Clear�

In ���	 we have shown that row�convex relations that are closed under ex�
tended ��composition can be globally solved by DRC�� Observe that any bi�
valued relation is row�convex� therefore� since CNF theories are bi�valued�DRC��
if applied to the relational representation of a CNF theory� will decide the
problem�s satis�ability and generate a globally solved representation� From the
above lemma� extended ��decomposition can be applied to the CNF representa�
tion directly and therefore� transformation to a relational representation can be
avoided�

Replacing extended ��composition by resolution and the instantiation step
by unit resolution inDRC�� results in algorithmDirectional Resolution �denoted
DR�which is the core of the well known Davis Putnam algorithm for satis�ability
��� ��	� Applying the same exchange within DRC�i��� yields algorithm bounded
directional resolution �BDRi� which is a polynomial approximation of DR ���	�
As is well known and as also follows from our theory� algorithm directional
resolution globally solves any CNF theory�

Directional�Resolution 
�� o�

Input� A CNF theory �� an ordering o � Q�� � � � � Qn of its variables�

Output� A decision of whether � is satis�able� if it is� a theory Eo
��� equivalent
to �� else an empty directional extension�

�� Initialize� generate an ordered partition of clauses into buckets� bucket��
� � � � bucketn� where bucketi contains all clauses whose highest literal is Qi�

�� for i� n downto � do
�� if there is a unit clause then

apply unit�resolution and place the resolvents in their right bucket
if the empty clause was generated� theory is not satis�able

�� else resolve each pair f
� �Qi�� 
� � 
Qi�g � bucketi�
if � � � � � is empty� return Eo
�� � fg� theory is not satis�able
else determine the index of � and add it to the appropriate bucket�

�� return Eo
���
S
i bucketi

Incorporating resolution into DRC� yields algorithm unit propagation� The
operation of extended ��composition in DRC� will have no e�ect since projec�
tions on clauses generate universal relations� The only relevant steps are the
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simpli�cation and instantiation� The simpli�cation step� if included� allows reso�
lution involving non�unit clauses as long as the variables appearing in one clause
are contained in the other clause� The instantiations step translates to unit res�
olution�

As in the general case� DR generates a globally solved representation and its
complexity can be bounded exponentially as a function of the induced width w�

of the CNF theory� The graph of a CNF theory associates propositional symbols
with nodes and connects two nodes if their associated symbols appear in the
same clause�

��� Variable elimination in linear inequalities

In database theory� a k�ary relation r is a �nite set of tuples and a database
is a �nite set of relations� However� the relational calculus and algebra can be
developed without the �niteness assumptions for relations� We will use the term
unrestricted relation� for �nite or in�nite sets of points in a k�dimensional space
���	� In particular� it was shown that relational calculus is identical to relational
algebra for countable domains and that relational algebra for in�nite relations
is exactly the same as for �nite relations ���		� Therefore� the relational frame�
work we have presented applies as is to in�nite relations� In this section we will
demonstrate the applicability of our results to the special case of linear inequal�
ities over in�nite domains like the Rationals as well as over �nite and in�nite
subsets of the Integers�

Let us consider the class of linear inequalities where a constraint between
r variables or less is a conjunction of linear equalities and inequalities of the
form

Pr

i�� aixi � c� where ai� and c are rational constants� For example� the
conjunction 
�xi��xj � ��� 
��xi��xj � �� is an allowed constraint between
variables xi and xj� A network with constraints of this form can be formulated
as a linear program where the domains are in�nite Rational� or Integers� or
�nite subsets of integers restricted by unary linear inequalities� We will show
�rst that over the Rationals the standard operation of variable elimination is
equivalent to extended ��composition while this equivalence is not maintained
over the integers� Let us denote by sol
�� the unrestricted relation of tuples from
the domain satisfying a set of linear inequalities� �� We de�ne the elimination
operation as follows�

De�nition�� �linear elimination�� Let � �
P�r���

i�� aixi � arxr � c� and

� �
P�r���

i�� bixi � brxr � d� Then elimr 
�� �� is applicable only if ar and br

have opposite signs� in which case elimr 
�� �� �
Pr��

i�� 
�ai
br
ar
�bi�xi � � br

ar
c�d�

If ar and br have the same sign the elimination implicitly generates the universal
constraint�

Lemma��� sol
elimr 
�� ��� 
 ECr
sol
��� sol
��� when the domains are the
Integers� However� over the Rationals sol
elimr 
�� ��� � ECr
sol
��� sol
����

� We thank Manolis Koubarakis for pointing to us the extension to in�nite domains�
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Proof� It is easy to see that if ar and br have the same sign 
both are positive
or both are negative�� then for any assignment to x�� � � � � xi�� there is always a
value for xr that extends x�� � � � � xi�� and that satis�es both � and �� Therefore�
the extended composition produces the universal relation� Assume now that ar
and br have opposite signs� Multiplying � by � br

ar
and summing the resulting

inequality with � yields the inequality

r��X

i��


�ai
br

ar
� bi�xi � �

br

ar
c � d�

In other words� any tuple satisfying this inequality can be extended to a rational
value of xr in a way that satis�es both � and �� It is unclear� though� that there
exists an integer extension to xr which is the reason for partial containment for
the integers� �

In ���	 we have shown that linear inequality constraints over �nite sets of
integers are row�convex and therefore can be globally solved by DRC� using
their relational form� The de�nition of row�convexity can be extended to in�nite
domains without any modi�cation� This implies that linear inequalities over the
Rationals that are relationally ��consistent are globally solved and consequently
linear inequalities can be globally solved by DRC��

Incorporating linear elimination into DRC� 
when the constraints are pre�
sented as linear inequalities� results in algorithmDirectional Linear Elimination

abbreviated DLE� which is the well known Fourier elimination algorithm 
see
���	�� Indeed� as dictated by our theory and as is already known the algorithm
decides the solvability of any set of linear inequalities over the Rationals�

Directional�Linear�Elimination 
�� o�

Input� A set of linear inequalities �� an ordering o � x�� � � � � xn of its vari�
ables�

Output� A decision of whether � is satis�able� if it is� a theory Eo
��� equivalent
to �� else an empty directional extension�

�� Initialize� generate an ordered partition of the inequalities into buckets�

�� for i� n downto � do

�� if xi has one value in its domain then

�� substitute the value into each inequality in the bucket and put the
resulting inequality in the right bucket�

�� else for each pair f�� �g � bucketi� compute � � elimi
�� ��
if � has no solutions� return Eo
�� � fg� theory is not satis�able
else add � to the appropriate bucket�

�� return Eo
���
S
i bucketi

Example ��

�
x�� x�� x�� x�� � f
�� �x� � �x� � x� � �� 
�� x� � x� � �� 
�� � x� � ��


�� x� � �� 
�� x� � x� � x� � ���� 
�� x� � �x� � �g�

��



Initially� bucket� � f�x� � �x� � x� � �� x� � x� � �� �x� � �g� bucket� �
f x� � �� x� � x� � x� � ���g and bucket� � fx� � �x� � �g� Processing
bucket�� applying elimination relative to x� over inequalities 
�� 
��� and 
��

��� respectively� results in� �x� � x� � �� placed into bucket�� and x� � ��
placed into bucket�� Processing bucket� next� eliminates x� from 
�� and 
���
yielding x� � x� � ��� placed into bucket� and processing bucket� adds no new
inequality� We can now generate a backtrack�free solution in the following way�
Select a value for x� from its domains satisfying the unary inequalities in bucket��
After selecting assignments to x�� � � � � xi�� select a value for xi satisfying all the
inequalities in bucketi� This is easy since all the constraints are unary once the
values of x�� � � � � xi�� are determined�

Theorem��� DLE �Fourier elimination� globally solves a set of linear inequal�
ities over the Rationals��

Proof� It is known that the Fourier elimination algorithm decides the consistency
of a set of linear inequalities over the rationals� Since DRC� globally solves a set
of row�convex constraints� since linear inequalities are row�convex and are closed
under extended ��composition� and since DLE is equivalent to DRC�� the claim
follows� �

Linear inequalities over the integers� When the domains are the Integers
the algorithm is no longer guaranteed to decide consistency since linear elimina�
tion is not identical to extended ��composition� If the empty relation is generated
byDLE� the problem is indeed inconsistent� else� the problemmay or may not be
consistent� Nevertheless� the representation generated by DLE could be useful
since it is a backtrack�free representation relative to the rationals� of a super�
set of the sought�for integer solutions� From such a representation an integer
solution may be extracted using backtrack search that may enjoy a substantial
amount of pruning�

Complexity of DLE Algorithm DLE is generally exponential since it may
record an exponential number of inequalities� If the domains are �nite� the �nite
relational representation can be used 
in which case DLE � DRC��� and in
this case the complexity can be bounded using the notion of induced width�
Otherwise� DLE�s complexity may be worst�case exponential even when the
induced width w�� is bounded� The reason is that an exponential number of
inequalities may need to be recorded on the same subset of variables� One cannot
�intersect� two inequalities and replace them by one� In other words� linear
inequalities are not closed under intersection while relations are�

	 The result holds also for the Reals� however since relational algebra was extended
for countable domains only it does not follow from the general theory and needs to
be proved directly�
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Case of binary inequalities� When the linear inequalities are over pairs of
variables only� algorithm DLE� as presented here is still exponential� However
it was shown to have a polynomial implementation over the Rationals that uses
a special data structure that bounds the number of inequalities over any pair of
variables and leads to a polynomial algorithm ���	� Over the integers the binary
linear problem is NP�complete ���	� A more restricted case of binary monotone
inequalities of the form axi � bxj � c� where a� b� c positive integers� was shown
to be weakly NP�complete since there exists a pseudo�polynomial algorithm ���	�
A polynomial algorithm that globally solves the problem over the rationals is
given in ���	� For bounded integer domains the general binary linear problem
can be expressed in a relational form and since DRC� is polynomial over binary
constraints� the class can be solved in polynomial time relative to the maximal
range of the integer domains� In summary�

Theorem�
� Algorithm DLE is exponential even for binary inequalities and
even for bounded induced width� For �nite domains DRC� is applicable� Its com�
plexity for binary constraints is polynomial �in the input and the maximum do�
main range�� and is exponentially bounded by the induced width� for non�binary
constraints� �

There are additional special classes for which DLE is polynomial� One case is
the class of simple temporal constraints� Those are unary and binary constraints
of the form X � Y � a� Algorithm DLE reduces� in this case� to the shortest
path algorithm presented in ���	� The algorithm is polynomial since the number
of inequalities produced is bounded 
in this simple case at most two inequalities
are needed between any pair of variables� and since the class is closed under
linear elimination� The linear elimination operator over the integers� coincides
with extended ��composition in this case� and therefore� DLE is complete for
simple temporal constraints over the integers as well� Note� that although this
is a subclass of monotone inequalities� tractability of DLE over this class does
not follow from ���	 whereby a special implementation was required�

Theorem��� Algorithm DLE is polynomial over the class of unary and binary
inequalities of the form X � Y � a� X � b� The algorithm globally solves such
inequalities� over the Integers �if a and b are integers�� the Rationals and the
Reals�

Proof� Over the Integers and the Rationals� global consistency follows from the
global consistency of DRC�� In this case DLE is complete since simple tempo�
ral inequalities over the integers are closed under extended ��composition and
intersection� the proof is given in ���	�

Case of zero	diversity theories� Propositional CNFs as well as linear in�
equalities share an interesting syntactic property� It is easy to recognize whether
applying extended ��composition relative to variable xi results in a universal
constraint� Both resolution and linear elimination relative to xi are e�ective
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only when the variable to be eliminated appears with opposite signs� This leads
to a simple�to�identify tractable class for both these languages� If there exists an
ordering of the variables� such that in each of its bucketi� xi appears with the
same sign� then the theory is already globally solved relative to that ordering�
We called in ���	 such theories as �zero diversity� and we showed that they can
be recognized in linear time�

� From Local to Global Consistency

Much work has been done on identifying relationships between properties of
constraint networks and the level of local consistency su�cient to ensure global
consistency� This work falls into two classes� identifying topological properties of
the underlying graph of the network and identifying properties of the constraints�

For work on identifying topological properties� Freuder ���	 identi�es a rela�
tionship between the width of a constraint graph and the level of local consistency
needed to ensure a solution can be found without backtracking� In particular bi�
nary trees can be solved by arc�consistency ���	� Dechter and Pearl ���	 provide
an adaptive scheme where the level of local consistency is adjusted on a node�by�
node basis� Dechter and Pearl ���	 generalize the results on trees to hyper�trees
which are called acyclic in the database community ��	�

For work on identifying properties of the constraints� Montanari ���	 shows
that path consistency is su�cient to guarantee that a binary network is globally
consistent if the relations are monotone� Dechter ��	 identi�es a relationship
between the size of the domains of the variables� the arity of the constraints�
and the level of local consistency su�cient to ensure the network is globally
consistent� These results were extended recently by van Beek and Dechter to the
property of tightness and looseness of the constraints in the network ���� ��	�
Van Hentenryck� Deville� and Teng ���	 show that arc consistency is su�cient to
test whether a network is satis�able if the relations are from a restricted class of
functional and monotone constraints� These properties were generalized recently
to implicational constraints ���� ��	 and to row�convexity ���	�

Finally� for work that falls into both classes� Dechter and Pearl ���	 present
e�ective procedures for determining whether a constraint network can be formu�
lated as a causal theory and thus a solution can be found without backtracking�
Whether a constraint network can be so formulated depends on the topology of
the underlying constraint graph and the type of the constraints�

Most of these relationships were formulated initially using the variable�based
de�nition of local�consistency� Reference to constraints was indirect via the con�
straint�s arity as a parameter� Recently� we have shown that these relationships
can be generalized using relational consistency and that they lead to a char�
acterization of classes of problems that can be solved by a restricted level m
of DRCm� The general pattern is as follows� We present a su�cient condition
showing that a network satisfying a property p� and having a corresponding level
of relational consistency l
p�� is globally consistent� This implies that whenever
the property p is maintained under extended l
p��composition� those networks
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satisfying p� can be globally solved by DRCl�p�� Furthermore� it is su�cient
for condition l
p� to hold only relative to the particular ordering on which the
algorithm is applied� We have recently demonstrated the use of our de�nition
for two properties� row�convexity and tightness� We have shown that�

Theorem��� ��	
� A networks of relations that are row�convex and are rela�
tional ��consistent are globally consistent�

Consequently� a network of row�convex relations that are closed under extended
��composition can be globally�solved by DRC�� Similarly� we have shown that�

Theorem��� ���
 If a network of constraints is m�tight and relationally �m
���
consistent� then it is globally consistent�

Consequently� whenever a set of m�tight relations is closed under extended 
m�
���composition it can be solved byDRCm��� The notion ofm�tightness is de�ned
as follows� A binary relation is m�tight if every value of one variable is consistent
with at most m values of the second variable� A general relation is m�tight if
every tuple on all the variables excluding one� has an extension in the constraint
to the missing variable using at most m values�

In this section we apply the de�nition of relational consistency to relation�
ships involving properties such as the size of the domains� acyclicity and causal�
ity�

��� Domain size and global consistency

In ��	� we have shown that�

Theorem��� ��
 If R is a k�valued binary constraint network that is k�� con�
sistent then it is globally consistent� If R is a k�valued r�ary constraint network
that is k
r � �� � � consistent then it is globally consistent�

We now show that by using the notion of relational consistency the above
relationship for r�ary networks 
as well as its proof�� are simpli�ed� Moreover�
the algorithm can be stated more coherently�

Theorem��� A k�valued constraint network R� that is k�relationally�consistent
is globally consistent�

Proof� We prove the theorem by showing that relationally k�consistent k�valued
networks are relationally 
k � i��consistent for any i � �� According to the
de�nitions� we need to show that� if there are relations RS� � � � � � RSk�i � all sharing

variable xt� and if �x is a locally consistent tuple de�ned over
Sk�i
i�� Si � fxtg�

then there is a value a of xt such that 
�x�a� belongs to the joined relation
RS� �� � � � �� RSk�i � With each value j� in the domain of xt we associate a subset
Aj that contains all those relations in fRS� � � � � � RSk�ig that are consistent with
the assignment xt � j� Since variable xt may take on k possible values �� �� � � � � k
we get k such subsets� A�� � � � � Ak� We claim that there must be at least one set�

��



say A�� that contains all the constraints fRS� � � � � � RSk�ig� If this were not the
case� each subset Aj would be missing some member� say R�

S�

j
� which means that

the partial tuple �x� � �A
�x�� A �
Sk
i�� S

�
i � fxtg� is locally consistent� namely

it belongs to �A� but it cannot be consistently extended to a value of xt while
satisfying the k relations R�

S�

�

� � � � � R�
S�

k

� This leads to a contradiction because as

a subset of �x� �x� is locally consistent� and from the assumption of relational k�
consistency� this tuple should be extensible by any additional variable including
xt� �

Since the domains do not increase by extended k�composition we get�

Theorem��� Any k�valued network R can be globally solved by DRCk�

Example �� From Theorem ��� bi�valued networks can be globally solved
by DRC�� In particular� propositional CNFs can be globally solved by DRC��
As we have seen� in this case� the operator of extended ��composition takes the
form of pair�wise resolution yielding algorithm directional resolution ���	�

��� Acyclicity� causality and global consistency

Relational consistency and the DRCm algorithms can also capture the tractable
classes of acyclic and causal networks� It is well known that acyclic networks are
tractable ���� ��	�

De�nition�� �acyclic networks�� A network of constraints is acyclic if it has
a chordal constraint graph and if each maximal clique is associated with a single
constraint�

It is easy to see that�

Lemma��� If a network is acyclic then there exists an ordering of the variables
for which each bucket has a single relation�

Causal networks include acyclic networks� They were de�ned in order to
capture the ease of some tasks in physical systems� such as projection�

De�nition�� �causal networks ���
�� A constraint network is causal rela�
tive to an ordering o � x�� ���� xn i� it is globally solved 
i�e�� backtrack�free��

De�nition�
 �causal relations ���
�� A constraint is called causal if its pro�
jection on any subset of variables generates a universal relation�

Lemma��� ���
 A single�bucket network relative to ordering o whose constraints
are causal� is causal relative to o�

Finally� it is easy to see that�

Theorem��� Single�bucket networks that are closed under DRC� are tractable�

��



Proof� Since each bucket contains a single relation throughout processing� DRC�

is equivalent to ARC and therefore� complete� Since DRC� is polynomial� the
claim follows� �

Since acyclic networks are single�buckets and closed under DRC�� and since
single�bucket causal relations are closed under DRC�� and� since CNF formulas
as well as linear inequalities are causal relations� we conclude�

Corollary��� Algorithm DRC� is complete for� �� Acyclic networks� �� single�
bucket causal relations� and in particular for single�bucket CNF �s and linear
inequalities� For the latter two classes this is a special case of the zero�diversity
class�

� Discussion

The algorithmswe present in this paper belong to the class of variable elimination
algorithms� formulated recently within the bucket elimination framework ���	�
which generalize non�serial dynamic programming ��	� We have recently shown
how a collection of probabilistic and combinatorial optimization tasks can be
formulated within this framework ���	� Such algorithms were also presented for
various graph�based tasks by ��� �	� All the algorithms possess similar properties
of compiling a theory into a backtrack�free one 
or greedy� and their complexity is
dependent on the same graph properties� Speci�cally they all have a complexity
bound which is exponential in the induced�width of some graph�

Another common property often overlooked of all such algorithms� is that
they also require space exponential in the induced width� We have recently
demonstrated how a method of conditioning can be incorporated into the bucket�
elimination scheme to allow trading space for time� The special case�handling of
singleton values that we had introduced 
i�e�� instantiation� permits this exten�
sion ���	 and will lead to similar time�space tradeo�s�

Since the algorithms may be quite time demanding� unless the problem is
very sparse� practical considerations call for the use of approximations� Polyno�
mial approximation algorithms such as DRC�i�m� could be useful and may be
extended to optimization and probabilistic inference as well�

� Conclusions

We focused on a new de�nition of local consistency called relational consistency�
This de�nition is relational�based� in contrast with previous de�nitions which
were variable�based� We presented algorithms� Directional Relational Consis�
tency �DRCm�� enforcing relational consistency using a general composition op�
erator which uni�es resolution for CNF theories� variable elimination in linear
inequalities and the project�join operator in relational databases� We also show
that relational consistency is useful in characterizing relationships between prop�
erties of constraint networks and the level of local consistency needed to ensure
global consistency�

��



Speci�cally� we have shown that di�erent levels of DRC can globally solve
di�erent classes of constraint networks�

�� DRC� globally solves acyclic and single�bucket� causal relations in polyno�
mial time�

�� DRC� globally solves bi�valued domain networks� crossword puzzles� and
linear inequalities over �nite subsets of the integers� The algorithm is poly�
nomial for binary constraints over �nite domains in relational form� and is
exponential otherwise� Algorithm DLE 
or Fourier elimination� is a linear
elimination algorithm equivalent to DRC� over the rationals� and approx�
imates DRC� over integers� The resolution algorithm of Davis�Putnam is
equivalent to DRC��

�� AlgorithmDRCm globally solves m�valued networks� The algorithm is poly�
nomial for binary constraints�

�� Algorithm ARC globally solves all networks�
�� The complexity of both DRCm and ARC is exponentially bounded by w��

the induced�width 
tree�width� of the network over �nite domains�
�� We introduced a class of polynomial directional relational consistency al�

gorithms DRC�i�m� that approximate DRCm� The algorithms are complete
when i � w�
o��

All the algorithms we present belong to the family of variable elimination
algorithms that are widely applicable to deterministic reasoning tasks� to opti�
mization problems and to probabilistic inference ���� ��	�
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