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Abstract

Smart water meter devices are now widely installed in single family residences, allowing
water consumption data to be collected at a high resolution from both the temporal and
spatial perspectives. Such data allows improved prediction of future water consumption—
an important task for water utilities as they manage the water supply. The dataset in this
thesis consists of hourly water consumption data from the 9,045 single-family residences in
Abbotsford, British Columbia from September 2012 to August 2013. This research focuses
on predicting hourly water consumption by using improved artificial neural network (ANN)
models and makes five main contributions. The first contribution is accurately predicting
hourly water consumption at a finer spatial and temporal scale than previous work. The
second contribution is gathering and studying a wide variety of datasets and related features
for predicting future water consumption. In addition to water consumption data, daily
weather information, demographic information, property information and date information
during the same period of time are collected in the raw dataset. The third contribution is
to systematically perform feature selection, an important step in building machine learning
models but one that is absent from previous work on predicting water consumption. For
different experiment criteria, customized feature sets assist the corresponding models to
accurately predict the hourly usages. The fourth contribution is to improve prediction
accuracy by building separate models for weekday and weekend prediction. Residents
consume water in different patterns between weekdays and weekends. By tackling the
predictions separately, better performance can be achieved with less complicated models.
Lastly, this research investigates the performance of multi-hidden-layer ANN models versus
single-hidden-layer models. Although, single-hidden-layer models are sufficient in theory,
we show that multi-hidden-layer ANNs can lead to improved performance.
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Chapter 1

Introduction

In this chapter, I informally introduce the problem addressed in this thesis: predicting
short-term residential water consumption by using machine learning techniques. Moreover,
the contributions of the thesis and the organization of the thesis are demonstrated.

1.1 Problem

Residential water consumption predictions are important for water utilities in both short-
term and long-term water supply plans. Short-term supply plans ensure there is sufficient
water to support residents’ day-to-day consumption; meanwhile, the water utility company
minimizes supply costs. In addition, another benefit of short-term prediction is detecting
water leakage within a short period of time. For example, Britton et al. [16] proposed a
strategy enabling rapid and effective post-meter leakage identification and managing water
loss by using hourly smart metering and prediction data.

The term “finer grid”, which is used throughout this thesis, is defined as high resolution
data in both the spatial and temporal dimensions. For the spatial dimension, a finer grid
refers to a higher resolution in a target group of people from the location perspective. For
example, predictions of the water consumption of a city are spatially finer than predictions
of the entire country and predictions in districts are in a finer grid when comparing with
city level predictions. For the temporal dimension, a finer grid refers to a higher resolution
in time. For example, daily consumption predictions are finer than the monthly predictions
and hourly consumption predictions are finer than daily predictions.
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Smart meter devices have been installed for all water clients in the city of Abbotsford,
British Columbia, and water consumption is recorded on an hourly basis. Our initial
dataset consists of over 20,000 clients’ hourly water usage during a one year period from
September 2012 to August 2013. Our focus here is on single-family residences, and after
a proper data cleaning and preparation process, 9,045 residents’ hourly consumption are
targeted for experiments. Although, it proves infeasible to predict at the household level,
in this thesis water usage is accurately predicted at the dissemination area (census tract)
level, a finer grid than previous work, by using various artificial neural network (ANN)
models.

1.2 Contributions

The first contribution of this thesis is predicting the water consumption at finer grids.
Although the ideal scenario is predicting hourly water consumption at the household level,
this thesis targeted hourly predictions at the dissemination area (census tract) level due
to the high variances of single family consumption, which makes the prediction infeasible.
Taking Saturdays 10:00 am data over the year as an example, in a dissemination area with
140 residents, the variance of the area hourly usage is 3.3 liters. However, 35 residents
in this area have individual variance above 4.0 liters with the highest individual variance
reaching approximately 40.0 liters. On the other hand, comparing with the predictions
at the city and district levels, predicting at the dissemination area level raises the spatial
resolution to a finer grid. While predicting a small population group’s hourly usage, each
individual instance plays an important role. Any abnormal usage at a certain time of a
single family can result in significant model adjustments and notable impacts on the overall
performance. Therefore, the most significant contribution of this work is predicting hourly
water consumption at the dissemination area level with high accuracy.

The second contribution of this thesis is engaging various related datasets in the pre-
diction. Urban families utilize water for different purposes and there are different factors
impacting the amount of the consumption for each purpose. In general, water consumption
is categorized into two broad subsets: indoor and outdoor consumption. Indoor consump-
tion refers, for example, to usage in showering, drinking and cleaning; while, the outdoor
consumption refers, for example, to usage in irrigation, pool filling and car washing. Both
indoor and outdoor water consumption are impacted by many factors. Therefore, this
thesis leverages as much information as possible to implement the predictive models in
order to improve model performance. (All the features except the historical water con-
sumption information are listed in Appendix A.) In contrast to previous work, this thesis
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involves many datasets including previous water consumption data, weather information,
date information, demographic information and property information. Hence, another con-
tribution of this thesis is engaging large-scale related datasets into the model to increase
the model performance.

The third contribution of this thesis is determining suitable feature sets for different
experimental scenarios. As mentioned above, various datasets are engaged in this thesis
and each dataset introduces a set of features. Consequently, a large number of features
are available when building a model. Making decisions on selecting effective features be-
comes very challenging. Guyon and Elisseeff [26] suggest that feature selection is a process
that improves prediction performance, provides faster and more cost-effective predictors
and provides better data and model understanding. In contrast to previous work, this
thesis first builds a model with features based on the previous work and considers it as
a baseline. Then models with feature selection are implemented and their performance is
compared with the baseline model. Therefore, the third contribution of this thesis is pro-
viding detailed feature selection for models and showing that models with feature selection
outperform ones with no feature selection.

The fourth contribution of this thesis is splitting the predictive model into two models—
one for weekdays and one for weekends—to improve the overall prediction accuracy. Week-
day and weekend water consumption follow different patterns. Not only the peak hours are
different between weekdays and weekends, but also the amount of peak hour consumption
are remarkably disparate from each other. This leads to the question of whether sepa-
rate models for weekdays and weekends can significantly improve the model performance.
When comparing the models’ overall performance, the ones with weekdays and weekends
separation outperform the others. Hence, the model separation is considered as one of the
significant contributions in this thesis.

The final contribution of this thesis is engaging multi-layer neural network models; i.e.,
ANNs with more than one hidden layer. Although there is much evidence that deeper
neural networks can outperform shallow networks, it is currently unknown whether multi-
layer ANN models would outperform single-layer models in the context of water prediction.
This thesis leverages the one day in advance hourly water experiments to compare mod-
els’ performance on models with one, two and three hidden layers. Therefore, the last
contribution of the thesis is identifying the best single or multi-hidden layer model(s).
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1.3 Organization of the Thesis

In Chapter 2, I discuss previous work and achievements related to water prediction and
artificial neural networks. Moreover, the achievements that this thesis is based on are em-
phasized such as which datasets are engaged, why splitting weekday and weekend models
is useful, and why it is important to analyze the models’ performance at peak hours. In
Chapter 3, I present the data preparation procedures that are the foundation of this the-
sis. The data preparation includes data collection, data cleaning and data aggregation. In
Chapter 4, the detailed feature selection process and results for all scenarios are presented,
including baseline model; one hour ahead weekday and weekend models with and without
predefined features; and one day ahead weekday and weekend models with single, two and
three hidden layers. A best feature set is selected for each experiment set to optimize
each model and make model implementations efficient. In Chapter 5, models based on the
features from Chapter 4 are implemented. Moreover, one best model is proposed to rep-
resent each of the scenarios. In Chapter 6, I compare the alternative solutions determined
from Chapter 5 from both model performance and structure perspectives. Moreover, the
results are analyzed from peak seasons, peak hours, and weekdays and weekends aspects.
In Chapter 7, the achievements of this thesis are summarized and potential future work
that may improve the model prediction is suggested.
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Chapter 2

Related Work

In this chapter, I review relevant previous work. First, I provide a brief introduction to
artificial neural network (ANN) models, discuss previous work on applying ANN models
to predicting water consumption and illustrate differences between single and multi-hidden
layers ANN models. Second, I present previous work on forecasting water consumption in
different temporal and spatial dimensions. Next, I provide an overview of previous research
leveraging various datasets including weather, demographic and property information to
predict water consumption. Then indoor and outdoor water consumption analysis are
demonstrated. Last, I show two characteristics—peak hour usage and weekday/weekend
separations—of water consumption, which are widely used to analyze residential water
consumption patterns.

2.1 Artificial Neural Networks

In this section, I provide an overview of artificial neural network models which are referred
to as ANNs for the rest of this thesis, demonstrate previous studies on ANNs predicting
urban water consumption, and lastly present related work on multi-hidden layer ANNs.

This thesis uses ANNs to predict hourly water consumption. Hence, I first review
ANNs’ structures. There are three types of layers in ANNs: input layer, hidden layer and
output layer. Each layer contains nodes designed to simulate neurons in a brain. Except
for the output layer, nodes in each layer are fully connected to nodes in the next subsequent
layer by directed edges. This means that every node in the current layer connects and only
connects to all the nodes in the adjacent subsequent layer. Moreover, there is a weight
assigned to each directed edge in order to calculate output results.
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Figure 2.1: Artificial neural network model structure.

Figure 2.1 demonstrates a “deep” neural network model with two hidden layers. A first
type of layer is an input layer. Nodes in the input layer represent the input signals received
by the ANN. In this thesis, they refer to values of the corresponding features selected from
historical water consumption, daily weather, demographic, date and property information
datasets. The second type of layer is a hidden layer. ANNs can maintain zero, one or
multiple hidden layers. Kim [37] divides ANNs into three categories based on the number
of hidden layers: single layer ANNs, which retain no hidden layers, shallow ANNs, which
retain only one hidden layer and deep ANNs, which retain more than one hidden layer. In
this thesis, the last two types of models are implemented and they are referred as single
hidden layer ANNs and multi-hidden layer ANNs. In addition to nodes and edges in
hidden layers, there is one more component called the activation function. For each node
in a hidden layer, the node first calculates a weighted sum defined as,

y = wx+ b,

where w is a vector that represents weights of all directed edges incoming to a node, x is
a vector of the corresponding input values that are fed into the node, and b is a bias term.
The weighted sum is passed to an activation function and an output value is calculated.
There are different options for activation functions. The sigmoid function is selected in

6



this thesis,

σ(x) =
1

1 + e−x
.

Finally, the value calculated by the activation function is utilized as the inputs of the im-
mediate subsequent layer. The last type of layer is an output layer. Although Figure 2.1
contains only one output node, there could be multiple nodes in this layer. This thesis fo-
cuses on predicting hourly water consumption; therefore, only one output node is required.
The output calculation in this layer is the same as the one defined in hidden layers. As
the output value is not restricted from 0 to 1, the activation function is

f(x) = x,

which means that the weighted sum is the output.

2.1.1 ANNs in Water Usage Prediction

ANNs have been well investigated in recent decades for water consumption prediction.
Firat et al. [21] investigate different types of ANNs for monthly urban water consumption
of the city of Izmir based on historical monthly water consumption data. Finer grid data
has also been used in ANNs for high resolution water consumption forecasts. Walker et
al. [53] evaluate different ANNs on domestic water consumption. The study takes nine
residents of Greece with a high resolution of data and predicts water consumption on an
hourly basis. Comparing with other models, ANNs demonstrate performance advantages
over others, especially in water usage prediction. Adamowski et al. [1] implement city
wide daily water demand prediction models for the city of Montreal by using nonlinear
regression, auto-regressive integrated moving average, artificial neural network and wavelet
artificial neural network methods. Bougadis et al. [15] compare the performance of ANNs,
regression models and time series models for water consumption of the city of Ottawa on a
weekly basis. Both suggest that ANNs dominate the performance of other machine learning
methods. Moreover, Gagliardi et al. [23] compare a pattern based model with ANNs for
short-term water demand forecasts. The results indicate that for small population groups,
ANNs outperform other methods.

2.1.2 Single Hidden Layer Models and Multi-Hidden Layers

There has been much previous work investigating the performance of different numbers
of hidden layers in ANNs. Although, Hecht-Nielsen [28] indicates that three layer models
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should be able to describe all problems in theory, the optimal number of layers is an empir-
ical question. Kumar et al. [38] investigate daily grass reference crop evapotranspiration
and compare performance of ANNs with conventional methods. During the comparison,
they discover that two hidden layer models attain lower performance than single hidden
layer models for both training and validation sets when the number of learning cycles are
the same. Although Panchal et al. [46] state that one hidden layer should be sufficient for
almost all problems, experiments on employee retention data reveal that as soon as the
number of hidden layers increases, the experimental results improve. Furthermore, Lee et
al. [39] study applying ANN models to short-term load forecasts for a large power system.
They encounter a situation where one hidden layer model cannot achieve their predeter-
mined tolerance; however, a model with two hidden layers can. In this thesis, I study the
performance of different numbers of hidden layers on water usage prediction.

2.2 Water Usage Prediction at Different Spatial and

Temporal Levels

As mentioned in Chapter 1, the finer grid is defined from both the spatial and temporal
perspectives. From the spatial perspective, predictions can be from a country level to a
single-family level; while from the temporal perspective, predictions can be from a monthly
level to an hourly level. There has been much previous work on residential water prediction
at different spatial and temporal levels. A comparison of water prediction in this research
and previous work is shown in Table 2.1.

Cominola et al. [19] indicate that traditional research is based on low-resolution data to
model water demands at the city or block scale by using time resolutions at or above daily
levels. Ghiassi et al. [25] implement dynamic ANNs for monthly, weekly, daily and hourly
water consumption predictions of San Jose city at high accuracy rates. However, daily,
weekly and monthly models are at the city level and hourly water predictions are at the
zone level, where a zone contains approximately 250,000 people. Thus, all the experiments
are conducted at low resolutions from the spatial perspective. Jain and Varshney [33]
investigate the performance of ANN, regression analysis and time series analysis models
for the weekly water demand in Kanpur, India. Although the study area is in a relatively
finer grid, the predictions are at the weekly level, which is considered as medium or low
resolution from a temporal perspective. In contrast, Zhou et al. [58] forecast operational
demands for an urban water supply zone which is a residential area and has a population of
35,000 persons, at the daily and hourly level. Thus, some of the experiments are conducted
at a finer temporal resolution but at a low spatial resolution.
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Table 2.1: Comparison of previous work versus this research on temporal and spatial
dimensions.

City Block Certain group Dissemination

Minute Liu et al. [41]

Hourly

Ghiassi et al. [25] This research:
Zhou et al. [58] one model to
Beal and Stewart [12] predict 111
Bennett et al. [13] dissemination

areas

Daily
Cominola et al. [19] Cominola et al. [19]
Ghiassi et al. [25]

Weekly
Cominola et al. [19] Cominola et al. [19]
Jain and Varshney[33]
Ghiassi et al. [25]

Monthly
Cominola et al. [19] Cominola et al. [19]
Ghiassi et al. [25]

As smart meter devices are now widely installed, high-resolution data has become avail-
able. Researchers have leveraged those data to predict water consumption patterns at finer
grids from both the spatial and temporal perspectives; however, the experimental datasets
are relatively small. Liu et al. [41] investigate water end-usage of 141 residents located at
Tea Garden suburbs, Australia by utilizing smart meter to collect water consumption data
at 1-minute intervals. Beal and Stewart [12] study water end-usage that drives peak day
demand and the associated hourly demand patterns by investigating 230 residences’ smart
meter data over 18 months. Bennett et al. [13] leverage daily end-use consumption infor-
mation of 205 households living in South East Queensland region associated with the water
stock efficiency and demographic data to implement ANNs predicting water consumption.
The end use information includes toilets, clothes washers, showers, dishwashers, taps and
total internal demands. In contrast to previous finer grid predictions, this research lever-
ages only one model to predict 111 dissemination areas, each contains 30 to 178 single
family residences, hourly water consumption and the model retains high accuracy rates.
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2.3 Weather Information

Climatic variables—in particular, precipitation—are essential factors for predicting water
consumption. Some research considers the amount of rainfall information more important
than the number of occurrences; whereas, others consider occurrences more important. For
example, Balling et al. [35] investigate the relationship between monthly water consumption
and climatic variables by using data between 1995 and 2004 in Phoenix at the city level
and conclude that water consumption generally increases when temperatures are above
normal, precipitation is below normal and areas are in periods of drought. On the other
hand, Mart́ınez-Espińeira [44] explains domestic water consumption by using price, billing,
climatic and sociodemographic variables. The research considers rainy days—number of
precipitation days in a month—over the total number of precipitation events in a month.
One achievement of this thesis is that I provide solid reasons on when one feature dominates
the other based on effective feature selection algorithms. Both precipitation amount and
occurrences are included in the initial feature set; however, whether it should be engaged
as an input depends on the feature selection results for different criteria.

This thesis performs experiments with two goals: predicting one hour ahead and pre-
dicting one day ahead hourly. As weather information is considered highly relevant, daily
weather information is also included in one day ahead predictions. That means future
weather information is required. Fortunately, there is much previous work that provides
evidence that one day ahead weather information can be predicted accurately. Mohandes
et al. [45] compares autoregressive and ANN models by predicting daily wind speed, and
shows that ANN models outperform autoregressive models and achieve high accuracy. For
daily average temperature, Tasadduq et al. [52] utilize ANN models to predict hourly mean
values of ambient temperature for 24 hours ahead. They select one-year continuous data
for model training and validate model performance by using another three years’ predic-
tions, and again show that ANN models achieve high accuracy. Besides predicting each
individual meteorological variable, Maqsood et al. [43] conduct a weather forecast in south-
ern Saskatchewan for a 24 hours ahead scenario. The climatic variables temperature, wind
speed and humidity are predicted in four different seasons. The results demonstrate that
the correlation coefficients between the actual and predicted values are above 99%. With
these achievements from previous research, this thesis leverages daily weather information
even for 24 hours in advance predictions.
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2.4 Demographic Information

When investigating water consumption, demographic information is also widely considered.
The top three crucial factors in this feature set are householder ages, incomes and education
levels. Clark and Finley [18] study the determinants of water conservation intention for
728 residents in Blagoevgard, Bulgaria. The study concludes that ages, incomes, resident
types and presence of gardens significantly related to residents’ intention to implement
water conservation measures. While studying determinants of residential water demand in
Germany, Schleich and Hillenbrand [50] find that every 1% annual growth rate in per capita
income results in 6.5 liters more water consumption per day per capita. Furthermore, they
observe that higher ages are associated with higher water usage. While investigating 132
residences water end-use behaviors in the Gold Coast, Australia, Willis et al. [54] categorize
household income into lower middle, middle and upper middle classes. They conclude that
upper middle class residents have less water conservation concerns.

2.5 Property Information

In addition to demographic information, resident property information is considered pivotal
as well. Fox et al. [22] propose methodologies to classify household property information
for water consumption forecasts. The features of properties considered are number of bed-
rooms, building types (for example, detached, semi-detached, and townhouse) and whether
a property has a garden attached. Their research indicates that the more bedrooms, the
more consumption is required, and garden presence significantly correlates with increased
water usage. House-Peters et al. [30] use regression models to discover effective factors that
impact householders water consumption at the census block level in Hillsboro, Oregon. The
Hillsboro water district consists of 37 adjacent census blocks. Outdoor usage is found to
be strongly related to education levels and house sizes. Specifically, clients whose usage is
sensitive to climate changes are the well-educated residents living in expensive and large
houses. Similarly, Chang et al. [17] study single family resident water consumption at the
block level which is defined by U.S. Bureau of the Census in 2007, for the city of Portland,
Oregon. The study concludes that building sizes and ages are the most important property
variables explaining water consumption.
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2.6 Indoor and Outdoor Water Consumption

In general, water usage can be categorized into indoor and outdoor consumption. In-
door consumption consists of day-to-day usage including showering, drinking, washing and
cleaning. Outdoor consumption includes irrigation, gardening and swimming pool filling.
Balling et al. [34] analyze the annual water consumption data in the city of Phoenix to
understand associations between climate variabilities and residential water usage. They
indicate that climate variables are pivotal factors for outdoor water consumption. Polebit-
ski and Palmer [48] investigate single family bimonthly water consumption patterns for
residents in Seattle and find that outdoor water consumption is primarily driven by the lo-
cal weather, whereas indoor usage is impacted by residence sizes and densities of residents
living in a property. One more distinct impact variable between indoor and outdoor usage
is family income. Higher income families tend to consume more outdoor water during
summer time; whereas, indoor usage is insensitive to income distinctions. Some previous
work has considered indoor and outdoor usage separately. For example, Kenney et al. [36]
work on residents’ water consumption patterns in Aurora, Colorado. They differentiate
indoor and outdoor usage and treat them as separate variables in their regression model.

2.7 Characteristics of Water Consumption

In water consumption studies, researchers normally divide usage analysis into different
categories. Two of the most popular categorizations are to divide consumption into peak
and off-peak hours and to separate weekday and weekend usage.

Peak hour water consumption is widely considered in previous work while analyzing
water usage behaviors. Arbués et al. [9] in their work on estimating residential water
demand indicate that peak hour consumption is less sensitive to price changes than off-
peak hour usage. Moreover, in order to design a water supply system for the Western
United States, Hughes [32] takes peak seasons, peak days and peak hours information into
account so that the system ensures reservoir storage, pump plant sizes and the pipeline
sizes sized for peak demand. Gargano et al. [24] demonstrate probabilistic models for peak
hour usage and indicate that peak hour consumption predictions are pivotal for water
supply system designs and managements.

Due to different water consumption patterns during weekdays and weekends, much
previous work prefers to analyze weekday and weekend consumption behaviors separately.
When Alvisi et al. [8] implement short-term pattern based models for hourly water demand
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predictions, they observe variable diurnal patterns for weekdays and weekends. Similarly,
Blokker et al.[14] consider weekdays and weekends separately while simulating residen-
tial end-use water demand. Moreover, they observe different relationships between water
consumption and clients’ ages and occupations. Weekday consumption retain strong asso-
ciations with these variables; whereas, weekend consumption do not. In addition, Eslamian
et al. [20] leverage a novel multi-regression model to forecast daily urban water consumption
and demonstrate that water consumption increases significantly due to weekend factors.
Moreover, Alpaydin [6] indicates that when a dataset has multiple classes following differ-
ent distributions, choosing multiple model is considered as a better option comparing to a
single model. Therefore, the weekday and weekend data is separated in this research and
the predictions of each scenario are conducted independently.

2.8 Summary

In this chapter, I summarize relevant previous work. I first introduce ANNs and their
achievements. From a data resolution perspectives, I present previous work on water
usage prediction at different temporal and spatial dimensions. In contrast to previous
works, this thesis predicts water consumption at the hourly level and at the dissemination
area (census tract) level by engaging large scale single-family consumption data for the
city of Abbotsford, British Columbia. Moreover, I discuss a variety of datasets for water
usage forecasts in previous work. The datasets include weather, demographic and property
information, which are determined as feature sets for this thesis. To understand how
variables impact water consumption, I present previous work on indoor and outdoor water
consumption analysis. Last, the analysis of peak hour usage and weekend and weekday
separation in previous work is illustrated. This research imports the weekend and weekday
separation strategy and analyzes models’ performance in the peak-hour manner.

In the next chapter, I present how water consumption, weather, demographic, property
and date information is collected, filtered and cleaned. Data is the foundation of this
research as it is utilized by feature selection, and used in learning the predictive models
and in performance analysis. Hence, ensuring data integrity and data cleansing is crucial.
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Chapter 3

Data Collection and Data Cleaning

There are five datasets created in order to retain weather, water usage, timeline, demo-
graphic and assessment information for this research. Datasets are selected based on previ-
ous work. The target variable for this thesis is next hour water usage. Predictor variables
are distributed in selected datasets such as daily temperature in the weather informa-
tion, previous hour water usage information in water usage dataset, and public holiday
information in timeline information dataset. Understanding the datasets will enable an
understanding of water consumption patterns. Hence, each dataset will be presented in
turn, prior to addressing model construction and selection.

3.1 Smart Water Meter Data

Hourly water usage information is time series data. From a time series analysis perspec-
tive, previous water usage should have a close relationship with current and future water
demand. Herrera et al. [29] demonstrate the importance of previous hour, previous two
hours and previous-week-same-hour water usage information to current hour water predic-
tion models. Babel and Shinde [10] indicate that historical water demand information is
one of the critical features for short term and long term water usage prediction models.

Smart-meter devices have been installed for each water customer in the city of Abbots-
ford, British Columbia. The meters record hourly water consumption and send data back
to the utility company’s servers. In this thesis, I focus on single-family residences and the
main dataset used consists of hourly water consumption measurements for each household
in Abbotsford, recorded from September 2012 to August 2013. Before using the dataset in
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a machine learning context, it is important to ensure that the data is clean. Thus, I first
filtered unnecessary data, cleaned dirty data and enriched missing data.

3.1.1 Data Cleaning

Data cleaning is an inevitable procedure that needs to be followed for data related projects.
Zhang et al. [57] mention that due to impure data in the real world, data preparation is
pivotal for building a high performance data mining system. Fox et al. [22] demonstrate a
data cleaning process for water demand prediction. However, in their work, the cleaning
process results in a small experimental dataset: only 566 out of 1555 sample instances are
left after cleansing. In the following, I provide detailed information on data preparation
of the single-family hourly water consumption dataset. As suggested by Zhang et al. [57],
the data cleaning process involved removing outliers (un-repairable data), resolving data
conflicts and imputation of missing data.

Step 1: Remove outliers.

Information for over 20,000 customers was provided initially, including 9,918 single-family
residences. However, due to network and hardware issues, some customers’ hourly con-
sumption was not recorded correctly. For example, during peak hours (e.g., 6:00–8:00am
on weekdays), the hourly consumption was recorded as zero whereas the next hour usage
was recorded as exactly one cubic meter. The explanation for this exception is that accu-
mulated water consumption information was transferred rather than hourly water usage
information. There were 873 clients following this pattern and their water usage informa-
tion was filtered out. After this data filtering process, the remaining 9,045 householders’
hourly water usage information was saved into a repository.

Step 2: Resolve data conflicts.

The first conflict in the hourly water consumption data is that the recorded system time
zone and the actual local time zone were discovered to be different. Adamowski [2] studies
peak daily water usage in Ottawa and observes that residential demand increases signif-
icantly after 4:00pm, reaches a peak just before 9:00pm, and then gradually decreases.
However, a plot of hourly water usage for the Abbotsford data indicated that the de-
mand increased significantly after 9:00am, reached a peak around 2:00pm for weekdays,
and then gradually decreased. This represented a shift of approximately seven hours from
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Figure 3.1: Hourly water usage for each day of the week after correcting for time zone.

previous work. Subsequently, it was discovered—and confirmed with the water utility in
Abbotsford—that the hourly water consumption was recorded using the universal time
zone, whereas Abbotsford is in the Pacific time zone. The solution to the conflict was to
adjust the recorded times to the Pacific time zone. Thereafter all the peak hours match to
the expected periods (see Figure 3.1). For example, during weekdays the peak hour in the
evening is around 9pm.

The second conflict in the hourly water consumption data was due to daylight savings
time. For our dataset, there were two times where the clock was adjusted due to daylight
savings time: November 4, 2012 at 2:00am and March 10, 2013 at 1:00am. On November
4 at 2:00am the clock is turned backward to 1:00am with the result that there were two
records for 1:00am. In contrast, there were no records for March 10 1:00am. For the
duplicated records, mean value of the two hours is taken as the consumption. For the
missing hour, it is treated as a missing hour (see below for how the missing data was
imputed).
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Step 3: Impute missing data.

After conducting the first two steps above, there are 8,664 hourly water usage data collected
for each householder. Comparing to 8,760 hours, which are 24 hours per day and 365 days
during the entire period, there are 96 missing records for each customer. Missing data
is a consequence of hardware device maintenance. As indicated by the utility company,
there are 4-time periods when water usage data is not collected due to the company’s
maintenance schedules. These time periods are listed in Table 3.1.

Table 3.1: Missing hours in water time series data for all single-family residences.

From To Hours
2013 Feb. 16 17:00 2013 Feb. 17 16:00 24 hours
2013 Mar. 9 17:00 2013 Mar. 10 17:00 25 hours including one hour switch
2013 Mar. 30 18:00 2013 Mar. 31 17:00 24 hours
2013 Jul. 27 18:00 2013 Jul. 28 17:00 24 hours

In order to address this data issue, estimated values are used to enrich the data. There
are two different mechanisms applied and the optimal solution is selected at the end.

There are 97 hours with missing values listed in Table 3.1, 96 regular hours and one
missing hour (March 10, 1:00 am) due to daylight saving time. This research evaluates
two different approaches to estimate values and selects a best solution. Before presenting
data enrichment, it is important to understand why the missing data cannot be ignored.
Historical hourly consumption is an important factor for future water usage predictions.
For example, Bakker and Duist [11] engage previous day water consumption as parameters
to their adaptive heuristic model to predict one-day ahead water usage. Herrera and
Torgob [29] leverage previous week same hour water usage information to predict next
hour water usage in multiple models. Based on previous work, this thesis engages the
previous entire weeks’ hourly consumption as a raw feature set and takes them as inputs
of feature selection to ensure all possible effective predictor variables are considered. In
consecutive hours, even though there is only one-hour usage missing, the consequence is
that the entire data for the following weeks is lost in the experiment dataset. Enriching
missing values benefits the feature selection and model implementation sections, and thus
retains data integrity.

Different clients may follow different water consumption patterns. Although this re-
search aggregates water usage at the dissemination area level, significant differences be-
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Figure 3.2: Comparison of average hourly water usage for two dissemination areas.

tween dissemination areas persist. Figure 3.2 shows the average hourly usage for two
dissemination areas, where the population is aggregated at the dissemination area level.
The two consumption patterns are remarkably different from each other, especially during
summer periods. Han and Kamber [27] introduce several efficient ways to address missing
data issues. Two approaches are selected for gap filling in the present research: mean value
and regression tree prediction. Our first approach is the mean value process. As Peters
and Chang [31] and Bakker and Duist [11] demonstrate, weekly water consumption follow
certain patterns, and so do hourly water usage for a particular hour of a day. By following
this conclusion, for each householder, water usage is divided into 168 subgroups represent-
ing 7 days per week and 24 hours per day. All usage data is assigned to one of the groups,
including missing data. Thereafter, the mean value of each group is calculated excluding
missing data. At the end, all missing hourly water usage are filled by the mean value of
their corresponding group. Our second approach follows a regression tree strategy. Witten
and Frank [55] define a regression tree as a decision tree with averaged numeric values at
the leaves. Lewis [40] demonstrates that a regression tree is an efficient procedure for low
dimensional data predictions. To fill the gaps in current hour usage, previous one-hour
usage, previous two-hours usage, and previous week same hour usage are selected as input
features. Thereafter, the problem is transformed to using three parameters to predict next
hour water usage.
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Experiments are performed on a small dataset consisting of 168 randomly selected
householders. As the mean values approach is dominated by the regression tree approach,
the latter was chosen for data imputation. Once the regression tree model is constructed,
imputation takes place and values are filled by following hour indices in an ascending order
as latter missing hours’ gap filling may need former gap filled values.

3.2 Data Grouping

This research focuses on predicting water consumption in a finer grid. Statistics Canada
divides the city of Abbotsford into 158 adjacent dissemination areas geographically. This
research imports achievements from Platsko [47] by integrating single family address in-
formation with dissemination area information. Each address is assigned to only one
dissemination area based on its longitude and latitude values.

The number of single family residents in each dissemination area varies from 1 to 178.
Small sample sizes introduce challenges for prediction. Water consumption patterns for a
small population are more unstable than for a larger population. For example, within a
small group of residents, an outstanding hourly water usage for a single consumer has great
impact on the group water usage. If a family is away on vacation, the usage at peak hours
of a small group is pulled downwards significantly. This may introduce large prediction
errors. Therefore, for those areas with a small number of single family residents (SFRs),
this research amalgamates these residents with those of adjacent dissemination areas.

Since some of the dissemination areas have multiple neighbors, a method for determin-
ing which adjacent areas should be merged is needed. For this purpose, the 2011 National
Household Survey data for Abbotsford and Mission from Statistics Canada is engaged.
The dataset includes demographic and property information for each dissemination area.
Moreover, the most likely dissemination areas which are determined by feature values in
the dataset are merged together as needed.

Initially, there are more than 300 features for each dissemination area such as income
tax, ages and education levels. In order to efficiently leverage these features, demographic
information and building information are selected because they have been proven to be ef-
fective factors for water usage prediction. Aitken et al. [4] investigate relationships between
weekly water consumption and a range of statistic variables such as property value and
concludes that regression models consisting of clothes washing-machine loads per week,
number of people per household and property value explain 60% of the variability of resi-
dential consumption. Liu and Savenijea [42] leverage ANNs with input variables consisting
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of water price, house income and house size to predict water consumption per capita per
day. An interesting conclusion is that around 60% of high-income single families prefer din-
ners at restaurants instead of at home, which leads to lower water consumption. Shandas
and Rao [51] combine property sizes and ages with weather and day of week information to
predict daily water consumption. They demonstrate that building sizes, ages and assessed
values together explain about 20.7% of water consumption. Based on previous achieve-
ments, there are 13 features selected from three different categories: house structures,
education levels and financial features.

Platsko [47] indicates neighborhoods of all dissemination areas in Abbotsford. More-
over, this thesis uses the kth nearest neighbors method to find the most similar neighbor
to merge based on features listed above. Specifically, if an area contains less than a certain
number of single family residences, it is merged to an adjacent region that retains the most
similar feature information. MATLAB’s knnsearch function is used. Furthermore, the
Minkowski method is used as the search method in this process. In order to optimize the
solution, all the prerequisite variables values are normalized.

The threshold for the minimum number of single family residences in the area is set at
30. If a region contains less than 30 SFR, then it will be merged to the most similar adjacent
area. The merged region’s feature values will be the combined value of each individual area.
The procedure repeats until all regions contain more than 30 SFRs. When two areas are
merged, the neighborhoods’ information as well as the statistical information is combined.

There are 52 regions containing less than 30 SFRs. It takes only one round of merging
to ensure that all areas retain more than the threshold population. Lastly, every single
family resident is assigned to a dissemination area and hourly water usage are aggregated
for each resulting area.

3.3 Weather Data

Resident water consumption have shown a close relationship with weather information
(see Chapter 2). The website http://abbotsfordwx.com/ provides detailed daily weather
information between September 1, 2012 and August 30, 2013 with no missing information.
Average daily temperature, barometer, windspeed and accumulated rainfall so far this
month are directly captured by the source. Daily rainfall information is reassembled by
using the current accumulated amount minus the previous day’s value except the first day of
a month. Over all weather features, temperature information keeps the closest relationship
with daily consumption values. The correlation coefficient between temperature and water
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consumption is 0.77. Figure 3.3 suggests that daily water consumption increases as daily
temperature increases. Besides these variables, the rainfall occurrence has been considered
as a crucial factor (see Chapter 2). In this experiment set, the rainfall occurrence has
strong positive associations with water consumption, especially in the summer (from May
1 to August 30). Over the entire year, the correlation coefficient is 0.43; however, the
number rises to 0.60 during the summer because of massive consumption for irrigation
and gardening. Compared to the rainfall occurrence, the rainfall amount still retains a
strong negative association with daily water consumption. Over the period, the correlation
coefficient is −0.34; while over the summer, it becomes stronger and the value reaches
to −0.43. As indicated in Figure 3.4, the rainfall occurs over all seasons. Even in the
winter, there are some heavy rain days; however, these rainfalls may have no impact on
outdoor usage. Therefore, summer rainfalls maintain stronger relations with daily water
consumption than the rest of the year. Thus, daily rainfall amount and rainfall frequency
information get included in the initial weather feature set.

Figure 3.3: Association between daily water consumption and average daily temperature
at the dissemination area level.

21



Figure 3.4: Daily rainfall amount over the period September 2012 to August 2013.

3.4 Demographic Data

Demographic information is collected from Statistics Canada. However, the information is
assembled at the dissemination area level for all residents, not only single-family residents.
One assumption for this feature set is that the averaged demographic information well
represents the statistics of the single-family residences. In the initial raw feature set, there
are over 300 variables; however, this research leverages prerequisite knowledge (see Chapter
2) and compresses the list to twelve features. In order to demonstrate associations between
demographic features and water consumption, average hourly water consumption over the
entire period are aggregated in dissemination levels. The associations are evaluated by the
correlation coefficient between each feature and the consumption value. The results are
presented in Table 3.2.

Over all variables, education features have the strongest relationship with water con-
sumption. EDU Levell retains a correlation of 0.52, which implies that the higher the
percentage of people in a dissemination area that acquired a post-secondary diploma, the
higher the average water consumption that area requires. As well-educated people are
normally at high income positions, their water consumption is insensitive to water pric-
ing and their amount of usage is higher than that of others. On the other hand, the
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Table 3.2: Demographic features at the dissemination area level and the correlation between
the features and hourly water consumption.

Feature Correl. Comment
EmployE −0.31 Employment rate in the area
EmployU 0.31 Unemployment rate in the area
TaxBelow 0.11 Tax return below average (Percentage)
TaxAbove −0.11 Tax return above average (Percentage)
BDROccupied1 0.01 Percentage of 1 bedroom occupied in this area
BDROccupied2 0.09 Percentage of 2 bedroom occupied in this area
BDROccupied3 −0.34 Percentage of 3 bedroom occupied in this are
BDROccupied4 0.19 Percentage of 4 bedroom occupied in this area
EDULevel1 0.52 Percentage of people acquired post-secondary diploma
EDULevel2 0.04 Percentage of people acquired high-school diploma
EDULevel3 −0.46 none of level1 or level2
TaxPerPerson −0.35 Median tax per person

employment rate for adults and average water consumption have a negative association
with a coefficient of −0.31. Employees spend around 7.5 hours at work and there is no
water consumption during this period. The more time employed people are at work, the
less time they stay at home and the less water they consume. Somewhat unexpected is
that the median tax per person has a negative correlation with water consumption. The
median tax per person for all dissemination areas and the corresponding average hourly
consumption are plotted in Figure 3.5. The plot suggests that when the tax amount is
lower than $24,000, water consumption has significant variance. The lower value implies
that there could be more part-time workers or retired people in the area. These people nor-
mally spend more time at home as compared to other employees; therefore, they consume
more water. Lastly, the percentage of three bedrooms in a dissemination area outperforms
other bedroom occupation percentages and show a close relationship with hourly water
consumption. The negative relationship suggests that residents living in 3-bedroom houses
are the most conservative clients.
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Figure 3.5: Median tax per person vs water consumption at the dissemination area level.

3.5 Assessment Data

Housing property information is commonly used for residential water consumption predic-
tion. This research engages property information from the British Columbia Assessment
Authority. Out of thirteen features in the raw data, six features are chosen and listed in
Table 3.3. Original property information is at the household level; however, this research
focuses on predictions at the dissemination area level. Hence, the raw data is aggregated
and values are preserved for the corresponding attributes. The correlation coefficient values
between each variable and the average water consumption are calculated to demonstrate
associations. The averaged housing area variable retains the strongest association with
water consumption. Larger properties imply larger families and larger backyards. These
factors contribute to more water consumption. An unexpected correlation is that the aver-
age building year of an area and water consumption retain a positive correlation. Normally
newly built properties are considered more water efficient; however, the positive correlation
indicates that newer house residents eventually consume more water than others. This ab-
normal behavior can be explained by the financial situations of residents. People in newer
properties may be in better financial situations as newer properties are sold at higher values
than older ones. Wealthy people usually consume more water in gardening and irrigation.
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Table 3.3: Aggregated property assessment features at the dissemination area level and the
correlation between the aggregated features and hourly water consumption. The features
are aggregated by taking the averages of the individual household information.

Feature Correl. Comment
AvgHouseArea 0.54 Property total areas in squared feet.
AvgStories 0.13 Number of stories of the property
AvgYearBuilt 0.49 Building year of the property
AvgBeds 0.15 Number of bedrooms in a property
AvgFullBath 0.36 Number of full bathrooms in a property
AvgPartBath −0.13 Number of partial bathrooms in a property

3.6 Summary

In this chapter, I first describe data preparation procedures for this research. Since this
research focuses on predictions at the dissemination area level, how household level data
gets aggregated is demonstrated. Furthermore, I conduct data analysis on all feature
sets including weather, demographic and property assessment information. Correlation
coefficient values are leveraged to measure associations between each individual variable
and the average hourly water consumption. At last, I identify and analyze pivotal variables
and build persuasive datasets that are utilized in feature selection and model construction.
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Chapter 4

Feature Selection

In this chapter, I first demonstrate what feature selection is and highlight previous work.
Next, I illustrate feature selection algorithms used in this thesis. Since I consider that
feature selection is problem and data dependent, I conduct feature selection for all different
scenarios: one hour ahead with and without preselected features for weekday and weekend
consumption predictions, and one hour ahead features for weekday and weekend usage
forecasts. Lastly, a proposed feature set is determined for each scenario which will be used
in the model construction and selection process (see Chapter 5).

4.1 Feature Selection in General

Feature selection is essential for building predictive models. Especially for high dimensional
datasets, the task of determining which features should be used is important. For example,
Yu and Liu [56] consider that high dimensioned datasets may degrade performance of
learning algorithms due to irrelevant and redundant features. Hence, optimizing feature
sets by removing redundant and irrelevant features conserves model computation time and
improves model accuracy. Feature selection is considered one of the most crucial steps
for this research. Therefore, it is necessary to examine how a feature set is built for each
experiment before demonstrating model construction and selection.

There are two approaches to feature selection: the wrapper approach and the filter
approach. The wrapper approach leverages prediction models to score feature subsets,
whereas the filter approach utilizes a proxy measure to score feature subsets.
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In each step of the wrapper approach, there are two types of features: selected features
and candidate features. Following the feature selection step, a selection method assesses
each candidate feature by adding it to the selected feature set, then builds a training model,
evaluates the model and adds a feature that improves the model accuracy the most at that
stage. For example, let Fs = {f1, f2, ..., fk} be a selected feature set from the previous
step, and let Fc= {fm, ..., fz} be the corresponding candidate feature set. The approach
then requires to build models for Ftm = {f1, f2, ..., fk, fm}, ..., Ftz = {f1, f2, ..., fk, fz}.
Finally, the method picks Fti from Ftm , ..., Ftz that builds a model with the best accuracy.
Feature selections for this process are computational intensive, especially when there are
a large number of features.

The filter approach requires much less computation. Here a method ranks features
based on various criteria such as mutual information or a correlation coefficient. However,
a generated feature set, which consists of the top k number of features in the ranking list,
may not be as effective as the one generated with the wrapper method.

4.2 Feature Selection for Predicting Water Usage

Although computationally more intensive, I prefer to use the wrapper approach due to its
improved accuracy. In order to downgrade computational complexities, each feature selec-
tion in this project is divided into two steps. The first step is selecting hourly water usage
variables. The water consumption data in this research is time series data. Clarifying the
relationships between the target hourly usage and preceding hourly consumption enriches
the relevant candidate feature set. For example, previous one hour, two hours and a week
before the same hour information is selected by Herrera and [29] for hourly water usage
predictive models. The second step is merging features selected in step one with date
(e.g., what day of the week it is and whether it is a public holiday), daily weather (e.g.,
daily average wind speed, temperature and rainfall), demographic (e.g., education level
and income at the dissemination area level) and house property information (e.g., average
number of bedrooms per property and building year of the property) and designing an
overall optimized feature set.

Different experiments are defined in table Table 4.1. Experiments are performed using
two types of scenarios: one hour ahead and one day ahead hourly water usage predictions.
For each scenario, two subcategories, weekday and weekend models, are developed except
the one hour ahead baseline model (see Chapter 5). To further investigate feature selection
contributions, one hour ahead models with feature selection are further divided into “with”
and “without” preselected features models. The fundamental difference between with and
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Table 4.1: Definitions of different experiment scenarios.

Experiment Scenario Definition
One hour ahead Predict the water consumption of next hour.
One day ahead Predict the water consumption of the same hour in tomorrow.
Baseline model The model tackles weekday and weekend predictions together and

all the features fed into the model are only based on human
knowledge without any feature selection algorithms.

With preselected features Engage some features based on human knowledge in the initial
feature set before applying feature selection algorithms.

Without preselected features The feature selection process is in the form of no human in the
loop and all the features are selected by algorithms.

without preselected feature experiments is whether there is a human in the loop process.
In the with preselected feature experiments, human knowledge is engaged initially and
used to build a seed feature set. In contrast, there are no human engagements in the
without preselected feature experiments and all the features are selected based on feature
selection algorithms. In order to choose effective features, feature selection is conducted
for each experiment, which ensures the best model and feature compatibility. Feature
selection results are described below; they demonstrate that different models eventually
prefer different features.

Before demonstrating how features are selected, it is important to present the data used
to build feature sets. There are 111 dissemination areas eventually selected (See Chapter
3) and each dissemination area contains 8,760 time series data about user consumption
as well as features from weather, demographic, date and property datasets. Engaging
all data into feature selection is infeasible because of the very high computational time.
Therefore, a prerequisite of feature selection is targeting a subset of data that successfully
represents the entire experiment data. Since there are different populations in different
dissemination areas, all these areas are divided into 10 subgroups based on the population.
One dissemination area is randomly selected in each subgroup to prevent biased selections
of certain groups.

The data for ten selected dissemination areas is combined and divided into two groups:
weekend and weekday datasets. There are four experiments implemented for one hour
ahead models: pre-selected features on weekday and weekend datasets, without preselected
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features on weekday and weekend datasets, and two experiments implemented for one
day ahead models: weekday and weekend datasets. For each scenario, feature selection is
conducted five times. Since selected historical water consumption features will be combined
with features from other datasets, the number of features selected for this group is limited
to 10. It prevents final feature selection from relying only on historical water consumption
data and avoiding features from other datasets.

4.3 Relevant Preceding Hourly Usage Selection

Previous work demonstrates that preceding time series data is pivotal in predicting future
time series values. Altunkaynak and Ozger [7] present a fuzzy method for predicting future
monthly water consumption values from three antecedent water consumption. Zahrani and
Monasar [5] develop a forecasting model to predict daily water consumption by coupling
time series models and ANNs. The models consider effects of three past daily water
consumption values and climatic variables. However, how much delay should be tracked is
data dependent. This research discovers interdependencies within time series data. Since
one hour and one day ahead predictions leverage different hourly consumption data, feature
selection for these two criteria is demonstrated separately in the following context.

There are 48 predictive variables engaged in previous hourly water consumption ex-
periments. In order to better present previous hour usage, the notation ti is used in the
rest of this section, where ti represents the the water usage in the ith previous hour. For
example, t168 means the water usage in the hour 168 hours previous to the current hour.
MATLAB’s sequentialfs, a forward wrapper method, is chosen for this research (see
Table 4.2 for the parameters to the function). The method selects a subset of features
from a given dataset that provides the best predictions for a target variable by sequen-
tially selecting features until no more features can be added to improve the accuracy. This
algorithm takes a function that returns a criterion measuring distances between predicted
values and actual values for the testing dataset. In this research, a linear model is selected
and the mean root square error is calculated as the performance measurement. For each
experiment, feature selection is reprocessed five times to ensure the stability of the result.
Moreover, 10-fold cross validation is applied to avoid overfitting for each feature selection
process.
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Table 4.2: Parameters to MATLAB’s sequentialfs algorithm for feature selection.

Name Value Comments
fun linear model Used RMSE performance measurement
x input matrix Contains 8,569 instances with 48 columns
y prediction vector Contains 8,569 hourly water usage values
cv cross validation 10-fold cross validation was chosen
keepin features that must be Previous 1, 2, 3 and 168-hour water usage were

include in final selection selected for the pre-defined models.

4.3.1 One Hour Ahead Historical Water Consumption Feature
Selection

For one hour ahead water usage prediction, two sets of previous data are recruited. One
set consists of the previous 24 hours of the target hour, which are from t1 to t24. Another
set consists of the same hour a week before to 23 hours ahead, which are from t168 to t191
hours. There are 48 predictive variables in an initial feature set. As mentioned above, two
different feature sets are built, one with preselected features and one without preselected
features. For preselected feature sets, t1, t2, t3 and t168 are preselected. All experimental
results are listed in Table 4.3 and Table 4.4.

Table 4.3: Selected historical water consumption features for the scenario of with prese-
lected features; i.e., t1, t2, t3 and t168 are preselected.

weekdays t1 t2 t3 t168 t169 t23 t170 t24 t10 t178
weekends t1 t2 t3 t168 t169 t23 t170 t172 t22 t20

Table 4.4: Selected historical water consumption features for the scenario of without pres-
elected features.

weekdays t168 t1 t169 t23 t170 t3 t24 t10 t178 t173
weekends t168 t1 t169 t23 t170 t3 t22 t20 t191 t190
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In pre-selection experiments, results demonstrate that in addition to the pre-selected
four features, there are three features that are commonly selected: t23, t169 and t170. Feature
t23 can be considered as a proxy for one-hour ahead water usage information in the future.
Combined with t168 information, the information for three consecutive hours around the
target hour in the previous week are collected. Hence a weekly consumption pattern is
suggested. Two other important features in weekday models of pre-selections are t10 and
t178. Feature t178 is 10 hours ahead of last week the same hour. Figure 4.1 illustrates
consecutive 168 hours water usage from Sunday 12:00am to Saturday 23:00pm. The figure
suggests that there are two peak periods in each weekday. One is in the morning and the
other is in the evening. There is a 10-hour difference between the evening and morning
peak hours. After each peak period, hourly water usage drops in different patterns. For
example, on Monday, after the morning peak hour (point 32), it takes around 7 hours for
total usage to drop from 388 to 300 cubic meters; however, after the evening peak hour
(point 43), total hourly usage drops from around 416 to below 65 cubic meters in around 7
hours. Although both usage groups drop after peak hours, one drops rapidly and the other
smoothly. In this situation, t10 becomes very useful. For example, 10-hour usage before
morning peak hour is always significantly lower than current hour usage. On the other
hand, 10-hour usage before evening peak hour is either very close to or higher than current
hour usage. In the without preselection experiments, the selections agree on eight out of
ten features with preselection results for weekend data. It adds t191 and t190 hours usage
information at the last two steps. For weekdays, instead of choosing t2 information, the
non-preselection approach chooses t30 information at the last step. Experiments suggest
that t2 information may not be useful for both weekdays and weekends. However, a weekly
pattern is strongly indicated. Features t168, t169 and t170 are selected in high priorities for
all criteria. Moreover, a daily pattern is inferred. Feature t23 is one of the top selected
features in all the scenarios and the feature t24 is selected for weekdays in both experiments.

4.3.2 One Day Ahead Historical Water Consumption Feature
Selection

Instead of using the previous 24 hours, which are not available for one-day-ahead prediction,
and the consecutive 24 hours before the same hour last week, this research leverages t24 hour
to t168, which are from the previous 24 hours to the same hour last week. Although there
are 145 features initially, eventually 10 features are selected. Hence the computational
complexity of the wrapper approach is still manageable, and the same algorithms and
procedures that are used in the one hour advanced feature selection are applied. At the
end, two sets of features are built, one for weekdays and one for the weekend. Stepwise
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Figure 4.1: Hourly water usage from Sunday to Saturday.

feature selection results for weekdays and weekends are listed in Table 4.5. Ten previous
hourly usage predictive variables are included in each feature set.

Table 4.5: Selected historical water consumption features for one day head scenario.

weekdays t24 t144 t168 t48 t95 t120 t34 t35 t72 t96
weekends t24 t72 t168 t153 t157 t74 t36 t113 t155 t27

For weekdays, the same hour water consumption information from previous one day to
seven days are included. This suggests that weekday hourly usage follows a daily pattern.
In other words, hourly usage has significant dependencies on the same hour usage during the
entire week. By contrast, weekend hourly usage does not show remarkable dependencies;
however, the previous one day and previous week the same hour information is selected.
This confirms the result of the one hour in advance experiment and demonstrates an hourly
pattern and a weekly pattern for hourly usage.

4.4 Combining All Features

One of the contributions of this research is engaging various datasets including demo-
graphic, weather and assessment information for prediction. All ten historical water con-
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sumption features determined from previous subsection and twenty-eight additional fea-
tures from distributed datasets constitute an initial feature set. The same dissemination
area date is applied to this step. In contrast to previous subsections, there are no limita-
tions on the number of features in the resulting feature set.

Witten and Frank [55] define REPTree as a fast decision tree. It uses information
gain or variance and is pruned by leveraging reduced-error pruning. The combined feature
selection of this research uses the REPTree algorithm implemented in the Weka application.
Feature selection follows the wrapper approach and 10-fold cross validation is leveraged to
reduce risks of overfitting. For REPTree configurations, the minimum number of instances
in each leaf is set to 16 and there are no limitations on the depth of the tree. For each
experiment, the number of times each feature is selected is recorded.

4.4.1 One Hour Ahead Final Feature Selection

The resulting feature set for one hour ahead models are presented in Table 4.6. Most
features selected in the final feature set are from the historical water usage dataset. This
confirms the presumption that hourly water usage data is highly correlated, and it is a
pivotal predictor for hourly consumption prediction models. Another commonly selected
feature is the day of week information. During weekdays, although water usage patterns
are identical on Tuesdays, Wednesdays, and Thursdays, Monday and Friday patterns are
slightly different from others. For example, on Friday peak hours come one hour earlier
than on other weekdays. The peak starts from 17:00, while for the other weekdays it starts
from 18:00 as shown in Figure 3.1. This may be because people get home earlier on Friday
night and start to enjoy their weekends. Saturday and Sunday consumption patterns are
not only significantly different from weekdays, but they are also different from each other.
On Saturdays, evening peak hours are not obvious. The amount of water consumption
smoothly drops down from 17:00 to the end of the day. However, on Sundays, hourly
usage increases after 18:00, reach a peak value and then drop down.

From the weather feature set, the most commonly selected features are daily average
temperature and rainfall information. This conforms previous work results. For example,
in summer time, most water consumption is the result of outdoor usage, including filling
swimming pools, irrigation and car washing. Outdoor consumption is determined mainly
by these two weather variables. For filling swimming pools, the higher the temperature is,
the better the chance that residents leverage the facility and fill their pools. For irrigation,
when experiencing many consecutive days without rainfalls, residents are more likely to
irrigate their front and back yards.
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Table 4.6: The feature selection results of all one hour ahead scenarios.

Weekdays Weekends
Type Non-preselection Preselection Non-preselection Preselection

Water

t1 t1 t1 t1
t10 t10 t168 t168
t168 t168 t169 t169
t169 t169 t170 t170
t170 t170 t191
t173 t2
t178 t178 t20
t23 t23 t22 t22
t24 t23 t23
t3 t3 t3 t3

t2

Weather

temperature temperature temperature temperature
previousRainfall previousRainfall previousRainfall
rainfall rainfall rainfall rainfall
sinceLastRainFall sinceLastRainFall windspeed windspeed
previousLastRainFall barometer

Date
is holiday is holiday
week day week day week day

Property

AvgBeds AvgBeds AvgBeds AvgBeds
AvgYearBuilt AvgYearBuilt
AvgStories AvgStories

AvgHouseArea AvgHouseArea AvgHouseArea
AvgFullBath AvgFullBath AvgFullBath

Demographic

Tax Per Person Tax Per Person Tax Per Person Tax Per Person
EDU Level1 EDU Level1 EDU Level1 EDU Level1
Tax B Tax B

EDU Level3 EDU Level3
Employ E

Regarding the property feature set, average bedrooms per single family residence is
included in all four experiments. This factor can be used to explain base water usage, and
the number of residents in a family can be inferred from it. The more people live in a
property, the more water consumption it requires.
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The last feature set contains demographic information. Tax per person information
and first level of education are commonly included in all experiments. Financial situations
have been proven to be an effective factor for water predictions (see Chapter 2). Families
with better financial situations normally consume more water.

4.4.2 One Day Ahead Final Feature Selection

The result feature set for one day ahead models is shown in Table 4.7. Not surprisingly,
ten previous hourly usage variables are included in the final feature sets. It confirms once
again the importance of characteristics in historical hourly usage information. For week-
days, the same hour water consumption information from previous one day to seven days
are included. This suggests a daily pattern, which confirms one hour ahead experimen-
tal results. By contrast, weekend hourly usage does not show significant daily patterns;
however, previous one day and previous week the same hour information is selected. This
implies a one day ahead dependency and a weekly dependency for weekend models.

It is astonishing that the weekday and weekend resulting feature sets highly agree on
property and weather information. All variables from the weather dataset are selected.
The importance of the temperature factor is underscored in this experiment. It is selected
ten out of ten times for both weekday and weekend models. However, there are different
considerations for rainfall information. For weekdays, since last rainfall (the number of
days since last rainfall) is selected seven out of ten times; while rainfall (the actual amount
of rainfall on the next day) is selected only one out of ten times. By contrast, rainfall
is selected nine out of ten times, whereas since last rainfall is selected only three out of
ten times for weekend feature selection. This illustrates the dispute about which of these
two variables is more important (see Chapter 2). One achievement of this research is
that it provides persuasive reasons for when one feature dominates the other by leverag-
ing effective feature selection algorithms. From the assessment feature set, the number of
bathrooms, which retains close association with water consumption as an individual vari-
able (see Chapter 3), is ignored for both weekday and weekend feature sets. It is another
contribution of feature selection that it eliminates features that are considered pivotal in
regard to individuals but irrelevant or redundant while considering them with others in a
group.

35



Table 4.7: The feature selection results of all one day ahead scenarios.

Type Weekdays Weekends

Water

t24 t24
t34 t27
t35 t36
t48 t72
t72 t74
t95 t113
t96 t153
t120 t155
t144 t157
t168 t168

Weather

Temperature Temperature
SinceLastRainFall SinceLastRainFall
Rainfall Rainfall
Barometer Barometer
Windspeed Windspeed
PreviousLastRainFall PreviousLastRainFall
PreviousRainfall PreviousRainfall

Date
week day week day
is holiday

Property

AvgBeds AvgBeds
AvgHouseArea AvgHouseArea
AvgYearBuilt AvgYearBuilt
AvgStories AvgStories

Demographic

Tax Per Person Tax Per Person
BDR Occupied 1 BDR Occupied 1
BDR Occupied 2 BDR Occupied 2
BDR Occupied 3 BDR Occupied 3
BDR Occupied 4 BDR Occupied 4
Tax B Tax B
Employ E Employ E
EDU Level1
EDU Level2
EDU Level3
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4.5 Summary

In this chapter, I demonstrate detailed feature selection for each scenario. A two-step
feature selection is conducted: first, select ten previous water consumption features, then
determine effective features from 10 historical consumption, weather, demographic, date
and property datasets. As a result, different features are selected for each criterion. As
emphasized, features for a particular model is data dependent and customized feature
selection processes can benefit model construction and improve prediction accuracy.
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Chapter 5

Model Alternatives and Model
Selection

In this chapter, I leverage accomplishments from the data preparation and feature selection
steps to implement models for hourly consumption predictions of one hour and one day
in advance scenarios at the dissemination area level. This chapter addresses the following
hypotheses.

Hypotheses:

1. Separate weekend and weekday models can improve model performance.

2. Feature selection can assist models to achieve better accuracy compared to ones
constructed without feature selection.

3. Multilayer models can outperform single hidden layer models with proper feature
sets.

4. With proper model selection, one day ahead models can perform as accurately as one
hour ahead models.

Regarding the first two hypotheses, three main types of models are built: one hour ahead
baseline models, one hour ahead refined models with preselected features, and one hour
ahead refined models without preselected features. The latter two types will be called
refined models in the rest of the thesis. Baseline models are implemented by using features
from previous research work and tackle weekday and weekend predictions in one single
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model. By contrast, refined models use corresponding feature sets built in Chapter 4
and separate weekday and weekend predictions into two models. To investigate the third
hypothesis, one day ahead models are implemented. Models are built based on three
scenarios: single hidden-layer models, two hidden-layer models and three hidden-layer
models. All one day ahead models share the same input feature set. Lastly, proposed
models representing one hour and one day in advance predictions are compared to verify
the last hypothesis.

All ANNs in this research are implemented with the MATLAB fitnet routine. A
challenge for model implementation is acquiring appropriate parameter settings. Parame-
ters to be configured are listed in Table 5.1. This research selects three candidate initial
learning rates: 0.1, 0.01 and 0.001. As experiments show that models with 0.001 outper-
form others, only 0.001 models are discussed in the rest of the thesis. To ensure that the
optimal number of nodes in the hidden layer(s) is determined, this research experiments
on ANNs with several options. For one hidden-layer models, the number of nodes in the
hidden layer ranges from four to fifteen. For two hidden-layer models, the number of first
hidden layer nodes ranges from five to thirteen, and the second hidden layer retains the
number of nodes from three to the number of nodes in the first hidden layer minus one. For
three hidden-layer models, the first hidden layer retains five to eleven nodes, the second
hidden layer maintains three to the number of node in the first hidden layer nodes minus
one nodes, and the third hidden layer retains two to the number of nodes in the second
hidden layer minus one nodes. Models are evaluated using 10-fold cross validation. Due to
the limitations of Matlab 2013a, the fitnet function is not able to obtain the mean or sum
absolute mean error as the evaluation function during its training process. Therefore, the
metrics mean squared error is selected for the fitnet function instead.

Table 5.1: Model configurations for all ANN models in the experiment section.

Configuration Values Comments
Initial learning rate 0.1, 0.01, 0.001 Optimal value is 0.001
Nodes Different models retain different nodes

for experiment
Training algorithm Trainlm
Evaluation function Mean squared error
Routine fitnet

Data separation Training, validation
and testing

Training dataset contains 10% of the
data; validation and testing contain 90%
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At the end, the predicted values for all individual hours of all dissemination areas are
collected and used in model evaluation. Mean absolute error (AE) and mean absolute
percentage error (APE) are used to measure prediction accuracy.

• Mean absolute error (AE): 1
n

∑n
t=1 |PredictValuet − ActualValuet|

• Mean absolute percentage error (APE): 100
n

∑n
t=1

∣∣∣PredictValuet−ActualValuet
ActualValuet

∣∣∣
Since models are going to predict average single family hourly consumption in each dissem-
ination area and average hourly consumption are in low volumes (even peak hour usage are
normally just around 400 liters), thresholds for acceptable model performance differences
are set to 0.020 liters per hour and 0.05 percent for AE and APE respectively. Models
with performance in these ranges are considered comparable; otherwise, the model with
better performance is considered to dominate the other. Although the thresholds are set to
these relatively small digits, the statistics are in per single family resident per hour level.
When adding the entire dissemination area single resident consumption all together, the
number turns to be significant and could impact the utility company decisions. In addition
to tackling tie breakers, different quantiles of AE and APE are calculated. From a model
structure perspective, the number of connections (or weights) in a model is considered as
an evaluation factor. The threshold for this factor is set to 50. The rules of thumb for
model evaluation and model selection for this research are listed below.

Rules:

1. The first step is eliminating the overfitted models.

2. The second step is filtering models by using thresholds of AE and APE.

3. The third step is further obsoleting model candidates by leveraging thresholds of
model complexity, as measured by the number of connections in the network.

4. If necessary, the last step is using tie breakers (different quantiles of absolute error
and absolute percentage error) to make a final decision.

As indicated above, numerous models are implemented in this research. I evaluate mod-
els from two aspects: model performance as measured by prediction accuracy and model
complexity as measured by the number of connections. As suggest by Coelho and Richert
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[49], the costs of prediction loss are not the same for all instances. Only the instances with
high hourly water consumption are considered during performance evaluations. For week-
days, hours of high water consumption are 7:00–9:00am and 6:00–9:00pm. For weekends,
the hours are from 8:00am to 10:00pm.

5.1 One Hour Ahead Models

In this section, I present models for hourly consumption prediction of one hour in advance
at the dissemination area level. The following models are presented: a baseline model, a
single hidden layer weekend model, and a single hidden layer weekday model.

5.1.1 Baseline model

Two distinct characteristics of the baseline models are no feature selection and a single
model that predicts both weekdays and weekends. Instead of applying feature selection,
important features from previous work are collected.

Herrera and Torgob [29] suggest that in order to predict next hour water usage, crucial
historical water consumption information and climate information should be included.
These include previous one hour consumption, previous two hours consumption, last week
the same hour consumption, temperature, wind velocity, atmospheric pressure and rainfall.
Adamowski and Chan [1] implement a daily water prediction model selecting features from
historical water consumption including up to four days ahead water usage data and weather
information, such as maximum daily temperature and daily total precipitation. Besides
historical water consumption and weather information, Agthe and Billings [3] indicate
that property characteristics can explain variations in water demand as well. Selected
property features include the number of bedrooms and property age. After transferring
these properties to data available in this research, the feature set includes average number
of bedrooms, average property age and average property area in each dissemination area.

Many studies consider that social economic information can explain water consump-
tion. Junguo [42] studies house income, house size and water price impacts on water usage.
Since there are no direct applicable variables from this research dataset, the possible re-
placement variables are tax per person, percentages of families’ income tax above average,
and percentages of families’ income tax below average.

To respect previous work achievements on variables that explain water consumption,
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this research leverages previous one hour, previous two hours, last week the same hour
combined with variables in Appendix 1 as inputs to the baseline ANNs.

Another characteristic of the baseline model is that it predicts all weekday and weekend
consumption in a single model. As weekdays and weekends follow significantly different
water consumption patterns in all dissemination areas, the day of week information is
engaged to assist the model to distinguish different usage behaviors.

(a) (b)

(c) (d)

Figure 5.1: Performance of one hour ahead baseline model on weekend peak hours as
measured by (a) absolute error and (b) absolute percentage error, and weekday peak hours
as measured by (c) absolute errors and (d) absolute percentage errors. Note: y-axis does
not start at zero.

For weekend peak hours, from an AE perspective in Figure 5.1(a), model performance
monotonically increases until the number of nodes in the hidden layer reaches 12. There
is a significant increase from 11 nodes to 12 nodes in the hidden layer; however, after 12,
improvements become unstable. From an APE perspective in Figure 5.1(b), performance
monotonically improves until the number of nodes in the hidden layer reaches 9 and then
improvements become unstable. As with weekend peak hours, performance statistics of
weekday peak hours are presented in Figure 5.1(c) and Figure 5.1(d) for AE and APE values

42



respectively. Model performance keeps increasing as additional nodes are included in the
hidden layers. However, the improvement in AE and APE values slows after the number
of nodes reaches 12 in the hidden layer. Using the rules for model selection established
above, the model with 12 hidden nodes is chosen and considered as the baseline model. All
models with less than 12 hidden layer nodes are not comparable to model-12 as performance
differences are over the thresholds. From the standpoint of model complexity, model-12
has significantly fewer connections than models with more nodes in the hidden layers but
with negligible or no decrease in accuracy. Therefore model-12 is considered as the best
choice of model for one hour ahead baseline weekday predictions.

5.1.2 Hour Ahead Single Hidden Layer Weekend Model

In this subsection, one hour ahead weekend models are presented. Weekend models are
divided into with and without preselected feature scenarios.

Weekend models without preselected features.

Average errors (AE) and average percentage errors (APE) for all experiments are presented
in Figure 5.2(a)&(b), respectively. As mentioned above, although all hourly usage are
predicted, only peak hours’ results are used in evaluations.

(a) (b)

Figure 5.2: Performance of one hour ahead without preselected features on weekend peak
hours measured by (a) absolute error and (b) absolute percentage error. Note: y-axis does
not start at zero.
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Table 5.2: Without preselected features weekend performance (AE and APE) and model
complexity during peak hours.

Nodes 4 5 6 7 8 9 10 11 12 13 14 15

AE (10−2 liter) 618.6 615.1 614.2 611.2 609.8 607.5 608.2 607.2 606.8 606.0 605.8 605.1
APE (0.1 percent) 152.7 151.8 151.6 150.9 150.5 150.3 150.3 150.1 15.00 149.9 149.8 149.6
Connections 93 116 139 162 185 208 231 254 277 300 323 346

From an AE perspective, Figure 5.2(a) indicates that after the number of nodes in
hidden layers reaches 9, model performance shows only small changes for models with ad-
ditional nodes in the hidden layer. To further investigate this proposed model the number
of connections are compared in Table 5.2. Each entry represents a model with the corre-
sponding number of nodes in its hidden layer. Model-9 is considered as the best choice
of model. By using a predefined threshold 0.02, models with fewer nodes in their hidden
layers are eliminated. In the same table, APE statistics indicate that proposed model can-
didates are from model-8 to model-15 by following the same comparisons in AE, but with
a threshold 0.05%. Thereafter, models to be considered are narrowed down to model-9 to
model-14. The last step is model complexity comparisons. From the model complexity per-
spective, models with more than 11 nodes in hidden layers exceed the complexity threshold
while comparing with model-9; therefore, they are eliminated. Model-10 is rendered ob-
solete as it not only requires 23 additional connections, but also retains worse peak hour
AE as compared to model-9. Model-11 requires 46 additional connections, which is close
to the complexity threshold; however, performance improvements are notable. Therefore,
the selected model for an hour ahead weekend without preselected features is model-9.

Weekend models with preselected features.

Average errors (AE) and average percentage errors (APE) for all experiments are presented
in Figure 5.3(a)&(b), respectively.

Table 5.3: Preselected features weekend performance (AE and APE) and model complexity
during peak hours.

Nodes 4 5 6 7 8 9 10 11 12 13 14 15

AE (10−2 liter) 620.1 616.1 612.1 610.0 609.4 610.4 606.7 606.8 605.3 606.1 605.9 604.5
APE (0.1 percent) 152.6 152.0 151.1 150.6 150.4 150.6 150.0 150.0 149.5 149.5 149.5 149.2
Connections 97 121 145 169 193 217 241 265 289 313 337 361
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(a) (b)

Figure 5.3: Performance of one hour ahead with preselected features on weekend peak
hours measured by (a) absolute error and (b) absolute percentage error. Note: y-axis does
not start at zero.

From an AE perspective, model performance goes up and down after the number of
nodes in hidden layers reaches 10. Comparing models’ AE statistics in Table 5.3, only
model-15 preserves better performance than model-12; model-10 and model-11 are also
recruited, since they retain performance differences within the threshold range. Hence a
candidate list generated from an AE perspective contains model-10, model-11, model-12
and model-15. From an APE perspective, model-12 is also considered as a benchmark.
By considering APE statistics shown in the same table and a threshold value of 0.05%,
model candidates from model-10 to model-15 are considered. Lastly, model complexity
comparisons consider that model-10 outperforms all others as it has at least 24 fewer
connections, but still being only negligibly less accurate. Therefore, the model selected for
one hour ahead weekend with preselected features is model-10.

5.1.3 Hour Ahead Single Hidden Layer Weekday Model

In this subsection, one hour ahead weekday models are presented. Models are separated
into with and without preselected feature scenarios, and one optimal model is determined
for each criterion.
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Weekday models with preselected features.

The same as weekend models, Figure 5.4 and Figure 5.4(b) demonstrate overall model
performance measured by AE and APE statistics. From both an AE and an APE per-
spective, model performance increases monotonically until the number of nodes in hidden
layers reaches 13. From Table 5.4, acceptable candidates include models from model-10 to
model-15. Lastly, rules of model complexity suggest that model-10 is a reasonable selection
because it requires significantly fewer connections (shown in Table 5.4) while maintaining
performance within an acceptable level.

(a) (b)

Figure 5.4: Performance of one hour ahead with preselected features on weekday peak
hours as measured by (a) absolute error and (b) absolute percentage error. Note: y-axis
does not start at zero.

Table 5.4: Preselection models weekday performance (AE and APE) and model complexity
during peak hours.

Nodes 4 5 6 7 8 9 10 11 12 13 14 15

AE (10−2 liter) 622.2 620.0 612.5 611.1 608.2 607.0 605.2 605.0 604.2 603.7 604.2 603.2
APE (0.1 percent) 159.8 159.1 157.7 157.3 156.6 156.3 155.9 155.7 155.7 155.6 155.4 155.2
Connection 93 116 139 162 185 208 231 254 277 300 323 346

Weekday models without preselected features.

As with other experiments, model performance significantly increases initially as the num-
ber of nodes in hidden layers increases from both an AE and an APE perspective, as
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demonstrated in Figure 5.5 and Figure 5.5(b) respectively. However, once the number of
nodes in hidden layers reaches 10, performance adjustments are negligible until it reaches
14, which retains significant performance improvements. As performance statistics indicate
in Table 5.5, the only model comparable to model-14 is model-15, since model-14 dominates
all others over thresholds from a performance perspective. Lastly, the table demonstrates
that model-15’s complexity increases approximately half way to the complexity threshold.
Since the performance difference from AE statistics is negligible between model-14 and
model-15, model-14 is considered to be the best selection.

(a) (b)

Figure 5.5: Performance of one hour ahead without preselected features on weekday peak
hours measured by (a) absolute error and (b) absolute percentage error. Note: y-axis does
not start at zero.

Table 5.5: Without preselected features weekday performance (AE and APE) and model
complexity during peak hours.

Nodes 4 5 6 7 8 9 10 11 12 13 14 15

AE (10−2 liter) 614.0 609.9 603.9 601.9 599.0 598.9 595.9 596.0 594.7 595.4 592.0 591.3
APE (0.1 percent) 158.1 156.9 155.7 155.1 154.5 154.3 153.6 153.6 153.4 153.5 152.6 152.3
Connections 97 121 145 169 193 217 241 265 289 313 337 361

5.2 One Day Ahead Models

In this section, one day in advance models are presented and compared. In contrast to one
hour ahead models, models in this subsection are implemented not only in a single hidden
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layer, but also in multiple hidden layers. There are six sets of models including the ones
with single, two and three hidden layers for both weekend and weekday scenarios.

5.2.1 Day Ahead Weekend Model

Table 5.6: Single hidden layer a day ahead weekend models performance (AE and APE)
and model complexity during peak hours.

Nodes 4 5 6 7 8 9 10 11 12 13 14 15

AE (10−2 liter) 698.3 693.4 690.6 686.9 684.3 682.1 679.7 676.6 674.5 673.0 671.7 670.2
APE (0.1 percent) 172.9 171.9 171.2 170.4 169.7 169.3 168.6 167.9 167.3 166.9 166.6 166,2
connections 125 156 187 218 249 280 311 342 373 404 435 466

In this subsection, one day in advance weekend models for one, two and three hidden
layers are introduced first. For the single hidden-layer scenario, there are 12 models imple-
mented with hidden layer nodes from 4 to 15. For two hidden-layer models, the number of
nodes in first hidden-layer starts from 5 to 13, and the number of nodes in second hidden-
layer starts from 3 to the number of nodes in the first hidden layer minus 1. Hence, there
are 54 models generated. Finally, three hidden-layer models are introduced. The number
of first hidden layer nodes is between 5 and 11, the number of second layer nodes is between
3 and the number of first layer nodes minus 1, and the third layer nodes start from 2 to the
number of nodes in the second layer minus 1. Therefore, there are 119 models generated
in total. At the end, one proposed model is selected for each criterion. As the reasoning
behind the selection of each of the models is similar to that already detailed above for
one-hour-ahead models, fewer details are presented.

Table 5.6 shows the performance and number of connections for a range of possible
single hidden-layer models. Model-13 is chosen as the best tradeoff of performance and
complexity.

Table 5.7 shows the performance and number of connections for a range of possible two
hidden-layer models. Model-12-4, an ANN with 12 nodes in the first hidden layer and four
nodes in the second hidden layer, is selected to be the best model representing one day
ahead weekend two hidden-layer models, as it dominates other models on the performance
with only a small increase in model complexity.

Table 5.8 shows the performance and number of connections for a range of possible
three hidden-layer models. Model-11-7-2, an ANN with 11 nodes in the first hidden layer,
seven nodes in the second layer, and two nodes in the third hidden layer, is selected to be
the best model representing one day ahead weekend three hidden-layer models.
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Table 5.7: Two hidden layer a day ahead weekend models performance (AE and APE) and
model complexity during peak hours.

Connections First Second AE (10−2 liter) APE (0.1 percent)
337 10 3 676.6 167.9
349 10 4 676.5 168.2
361 10 5 674.9 167.7
370 11 3 673.7 167.6
373 10 6 673.5 167.4
383 11 4 675.0 167.6
385 10 7 676.0 168.1
396 11 5 675.3 167.8
397 10 8 674.6 167.8
403 12 3 672.7 167.1
409 10 9 673.0 167.2
409 11 6 674.1 167.4
417 12 4 670.3 166.6
422 11 7 673.7 167.5

5.2.2 Day Ahead Weekday Model

In this subsection, one day in advanced weekday models are implemented and compared.
By following the same procedure as with weekend models, there are 12, 54 and 119 models
for single, two and three hidden-layer scenarios respectively. At the end of each subsection
a representative model is selected. As the reasoning behind the selection of each of the
models is similar to that already detailed above for one-hour-ahead models, fewer details
are presented.

Table 5.9 shows the performance and number of connections for a range of possible
single hidden-layer models. Model-13 is chosen as the best tradeoff of performance and
complexity.

Table 5.10 shows the performance and number of connections for a range of possible
two hidden-layer models. Model-10-5, an ANN with 10 nodes in the first hidden layer and
five nodes in the second hidden layer, is selected to be the best model representing one day
ahead weekday two hidden-layer models.

Table 5.11 shows the performance and number of connections for a range of possible
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Table 5.8: Three hidden layer a day ahead weekend models performance (AE and APE)
and model complexity during peak hours.

AE (10−2 liter) APE (0.1 percent)
Connection First Second Third Perf. Connection First Second Third Perf.

386 9 7 5 675.0 377 10 5 3 167.7

391 9 8 4 675.0 386 9 7 5 167.7

396 10 7 2 673.1 396 10 7 2 167.4

419 11 6 2 672.8 427 11 6 3 167.1

422 10 9 2 673.0 433 11 7 2 166.9

427 11 6 3 672.0 435 11 6 4 167.3

433 11 7 2 670.8 442 11 7 3 167.1

442 11 7 3 672.6 443 11 6 5 166.8

443 11 6 5 670.8 447 11 8 2 167.4

three hidden-layer models. Model-11-7-3, an ANN with 11 nodes in the first hidden layer,
seven nodes in the second layer, and three nodes in the third hidden layer, is selected to
be the best model representing one day ahead weekday three hidden-layer models.

Table 5.9: Single hidden layer a day ahead weekday models performance (AE and APE)
and model complexity during peak hours.

Nodes 4 5 6 7 8 9 10 11 12 13 14 15

AE (10−2 liter) 674.3 666.8 664.4 659.6 655.1 651.5 651.6 648.4 646.0 642.7 643.7 640.8
APE (0.1 percent) 172.1 170.2 169.8 168.5 167.6 166.6 166.6 165.9 165.3 164.6 164.9 164.0
Connections 141 176 211 246 281 316 351 386 421 456 491 526

5.3 Summary

This chapter discusses the implementation of three sets of models: one hour ahead baseline
models, one hour ahead refined models, and one day ahead refined models. Detailed model
selections based on well-specified criteria are presented. There are five models proposed for
one hour ahead predictions: one for baseline models and one for each preselected feature
models and without preselected feature models of weekdays and weekends. Another six
models are proposed for one day ahead hourly water consumption predictions: one for each
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Table 5.10: Two hidden layer a day ahead weekday models performance (AE and APE)
and model complexity during peak hours.

Connections First Second AE (10−2 liter) APE (0.1 percent)
389 10 4 647.2 165.8
395 9 8 647.2 165.6
401 10 5 644.2 164.9
413 10 6 645.8 165.2
414 11 3 646.0 165.3
425 10 7 646.7 165.6
427 11 4 643.7 164.7
437 10 8 644.5 165.1
440 11 5 642.9 164.5
449 10 9 643.4 164.6
451 12 3 643.4 164.8
453 11 6 642.9 164.6
465 12 4 643.5 164.8
466 11 7 643.0 164.6
479 11 8 642.8 164.5
479 12 5 643.7 164.7
492 11 9 642.3 164.3

single hidden layer models, two hidden layers models, and three hidden layers models of
weekdays and weekends. In the next chapter, I will use the models proposed in this chapter
to validate the four hypotheses mentioned at the beginning of this chapter.
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Table 5.11: Three hidden layer a day ahead weekday models performance (AE) and model
complexity during peak hours.

connections first second third AE (10−2 liter)
486 11 7 3 641.4
519 11 10 2 641.2
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Chapter 6

Model Evaluation and Discussion

In this chapter, I conduct holistic comparisons among twelve proposed models from Chap-
ter 5. By analyzing the strengths and weaknesses of each model, I indicate common
inaccurately and well-forecasted instances. Lastly, I argue that investigations of model
performance make contributions in understanding the challenges of water predictions and
I provide suggestions about how to overcome these difficulties.

6.1 Experimental Results

In this section I compare twelve proposed models from Chapter 5. Comparisons are divided
into two subsections, one hour ahead and one day ahead model comparisons. Also, a
representative model of each subsection is collated to conclude performance differences
between one hour and one day ahead models.

6.1.1 One Hour Ahead Models Comparisons

The first set of comparisons in this section are on one hour ahead models. Three models
are engaged: a baseline model, a model without preselected features, and a model with
preselected features. Weekday and weekend model performance collations are separated to
further analyze model distinctions.
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One hour ahead weekday models.

Statistics for the proposed models for one hour ahead hourly water consumption on week-
days are listed in Table 6.1. Models implemented by following feature selection procedures
significantly dominate the baseline model from the perspectives of both model complexities
and prediction accuracy. The result strongly supports the first two hypotheses: separated
models for weekdays and weekends with appropriate feature selection notably improve
model performance. However, when comparing models with and without preselected fea-
tures, conclusions are disputable. Figure 6.1 and Figure 6.2 indicate that the model without
preselected features outperforms the other from both an AE and an APE perspective for all
levels; moreover, the advantages in AE and APE are above error thresholds. By contrast,
the model with preselected features is simpler having 95 fewer connections than the one
without preselected features. The major costs of model complexities only occur at model
construction time since once a model is built, input data is just fed into the model and
effects of complexity costs are negligible. Hence model accuracy are the most important
consideration. The best model without preselected features, Model-14, is determined to
be a proposed model for this group.

Table 6.1: Comparison of proposed one hour ahead weekday models.

baseline without preselection with preselection
connections 397 337 242
nodes 12 14 10
AE (10−2 liter) 644.2 592.0 605.2
APE (0.1 percent) 162.7 152.6 155.9

One hour ahead weekend models.

AE and APE statistics of three proposed models are listed in Table 6.2. In addition to
the number of connections, the number of nodes in each hidden layer and the average
statistic values are presented. The baseline model is dominated by others from all levels.
The baseline model not only requires the most number of connections, but also has signifi-
cant performance disadvantages. Models with feature selection and weekend and weekday
separations gain at least 130 connections from a model complexity perspective; moreover,
they retain the advantages in average AE at a level of 10−1 liters, which is far beyond the
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Figure 6.1: One hour ahead overall models comparisons weekdays as measured by absolute
error.

threshold 0.02 liters. Similarly, APE advantages are close to or over 0.3% on average. Fur-
thermore, 95 percentiles to 50 percentiles (medium value) of AE and APE statistic values
are presented in Figure 6.3 and Figure 6.4. The results show the improvement given by of
feature selection and separate weekday and weekend models. For models with and without
preselected features, decisions are disputable. From a model complexity perspective, the
without preselected model retains 33 connections less, which is significant but within an
acceptable range. From an AE perspective, although performance differences are negligi-
ble in some statistics, the ones for 95 percentiles and 60 percentiles are significant and are
over the threshold. Performance differences are more obvious from an APE perspective.
Differences of all performance statistics are over the threshold 0.05%. Above all, the one
with preselected features outperforms the one implemented purely by using the feature
selection. Although it diverges from my hypothesis, it illustrates the importance of human
experiences during feature selection. One conclusion of this research is that prerequisite
knowledge of a study area combined with proper feature selection algorithms can improve
model accuracy. In the end, the best model with preselected features, model-10, is selected
to present models for one hour ahead weekend predictions.
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Figure 6.2: One hour ahead overall models comparisons weekdays as measured by absolute
percentage error.

Table 6.2: One hour ahead proposed weekend models comparisons in AE and APE.

baseline without preselection with preselection
connections 373 208 241
nodes 12 9 10
avg(10−2 liter) 626.4 607.5 606.7
avg(0.1 percent) 153.3 150.3 149.8

6.1.2 One Day Ahead Models Comparisons

One day ahead weekday models.

AE and APE statistics of one day ahead weekday proposed models are presented in Ta-
ble 6.3. From a model complexity perspective, the model with two hidden-layer retains
significant number of connections less than others; therefore, it is considered as a baseline
model. From average an AE and an APE perspective, the baseline model performance is
notably worse than the other two. Figure 6.5 and Figure 6.6 indicate that single hidden-
layer and three hidden-layer models retain significant advantages in performance as com-
pared to the baseline model at high percentiles; however, differences converge as it goes
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Figure 6.3: One Hour Ahead Overall Models Comparisons Weekends AE.

from 95 percentiles to 50 percentiles. Both average AE and APE of the baseline model
are worse than the proposed three hidden layers model, model-11-7-3, by 2.9 × 10−2 and
6.8× 10−2% respectively, which are around 1.5 times the threshold values; however, the 85
connection advantages make it 1.7 times less than complexity thresholds. Therefore, the
baseline model outperforms the three hidden-layer model. By contrast, although perfor-
mance disadvantages persist for the baseline model as compared to the single hidden-layer
model, performance differences are within acceptable ranges. However, more than 50 con-
nections advantages in model structures make the baseline model a better choice. Hence,
the proposed two hidden layers model, model-10-5, is determined to present one day ahead
weekday predictions.

One day ahead weekend models.

AE and APE statistics of three models are presented in Table 6.4. In contrast to weekday
models, model complexity differences are not significant. The best two hidden layers model,
model-12-4, is selected as the benchmark model during comparisons. From average an AE
perspective, the two hidden-layer model outperforms the proposed single hidden layer
model, model-13, by 2.7×10−2 liters per hour, which exceeds the threshold; however, 95 to
50 percentiles of AE in Figure 6.7 suggest that the single hidden-layer model dominates the
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Figure 6.4: One Hour Ahead Overall Models Comparisons Weekends APE.

Table 6.3: One day ahead proposed weekday models comparisons in AE and APE.

hidden layer(s) single two three
connections 456 401 486
third hidden layer nodes 11
second hidden layer nodes 10 7
first hidden layer nodes 13 5 3
AE (10−2 liter) 642.7 644.2 641.3
APE 0.1 percent 164.6 164.9 164.2

benchmark model. This implies that the benchmark model retains remarkable accuracy
rates on half of instances. From an APE perspective, the two hidden-layer model gains
at least 3.0 × 10−2% over the other two on average errors. Although APE statistics from
95 percentiles to medium values in Figure 6.8 suggest that the single hidden-layer model
dominates the benchmark one, the average advantages strongly imply that the benchmark
model retains remarkably accurate rates on half of the instances predictions. Hence, the
benchmark model outperforms the single hidden-layer model. On the other hand, the
benchmark model not only retains better performance than the three hidden-layer model,
but also requires less connections. Thus, the best two hidden layer model, model-12-4, is
considered to be the one representing one day ahead weekend models.
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Figure 6.5: One Day Ahead Overall Models Comparisons Weekdays AE.

6.2 Discussion

After determining four proposed models, in the following subsections I analyze the results
in detail, and confirm or reject the hypotheses from Chapter 5.

First, it is pivotal to confirm the improvements offered by the ANN models. Baseline
experiments are conducted. One day ahead same hour and one week ahead same hour
information is directly applied to represent the predicted hourly consumption for each
scenario. Moreover, the comparisons are tackled by splitting the weekday and weekend
consumption. By following the same evaluation processes of other experiments, only peak
hours predictions are investigated. The statistics of each experiment are demonstrated in
Table 6.5. As the statistics of each experiment suggested in Table 6.5, the base experiments
are dominated by baseline models, one hour ahead models and one day ahead models
implemented in this research. Therefore, the results confirm the importance of engaging
ANN models.

From one hour ahead experiments, results indicate that the baseline model not only
gives significantly lower performance than others, but also requires more connections. From
these experiments, the first conclusion is that models with feature selection and differenti-
ations between weekdays and weekends give higher accuracy when predicting hourly water
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Figure 6.6: One Day Ahead Overall Models Comparisons Weekdays APE.

consumption. Further to feature selection, weekday and weekend experiments suggest dif-
ferent conclusions. Weekday results show that although the model without preselected
selections requires more connections than the one with preselected features, performance
improvements are impressive. AE and APE differences are six times higher than threshold
levels. Hence it demonstrates the advantages of relying on feature selection algorithms over
human intuition. By contrast, weekend statistics illustrate that the model with preselected
features outperforms the one with feature selection only. Although the without preselected
feature model maintains less connections and negligible AE differences, the notable APE
differences make great contributions on determining the proposed model. Hence, whether
feature selection should engage human inputs or only rely on algorithms is an empirical
question and remains open to debate.

For one day ahead models, comparisons are conducted among one, two and three
hidden layer models. In contrast to one hour ahead results, weekday and weekend re-
sults highly agree with each other. The two hidden-layer model dominates the other two.
This confirms the hypothesis that multi hidden-layer models can achieve or even overcome
single hidden-layer model performance with identical model structures.

The last set of experiments consists in conducting comparisons between one hour ahead
and one day ahead models. AE and APE statistics of four proposed models and two
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Table 6.4: One day ahead proposed weekend models comparisons in AE and APE.

hidden layer(s) single two three
connections 404 417 433
third hidden layer nodes 11
second hidden layer nodes 12 7
first hidden layer nodes 13 4 2
AE (10−2 liter) 673.0 670.3 670.8
APE (0.1 percent) 166.9 166.6 166.9

Table 6.5: Model performance of using previous day or previous week information to predict
water consumption in AE and APE.

AE (10−2 liter) APE (0.1 percent)
one day ahead weekdays 892.9 226.3
one week ahead weekdays 885.8 227.4
one day ahead weekends 1028.2 241.7
one week ahead weekends 876.3 214.8

baseline models are presented in Figure 6.9 and Figure 6.10 respectively. Average errors
and 95 percentiles to median errors are presented to provide a holistic picture of all models’
performance. These figures clearly demonstrate that one hour ahead models dominate one
day ahead models in all levels from both an AE and an APE perspective. It implies that
short-term water consumption data contributes more than longer term water consumption
data for hourly water predictions. Hence, the more recent accurate data can be collected
from smart meter devices, the more accurate model predictions can be provided to utility
companies.

In order to further investigate the model performance, the metrics of overestimated,
underestimated and precisely estimated values are demonstrated in Table 6.6. The abso-
lute error threshold value utilized during model comparisons is leveraged in this process.
The “overestimated above threshold” field contains the value representing the percentage
of overestimated forecasts predicting 0.02 liters more than the actual usage. In contrast,
the “underestimated above threshold” field represents the percentage of underestimated in-
stances which the actual consumption is 0.02 liters than the predicted values. Over all the
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Figure 6.7: One Day Ahead Overall Models Comparisons Weekends AE.

scenarios, under estimated is the most critical cost, since the under estimated predictions
could cause insufficient supplies. From all the models, the baseline model is still dominated
by all others as it retains the highest percentage of under estimated values. While com-
paring the one hour ahead and one day ahead models, the one day ahead models retain
notable advantages. First, the one day ahead model retains the least percentage of under
estimated values for both weekday and weekend scenarios. Moreover, none of the under
estimated values are above the threshold. These two advantages show that the one day
ahead model outperform the one hour ahead model. Therefore, the one day ahead model
is considered the best model over all others.

In addition to comparing overall performance of proposed models, outliers and well
predicted instances are investigated. The first analysis is conducted in dissemination area
levels. Top 10 outliers and top 10 well predicted dissemination areas are inspected from
both an AE and an APE perspective. For outliers, seven out of ten dissemination areas
are overlapped across all proposed models. The left three columns in Table 6.7 indicate
that all seven dissemination areas retain a low volume of single family clients. Over all
111 experiment dissemination areas, only 17 of them retain single family residents that
are less than or equal to 44. This implies that the experiment sample size has a great
impact on model predictions. For small population areas, each instance within the group
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Figure 6.8: One Day Ahead Overall Models Comparisons Weekends APE.

contributes significantly for overall accuracy. If there is an outlier, then predictions of
the entire dissemination area will be misled. In addition to outlier dissemination areas,
well predicted areas are investigated. 8 out of 10 dissemination areas are in common
for all models. Overlapped dissemination area information is demonstrated in the right
three columns in Table 6.7. Compared to outlier areas, well predicted areas retain a
much larger population. It further confirms the importance of population for water usage
predictions. Another impressive observation is that there is a well predicted dissemination
area merged by 11 different areas. Although this research is doubtful that merged areas
may retain lower performance since factors used to migrate dissemination areas may not
well-represent resident water consumption behaviors, this area indicates that once the
population reaches a certain amount, varieties of individual impacts can be overcome and
models are able to make precise predictions. By contrast, Area3 and Area4 in outlier group
constituted by 5 and 3 different areas maintain low accuracy rates. This can be explained
by the varieties of different water consumption behaviors, and more importantly by small
population. Therefore, another conclusion from this research is that the finer prediction
grids are, the more challenging it will to keep accuracy rates at high levels. Suggestions
for future works to tackle small population areas are merging areas with the ones close to
it and ensuring merged area populations reach to an acceptable amount.
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Figure 6.9: AE Comparisons of All Proposed Models.

Figure 6.10: APE Comparisons of All Proposed Models.

During seasonal prediction analysis, summer water consumption forecasts are consid-
ered more challenging than other seasons because there are more outdoor water consump-
tion activities such as irrigation, car washes and filling swimming pools. Figure 6.11
demonstrates average daily temperatures in degrees over the entire experiment period at
Abbotsford. In order to adequately present varieties of outdoor usage over the summer
period, this research takes 15 degrees as a threshold and the period between June 22, 2013
and August 30, 2013 as the one to be investigated. As in other experiments, only peak
hour predictions are evaluated. In contrast to summer predictions, winter predictions are
demonstrated as well. The temperature threshold for winter is 10 degrees and the period
considered is from November 6, 2012 to March 12, 2013. In the winter time, major water
consumption are dedicated by indoor usage; therefore, they should be more predictable
than in the summer months.
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Table 6.6: Model performance comparisons by the measurements of over and under esti-
mated predictions.

overestimated overestimated under estimated under estimated precisely
above threshold above threshold estimated

One hour 51.7% 51.7% 47.7% 47.7% 0.6%
ahead weekdays

One hour 50.8% 50.6% 49.2% 49.1% 0.1%
ahead weekends

One day 43.5% 0.0% 43.1% 0.0% 13.4%
ahead weekdays

One day 43.5% 0.0% 43.2% 0.0% 13.3%
ahead weekends

baseline weekdays 47.3% 47.2% 52.7% 52.6% 0.0%

baseline weekends 48.2% 48.1% 51.8% 51.7% 0.0%

Table 6.7: Commonly selected poorly and well predicted dissemination areas.

Outlier Areas Well Predicted Areas
Areas No. SF No. merged areas Areas No. SF No. merged areas

OutlierArea1 32 1 BestArea1 114 1

OutlierArea2 34 1 BestArea2 117 11

OutlierArea3 35 5 BestArea3 132 1

OutlierArea4 36 3 BestArea4 133 1

OutlierArea5 39 1 BestArea5 141 2

OutlierArea6 42 1 BestArea6 155 1

OutlierArea7 44 1 BestArea7 161 1

BestArea8 172 2

Figure 6.12 compares average AE among summer, winter and entire experiment peri-
ods. There are four groups of data, one for each proposed model. Blue, grey and orange
bars represent errors in summer, winter and entire experiment periods respectively. Sum-
mer period predictions are significantly worse than the other two, and the performance
differences are remarkable. In contrast, winter period predictions are much more accurate
than overall and summer predictions. Hence, the study concludes that summer time hourly
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Figure 6.11: Average Daily Temperature.

consumption are more difficult to predict since there are varieties of outdoor consumption
behaviors for different families. Moreover, winter period forecasts are more feasible to reach
a high precision because indoor water consumption are the major usage and consumption
patterns are identical for all families.

6.3 Summary

In this chapter, I demonstrate proposed models for one hour ahead and one day ahead week-
days and weekends. I conclude that feature selection and weekend and weekday separations
are pivotal for hourly water predictions. Regarding multi hidden-layer neural networks, I
demonstrate that the two hidden-layer model out performs the single and three hidden-
layer models. Moreover, there are a few interesting observations and results presented as
well. Model performance is highly related to sample sizes of experiments. Merged areas
with small populations are shown to lead to low model accuracy; however, the ones with
large populations perform well. Lastly, winter and summer forecasts are compared. One
conclusion is that winter consumption, which are indoor usage driven, are more likely to
be precisely predicted than summer consumption, which are outdoor usage driven.
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Figure 6.12: AE Comparisons of Summer, Winter and Overall Season.
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Chapter 7

Conclusion and Future Work

In this chapter, I summarize the contributions of this thesis and make some suggestions
on directions that could further improve model accuracy for future work.

7.1 Conclusion

This research presents artificial neural network models to predict hourly water consumption
at the dissemination area level. From the results of small and large population dissem-
ination areas it is clear that the smaller the population is, the more challenging it is to
accurately forecast. Therefore, developing precise predictions of water consumption at the
dissemination area level is considered as a solid contribution of this thesis. This thesis
predicts hourly water consumption in both an hour and a day in advance. One hour ahead
predictions are more accurate than one day in advance predictions; however, model perfor-
mance differences between these two scenarios are at the one cubic liter per resident levels.
Due to input data (previous hourly water consumption) availabilities and the accuracy of
our models, our one day in advance models could be valuable for utility companies.

In addition, this research demonstrates the benefits and performance improvements
that can be obtained by using feature selection and by the separation of weekday and
weekend models. In contrast to previous work, this research provides detailed illustrations
on determinations of choosing single or separated models containing weekend and weekday
residential water usage predictions. Moreover, this thesis not only compares different mod-
els from a performance perspective, but also provides each model with a customized feature
set by applying feature selection. As Jain and Varshney indicate [33], water consumption
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predictions are data dependent. Implementing models with proper feature sets not only
improves model accuracy but also reduces model complexities.

Regarding multi hidden-layer models, this research compares single, two and three
hidden-layer ANN performance. lthough single hidden layer model can adequately forecast
all scenarios in theory, experimental results indicate that models with two hidden-layer
models outperform all others from both a performance and a model complexity perspective
on predicting water consumption.

Lastly, it is clear that dissemination area population sizes and model performance have
a close relationship. The larger the population a dissemination area has, the better model
performance will be. For some large population areas, even though they are merged by
several dissemination areas, their predictions are still highly accurate. This confirms a
contribution of this research, which is predicting usage in a finer grid (dissemination area).
Moreover, winter and summer predictions are compared. Winter consumption are normally
considered as base usage since all families consume water in similar patterns. In contrast,
summer usage may vary as outdoor consumption can be significantly different. The result
shows that summer predictions are in a low accuracy rate as compared to overall and
winter predictions, which further confirms the challenges.

7.2 Future Work

Although this research constructs models that have a high average accuracy rate, there are
some adjustments that could further improve model performance. The first adjustment is
collecting weather data in a finer resolution. In this research, daily weather information is
collected; however, the water predictions are at an hourly level. If hourly weather infor-
mation could be collected, it could potentially improve predictions. The second approach
is refining the merging algorithm. The merging algorithm in this research is based on
the demographic information of each dissemination area, and the population threshold is
set to 30. However, dissemination areas with small populations are shown to lead to low
accuracy rates compared to large population areas. Hence, leveraging water consumption
similarities to merge neighborhood dissemination areas and setting a larger threshold for
population sizes may provide better model predictions. The third approach is dividing
winter and summer predictions. Summer and winter consumption are presented in signifi-
cantly different accuracy levels. By following the same approach as weekday and weekend
separations, splitting forecasts for winter and summer consumption can lead models to fo-
cus on their target period usage patterns which may lead to better model performance. The
last approach to improve model accuracy is engaging more water consumption data. In this
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research, only one-year water consumption are engaged due to supplied data limitations.
However, seasonal trends are normally well predicted by leveraging several years data in
previous works. Therefore, engaging previous consecutive years data into experiments may
improve prediction accuracy as well.
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Table 1: Additional features.

Property

Area average lot size
AvgBeds average bedrooms per household
AvgFullBath average full bathrooms per family
AvgHouseArea average inside house area per family
AvgPartBath average partial bedrooms per household
AvgStories average stories per family
AvgYearBuilt average building year of houses
BDR Occupied 1 percentage of 1 bedroom families in the area
BDR Occupied 2 percentage of 2 bedrooms families in the area
BDR Occupied 3 percentage of 3 bedrooms families in the area
BDR Occupied 4 percentage of 4 bedrooms families in the area

Date
IS HOLIDAY whether it is a holiday
WEEK DAY day of the week, value from 1 to 7

Weather

barometer daily barometer value
PreviousLastRainFall number of days since last rainfall before yesterday
PreviousRainfall rainfall amount yesterday
rainfall rainfall amount today
SinceLastRainFall number of days since last rainfall before today
temperature max temperature today
windspeed windspeed today

Demographic

EDU Level1 percentage of people with post secondary degree
EDU Level2 percentage of people with high school degree
EDU Level3 percentage of people not in previous two levels
Employ E employment rate in the area
Employ U unemployment rate in the area
Tax B percentage of people with tax below average
Tax T percentage of people with tax above average
Tax Per Person median tax per person
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