Learning Instruction Scheduling Heuristics from
Optimal Data

by

Tyrel Russell

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2006
(© Tyrel Russell 2006

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

The development of modern pipelined and multiple functional unit processors
has increased the available instruction level parallelism. In order to fully utilize
these resources, compiler writers spend large amounts of time developing complex
scheduling heuristics for each new architecture. In order to reduce the time spent
on this process, automated machine learning techniques have been proposed to
generate scheduling heuristics. We present two case studies using these techniques
to generate instruction scheduling heuristics for basic blocks and super blocks. A
basic block is a block of code with a single flow of control and a super block is a
collection of basic blocks with a single entry point but multiple exit points. We
improve previous techniques for automated generation of basic block scheduling
heuristics by increasing the quality of the training data and increasing the number
of features considered, including several novel features that have useful effects on
scheduling instructions. Our case study into super block scheduling heuristics is a
novel contribution as previous approaches were only applied to basic blocks. We
show through experimentation that we can produce efficient heuristics that perform
better than current heuristic methods for basic block and super block scheduling.
We show that we can reduce the number of non-optimally scheduled blocks by up to
55% for basic blocks and 38% for super blocks. We also show that we can produce
better schedules 7.8 times more often than the next best heuristic for basic blocks
and 4.4 times more often for super blocks.

il

Acknowledgments

For the past two years, I have been working at the University of Waterloo and
I have been helped by innumerable people in a variety of ways. I would like to
acknowledge some of these people for their specific contributions to the thesis. I
would like to thank my supervisor, Peter van Beek, for his supervision and advice
on this thesis. I would also like to thank my two readers, Robin Cohen and Ali
Ghodsi, for their comments. I would like to acknowledge Abid Malik for his help in
understanding the IBM block output and for the solver that he and Peter developed
to solve the blocks optimally. I would like to thank Mike Chase for his advice on
the project as a whole and, specifically, for helping with understanding the different
architectural constraints within our model. For helpful advice and occasionally
sidetracking me into playing a game or two of chess, I would like to thank Matt
Enss, Kevin Regan and Fred Kroon. I would like to thank Martin Talbot, Laurent
Charlin and Mark Belcarz for the encouragement they provided and for occasionally
reminding me that [was stating the obvious. I would also like to thank Rado
Radoulov, Greg Hines, John Whissel and Reid Kerr for the advice they have given
on many occasions. Last but not least, I would like to thank my family for their
constant support.

v

Contents

1 Introduction

2 Background
2.1 [Instruction Scheduling
2.2 Machine Learning
2.2.1 Decision Treeso
2.2.2 Feature Selection

2.3 Summary .. o.o. ..

3 Related Work
3.1 [Instruction Scheduling Heuristics
3.1.1 Local Scheduling Heuristics
3.1.2 Global Scheduling Heuristics
3.2 Using Machine Learning for Scheduling and Compilers

3.3 Summary . o.o.o. ..

4 Learning Basic Block Heuristics
4.1 Learning Function 0oL
4.2 Feature Construction L.
4.3 Collecting Training, Validation and Testing Data
4.4 Feature Selection

4.5 Classifier Selection and Beam Search

4.6 Experimental Evaluation

4.7 Summary

5 Learning Super Block Heuristics

5.1 Feature Construction
5.2 Collecting Training, Validation and Testing Data
5.3 Feature Selection

5.4 Classifier Selection

5.5 Experimental Evaluation

5.6 Summary

6 Conclusion

A Basic Block Features

B Super Block Features

vi

47
47
51
53
53
53
26

61

63

67

List of Tables

2.1

3.1

4.1
4.2

4.3
4.4
4.5
4.6
4.7

5.1
5.2
2.3
5.4
2.9
0.6
5.7
2.8

Al

Notation for the Instruction Scheduling Problem.
Summary of Super Block Scheduling Heuristics

Notation for the Resource-based Distance to Leaf Node Feature

Features Remaining after Filtering, Ordered from Highest Ranking
to Lowest Ranking. o oL

Summary of Beam Search
Non-optimally Scheduled Blocks
Non-optimally Scheduled Blocks by Size
Compares Heuristic in terms of Schedule Length

Maximum Percentage From Optimal

Super Block Features L.
Summary of Beam Search 00
Non-optimally Scheduled Blocks by Size for 1-Issue
Non-optimally Scheduled Blocks by Size for 2-Issue
Non-optimally Scheduled Blocks by Size for 4-Issue
Non-optimally Scheduled Blocks by Size for 6-Issue
Compares Heuristic in terms of Schedule Length

Maximum Distance from Optimal

DAG Related Features

vii

A.2 Ready List Features., 65

A.3 Basic Block Features oL 66
B.1 Super block Features Continued 69
B.2 Super block Features Continued 70

viil

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3

5.1

A Simple Basic Block oo 6
A Simple Super Block oL 8
Decision Tree Example 12
The DAG for the Example Super Block 19
Original Schedule for the Super Block Example 20
Optimal Schedule for the Basic Block Example 20
Non-optimal Schedule for the Super Block Example 21
The G* Partitions 22
Collection Example L 33
Beam Search 39
Basic Block Decision Tree 40
Super Block Decision Tree 54

X

Chapter 1

Introduction

The development of processors with pipelines and multiple functional units has in-
creased the demands on compiler writers to write complex instruction scheduling
algorithms. These algorithms are required to ensure that the most efficient use of
resources, i.e. the functional units and pipelines of the processor, is made due to the
increased complexity of processor architectures. In this thesis, the specific problem
of automatically creating instruction scheduling heuristics will be addressed. In-
struction scheduling is the problem of scheduling the assembly instructions output
from the code generator to increase the efficiency of the final code.

The instruction scheduling problem is mainly solved heuristically since finding
an optimal solution requires significant computational resources and, in general,
the problem of optimally scheduling instructions is known to be NP-Complete [21].
For many years, different heuristics have been developed to schedule instructions
for various architectures. The majority of these heuristics have been list scheduling
heuristics (see Section 2.1) though other scheduling techniques have been used. De-
veloping good techniques for instruction scheduling is costly as it can require many
months to develop the heuristics needed to create a good instruction scheduling
heuristic for new processors. For example, the heuristic developed for the IBM
XL family of compilers “evolved from many years of extensive empirical testing at
IBM” [22, p. 112, emphasis added]. Moss et al. [8, 43, 38] proposed using machine
learning to automate the task of generating a heuristic for scheduling. Our work is
an extension and expansion of this methodology. The task of testing and revising
the set of rules needed to find a solution is perfectly suited for a machine learning
approach when good data exists to learn good rules.

While the main goal of the research is to develop a method for automated
heuristic design, it is important to create heuristics that are also fast, efficient,

accurate and understandable. A deficiency with one of the previous approaches [14]
is the overall complexity of the algorithm and the cost associated with executing
the scheduler. Avoiding this type of costly heuristics is one of the aims of this
research. There are two factors in developing a simple and inexpensive heuristic:
the number of features involved in making a heuristic decision and the complexity
of calculating each of the features. A feature is defined to be ”a quantity describing
an instance [28].” For example, if we are classifying weather, a feature could be
the temperature. Many features require O(n?) time to calculate where n is the
number of instructions in the block of code, and if many of these of features are
used the accuracy may be improved at the expense of the execution time. If too
many features are used the execution time may be too long for practical use.

We study two different types of heuristics, one for basic blocks and one for
super blocks. We research and categorize a large set of features found within the
literature for both basic block and super block scheduling heuristics. In addition to
these features, we synthesize new features and develop several novel features that are
found to be effective in both basic block and super block scheduling. Using standard
machine learning techniques, we identify both irrelevant and useful features. We
generate two heuristics using a decision tree learning algorithm and those heuristics
have increases in terms of both optimality and worst case behaviour over previous
heuristics found in the literature. Most importantly, we demonstrate that it is
possible to automatically generate good heuristics for instruction scheduling of basic
blocks and super blocks.

This thesis is broken into 4 main chapters. Chapter 2 covers the background
material necessary to understand the remainder of the thesis. Chapter 3 covers the
related work including previous heuristics and previous automated methodologies.
Chapter 4 outlines the basic block heuristic developed by the machine learning
techniques. Chapter 5 outlines the super block heuristic developed by the same
techniques.

Chapter 2

Background

In this chapter, we describe the background material necessary to explain the con-
tributions of this thesis. The major areas covered are the basic block and super
block instruction scheduling problems, and machine learning, with the focus of the
latter being on supervised learning techniques.

2.1 Instruction Scheduling

The instruction scheduling problem can be characterized as a set of instructions
and a set of functional units [44, 18, 10]. A functional unit can be defined as a
unit within a processor assigned to complete as specific task. For example, most
processors have a floating point unit that processes floating point instructions. The
instructions must be scheduled on the functional units so that all constraints on
the problem are satisfied. Two major constraints are issue width and precedence
constraints. The issue width of a processor limits the number of instructions that
can begin execution in any clock cycle. Precedence constraints ensure that certain
operations are executed in a specific order. Modern processors typically have several
different functional units that can process one or more different types of instructions.
On top of this machine level parallelism, the addition of pipelining allows a new
non-conflicting operation to execute in every clock cycle on a single functional unit.

There are two major architecture types, superscalar and VLIW. Both allow for
instruction level parallelism and pipelining. The major difference between super-
scalar and VLIW is that superscalar does not parallelize instructions until runtime
while VLIW combines the instructions during compilation and issues them in a

block. Either type of architecture benefits from reordering the instructions to im-
prove the overall schedule cost.

With these advanced architectures, to fully utilize the resources available the
instructions must be scheduled after code generation [15]. The focus of instruction
scheduling research has been to find good heuristics as finding optimal solutions
remains costly. Hennessy and Gross [21] showed that instruction scheduling is
NP-Complete for realistic architectures.

For this work, we make the simplifying assumption that all functional units are
fully pipelined. A functional unit is fully pipelined if a new instruction can begin
execution on that functional unit in every clock cycle.

Recall that precedence constraints ensure that instructions are executed in a
certain order to maintain program correctness. These constraints are modelled
as a directed acyclic graph (DAG) where the nodes are the instructions and the
edges represent the precedence constraints. The labels of the edges represent the
latencies of the constraints. The latency of a constraint represents the number of
cycles that must elapse before scheduling the succeeding instruction. Each DAG
has an associated order as generated by the code generator and is equivalent to
the id assigned each node. Once a DAG has been constructed from the precedence
relations, it is possible to determine the latest start time and earliest start time of
each instruction. These properties are derived from the graph by tracing the paths
through the graph and determining the maximum distances from the root and leaf
nodes of the graph. The path that maximizes the distance between any two nodes
is called the critical path. Table 2.1 shows notation for properties of the DAG or
nodes within the DAG. To illustrate the concept of a DAG, a simple DAG with six
instructions can be seen in Figure 2.1. Figure 2.1 also shows the optimal schedule,
i.e. the schedule with the shortest length, for that DAG assuming a single issue
processor—a processor where a single instruction can be issued at each clock cycle.

Example 2.1 Consider the basic block in Figure 2.1. For succinctness, only node
C of the graph will be considered. Since the only successor of node C' is the sink
node, succ(C) = 1 and desc(C) = 1. We can calculate the critical path length
distances to both the root node and the sink node and we determine them to be
ep(A,C) = 1 and cp(A, F) = 1, respectively. The latency between C and the
only successor F is 1 and execution time of C' is also 1. The path lengths to the
respective nodes are also 1. The earliest start time using the critical path distance
to the root is 1 and, using the fact that cp(A, F') = 5), the latest start time for C is
Istp(C) = 4. Therefore, the slack is calculated to be the difference between the two
or slack(C) = lstp(C) —est(C) =4 —1=3.

Table 2.1: Notation for the Instruction Scheduling Problem.

succ(i) The number of immediate successors of instruction ¢
desc(i) The number of descendants of instruction ¢
ep(i, j) The critical path distance between instruction ¢ and instruc-
tion j
pl(i, j) The longest path length between instruction ¢ and instruction
J
lat(i, 7) The latency between instruction ¢ and instruction j
Isty(7) The latest start time of an instruction j with reference to a
branch node, typically the sink (or leaf) node
est(i) The earliest start time of an instruction j
etime(1) The execution time of an instruction ¢
slack(i) The difference between the latest start time and the earliest
start time

Basic Block and Super Block Scheduling

Instructions scheduling is typically divided into two specific categories, local and
global scheduling. Local scheduling, also known as basic block scheduling, is the
scheduling of any sequence of code that executes consecutively without branch in-
structions, with the possible exception of call instructions. Global scheduling defines
all other types of scheduling including those which consider the entire program.

Local scheduling is the most common type of instruction scheduling. The cost
function for basic blocks is a straight-forward measure of the length of a given
schedule. Without loss of generality, we assume that a basic block has a single root
node (a node with no precedence constraints) and a single sink node (a node with
no successor constraints). The cost function for basic blocks can be formalized as,

cost(S) = ts(n) + etime(n), (2.1)

where S is the schedule, ts(n) is the time slot of the n'* (or sink) instruction of
schedule S and etime(n) is the execution time of the n'* instruction. The execution
time of an instruction is the number of cycles needed to process the instruction on
a functional unit.

Example 2.2 Consider the six node basic block in Figure 2.1. The latencies be-
tween instructions vary depending on the parent and successor instruction. For

Figure 2.1: A simple basic block and corresponding optimal schedule for a single
issue processor.

Time Slot Instruction
1

S U W N
HE O QW

example, the latency between instruction B and E is three, which means that
instruction E cannot begin execution until three clock cycles have elapsed after
B has begun execution. Assume the execution time of the final instruction F
be one clock cycle. Applying Equation 2.1, the cost of the optimal schedule is
ts(F) + etime(F) =6+ 1 =7 cycles for a single issue machine.

It has long been conjectured [9] that the scope of local scheduling ignores certain
parallelism and creates inefficient code. While global scheduling could include the
entire scope of the program as in the work of Bernstein et al. [3], many of the
global scheduling techniques try to find a balance between the amount of parallelism
available and the manageability of the code size. Programs can contain millions
of instructions and thousands of branch instructions, especially in the presence of
aggressive optimization techniques like loop unrolling [57], and it becomes difficult
to apply techniques to the entire program efficiently.

Many different types of global scheduling have been proposed to determine the
best way to break up code into manageable code sections. These include trace
scheduling [16], super block scheduling [24], treegions [20] and hyperblock schedul-
ing [35]. In this research, we focus on super block scheduling as this global schedul-
ing technique is used in many production compilers. Super blocks are constructed
from a sequence of basic blocks, By,..., B,, where there exists a precedence con-
straint such that the exit of B; must be scheduled before the exit of B; if B; precedes

6

B; in the super block. Super blocks are constructed to have a single entrance into
the code but multiple possible exits or branches out of the code.

In order to schedule a super block, we must define a cost function that we
wish to minimize. For basic blocks, the cost function is simply the length of the
schedule but for the super block scheduling problem a more complex function is
used. The increased complexity comes from the existence of multiple exits allowing
for different paths, and path lengths, out of a super block. Since there are multiple
paths that need to be minimized, it is possible that minimizing some paths may
increase the path lengths for other paths. This leads to a situation where it is
necessary to weight the paths by relative importance. This weighting is normally
done by using profile data collected about the exits. Profile data is collected by
compiling the program without scheduling and executing a standard reference set
of data. For each exit, the frequency that the exit is taken is recorded and these
values are converted into percentages. The weights, called exit probabilities, are
used in determining the cost function. So instead of minimizing the path length,
we minimize the weighted path lengths to all branches. The cost of a schedule S,
which we wish to minimize, can be defined more formally as,

cost(S) = Zw(b)ts(b), (2.2)

beB

where B is the set of all branches in the schedule S, w(b) is the exit probability of
branch b and ts(b) is the time slot of b in the given schedule S.

Example 2.3 Consider the super block shown in Figure 2.2. The two exits from the
graph are from instructions F and G. Fach exit is marked with a corresponding exit
probability. The minimum cost schedule is shown for a single issue processor and
the minimum cost of the schedule can be calculated using Equation 2.2. Instruction
F is scheduled at time cycle nine and instruction G is scheduled at time cycle ten.
Thus, the cost of the schedule is),z w(b)ts(b) = 0.40 x 94-0.60 x 10 = 9.60 clock
cycles.

Scheduling Algorithms and the List Scheduling Algorithm

The most commonly used algorithm for basic block and super block scheduling is
list scheduling [44]. The list scheduling algorithm uses a dependence DAG and a
partial schedule to create a list of instructions that can be scheduled at a given

Figure 2.2: A simple super block and corresponding minimum cost schedule for a
single issue processor. A nop (No OPeration) instruction is used as a place holder
when their are no instructions available to be scheduled.

Time Slot Instruction
1 A
B
C
nop
nop
nop

© 00 ~J O UL i W N

QmmEg

—_
e}

time slot dependent on the functional unit being scheduled. List scheduling is a
greedy algorithm which uses a heuristic to select instructions from the ready list
at a given time step and the best instruction is added to a partial schedule. The
ready list is defined to be the list of instructions that can be scheduled at a given
time respecting precedence constraints for a given functional unit. The primary
goal of the heuristic is to determine, either by comparing the values of pairs of
instructions or comparing the whole list, the instruction most likely to lead to a
good schedule. By comparing pairs of instructions, the total list can be compared
in a manner similar to finding the maximum within a list of unsorted numbers. The
list scheduling algorithm increments the time after all functional units have been
filled or there are no instructions available to schedule in the remaining functional
units. The algorithm terminates when all instructions have been scheduled. The
scheduling algorithm does not necessarily find optimal schedules since the schedul-
ing algorithm performs a greedy search and is primarily used for simplicity and
efficiency. The quality of the list scheduling algorithm is entirely dependent on the
quality of the heuristic used by the scheduler to select instructions from the ready
list. Section 3.1 discusses several different list scheduling heuristics for instruction
scheduling.

There have been other scheduling algorithms used for instruction scheduling.
These include linear methods [40], backtracking algorithms [1], and optimal solu-

tions using enumeration [50], integer linear programming [58] and constraint pro-
gramming [56, 37]. Linear methods are more efficient than the list scheduling algo-
rithm but the results produced are not as accurate. The backtracking algorithms
and optimal solutions can generate better solutions but they can be inefficient.

2.2 Machine Learning

Machine learning, as a discipline, can be broken into different sub-fields including
supervised, semi-supervised and un-supervised learning. Supervised learning com-
prises the set of techniques where all learning is done from a data set that is labelled
with the correct answer. Un-supervised learning attempts to determine structure
within a problem without ever consulting a labelled data set. The material in this
section is based on the presentation in [41].

Supervised learning comprises a broad range of techniques that can include rule
based learners, decision tree learners, neural networks, and Bayesian networks. The
premise behind most supervised learning techniques is to give the program a set of
labelled data and to induce a classifier from that data. The classifier induced from
the labelled data is a function, which takes the feature values as input and returns
a classification as an output. More formally, a classifier C' is a function which takes
a vector of inputs, z, and produces a classification, ¢, where every element in the
vector x is a feature value and c is an element of the set of possible classifications
for a given problem. The labelled data is typically called a set of instances, where
an instance is a set of feature values and a correct classification. The difference
between the supervised techniques lies primarily in the bias of the method and
the algorithm by which the classifier is induced. The inductive or learning bias
denotes the inherent limitation of a method that restricts the possible set of learned
classifiers. Decision trees are formed by making a hierarchy of available features
therefore allowing only functions that can be expressed in this form. A simple
linear method may use a sum of weighted features allowing for an entirely different
set of possible classifier functions. It is practically and theoretically impossible to
remove all inductive bias from a classifier. Furthermore, it is detrimental to the
functionality of the learning algorithm as without a bias there is no basis for making
predictions on unseen data.

Recall that a supervised learning method requires a set of data labelled with
correct answers. To properly learn a function, this set of instances is often broken
into three separate sets of data. These sets are called the training set, the validation
set and the testing set. The training set comprises the set of instances used to

directly induce a classifier function. To improve the accuracy of the classifier, it is
often useful to keep a set of instances, called the validation set, to decide when to
stop the learning algorithm. The process of using the validation set to iteratively
improve results is called cross-validation. The testing set is a set of instances kept
aside until the final classifier is complete to test the accuracy of the classifier on
unseen data.

The inclusion of the validation set allows the classifier to be refined in order
to avoid the pitfall of over-fitting. The pitfall of over-fitting can be defined as the
learning of a classifier function that performs better on the training set over another
function that performs better on the entire testing set. In other words, a classifier
is over-fit when that function performs better only on a specific set of training data
and not on the general data.

2.2.1 Decision Trees

Decision tree learning is a supervised learning technique that builds classifier func-
tions forming a tree where each internal node is a feature test and the leaves are
classifications. Each internal node represents a branching point where the tree
branches based on a feature test.

The classification of a instance is made by traversing a path within the decision
tree until a leaf node is reached. The value of that leaf node gives the classification
of the decision tree.

Example 2.4 Consider the small decision tree in Figure 2.3. The decision tree has
two features, F'1 and F2, and two classes, C1 and C2. The features are both binary,
yes/no, features. Let the instance to be classified have feature values of F1=“yes”
and F2="no”. Referring to the classifier, the first feature test compares F'1 and
the value of “yes” leads down the left branch. The second feature test compares F2
and the value of “no” leads down the right branch to a leaf node. The value of the
leaf node is C2 so the instance is classified as C2.

A decision tree is built using a simple algorithm. First, we determine a heuristic
value for the quality of each feature given the training data set. Second, we select
the feature with the highest heuristic value. Third, we break up the set of training
instances into new subsets for each possible value of the selected feature, where new
sets contain only those instances that have identical values for the selected feature.
We continue this process of applying the heuristic and selection recursively on the

10

new subsets of data. When no more features are left to select or no reasonable
division of the data can be made, the algorithm creates a leaf node with the most
common classification of the instances. A reasonable division of data is considered
to be any division where the heterogeneity of the classifications of the instances
decreases. This case prevents the algorithm from adding more depth to the tree
if the data is entirely of the same classification or if splitting the data on any of
the remaining feature results in the same mix of classifications. Some decision tree
algorithms also use a pruning criteria to limit the division of the set of instances
to prevent over-fitting. One such algorithm is Quinlan’s C4.5 algorithm [45]. One
common heuristic for selecting instructions is to measure the information gained
by adding that feature at that branch point over all other remaining features.
Information gain can be defined in terms of the entropy within a set of instances.
The entropy of a set of instances .S is defined as,

[

Entropy(S) = Z —pilogap;,

=1

where c is the set of all classes in the problem and p; is the proportion of .S with clas-
sification ¢. Once entropy is defined in terms of a given class, we define information
gain for a given feature A on a set of instances S' as,

Gain(S,A) = Entropy(S) — Z %Entropy(&,),

veValues(A) | |

where Values(A) is the set of possible values for the feature A and S, is the subset
of S where the feature A has value v.

Decision tree learning is one the most common simple learning techniques in use
today. The advantages of decision trees lay in the relative simplicity of the output
of the algorithm and efficiency of the algorithm. However, decision tree learning
does have an inductive bias towards shorter more compact trees and requires extra
techniques to handle continuous domains.

2.2.2 Feature Selection

Feature selection is the process by which features are removed from consideration
based on certain criteria. There exist several different techniques for feature fil-
tering (see [5, 19] and the references therein). Blum and Langley [5] state that

11

Figure 2.3: A decision tree example with two classes, C1 and C2, and two binary
features, F1 and F2.

the existence of irrelevant features can affect not only the efficiency of the learning
algorithm but also the ability to avoid over-fitting and to create good generalized
classifiers. They describe three different techniques that can be used to perform
feature selection: embedded, filter and wrapper. Before each technique is described,
it should be pointed out that all of these techniques can be performed in either di-
rection: forward or backward. A forward selection technique starts with an empty
set of features and adds features into the set based on the selection technique. A
backward selection technique starts with the entire set of features and removes
features from the set using the selection technique.

An embedded feature selection technique uses the algorithm for finding the
classifier to perform feature selection. An example of an embedded feature selection
technique is decision tree learning. The decision tree learning includes the features
individually, stopping when there is no reasonable division of the instances or a
pruning criteria has been met. This means that some of the features may be left out
if not necessarily required. This is an embedded technique because the procedure
of the algorithm selects the best features and removes the features if they are not
necessary.

A filter feature selection technique uses a criteria separate from the learning
algorithm to search the space of features and remove those features labelled as
irrelevant. In other words, a filter technique scans the set of features calculating a
given property, like information gain, and removes those features whose properties
do not meet a given threshold criteria. Filter techniques are inexpensive and can

12

be applied to features individually.

A wrapper feature selection technique uses a learning technique as a sub-method
for performing feature selection. The learning technique learns a classifier using only
a single feature. This classifier is then applied to the training set and the individual
accuracy of that feature is recorded. Using this data, it is possible to identify those
features that classify instances poorly and a thresholding method can be applied
to remove the features.

2.3 Summary

In this chapter, we introduced the basic block and super block instruction scheduling
problems. We described the assumptions about the instruction scheduling prob-
lem that we are making for this research. The necessary background material on
machine learning and decision trees was also presented. In the next chapter, we
describe two different areas of work related to this thesis. First, we describe previ-
ous hand-crafted instruction scheduling heuristics for both basic blocks and super
blocks. Second, previous attempts to generate automated heuristics for scheduling
are explored.

13

Chapter 3

Related Work

The problems of instruction scheduling for pipelined processors has be studied since
the late seventies and many different heuristics have been proposed. [3, 14, 13, 9,
21]. One of the main components of our research was to extract the features used in
previous approaches, along with defining new features and synthesizing old features.
As well, it will be important to implement these algorithms as a comparison to the
algorithm developed using the machine learning technique.

This chapter is separated into two main sections. The first section will describe
previous heuristics for both basic block and super block instruction scheduling. The
second section will describe the previous research in machine learning in scheduling
and compilers.

3.1 Instruction Scheduling Heuristics

3.1.1 Local Scheduling Heuristics

In this section, we describe some of the previously proposed heuristics used for
instruction scheduling. Each heuristic is described and an algorithm is provided for
clarity. The notation introduced in Table 2.1 is used to describe the features in the
heuristics. There have been a wide variety of previous heuristics for solving this
problem. However, many of these heuristics are based on the same main features.
In this section, we will present two general heuristic types, earliest start time and
critical path heuristics, and describe how these general heuristic types can be used
to generalize each of the previously proposed heuristics. Each of these heuristics is
a hand crafted heuristic by the designer.

15

Earliest Start Time Heuristics

The earliest start time heuristics are the set of heuristics that use the critical path
distance from the root to the node as the primary feature. The advantage of using
this heuristic first is that it favours those instructions that have been delayed from
their original release time. It does not, however, take into account the possibility of
instructions that can and should be delayed due to slack in the schedule. Therefore,
it may schedule instructions unnecessarily early with respect to other more impor-
tant heuristics. Krishnamurthy [29] presents an earliest start time heuristic that
includes execution time, path length to sink and critical path to sink as the other
features in the heuristic. Warren [27] presents another earliest start time heuristic
using alternating types of instructions, critical path to sink, number of uncovered
children and original order as the other features of the heuristic. Algorithm 3.1
shows a typical earliest start time heuristic.

Algorithm 3.1: Earliest Start Time Heuristic

input : Instructions ¢ and j
output: Return true if ¢ should be scheduled before j; false otherwise
if cp(1,i) < cp(l,j) then return true;
else if cp(1,i) > cp(1,j) then return false;
else

if cp(i,n) > cp(j,n) then return true;

else if cp(i,n) < cp(j,n) then return false;

else

if order (i) < order(j) then return true;
L else return false;

Critical Path Heuristics

The critical path heuristics are the set of heuristics that use the critical path dis-
tance to the sink node as the primary feature. This feature approximates the
number of cycles that must execute prior to finish scheduling if the instruction is
scheduled in the current slot. By using this heuristic, the instruction most likely
to delay the schedule is selected to be scheduled. However, this measurement does
not take into account the resource constraints on the schedule, which could indicate
that another instruction is more likely to delay the schedule. Muchnick [44] presents
a critical path heuristic that also uses earliest start time, execution time, the num-
ber of instructions uncovered, and original order as secondary features. Tiemann
[55] presents a heuristic used in the GCC compiler that uses critical path distance

16

and original order as features. Schlansker [47] presents a heuristic that used criti-
cal path to sink and slack as features. Algorithm 3.2 shows a typical critical path
heuristic where updated_est(1,1) is a recalculation of earliest start time to include
any resource delays that may have occurred during scheduling.

Algorithm 3.2: Critical Path Heuristic

input : Instructions ¢ and j
output: Return true if ¢ should be scheduled before j; false otherwise
if cp(i,n) > cp(j,n) then return true;
else if cp(in) < cp(j,n) then return false;
else

if updated_est(1,i) < updated_est(l,j) then return true;

else if updated_est(1,i) > updated_est(l,j) then return false;

else

if order (i) < order(j) then return true;
L else return false;

Shieh and Papachristou’s Heuristic

Shieh and Papachristou [49] created another critical path list scheduling heuristic
that includes features such as execution time, number of children, number of parents
and earliest start time (see Algorithm 3.3).

3.1.2 Global Scheduling Heuristics

In this section, we describe some of the previously proposed super block heuristics.
We describe each feature and then present the heuristic used in the paper. An
example, found in Figure 3.1, is used to describe how each of the heuristics work.
The schedule found using the original order can be found in Figure 3.2 and the
optimal schedule can be found in Figure 3.3. Super block scheduling is a simplifi-
cation of the general scheme of trace scheduling proposed by Fisher [16, 17]. The
super block simplifies the trace by only allowing basic blocks to be connected to the
super block if there are no side entrances. This simplification allows the designer to
more accurately approximate the cost of the code region as the problem is simpli-
fied from a many to many problem to a one to many problem. Berstein and Rodeh
[3] present an early global scheduling heuristic based on the critical path heuris-
tic from basic block scheduling. With the exception of Eichenberger and Meleis’s
balance scheduling heuristic [14, 39], each of the following heuristics are compared

17

Algorithm 3.3: Shieh and Papachristou’s Heuristic

input : Instructions ¢ and j

output: Return true if ¢ should be scheduled before j; false otherwise
if cp(i,n) > cp(j,n) then return true;

else if cp(in) < cp(j,n) then return false;

else

if etime (i) > etime(j) then return true;
else if etime(i) < etime(j) then return false;

else
if #_children(i) > #_children(j) then return true;

else if # _children(i) < #_children(j) then return false;
else
if # _parents(i) > #_parents(j) then return true;
else if #_parents(i) < #_parents(j) then return false;
else
if p1(1,i) <pl(1,j) then return true;
L else return false;

against our generated heuristic in Chapter 5. The balance scheduling heuristic was
removed because we were unable to obtain a copy of the code from the authors of
the paper and we were not able to implement ourselves because of ambiguities in
its description.

The G* Heuristic

Chekuri et al. [9] proposed a global scheduling technique that uses a profile inde-
pendent scheduler (see Section 2.1) to create a ranking function for each possible
branch-rooted subgraph of the dependence graph. Figure 3.5 shows Figure 3.1
broken into G* partitions. The ranking function for each subgraph G, is defined
as,

length(Gh)

Zbebranches(Gb) Wy

mrank(Gy) =

)

where length(Gy) is the profile independent schedule length and branches(Gy) is
the set of all branches in the subgraph Gj.

They select, from the graph G, the subgraph with maximal rank or,

argmax mrank(Gy).
GG

18

Figure 3.1: A small super block used to describe the instruction scheduling heuris-
tics.

Once the subgraphs are ranked, we need to define a heuristic function for scheduling
the entire graph. We number the subgraphs removed from the graph by the selection
process, in the order of removal, 1,...,n, where 1 is the first subgraph removed
and n is the last subgraph removed. We define a function sorder(i) which returns
the ordering of the subgraph containing the instruction ¢. The heuristic is shown
in Algorithm 3.4 where t5rder(2) (@) is the time slot of instruction x in the profile
independent schedule of subgraph sorder(x).

Algorithm 3.4: G* Heuristic
input : Instructions i and j
output: Return true if ¢ should be scheduled before j; false otherwise
if sorder(i) > sorder(j) then return true;
else if sorder (i) < sorder(j) then return false;
else
L if tssorder(i) () < tSsorder(;)(j) then return true;
else return false;

Example 3.1 Consider the super block shown in Figure 3.1. First we need to de-
fine the order of branches in the schedule. Using the mrank criteria, we find that,

19

Figure 3.2: Schedule for the super block example scheduled using the original order
of instructions from the code generator. The table shows the time slot of each
instruction plus the corresponding assembly.

Time Slot

Instruction

Assembly

00 O Ul = Wi

— = = = = O
= Ww N = O

A
B
C

= J

— Q™

ADD $r1, $r0, $r2
ADD $r0, $r2, 1
LD $rl, #_mem_addr
nop

nop

nop

nop

MUL $r4, $r1, 1
MUL $r5, $rl, $r2
nop

BT $r5, location
ADD $r6, $r4, 1
BF $r4, location
BT $r2, location

Figure 3.3: Optimal schedule for the super block example showing the time slot of
each instruction plus the corresponding assembly.

Time Slot | Instruction | Assembly

1 A ADD $r1, $r0, $r2
2 C LD $r1, #_mem_addr
3 B ADD $r0, $r2, 1

4 nop

5) nop

6 nop

7 E MUL $r5, $rl1, $r2
8 D MUL $r4, $r1, 1

9 F BT $r5, location
10 G ADD $16, $r4, 1
11 H BF $r4, location
12 I BT $r2, location

20

Figure 3.4: Non-optimal schedule for the super block example showing the time
slot of each instruction plus the corresponding assembly.

Time Slot | Instruction | Assembly

1 A ADD $r1, $r0, $r2
2 C LD $r1, #_mem _addr
3 B ADD $r0, $r2, 1

4 nop

) nop

6 nop

7 D MUL $r4, $r1, 1

8 E MUL $r5, $rl, $r2
9 nop

10 G BT $r5, location
11 F ADD $16, $r4, 1
12 H BF $r4, location
13 I BT $r2, location

length(Gp)
Ebebranches(GF) Wy

9/40 = 0.225, mrank(Gy) = 0.1375 and mrank(G) = 0.12 where Gy is the sub-
graph rooted at b. Therefore F' is selected first and removed from the graph. When
applying the mrank criteria on the remaining graph, we find mrank(Gyg) = 0.05 and
mrank(Gr) = 0.05 so we select H because of order and remove the subgraph from
the remaining graph. The mrank of the remaining subgraph is mrank(Gr) = 0.05
and I s selected last. Now that we have defined the order of the branches, the first
scheduling decision between instruction B and C' at time two can be decided. Since
B and C are both in G, we need only to look at their time slots in the correspond-
ing schedule. tsp(B) =3 and tsp(C) = 2, so C is scheduled first. For the second
scheduling decision, we note that D and E are also within the first subgraph and,
since tsp(D) = 6 and tsp(E) = 7, we schedule instruction D first. Therefore, we
obtain the schedule shown in Figure 3.4.

describing only the first calculation in detail, mrank(Gr) =

The Speculative Hedge Heuristic

Speculative Hedge [13] attempts to measure the number of branches that are af-
fected by scheduling the instruction and the impact of that scheduling action. In

21

Figure 3.5: The super block from Figure 3.1 broken into G* partitions.

order to properly formalize the heuristic, we first need to define some terms. Let
the set of branches that are helped by scheduling an instruction i be denoted H B(i)
and the set of all branches that are descendants of instruction ¢ be denoted B(7).
We say that a branch is helped by an instruction if failing to schedule that instruc-
tion will delay the branch in the schedule. Second, we need to define three of the
features used in the heuristic: helped weight, helped count and minimum late time
difference.

Helped weight can be formalized as,

helped_weight(i) = Z w(b)
beHB(i)

Helped count can be formalized as,

helped_count(i) = |HB(i)|

Minimum late time difference can be defined as,

minimum _lst(i) = mei?) ep(i, b)
[S¥a3¢

22

Once we have defined these features, we can define the heuristic as shown in
Algorithm 3.5.

Algorithm 3.5: Speculative Hedge Heuristic
input : Instructions ¢ and j
output: Return true if ¢ should be scheduled before j; false otherwise
if helped weight (i) > helped weight(j) then return true;
else if helped_weight (i) < helped_weight(j) then return false;
else

if helped_count (i) > helped_count(j) then return true;
else if helped_count (i) < helped_count(j) then return false;

else
if minimum 1st (i) > minimum 1st(j) then return true;

else if minimum 1st (i) < minimum 1st(j) then return false;

else
if order (i) < order(j) then return true;
else return false;

Example 3.2 Consider the super block shown in Figure 3.1. For the first schedul-
ing decision, we need to define helped branches sets for B and C' at time two to be
HB(B) = {} and HB(C) = {F,H, 1} (see Eichenberger et al. [14] for details).
Therefore, the helped weight of instruction C is clearly larger than that of instruc-
tion B so C s preferred. For the scheduling decision at time seven, we define the
helped branches set for D and E to be HB(D) = {H,I} and HB(E) = {F, H,I}.
Again, it is clear that the helped weight of E must be larger and instruction E is
preferred and the final schedule can is shown in Figure 3.5.

Bringmann’s Priority Function for Superblocks

Bringmann proposes [6] a modification of Fisher’s Speculative Yield heuristic for
super blocks. It is a simple heuristic, which attempts to rank instructions by de-
termining the weighted sum of the latest start times of the instruction to each
successor branch. More concretely, Bringmann’s Priority Function called Depen-
dence Height and Speculative Yield (DHASY) can be described mathematically as
done by Deitrich and Hwu [13] as,

dhasy(i) = > (wy(cp(1,n) + 1= (cp(1,b) — cp(i, b)) (3.1)
beB(i)

23

where B(i) is the set of all branches that are descendants of i.

The heuristic is shown in Algorithm 3.6.

Algorithm 3.6: Bringmann’s Heuristic (DHASY)

input : Instructions ¢ and j

output: Return true if ¢ should be scheduled before j; false otherwise
if dhasy(i) > dhasy(j) then return true;

else return false

Example 3.3 Consider the super block shown in Figure 3.1. First note that cp(A,I) =
8, cp(A,H) = 8 and cp(A, F) = 8. For the first scheduling decision of B and C

at time two, we see that cp(B,F) =0, cp(B,H) =0, ¢p(B,1) =0, ¢p(C,F) =0,
ep(CyH) = 0 and c¢p(C,I) = 7. Using these values in the dhasy formula, we ob-
tain dhasy(B) = 100 and dhasy(C) = 800 so C' is preferred. For the scheduling
decision of D and E at time seven, we see that cp(D,F) = 0, ep(D,H) = 2,
ep(D, 1) =2, cp(E,F) =2, ecp(E,H) =2, and cp(E,I) = 2 so dhasy(D) = 220
and dhasy(E) = 300. Therefore, instruction E is preferred and we obtain the
schedule shown in Figure 3.5.

The Balance Scheduling Technique

Eichenberger and Meleis [14, 39] propose a heuristic for solving super blocks and a
lower bound on the total cost of the schedule with respect to the exit probabilities.
The heuristic proposed for solving super blocks relies primarily on determining
a good set of instructions to keep on the ready list. To describe this heuristic,
we define several sets. First, we define NeedEach(b) to be the set of operations
that must be scheduled in order to keep from delaying a branch or, more formally,
{i | r(4,b) + currentTime > r(1,b)} where r(i,j) is the resource bound distance
defined by applying the Langevin and Cerny bounds [30] to the graph. Second,
we define NeedOne to be the set of instructions where one of the instructions
must be scheduled in order to keep from delaying the branch or, more formally,
{i | © € ERCyemin} where ERCy cmin is the bound proposed by Hu [23] where
¢ is minimum and there is no empty slots in the schedule. Third, we need to
define T'ake Each to be the union of NeedFEach(b) sets such that there are enough
resources for all instructions in each set. Last, we define T'akeOne to be the union
of NeedOne(b) sets such that there are enough resources for all instructions.

Once we have the sets, T'akeFach and TakeOne, we apply the Speculative
Hedge heuristic using the union of the T'ake Fach and T'akeOne sets as the ready

24

lists. If the sets are empty, Speculative Hedge is applied to a ready list computed
in the normal manner.

Example 3.4 Consider the super block shown in Figure 3.1. First we note that
the latest start time with respect to every branch for instruction B is eight and for
instruction C' is one and the earliest start times for both instructions is one. There-
fore using the techniques in the paper, we define the sets to be NeedEach[F] = {C},
NeedEach[H] = {C}, NeedEach[l] = {C}, NeedOne[F| = {C}, NeedOne[H| =
{C} and NeedOne[I] = {C}. Therefore, the TakeEach and TakeOne set is also
{C} and instruction C is scheduled first. For the second scheduling decision, we
note that lstp(D) = 8, Istg(D) = 6, lst;(D) = 6, Istp(E) = 6, Istg(F) =
6 and lst;(F) = 6. We obtain NeedEach[F] = {E}, NeedOne[F]| = {E},
NeedEach[H] = {D,E}, NeedEach[9] = {D,E}, NeedOnel8] = {D,E} and
NeedOnel9] = {D,E}. Given the selection heuristic for branches (order and
weight), branch F' is selected first and the TakeEach and TakeOne sets are both
{E}. Therefore, we schedule instruction E first and we obtain the schedule shown
in Figure 3.3.

Comparison of Super Block Scheduling Algorithms

The super block heuristics were developed over a large period of time so the evalu-
ation test sets differ from experiment to experiment. The summary of the informa-
tion can be found in Table 3.1. The table shows the test set of each of the heuristics,
the heuristics that each algorithm was tested against and a brief summary of the
results. The test set of each describes the programs or benchmarks used to test
the algorithms. The heuristics used for comparison are for the most part described
in the preceeding sections with the exception of Successive Retirement, which is a
simple heuristic that tries to schedule branches as soon as possible without con-
sideration for following branches. The results column shows a variety of results.
For Bernstein et al., the results show the percentage of speed up of their heuristic
against the test heuristic on four programs. DHASY summarizes the complete re-
sults as a 1-4 times speedup on various programs. G* and Speculative Hedge show
the improvement, in terms of speedup, over a variety of heuristics across all test
blocks. The Balance Scheduling results shows the percentage of blocks that each
heuristic solves optimally.

25

Table 3.1: A summary of previous experimental results for super block scheduling

heuristics.
Heuristic Test Set Comparison Heuristics Results
Berstein SPEC 89 Benchmarks CP heuristic similar to 1i-6.9%, eqntott—7.3%,
et al. [3] {li, eqntott, espresso, [27] espresso—0%, gee—0%
gee}
DHASY 6 non-numeric pro- CP heuristic 1-4 times speedup over
6] grams from SPEC 92 CP
CINT plus 9 other
non-numeric unix
programs
G* [9] SPEC 92 Benchmarks CP, Successive Retire- CP: 3.1%4.1%, SR:
ment, DHASY 0.6%-3.6%, DHASY:
1.6%-2.8%
SPEC SPEC 92 CINT Bench- CP, Sucessive Retire- CP: 0%-15.6%, SR:
HEDGE marks {espresso, li, ment, DHASY 0%-4.6%, DHASY: -
[13] eqntott, compress, sc, 0.2%-1.6%
ccl}
BALANCE| SPEC 95 INT Bench- CP, SR, G*, DHASY, % of optimal blocks:
[14] marks SPEC HEDGE CP: 26.0%, SR:
29.2%, G*: 25.8%,
DHASY: 36.9%,
SPEC HEDGE:
64.1%, BALANCE:
65.7%

26

3.2 Using Machine Learning for Scheduling and
Compilers

Moss et al. [8, 38, 43] discuss the feasibility of using machine learning to learn
good instruction scheduling heuristics for basic blocks. They used several different
kinds of machine learning techniques including function approximators, rule based
learners and reinforcement learning. They used a small sample set of features taken
from a hand-crafted compiler and produced a heuristic similar but slightly worse
than the DEC heuristic [51] they were comparing against. One the deficiencies
associated with this work is the limited data set available to the learning algorithm
as only small programs could be solved optimally and, therefore, only small blocks
were used to form the data set. McGovern et al. [38] try to alleviate this problem
by using reinforcement learning. However, this improvement further complicates
the learning process as reinforcement learning is a much more difficult problem, and
supervised learning, as used in this thesis, is preferred whenever possible. We used
an optimal scheduler to generate optimal schedules for large blocks allowing us to
generate instances from large blocks and to compare our results not only in terms
of other heuristcs but also in terms of optimality. On top of the data limitation,
the small set of features used by Moss et al. reduces the power of the technique
and relies heavily on the work of the hand crafted designer. We improve on this
technique by using a much larger set of features along with a feature selection
technique to improve the accuracy of our heuristic. Furthermore, we extended the
technique to look at global as well as local scheduling (see Chapter 5).

Beaty et al. [2] developed a technique for instruction scheduling using genetic
algorithms and discriminative polynomials. He used a set of features taken from the
Rocket compiler [25] and used a genetic algorithm to weight these features. This
technique while interesting suffers from several problems. First, the experimenta-
tion lacks transparency. While the set of features are reported, the specifics of the
test data are not reported in terms of either numbers of blocks or source of blocks.
Second, they state that they gain only a five percent improvement in accuracy over
initial random solutions.

In recent work, Li and Olafson [33] learned heuristics for single machine job
shop scheduling using decision tree learning. However, they created their training
data using existing heuristics to classify the instances they created. This means
that some of their training instances would have been incorrectly classified. As a
result, the heuristics that they learn are never better than the original heuristics
used to label the data. Our work has an advantage over this work in that we use a
slower optimal scheduler to generate the training data (see Chapter 4).

27

Lee et al. [32] also present a job scheduling method that uses machine learning
to learn release dates for jobs and schedule them using a genetic algorithm. This
algorithm is quite expensive and requires several minutes to solve medium size
problems.

Correa et al. [12] used a genetic algorithm to learn schedules for parallel process-
ing schedules. To increase the accuracy and decrease the cost of the technique, they
used a list scheduling algorithm to seed the initial genetic population. However in-
stead of using real data, they generated a set of synthetic problems designed to
approximate real world DAGs.

Calder et al. [7] performed static branch prediction using neural networks and
decision trees. They proposed that branches could be predicted by profiling a set
of corpus data and extracting the features of that data to predict future branch
execution without profiling. Their approach is similar to ours as they use a wide
variety of features for the problem, selecting the best features using machine learn-
ing. However, they do not prune irrelevant features from their feature set and may
be introducing inefficiencies to the process. Jimenez and Lin [26] also propose a
machine learning technique for learning branch predictions. They use a perceptron
learning method where branches exit profiles are learned using the perceptrons.

There are other papers in the literature that deal with machine learning and
compilers. Stephenson et al. [53, 54] look at machine learning for register allocation
and for building predicated hyperblocks. Monsifrot et al. [42] look at a simple
learning technique to determine when to unroll loops. Similar to the paper by
Monsifrot et al., Long et al. [34] present a paper which uses machine learning to
perform loop optimization in Java.

3.3 Summary

This chapter covered the instruction scheduling heuristics described for both basic
blocks and super blocks. The heuristics were described in terms of the features used
and the features themselves were formally defined. We also described previous work
in the literature on the problem of developing automated techniques for creating
compiler heuristics.

The next chapter describes our method for generating basic block heuristics. We
describe the feature selection techniques, the features used, the collection technique
and the heuristic selection algorithm. The experimental evaluation of our work is
then described at the end of the chapter.

28

Chapter 4

Learning Basic Block Heuristics

The simplest form of instruction scheduling is the scheduling of basic blocks. The
primary concern of basic block scheduling is to reduce the schedule length to im-
prove the use of instruction level parallelism available in modern processors. Pro-
duction compilers use the list scheduling algorithm coupled with a heuristic to
schedule basic blocks. Many of these compilers use a critical path based heuris-
tic. These heuristics are developed by compiler experts by choosing and testing
many different subsets of features and different possible orderings on standard
benchmarks—a potentially time-consuming process. For example, the heuristic de-
veloped for the IBM XL family of compilers “evolved from many years of extensive
empirical testing at IBM” [22, p. 112, emphasis added].

In this chapter, we extend a methodology for automating the process of con-
structing instruction scheduling heuristics proposed by Moss et al.[43]. We ex-
tracted, from the literature, a wide variety of different features used in instruction
scheduling. To better approximate the resource constraints for a given architecture,
we developed new features using architectural information and added these features
to the feature set. We used machine learning techniques from the artificial intelli-
gence literature to extract the useful features from a wide set of possible features.
Once we had a set of features, we used these features to collect instance data about
scheduling decisions using an optimal scheduler to correctly label data. With these
instances, we used a decision tree learning algorithm and a search technique to
identify a good heuristic for instruction scheduling. The automatically constructed
decision tree heuristic was compared against a popular critical-path heuristic on
the SPEC 2000 benchmarks. On this benchmark suite, the decision tree heuristic
reduced the number of basic blocks that were not optimally scheduled by up to 55%
compared to the critical-path heuristic, and gave improved performance guarantees

29

in terms of the worst-case factor from optimality. This work has been published in
a paper by Russell, Malik, Chase and van Beek [46].

4.1 Learning Function

Given the accuracy and efficiency of supervised learning as well as the large amount
of labelled data available for our problem, we decided to use supervised learning
techniques. In order to make good scheduling decisions, it is necessary to build a
function—a classifier—that generalizes to all scheduling problems within the do-
main. In order to effectively build this function, the designer must first decide on
the correct representation of the function and the correct features to build into that
function.

We are learning a heuristic to be used within a list scheduling algorithm. Given
this scheduling framework, we define the ready list within the list scheduling frame-
work to be a list of instructions [I1, ..., I;] which could be scheduled at the current
time, given latency constraints, where I; € I and [is the set of all instructions
within the problem. We wish to develop a function that returns the instruction
that leads to a schedule with the least cost as defined in Equation 2.1. Since the
ready list is of variable size, it is simpler to define our heuristic, in the same manner
as Cavazos (8], using pairs of instructions and to scan through the list to find the
best instruction in a similar manner to finding the maximum element in an unsorted
array. Given this framework and the notion of supervised learning classifiers, we
can define our heuristic function as,

F:IxI—{0,1},

where the function has a value of one, or returns true, if the first instruction is
better than or equal to the second instruction and zero, or false, otherwise.

4.2 Feature Construction

In order to determine which instructions to select, it is necessary to give the classifier
function a good set of features. The full set of features that we considered can
be found in Appendix A. We used three types of features within the instruction
scheduling domain: DAG related features, ready list related features and instruction
level features. Features can be further separated into dynamic and static features.
Dynamic features are those features that changed depending on the clock cycle and

30

the previously scheduled instructions. Static features do not change and can be
calculated prior to scheduling.

The DAG related features are those features that are the same for each instruc-
tion within a given DAG. They are static features and can be calculated prior to
scheduling. The DAG related features include many counting features including
the number of instructions, number of instructions per type, number of functional
units, and number of edges in the graph. Also included in DAG related features
are averages, maximums and minimums of any property of the graph.

The ready list features include those features that are identical for each of the
instructions for a given ready list but differ depending on which instructions have
already been scheduled. Examples of ready list related features include the number
of different types of instructions left to be scheduled, current time, ready list for
each type of instruction, currently available spaces for instructions and the number
of excess slots for instructions.

The instruction level features include all features that have values that vary
depending on the given instruction and its location in the DAG and schedule. The
majority of instruction level features were taken from the paper by Smotherman et
al. [52]. We used all of the features in the Smotherman paper except those features
relating to register pressure. Register pressure was omitted because we did not
include register effects in our model. There are several of these features that re-
quire further explanation as they are central to this thesis. Recall the notation that
we introduced in Table 2.1. The two most important features from Smotherman’s
paper are the path length and critical path features. The path length between two
instructions ¢ and 7 is defined to be the maximum number of arcs on any path from
1 to j The critical path from ¢ to j is the maximum distance between two nodes 1
and j and is denoted cp(i, j). For a given node i, we can measure these features
from both the root node and the sink node. The critical path distances to the root
node and sink node are more commonly referred to as earliest start time and latest
start time, respectively. We can also look at the updated values of the critical path
features at each time step. As instructions are delayed from their original earliest
start time, the path length from the root node increases. The difference between
earliest and latest start times is called the slack in the schedule with respect to an
instruction. The slack of an instruction denotes the number of cycles an instruc-
tion can be delayed without delaying the entire schedule. The original order of the
instruction sequence should also be considered as this precedence relation can often
be an effective tie breaking feature. It is important to consider the remainder of
instructions when scheduling an instruction. Determining the count of the num-
ber of immediate successors and descendants provides estimates of the effect that

31

scheduling an instruction will have on the remainder of the schedule. Determining,
the latencies of the successors of an instruction provides an approximation of the
cumulative effect of delaying an instruction. The remainder of the features, i.e.,
those not found in Smotherman’s paper, were synthesized and are described below.

We synthesized two different types of novel instruction level features. The first
type of features are measurements of the resource-based distances within the graph.
The resource-based distances attempt to accurately measure the delay of each in-
struction in the graph due to resource constraints. The second type of features
measures the availability of resources at a given time period and the ability of the
current instruction to uncover instructions to fill the available resources.

Table 4.1: Notation for the resource-based distance to leaf node feature.

desc(i,t) The set of all descendants of instruction i that are of type
t in a DAG. These are all of the instructions of type ¢ that
must be issued with or after ¢+ and must all be issued before
the leaf node can be issued.

—~

ep(i, j) The critical path distance from i to j.

T1<i,t

~—

The minimum number of cycles that must elapse before the
first instruction in desc(i,t) can be issued; i.e., min{cp(i, k) |
k € desc(i,t)}, the minimum critical-path distance from ¢ to
any node in desc(i,t).

ro(i, 1) The minimum number of cycles to issue all of the instruc-
tions in desc(i,t); i.e., |desc(i, t)| /k;, the size of the set of
instructions divided by the number of functional units that
can execute instructions of type ¢.

r3(i,t) The minimum number of cycles that must elapse between
when the last instruction in desc(i,t) is issued and the leaf
node [can be issued; i.e., min{cp(k,l) | k € desc(i,t)}, the
minimum critical-path distance from any node in desc(i, t) to
the leaf node.

One of the novel features that we synthesized, the resource-based distance to
the leaf node, turned out to be one of the best basic block feature among all of the
features that we studied. Consider the notation shown in Table 4.1. For convenience
of presentation, we are assuming that a DAG has a single leaf node; i.e., we are
assuming a fictitious node is added to the DAG and zero-latency arcs are added
from the leaf nodes to this fictitious node. The resource-based distance from a node

32

Figure 4.1: (a) A small 8 node basic block where all instructions are integer in-
structions. (b) The table shows the resource-based (rb(i)) distance to the leaf
node, critical path (¢p(i, H)) distance to the leaf node and the maximum of the two
distances for every node in the DAG.

Node 1

<
S+
—~

i) cp(i, H) Max

TQQTHEHTA

O W W W W I
O W W WS
O W W W =]

i to the leaf node is given by,
rb(i) = mgix{'r’l (i,t) + 7o(i, t) + r3(i, 1)},
where we are finding the maximum over all instruction types t.

Example 4.1 Consider the small basic block shown in Figure 4.1(a). All instruc-
tions within this basic block are integer instructions, consequently we will not maz-
imize the distance over different types, and, for this example, we will use a single
wssue architecture. For the sake of clarity, we show the calculation of resource-based
distance in its entirety for only the first instruction and only present the results
for the other instructions. The set of descendants for the root node of the graph,
A, includes all of the remaining instructions of the graph. Therefore, r1(A,t) =1
because both itmmediate successors of the root node have a latency of one. Seven
nodes are descendants of node A and the issue width of the example architecture is
one, so ry(A,t) = T7/1 = 7. Given that the leaf node is in the set of descendants,
the minimum distance from a descendant to the leaf node is zero and r3(A,t) = 0.
Therefore, the resource-based distance for the root node is eight. The complete
values along with comparative critical path distances can be seen in Figure 4.1(b).

33

The distance was sometimes improved by “removing” a small number of nodes
(between one and three nodes) from desc(i,t). This was done whenever removing
these nodes led to an increase in the value of rb(i); i.e., the decrease in 79(i,t)
was more than offset by the increase in 71(i,t) 4+ r3(i,t). To find a more accurate
approximation of the distance, we find the maximum of the resource based distance
and critical path distance to sink.

For the second type of novel features, we generated several features used to de-
termine when scheduling an instruction will allow other instructions to be scheduled
either in the current or next clock cycle. This occurs when the latency between
successor instructions is either zero or one. If the latency is zero then the successor
instruction becomes available to be scheduled in the current time slot. If the latency
is one then the successor instruction becomes available in the next time slot.

4.3 Collecting Training, Validation and Testing
Data

To perform supervised learning of any classifier, a large set of instances with cor-
rectly classified results is required. In our context, this requires the generation of
features for each of the instructions, a comparison of those features and the correct
classification. The correct classification of an instance comparing two instructions
¢ and 7 would be true if 7 is better than j and false otherwise. This means that the
cost of the schedule when 7 is scheduled next leads to an optimal schedule whereas
scheduling 7 next does not. Whether scheduling an instruction next leads to an
optimal schedule is determined by using an expensive optimal scheduler to finish
scheduling the partial schedule created by the list scheduler with the current in-
struction scheduled in the next clock cycle. We used the optimal scheduler by Malik
et al. [37] and modified the scheduler so that it could schedule partial schedules.
We used two different sets of benchmarks to create training, validation and testing
data for basic blocks. The training and validation data was taken from the Media-
Bench benchmarks Jpeg and Mpeg [31], respectively. The testing data included all
of the benchmarks from the SPEC floating point and integer cpu benchmarks [11].
The SPEC benchmarks are discussed in further detail in Section 4.6.

The process of data collection is relatively straight forward. For every basic
block in the benchmark suites, a modified list scheduler is used to generate data
similar to the method used by Moss et al. [43]. Our method differs from the
technique used by Moss et al. [43] because our optimal scheduler can solve large
blocks exactly. We extract the ready lists from the list scheduler and find an

34

optimal schedule length when scheduling each instruction. Once these ready lists
were extracted, we merged the list into a set of instances where optimal instructions
are matched up to non-optimal instructions, their feature values are compared and
the correct classification is appended to each instance.

The instances can be characterized by a set of feature value comparisons and a
classification. Each feature value comparison can be expressed as fi(i,j), where fj
is a feature comparison function for feature k of instructions ¢ and j. Therefore, an
instance is a vector of the form,

instance(i, j, class) = (f1(i,7), ..., fu(i,J), class). (4.1)

where class is the correct classification of the instance; i.e., whether instruction
¢ is better than instruction j. Note that there is an exception to this scheme.
The DAG related and ready list related features are presented in the instances as
values and not comparisons because the values are always the same for every pair of
instructions. However, none of these features survive the feature selection process
described in Section 4.4 and therefore all instance values are comparisons.

The simplest way to compare instructions would be to use a greater than, equal
to or less than scheme where each feature of an instruction is compared and given
a value one, zero and negative one, respectively. This comparison function is useful
because it is both simple to understand and is inexpensive to compute for feature
value pairs. However, with this method, it is clear that some information is lost.
It is possible to create scenarios where a feature means very little when it is only
slightly greater than or less than a given comparison value but is very informative
when the value varies wildly with the comparison value. Therefore, a more fine
grained distinction of the feature values may lead to better classifiers. However for
this project, we found that the finer grained distinction only increased the size of our
classifier without making any significant gains in instruction scheduling accuracy.

Example 4.2 Consider the small basic block shown in Figure 4.1(a). Suppose that
all instructions within the DAG are integer instructions and assume we are collect-
ing data for a single issue processor. For this example, we are collecting data for
two features: critical path distance to root and critical path to sink. The modified list
scheduling algorithm performs a data collection step for each ready list constructed.
Since a single element on a ready list must be the optimal instruction, any ready
list with a singleton instruction will not generate an instance. The first ready list
with more than a single instruction would be [B,C|. Using an optimal scheduler,
we find that selecting instruction B leads to a schedule of length ten while selecting
instruction C' leads to a schedule of length eleven. Therefore, we mark instruction

35

B as the optimal instruction. We calculate the features for the two instructions to
be cp(A, B) = 1 and cp(A, C) = 1 for critical path distance to root and cp(C, H) = 3
and cp(B, H) = 6 for critical path distance to sink. With this data, we can generate
two instances: one positive for the optimal instruction, B, and one negative for the
non-optimal instruction, C. The first instance instance(B,C, 1), calculated using
Equation 4.1 and the simple greater than, less than or equal comparison function,
is (0,1,1) and the second instance instance(C, B,0), calculated in the same man-
ner, is (0,—1,0). Once we have generated every possible pair of instances from
the ready list, in this case a single pair, we select an instruction from the optimal
instructions to continue. For this example, we select instruction B as it is the only
optimal instruction. This process would continue for the remainder of the ready
lists. However for this example, every instruction on the remainder of the ready
lists leads to an optimal schedule and, therefore, the algorithm generates mo more
instances.

4.4 Feature Selection

Once a set of instances have been created, the next step is to prune certain features
from the feature space primarily due to the cost of generating each feature but also
to remove redundant or irrelevant features. The reason for removing redundant
or irrelevant features is to improve the quality of the heuristic. There are many
learning algorithms, including decision tree learning, that perform poorly in the
presence of redundant or irrelevant features [59].

One method for removing the features is to use a wrapper method involving the
actual learning results using a training and a validation set. Wrapper methods are
explained in more detail in Section 2.2. In our work, we only remove those features
that have an accuracy on the validation set that is only a negligible improvement
over a random guess. However, those features are not immediately discarded. This
second stage is motivated by the observation that some features can combine with
other features to gain more than an additive effect in terms of accuracy. To identify
these features, we use the same wrapper method but allow for two feature trees
where one feature in the tree must be a candidate for removal. If there is a non-
additive improvement in any of the two featured trees for a given removal candidate,
then that candidate is kept in the set of features.

On top of these two selection criteria, we remove one feature from any pair of
features that are perfectly correlated. An example of two correlated features would
be latest start time of a node and the critical path distance from the sink. These

36

highly correlated features sometimes arise when features are calculated using the
other feature or, in the case of the above example, the same concept is calculated
in two different ways.

Table 4.2 shows the set of features that remains after feature selection is applied
to the complete list of basic block features shown in Appendix A. For succinctness,
each feature is stated as being a property of one instruction. When used in a
heuristic to compare two instructions ¢ and j, we actually compare the value of
the feature for ¢ with the value of the feature for j. The features are shown ranked
according to their overall value in classifying the data. The overall rank of a feature
was determined by averaging the rankings given by three feature ranking methods:
the single feature decision tree classifier, information gain, and information gain
ratio (see [59] for background and details on the calculations). The feature ranking
methods all agreed on the top seven features. The ranking can be used as a guide for
hand-crafted heuristics and also for our automated machine learning approach, as
we expect to see at least one of the top-ranked features in any heuristic. A surprise
is that critical-path distance to the leaf node, commonly used as the primary feature
[18, 44]), is ranked only in fifth place. Also somewhat surprising is that the lowest
ranked features, features 14-17, are dynamic features. All of the rest of the features
are static features.

4.5 Classifier Selection and Beam Search

Once the set of possibly useful features has been determined from the set of all
features, the next step is to induce a heuristic from the instances generated from
the benchmark suites. Given the large number of features, it is impractical to
search the entire space of features to determine the exact tree that produces the
best result on the validation set. On top of searching the entire space of possible
classifiers using the features, there is the added cost of using a heuristic with a large
number of features. Each added feature increases the cost of the heuristic and if
the cost of features becomes large enough, the heuristic becomes impractical to use
within a production compiler.

We used Quinlan’s C4.5 algorithm [45] to learn a classifier from the instances
and a forward selection technique with beam search [59, 19] to search through a
likely set of heuristic approximations. The principle of beam search is relatively
simple. Initially, we start with all single feature trees and then we keep the best k
trees from the first round. The best k trees is defined to be the k trees having the
highest classification accuracy on the validation set. Once the single feature trees

37

Table 4.2: Features remaining after filtering, ordered from highest ranking to lowest
ranking.

12. Path length from root node.

1. Maximum of feature 2 and feature 13. Sum of latencies to all immediate

5.
. f the instruction.
2. Resource-based distance to leaf SUCCESSOLS © . © s ruci ot
node 14. Updated earliest start time.

15. Number of instructions of type
load/ store that would be added
to the ready list for the next time
cycle if the instruction was sched-
uled.

16. Number of instructions of type in-
teger that would be added to the
ready list for the current time cy-
cle if the instruction was sched-
uled.

17. Number of instructions of type
load/ store that would be added to
the ready list for the current time
cycle if the instruction was sched-
uled.

3. Path length to leaf node.
4. Number of descendants of the in-
struction.

5. Critical-path distance to leaf node.
6. Slack—the difference between the
earliest and latest start times.

7. Order of the instruction in the
original instruction stream.

8. Number of immediate successors

of the instruction.
9. Earliest start time of the instruc-
tion.
10. Critical-path distance from root.
11. Latency of the instruction.

have been generated and pruned, the search looks a level deeper and adds to those
k single feature trees every feature not previously used in the current tree. This
makes a new set of trees, k times the number of features less the level of the current
search to be more precise, and from this set of trees we keep only the best k trees.
We iterate in this manner keeping the best k trees from each of the expansions. An
illustration of this process can be seen in Figure 4.2. We can stop the search at any
time but a good measure would be to stop when classification accuracy does not
increase.

Table 4.3 shows for each level [the accuracy of the best decision tree learned
with [features (stated as the percentage incorrectly classified), and the size of the
decision tree (the number of nodes in the tree). When there were ties for best
accuracy at a level, the average size was recorded.

We chose four features as the best trade-off between simplicity and accuracy.
Increasing the number of features gives only a slight improvement in accuracy, but
a relatively large increase in the size of the tree (1.8 — 2.8 times). Since there were

38

Single Feature Trees

-Combine with Remaining Features
‘ kx (n-1) Trees ‘ 2 Feature Trees

-Prune
K Trees Best 2 Feature Trees
-Combine with Remaining Features

k x (n-2) Trees 3 Feature Trees

-Prune

Best Single Feature Trees

-Prune

k Trees Best 3 Feature Trees

17 Feature Trees

Figure 4.2: Combination and pruning steps for a beam search of width k£ on n
features. The end result is k trees of depth n.

Table 4.3: For each level 1, the accuracy of the best decision tree learned with 1
features (stated as the percentage incorrectly classified) and the size of the decision
tree (the number of nodes in the tree).

level | 1 2 3 4 5 6 T
accuracy | 4.05 3.82 3.76 3.72 3.71 3.71 3.70
size 4 7 14 17 30 48 43

F1

/W \

F11 F13

F11
< _l \‘> </ = l NS < / = - \, >
Figure 4.3: The final decision tree generated by the beam search. The labelled

features f1, f4, f11 and f13 are the maximum distance, the number of descendants,
the latency of an instruction and the sum of the latencies of each child, respectively.

ties for the best choice of four features, decision trees for the subsets of four features
tied for best were learned over again, this time using all of the data (the validation
set was added into the training set, a standard procedure once the best subset of
features has been chosen). The smallest tree was then chosen as the final tree.
The final tree is shown in Figure 4.3. In contrast to Moss et al. [43], who did not
perform feature filtering and used all of the features in the training data at once
to learn a classifier, our use of forward selection with beam search led to a smaller
yet more accurate heuristic. The final decision tree heuristic constructed is shown
in Algorithm 4.1.

4.6 Experimental Evaluation

In order to develop and test compiler designs and computer architectures, a stan-
dard set of benchmark programs have been developed by the Standard Performance
Evaluation Corporation (SPEC)[http://www.spec.org]. The benchmarks, called
the CPU Integer and Floating point benchmarks, consist of a suite of programs
designed to cover a wide range of processor capabilities and application areas. In
this work, the 2000 release of the benchmark was used and will be referred to as the

40

Algorithm 4.1: Automatically constructed decision tree heuristic for a basic
block list scheduler.
input : Instructions ¢ and j
output: Return true if 7 should be scheduled before j; false otherwise
t.maz_distance <
max(i.resource_based_dist to_leaf,i.critical path_dist to leaf);
J.max_distance «—
max(j.resource_based_dist_to_leaf, j.critical path_dist toleaf);

if i.max_distance > j.max_distance then
| return true;

else if 1.max_distance < j.max_distance then
| return false;
else

if 1.descendants > j.descendants then
if i.latency > j.latency then return true;

| else return false;
else if i.descendants < j.descendants then
if i.latency > j.latency then return true;
| else return false;
else
if i.sum_of latencies > j.sum_of latencies then return true;
| else return false;

SPEC 2000 benchmarks. The programs consist of a variety of C/C++ and Fortran
programs that range is usage from scientific computation to Unix tools.

We compiled the SPEC 2000 benchmarks using IBM’s Tobey Compiler [4] and
extracted 497,907 basic blocks. The basic blocks generated for this project were
targeted for the PowerPC [22] assembly instruction set. The various instructions
can be separated into four types that correspond to functional units within the
processor. The types are integer instructions, floating point instructions, load/store
instructions and branch instructions. Each of these types contains many different
assembly instructions. For example, the branch unit includes both branch instruc-
tions and call instructions.

While there are four different types of instructions, and thus four types of func-
tional units, different processor architectures have different numbers and arrange-
ments of these functional units. In addition, it is possible for the processor to
contain general purpose functional units that can execute two or more of the differ-

41

ent types within the same functional unit. We look at four hypothetical processor
architectures on which to learn and test our scheduling heuristics. These four ar-
chitectures were proposed by Shobaki and Wilken and are intended to cover a wide
variety of general architecture models [50].

1-issue processor executes all types of instructions.

2-issue processor with one floating point functional unit and one functional
unit that can execute integer, load/store, and branch instructions.

4-issue processor with one functional unit for each type of instruction.

6-issue processor with the following functional units: two integer, one floating
point, two load/store, and one branch.

The latencies between the instructions in the DAG are generated for the IBM
PowerPC architecture. The range of the latencies is: all 1 for branch instructions,
1-12 for load /store instructions (the largest value is for a store-multiple instruction,
which stores to memory the values in a sequence of registers), 1-37 for integer in-
structions (the largest value is for division), and 1-38 for floating point instructions
(the largest value is for square root).

Once a heuristic had been generated by the decision tree classifier, we tested the
heuristic against several different basic block heuristics. These heuristics included
a standard critical path heuristic, a heuristic using earliest start time (also known
as critical path to root) as the primary feature and the Shieh and Papachristou [48]
heuristic. These heuristics will be referred to as hep, hest and hgyp, respectively.
The decision tree heuristic developed will be referred to as hg. The heuristic h.q
is similar to the heuristic proposed by Warren [27]. The critical path heuristic
was selected because of its similarity, in terms of features, to heuristics proposed by
Muchnick [44] and Tiemann [55]. Also, it should be noted that k., would have been
the heuristic learned by Moss et al. [43] when targeted towards our architectural
model. Each of the heuristics is described in more detail in Section 3.1.

Since one of the goals of this research was to develop accurate heuristics auto-
matically, we measure the accuracy of the heuristic by determining the number of
times the heuristic fails to find an optimal schedule. Table 4.4 shows the number
of non-optimal schedules created by each of the four heuristics being tested. It can
be seen from the table that the decision tree heuristic performs better in terms
of optimality as fewer schedules are found to be non-optimal. The results show
that the critical path and Shieh & Papachristou heuristics are very similar in terms
of optimality, while the earliest start time heuristic performs rather poorly. The
decision tree heuristic improves the number of non-optimally scheduled blocks on

42

every architecture compared to every other heuristic.

Table 4.4: Number of basic blocks in the SPEC 2000 benchmark suite not scheduled
optimally by the earliest start time heuristic (h.s), the critical-path heuristic (h,),
Shieh and Papachristou’s heuristic (hs4,), and the decision tree heuristic (hg).

1-issue 2-i1ssue

blocks hest hcp hSer hdt hest hcp hs+p hdt
497,407 | 51,137 4,385 3,786 1,960 | 44,880 5,523 4,919 2,593

4-issue 6-1ssue

blocks hest hcp herp hdt hest hcp hs+p hdt
497,407 | 31,074 6,049 5,528 2,755 | 12,096 2,773 2,841 1,966

Recall that the critical path heuristic is the heuristic that would have been
learned in the work by Moss et al. [8] and closely approximates the heuristic used
in the GCC compiler [55]. We chose to compare the critical path heuristic against
the decision tree heuristic on a comparison of non-optimally scheduled blocks broken
down by the size of the blocks. The results of this experiment can be seen in Table
4.5. The percentage improvement ranges from 29.1% to 55.3% over the different
architectures. It can be observed that the new decision tree heuristic optimally
scheduled more blocks from the smaller and medium size ranges but offers less
improvement for larger size blocks.

In terms of the overall heuristic quality, it is necessary to look at not only
optimality but also the quality of the heuristic when schedules are non-optimal. We
compared the critical path heuristic with the decision tree heuristic and recorded
the number of times that each heuristic generated better, or in this case shorter,
schedules than the other. Table 4.6 shows the result of this experiment. Overall, the
decision tree heuristic generated 4.8, 6.0, 7.8 and 2.9 times more shorter schedules
than the critical path heuristic for the different respective architectures. Only
in the 251-2600 case of the single issue processor does the critical path heuristic
marginally out perform the decision tree heuristic.

In order to look at the worst case performance of the heuristic, we looked at
the maximal ratio from optimal by any schedule created by the heuristic. Table
4.7 shows the results of this experiment. The decision tree heuristic can vary from
the optimal schedule by as much as 33% while the critical path heuristic can vary
by as much as 39%. Interestingly, there seems to be no correlation with size to the

43

maximum distance from optimal as the numbers vary significantly as the size of
the blocks grow.

4.7 Summary

This chapter described the proposed method for automated generation of basic
block heuristics. The features of the problem were highlighted and methods were
presented for identifying the useful features. A new feature integrating resource
constraints into the problem of critical path distances was described in detail. The
collection method, using the pairing of list scheduler and optimal scheduler, was
also described. The decision tree heuristic, learned using the beam search to limit
the size of the tree and increase generalization, was tested against the major basic
block scheduling heuristics and the new heuristic outperformed all of the previous
heuristics across all of the test measures.

The decision tree heuristic was tested against a critical path heuristic and found
to have improvements in terms of optimality and worst case behaviour. Between
55% and 29% less basic blocks were found to have non-optimal schedules across all
architectures. When comparing non-optimal schedules, the decision tree heuristic
had between 2.9 and 7.8 times more improved blocks across all architectures. It was
also found that the the worst case behaviour of the heuristic ranged from 17% and
33% from optimal while the critical path heuristic varied from optimal by between
21% and 39% across all architectures.

The next chapter extends this method for learning basic block heuristics to the
global scheduling domain and proposes a method for the automated learning of
super block heuristics. Many of the techniques described in this chapter will be
used in the next chapter.

44

Table 4.5: Number of basic blocks in the SPEC 2000 benchmark suite not scheduled
optimally by the critical-path heuristic (h,) and the decision tree heuristic (hg),
for ranges of basic block sizes and various issue widths. Also shown is the total
number of basic blocks in each size range and the percentage improvement given

by the decision tree heuristic (% = 100 X (hep — hat)/hep)-

1-issue 2-issue
range # blocks hep har % hep Par %
1-5 324,352 338 0 100.0 350 0 100.0
6-10 94,066 804 134 83.3 907 165 81.8
11-20 46,502 | 1,118 598 46.5 | 1,226 586 52.2
21-30 13,911 619 290 53.2 781 347 55.6
31-50 9,760 628 337 46.3 853 512 40.0
51-100 5,669 536 315 41.2 790 464 41.3
101-250 2,789 270 218 19.3 505 408 19.2
251-2,600 358 72 68 5.6 111 111 0.0

Total 497,407 | 4,385 1,960 55.3 | 5,523 2,593 53.1

4-issue 6-issue
range # blocks hep D % hep Ry %
1-5 324,352 182 12 934 0 0 —
6-10 94,066 736 121 83.6 69 56 18.8
11-20 46,502 | 1,623 681 58.0 534 344 35.6
21-30 13,911 962 479 50.2 584 469 19.7
31-50 9,760 | 1,013 548 45.9 615 437 28.9
51-100 5,669 915 455 50.3 538 318 40.9
101-250 2,789 501 358 28.5 337 251 255
251-2,600 358 117 101 13.7 96 91 5.2

Total 497,407 | 6,049 2,755 545 | 2,773 1,966 29.1

45

Table 4.6: Number of basic blocks in the SPEC 2000 benchmark suite where the
critical-path heuristic gave a better schedule (h.,) and where the decision tree
heuristic gave a better schedule (hg), for ranges of basic block sizes and various
issue widths. Also shown is the ratio of the number of improvements (1 = hgt/hep)-

1-issue 2-issue 4-issue ‘ 6-issue
range hep hat 7| hep hat 7 | hep hat 7 | hep hat r
1-5 0 338 — 0 350 — 0 170 — 0 0o —
6-10 33 708 21.5 32 791 24.7 7 625 89.3 5 18 3.6
11-20 145 677 4.7 | 127 785 6.2 63 1,006 16.0 70 260 3.7
21-30 90 423 4.7 83 544 6.6 89 603 6.8 | 128 233 1.8

31-50 115 422 3.7 | 144 553 3.8 | 128 669 5.2 | 80 288 3.6
51-100 113 356 3.1 | 104 545 5.2 | 115 644 5.6 | 86 341 4.0
101-250 | 103 155 1.5 | 116 272 23| 83 301 3.6 | 78 184 2.4
251-2,600 | 46 39 0.8 | 47 ol 1.1 36 60 1.7] 29 36 1.2
Total 645 3,117 48 | 653 3,891 6.0 | 521 4,078 7.8 | 476 1,360 2.9

Table 4.7: Maximum percentage difference from optimal for the critical-path heuris-
tic (hep) and the decision tree heuristic (hq), for ranges of basic block sizes and
various issue widths.

1-issue 2-issue 4-issue 6-issue

range hcp hdt hcp hdt hcp hdt hcp hdt
1-5 20 0] 33 0| 25 25 0 0
6-10 20 13| 30 14| 33 25| 33 33
11-20 21 17| 2v 17| 38 17| 25 20
21-30 14 10 19 10| 29 25| 18 20
31-50 16 7125 25 32 15| 21 21
51-100 10 9120 13| 39 12| 29 24
101-250 10 91 27 24| 28 16| 32 16
251-2,600 1 2124 26| 16 13 5 6
Maximum | 21 17| 33 26| 39 25| 33 33

46

Chapter 5

Learning Super Block Heuristics

In contrast to basic block scheduling, super block scheduling is complicated by a
weighted evaluation function. Super blocks are made from several different basic
blocks and contain multiple exit points and thus create an interesting scheduling
problem that requires the minimization of a cost function dependent on the weight
of the side exits and the position of the side exits in the final schedule. This
difference suggests that some of the features used in the scheduling heuristic should
include profile information about the exits within the super blocks.

There has been no work proposing automated techniques for learning super
block scheduling heuristics. We show that, using the machine learning methodology
explained in the previous chapter, we can automatically generate a super block
heuristic. As in the basic block scheduling technique, an effort was made to identify
a set of new features that may produce good results. We develop a heuristic that,
by selecting the appropriate features, improves the scheduling accuracy over current
list scheduling heuristics for super blocks.

5.1 Feature Construction

Since super blocks are generalizations of basic blocks, all of the features used in
basic block scheduling can be considered in the super block scheduling problem. In
addition to these features, it is important to determine what other features have
been useful in super block scheduling. Many of the features [9, 13, 14] used by
the previously proposed, hand-crafted super block scheduling heuristics are derived
from the fact there exist multiple exits within the super block. Another obvious
addition is the profile information given about the multiple exits. This leads to

47

new features like weighted estimates, helped weight and helped count. Table 5.1
and Appendix B show all of the features considered for super block scheduling
heuristics. The overall rank of a feature was again determined by averaging the
rankings given by three feature ranking methods: the single feature decision tree
classifier, information gain, and information gain ratio (see [59] for background and
details on the calculations). The DAG related and ready list related features were
removed because they were found to have very little impact on scheduling decisions
during the basic block feature selection.

For super block scheduling, we created many different features using a combi-
nation of features from basic blocks along with the weights of the exits. One new
feature that was added was the feature called Helped Cost (Table 5.1, feature 24).
This feature is an extension of the features developed by Deitrich and Hwu in their
paper on Speculative Hedge [13]. In their paper, they create two unique features
called Helped Weight and Helped Count. The idea is to identify those branches
which are helped by scheduling an instruction (see Section 3.1). These branches
are referred to as the helped branches of an instruction ¢ (HB(i)). The Helped
Cost feature still uses the same branch identification scheme that allows Specula-
tive Hedge to find helpful branches but, instead of just looking at the weight of
the branch, the Helped Cost feature keeps track of the weighted critical path to
the identified branch. More formally, the Helped Cost for an instruction ¢ and the
helped branches is,

helped_cost(i) = Z ep(i, b)w(b), (5.1)
beHB(i)

where ¢p(i, b) is the critical path distance from i to b and w(b) is the exit probability
of branch b.

Another new feature we added to this scheme is weighted measurement of the
critical path distances to branches within the schedule (Table 5.1, feature 8). More
formally, the weighted critical path of an instruction 7 is,

weighted_cp(i) = Z ep(i, b)w(b),
beB(i)

where B(i) is the set of all branches which are descendants of instruction 7.

One of the most important sets of features to be described in this section are the
weighted estimates. As in the basic block features, we can more closely approximate

48

the distance to an instruction by finding a resource based distance and using the
maximum of that distance and the simple critical path distance. We use these same
techniques to approximate the distances between an instruction and the branches
within the DAG. We estimate the total weighted distance in two ways. The first
way is to simply take the estimates to every successor branch and weight them
by their exit probability. Second, we use the concept of dependence height and
speculative yield developed by Bringmann [6] and substitute our new estimates
into the equation (see Equation 3.1 for details about the DHASY calculation).

First, we can define the weighted estimates as the following,

weighted_estimate(i) = Z est (i, b)w(b),

beB(i)

where est(i, b) can be replaced by either the resource based distance rb(i,b) (Table
5.1, feature 4) or the maximum distance maxzd(i,b) (Table 5.1, feature 3).

Second, we define the estimate and speculative yield features as,

estimate& speculative yield(i) = Z w(b)(est(1,n) + 1 — (est(1,b) — est(i,b))),
beB(i)
(5.2)

where est(, j) can again be replaced by either estimate (Table 5.1, features 1 and
2). The idea is to replace the critical path distances in the DHASY equation with
our more accurate estimates of distance.

The quality of an instruction can often be determined by measuring a variety
of tie breaking features where slight differences between instructions highlight the
overall difference between an instruction that leads to a good schedule and a bad
schedule. Therefore, it is important to highlight these differences especially in
the maximal and minimal ranges of values. The features that we created for this
purpose are described below.

The maximum (or minimum) distance to branch for an instruction ¢ (Table 5.1,
feature 15) is given by,

max_db(i) = max){(cp(i, b))}

beB(i

The weighted maximum (or minimum) distance to branch for an instruction ¢
(Table 5.1, feature 11) is given by,

49

maz_wdb(i) = max {(w(b)ep(i, b)}), (5.3)

beB(i)

where wdb(i) denotes the weighted distance to a branch.

When evaluating features within the basic block scheduling domain, we found
that the slack of an instruction often showed information about instructions with
equal distances to the sink node. Similarly when evaluating super block features,
we need to determine the minimum slack for any instruction to any branch (Table
5.1, feature 17). The smaller this value, the less chance it can be delayed without
delaying a branch instruction. The minimum slack to a branch is given by,

min_slack(i) = mei?){(cp(l, b) — ep(i, b) — ep(1,1))}.
€B(i
As with all super block features, it is necessary to analyze the features in terms

of its weighted value. The weighted minimum slack (Table 5.1, feature 12) is given
by,

min_wslack(i)) = bgg){(cp(l, b) — ep(i, b) — ep(1,4))w(b)}.

Other features were added to the feature block scheduling to determine estimates
of when the instruction will schedule within the graph. These features include
resource delay, sink to root ratio, projected slot, projected schedule and estimated
release time.

The resource delay of an instruction ¢ is a dynamic feature that measures the
number of remaining slots available to schedule all of the descendants of the current
instruction and then finds delay attributed to this measurement (Table 5.1, feature
20). The resource delay can be formally defined as,

resource_delay(i) = (maxDelay — currentTime) — (desc(i)/issueWidth),

where maz Delay is the maximum critical path distance within the graph, currentTime
is the current time slot being scheduled, desc(i) is the number of descendants for
instruction ¢ and issueWidth is the number of functional units available for in-
struction scheduling.

As each of the instructions within the DAG are delayed from their original
earliest start time, each node acquires an accumulated delay with respect to each

20

of the branches. This delay can be measured by finding the difference between the
current scheduling slot and initial estimate of the earliest starting time (Table 5.1,
feature 22). This cumulative delay can be formally defined as,

cumulative_delay(i) = Z cp(i,b) + (currentTime — cp(1,1)). (5.4)
beB(i)

Again, as with other super block features, we extend the cumulative delay to
find the cumulative cost by weighting each delay by the exit probability (Table 5.1,
feature 23). The cumulative cost can be defined as,

cumulative_cost(i) = Z (ep(i, b) + currentTime — cp(1,1))w(b). (5.5)
beB(i)

5.2 Collecting Training, Validation and Testing
Data

As with basic blocks, we collected instance data from the super blocks generated
from the Tobey compiler [4]. We used the same collection technique to acquire
a set of instances from the blocks. We used the optimal super block scheduler
developed by Malik et al. [36] and modified this scheduler so that it solves the
partial schedules given to it from the list scheduling algorithm. Omnce we could
schedule partial super block schedules, we collected all of the relevant ready lists
from the SPEC benchmarks [11], where relevant is defined to be those ready lists
where there exists a mix of optimal and non-optimal choices. We converted the
ready lists into instances by comparing each feature of every pair of optimal and
non-optimal instructions for every ready list. Unfortunately, the Jpeg and Mpeg
super blocks from the MediaBench benchmarks were not available so we divided the
SPEC benchmarks into training, validation and testing data. We chose galgel and
gap to be our testing and validation sets for two reasons. First, the galgel and gap
instances make up approximately ten percent (9.2%) of the super block instances
and, second, the gap and galgel blocks provide a good cross section of the data as
this includes both integer and floating point blocks as well as both C and Fortran
blocks.

o1

Table 5.1: The top 25 features within the super block domain ordered from highest
ranking to lowest ranking.

1.

10.

11.

12.

Resource-based distance and spec-
ulative yield (see Equation 5.2)
Maximum distance and specula-
tive yield (see Equation 5.2)

Sum of feature 6 weighted by the
exit probability for every branch
Weighted resource-based distance
to every branch
DHASY—Brinmann’s
function (see Section 3.1)
Maximum distance—maximum of
feature 7 and feature 13
Resource-based distance to leaf
node

Weighted critical-path distance to
each branch

Maximum possible cost (see Equa-
tion 5.3)

Minimum possible cost (see Equa-
tion 5.3)

Maximum of weighted critical-
path distances to each branch
Minimum of the slack for each
branch weighted by the exit prob-
abilities

priority

52

13.
14.
15.
16.
17.
18.
19.

20.

21.

22.

23.

24.

25.

Critical-path distance to leaf node
Latest start time of the instruction
Maximum of critical-path dis-
tances to each branch

Sum of path lengths to each
branch weighted by the exit prob-
abilities

Minimum slack to each branch
Path length to leaf node

Number of descendants of the in-
structions

Resource delay—mnumber of de-
scendants that cannot be sched-
uled between current time and the
maximum critical path distance
Slack—the difference between ear-
liest and latest start times
Cumulative delay (see Equation
5.4)

Cost of cumulative delay (see
Equation 5.5)

Helped cost—sum of costs to each
helped branch (see Equation 5.1)
Minimum of weighted critical-
path distances to each branch

5.3 Feature Selection

The technique to remove irrelevant features was identical to the technique used
in basic block scheduling. We tested for irrelevant instructions that do not easily
combine to create useful features. To this end, we removed any instruction that
was nearly random, i.e. had an error of 49.5% or worse for a single featured tree.
As with basic block scheduling, removal candidates are not removed immediately.
We first determine if they have non-additive improvements when combined with
a feature that is not a removal candidate. With this technique, we removed the
uncovered next for all types, uncovered current float and rank. On top of irrelevant
features, we removed perfectly correlated features like latest start time and earliest
start time, which are correlated with critical path length to sink and critical path
length to root, respectively. We also removed perfectly correlated features 48, 50,
52 and 57 which were correlated with the uncovered current features.

5.4 Classifier Selection

Once we generated the instances and pruned the irrelevant features, we imple-
mented a beam search to generate an appropriate classifier using a beam width of
thirty and searched to a depth of seven. The results of this search can be seen in
Table 5.2. One can see that we achieve the best accuracy at depth of four with-
out unnecessarily increasing the size of the tree. The final tree was constructed
by combining both the training and validation set using the features identified by
the beam search. The final tree can be seen in Figure 5.1. The tree shows that
the primary feature is the Maximum Distance and Speculative Yield, which is one
of the synthesized estimates of weighted distance described in Section 5.1. The
secondary features are from two different sources. Helped Cost is also described in
Section 5.1 and is an extension of the primary features of the heuristic developed
by Deitrich and Hwu [13]. Path length from root and number of descendants are
DAG properties carried over from basic block scheduling. We translate the decision
tree into the algorithm shown in Algorithm 5.1.

5.5 Experimental Evaluation

We compared the classifier generated to four other heuristics including the critical
path heuristic from basic block scheduling, dependence height and speculative yield

23

level |1 2 3 4 5 6 7
accuracy | 1.4 1.2 12 1.1 1.1 1.1 1.1
size 40 7.0 76 490 58.6 688 78.6

Table 5.2: For each level 1, the accuracy of the best decision tree learned with 1
features (stated as the percentage incorrectly classified) and the size of the decision
tree (the number of nodes in the tree).

Figure 5.1: The final decision tree generated by the beam search. The labelled
features 102, f19, £24 and f46 are maximum distance and speculative yield, number
of descendants, helped cost and path length from root, respectively.

o4

[6], G* [9] and Speculative Hedge [13]. The decision tree heuristic was tested on
the remainder of the SPEC benchmarks against each of the heuristics. We examine
the results in terms of non-optimal schedules generated, heuristic difference, and
maximum percentage difference from optimal. We examine each of the heuristics
under the same four architectures described in Section 4.6.

The critical path heuristic (h.,) is the same heuristic used in basic block schedul-
ing and is kept for super block scheduling as a comparison between profile indepen-
dent and profile dependent heuristics. The dependence height and speculative yield
heuristic (hgnasy) Was developed by Bringmann [6] and is an extension of Fisher’s
work on Trace Scheduling [17]. Bringmann’s heuristic attempts to weight the path
lengths to each branch while accounting for the maximum delay in the graph. The
G* heuristic was developed by Chekuri et al. [9] (hg.) and uses a profile indepen-
dent scheduler and a ranking method to schedule super blocks. The last heuristic,
Speculative Hedge [13] (Aspec), determines and weights for each instruction only the
branches which are determined to be useful. More detailed descriptions of these
algorithms can be found in Section 3.1.

We compare each of the schedules generated by the heuristics to the optimal
schedule and determine the number of schedules generated that are more expensive
than the optimal schedule. Tables 5.3-5.6 show the number of non-optimal sched-
ules for each architectural model broken down by size!. We found that the decision
tree heuristic reduced the number of non-optimally scheduled blocks by as much as
38% and by at least 16%. The hgpqs, performed second best while hgpec, hep and hg,
performed significantly worse. Surprisingly, hg. actually creates more non-optimal
schedules than the A, heuristic.

We compared the two best heuristics, hg and hgpasy, in terms of schedule cost
in order to determine how many times each heuristic out performs the other heuris-
tic. Table 5.7 shows the results of this experiment. The decision tree heuristic
outperforms Bringmann’s heuristic by 4.2, 4.4, 3.6 and 2.6 times respective to each
architecture. The heuristic hgpqs, outperforms hg only once and, in this case, only
by three blocks for size 6-10 on the 6-issue architecture.

Once we know how many of the schedules are non-optimal, it is important
to know the worst case behaviour of the heuristic. We measured the maximum
percentage difference from the optimal schedule cost for each of the heuristic costs.
Table 5.8 shows the maximum difference of each heuristic schedule from optimal
broken down by size. We found that the hg heuristic performs slightly better

!Note that the number of super blocks compared varies across the architectures because the
number of time outs by the optimal scheduler varies with respect to the architecture.

95

than the other heuristics for all but the 4-issue and 6-issue architectures and, more
surprisingly, hg. provided the next best heuristic for maximum difference from
optimal except on the 4-issue architecture. For the 4-issue architecture, hgnqsy
outperforms hg, by 2.68 percent over optimal. Another interesting note about
these results is that, while hg, is often outperformed by h., and hgpe. in terms of
optimality, hg. is more stable and has a maximum percentage increase of only 43%
across all architectures.

Overall, we show that our heuristic does better than other heuristics on the
SPEC 2000 benchmarks. We also show that the DHASY heuristic does well in
terms of optimal blocks and the G* heuristic performs rather poorly. These results
agree with previous results (see Table 3.1). In contrast to previous results, we
observed that the Speculative Hedge heuristic performs well in terms of optimal
results but does not compete with the DHASY heuristic. We also noted that the
worst case behaviour of the Speculative Hedge heuristic is far worse than either the
G* or DHASY heuristics when these heuristics generate non-optimal blocks.

5.6 Summary

Through the application of the techniques proposed in Chapter 4, we developed a
heuristic that reduces the number of non-optimal blocks by at least 16% and up
to 38%, depending on the architecture. The heuristic was found to outperform the
next best heuristic by at least 2.6 times in terms of schedule cost. The new features
developed for this technique were usefully incorporated into the super block decision
tree heuristic. The cost of the heuristic was kept within reasonable limits as only
four features were needed to obtain good results.

The last chapter of thesis briefly summarizes the work in this thesis and outlines
the results obtained during this research.

26

Algorithm 5.1: Automatically constructed decision tree heuristic for a super
block list scheduler.

input : Instructions ¢ and j
output: Return true if 2 should be scheduled before j; false otherwise
if i.max_dist_spec_yield > j.max_dist_spec_yield then

| return true;

else if 1. max_dist_spec_yield < j.max_dist_spec_yield then
| return false;

else

if i.descendants > j.descendants then

if i.helped_cost < j.helped_cost then
| return false;

else if i.helped_cost > j.helped_cost then
| if ¢.pl_root > j.pl_root then return true else return false

else
L return true

else if i.descendants < j.descendants then

if i.pl_root < j.pl_root then
L return false
else if i.pl_source > j.pl_source then
L return true
else
L if i.helped_cost < j.helped_cost then return false else return
true

else
if i.helped_cost > j.helped_cost then
| return true;

else if i.helped_cost < j.helped_cost then
| if i.pl_root > j.pl_root then return true else return false

else
L return false

27

Table 5.3: Number of super blocks in the SPEC 2000 benchmark suite not sched-
uled optimally by the decision tree heuristic (hq), the critical-path heuristic (h,),
Bringmann’s heuristic (Agnqsy), the G* heuristic (hg.) and the speculative hedge
heuristic (hgpe.) for 1-issue architecture.

Range # Blocks! B hep Pdnasy Py Pspec
3-5 30,371 104 143 124 129 143
6-10 46,615 437 3,095 720 2,551 1,935
11-15 33,687 869 4,058 1,555 3,902 2,939
1620 23,511 718 3,363 1,469 3,835 2,639
21-30 22,845 | 1,120 4,333 1,802 5224 3273
3150 17713 | 1,302 4,168 1,954 4,966 3,209
51-100 9,389 881 2,482 1,321 2,960 2,012
101-250 2,633 379 795 491 861 676
251-2,600 322 68 131 80 131 101
Total 187,086 | 5,878 22,568 9,516 24,559 17,017

Table 5.4: Number of super blocks in the SPEC 2000 benchmark suite not sched-
uled optimally by the decision tree heuristic (hq), the critical-path heuristic (),
Bringmann’s heuristic (hgnasy), the G* heuristic (hg.) and the speculative hedge
heuristic (hgpec) for 2-issue architecture.

Range # Blocks! B hep hanasy B Pspec
3-5 30,371 103 126 123 128 126
6-10 46,615 432 3,097 717 2,510 1,938
11-15 33,687 883 4,027 1,557 3,804 2,918
1620 23,011 731 3,353 1,479 3,786 2,626
21-30 22,845 | 1,145 4,350 1,829 5,169 3,272
31-50 17716 | 1,302 4214 2015 4985 3,322
51-100 9393 | 1,064 2,680 1,502 3,102 2,149
101-250 2,642 453 909 599 931 756
251-2,600 323 99 152 103 148 114
Total 187,103 | 6,202 22,908 9.924 24,563 17,221

o8

Table 5.5: Number of super blocks in the SPEC 2000 benchmark suite not sched-
uled optimally by the decision tree heuristic (hq), the critical-path heuristic (h,),
Bringmann’s heuristic (Agnqsy), the G* heuristic (hg.) and the speculative hedge
heuristic (hgpe.) for 4-issue architecture.

Range # Blocks! B hep Pdnasy Py Pspec
3-5 30,371 0 6 1 6 6
6-10 46,615 185 1,009 228 1,075 978
11-15 33,687 494 1,894 788 2,045 1,662
1620 23,512 517 1,694 759 1,905 1,504
21-30 22,858 876 2,774 1,250 3,166 2,310
3150 17765 | 916 2737 1444 3219 2,233
51-100 9,479 947 2,061 1,385 2,404 1,740
101-250 2,671 458 726 603 770 680
251-2,600 333 111 129 119 142 118
Total 187,291 | 4,504 13,020 6,577 14,732 11,231

Table 5.6: Number of super blocks in the SPEC 2000 benchmark suite not sched-
uled optimally by the decision tree heuristic (hq), the critical-path heuristic (),
Bringmann’s heuristic (hgnasy), the G* heuristic (hg.) and the speculative hedge
heuristic (hgpec) for 6-issue architecture.

Range # Blocks! hat hep Ndhasy hge hspec
3-5 30,371 0 0 0 0 0
6—10 46,615 118 159 115 204 120
11-15 33,687 248 470 255 634 398
1620 23,012 251 497 306 641 394
21-30 22,858 488 912 566 1,202 747
31-50 17,760 609 1,092 773 1,470 908
51-100 9,476 641 984 787 1,228 866
101-250 2,667 327 444 400 510 419
251-2,600 321 61 79 74 80 77
Total 187,267 | 2,743 4,637 3,276 5,969 3,929

29

Table 5.7: Number of super block blocks in the SPEC 2000 benchmark suite where
Bringmann’s heuristic gave a better schedule (hgnqs,) and where the decision tree
heuristic gave a better schedule (hy,), for ranges of super block sizes and various is-
sue widths. Also shown is the ratio of the number of improvements (7 = ha:/Panasy)-

1-issue 2-issue 4-issue 6-issue
range hdhasy hdt T hdhasy hdt r hdhasy hdt T hdhasy hdt T
1-5 1 21 21.0 1 21 21.0 0 1 - 0 0 -
6-10 88 385 4.4 88 387 4.4 76 121 1.6 4 1 02
11-15 186 909 4.9 182 894 4.9 104 397 3.8 28 36 1.3
15-20 166 968 5.8 164 963 5.9 121 368 3.0 34 81 2.4
21-30 256 1,025 4.0 257 1,035 4.0 161 560 3.5 47 121 2.6
31-50 245 1,020 4.2 235 1,055 4.5 150 750 5.0 75 246 3.3
51-100 167 679 4.1 173 741 4.3 152 637 4.2 126 307 24
101-250 135 266 2.0 108 315 2.9 100 307 3.1 74 192 2.6
251-2,600 24 41 1.7 26 46 1.8 23 56 2.4 11 34 3.1
Total 1,268 5,314 4.2 1,234 5,457 4.4 887 3,197 3.6 399 1,018 2.6

Table 5.8: Maximum percentage from optimal for the decision tree heuristic (hg),
the critical-path heuristic (h.,), Bringmann’s heuristic (hgpasy), the G* heuristic
(hg«) and the Speculative Hedge heuristic (hgpe.) for ranges of super block sizes and
various issue widths.

1-issue 2-issue
Range hat hep hdhasy hgs Rspec hat hep hdhasy hgsx Rspec
3-5 26.9 26.9 26.9 269 269 | 26.9 26.9 26.9 269 26.9
6-10 37.5 65.8 37.5 375 44.7 | 37.5 65.8 375 375 44.7
11-15 25.6 82.0 25.6 25.6 65.7 | 26.7 82.0 26.7 25.6 65.7
16-20 24.4 98.2 24.7 26.9 98.2 | 244 98.2 24.7 269 98.2
21-30 16.7 159.3 28.7 279 155.6 | 16.7 159.3 28.7 279 155.6
31-50 17.6 192.2 35.2 31.1 143.7 | 176 1922 35.2 31.1 143.7
51-100 12,1 246.0 40.9 37.7 246.0 | 12.1 246.0 40.9 37.7 246.0
101-250 13.8 170.6 13.8 20.5 133.5 | 13.8 170.6 13.8 20.5 133.5
251-2,600 5.8 86.4 5.8 6.8 24.4 7.3 86.4 7.3 11.6 15.2
Maximum | 37.5 246.0 40.9 37.7 246.0 | 37.5 246.0 40.9 37.7 246.0

4-issue 6-issue
Range hat hep hdhasy hgx hspec hat hep hdhasy hgx hspec
3-5 0.0 22.2 20.0 222 22.2 0.0 0.0 0.0 0.0 0.0
6-10 40.0 41.1 40.0 41.1 40.0 | 22.2 28.6 22.2 28.6 25.8
11-15 21.1 47.4 33.3 411 474 | 22.2 31.4 22.2 222 31.4
16-20 21.9 73.7 22.2 346 73.7 | 21.9 52.7 21.9 238 52.7
21-30 19.1 152.9 37.8 427 1529 | 21.1 80.4 21.1 221 80.4
31-50 28.6 136.0 28.6 35.0 129.7 | 294 61.5 29.4 294 61.5
51-100 11.7 136.5 34.2 39.1 133.0 | 149 106.0 29.3 184 48.9
101-250 10.8 556.1 14.5 16.8 556.0 | 12.8 285.3 9.6 9.6 285.3
251-2,600 4.5 962.1 7.6 19.8 962.1 3.2 478.1 3.3 6.4 478.1
Maximum | 40.0 962.1 40.0 42.7 962.1 | 294 478.1 29.4 294 478.1

60

Chapter 6

Conclusion

Instruction scheduling is important for improving the efficiency of code in the pres-
ence of instruction level parallelism and pipelining. The increase of hardware com-
plexity brings an increase in the time needed to design, test and revise heuristics
used to schedule the code executed on the architectures. Automated techniques
have been proposed for generating instruction scheduling heuristics and we show
that these techniques can be successfully applied to the problems of basic block and
super block scheduling. The work on basic block scheduling extends the work of
Moss et al. [43, 8] by using a more robust data set including large basic blocks and
by increasing the size of the features set. We applied automated techniques, for the
first time, to the problem of learning super block scheduling heuristics. The larger
feature set allowed us to apply machine learning techniques to identify useful and
irrelevant features prior to learning a heuristic. The feature set was derived from
features found in the literature and expanded to include many novel features that
were found to be useful for instruction scheduling. Two of these novel features, max-
imum distance and maximum distance and speculative yield, became the primary
features of the basic block and super block scheduling heuristics, respectively.

In terms of results, we found that both heuristics reduced the number of non-
optimal blocks over the next best heuristic. For basic blocks, we reduced the number
of non-optimal blocks by at least 30% and, for super blocks, we reduced the number
of non-optimal blocks by at least 16%. For certain architectures, we reduced the
number of non-optimal blocks by 55% for basic blocks and 38% for super blocks. We
also found that when comparing to standard scheduling heuristics we obtained at
least 2.9 and 2.6 times more schedules with reduced cost for basic blocks and super
blocks, respectively. Again for certain architectures, we find that we can obtain 7.8
and 4.4 times more schedules with reduced cost for basic blocks and super blocks,

61

respectively. We also found that the basic block and super block heuristics were
never worse and often better in terms of worst case behaviour.

In the future, this model for developing scheduling heuristics could be expanded
to remove the assumptions that we made in the model. Specifically, we could remove
the assumption of fully pipelined functional units to include instructions that lock
a functional unit for more than a single time cycle. Also, we need to consider
the effects of registers and register pressure within the scheduling context. The
inclusion of registers changes not only the heuristics that are being used but the
optimal solution to the problem. With these modifications, this heuristic could be
implemented within a production compiler. This technique can also be extended
into any scheduling domain where an inefficient optimal scheduler exists to improve
heuristics. Job shop scheduling and time tabling are two problems that could benefit
from this technique.

This thesis shows that automated techniques for learning instruction scheduling
heuristics, both for basic blocks and super blocks, can be successful. We vastly
increased the number of features considered by our automated technique and we
used filtering, selection and ranking to determine useful features. The features
that we synthesized had a significant effect within the scheduling domain. The
features used in instruction scheduling can be easily implemented and analyzed in
terms of data collected about the scheduling problem. Most importantly, it shows
that, if given the appropriate features, the automatically generated heuristics can
outperform the techniques generated by hand.

62

Appendix A

Basic Block Features

This appendix contains the tables for all of the basic block features that were
considered before filtering and feature selection was applied. The three tables of
features are separated into DAG related features, ready list features and instruction
level features.

63

10.

11.
12.
13.
14.

15.
16.

Table A.1: The set of features related to DAG

Number of integer instructions
Number of floating point instruc-
tions

Number of Load/Store Instruc-
tions

Number of branch instructions
Total number of instructions
Number of edges between instruc-
tions of different types

Number of edges between instruc-
tions of similar types

Maximum critical path distance
Average critical path distance
Standard deviation of critical path
distances

Maximum ILP

Average ILP

Standard deviation of ILPs
Maximum latency for any instruc-
tion

Average latency of instructions
Initial number of excess integer in-
structions given the possible num-
ber of instructions that could
be scheduled given the maximum
critical path and the issue width

64

17.

18.

19.

20.

21.

22.

23.

Initial number of excess floating
point instructions given the pos-
sible number of instructions that
could be scheduled given the max-
imum critical path and the issue
width

Initial number of excess load/store
instructions given the possible
number of instructions that could
be scheduled given the maximum
critical path and the issue width
Initial number of excess branch in-
structions given the possible num-
ber of instructions that could
be scheduled given the maximum
critical path and the issue width
Feature 16 divided by the issue
width

Feature 17 divided by the issue
width

Feature 18 divided by the issue
width

Feature 19 divided by the issue
width

10.

11.

12.

13.

Table A.2: The set of features related to the ready list

Number of unscheduled integer in-
structions

Number of unscheduled floating
point instructions

Number of unscheduled load /store
instructions

Number of unscheduled branch in-
structions

Total number of unscheduled in-
structions

Current time

Number of integer instructions
ready to be scheduled

Number of floating point instruc-
tions ready to be scheduled
Number of load/store instructions
ready to be scheduled
Number of branch
ready to be scheduled
Number of integer instructions
that could still be scheduled at the
current time

Number of floating point instruc-
tions that could still be scheduled
at the current time

Number of load/store instructions
that could still be scheduled at the
current time

instructions

65

14.

15.

16.

17.

18.

19.
20.
21.
22.

Number of branch instructions
that could still be scheduled at the
current time

Number of excess integer instruc-
tions given the possible number of
instructions that could be sched-
uled given the maximum critical
path and the issue width

Number of excess floating point in-
structions given the possible num-
ber of instructions that could
be scheduled given the maximum
critical path and the issue width
Number of excess load/store in-
structions given the possible num-
ber of instructions that could
be scheduled given the maximum
critical path and the issue width
Number of excess branch instruc-
tions given the possible number of
instructions that could be sched-
uled given the maximum critical
path and the issue width

Feature 15 divided by issue width
Feature 16 divided by issue width
Feature 17 divided by issue width
Feature 18 divided by issue width

© %o N

10.

11.

12.

13.

Table A.3: The set of instruction level basic block features

Order of instructions in the origi-
nal instruction stream

Number of immediate successors
of the instruction

Number of descendants of the in-
struction

Resource-based distance to leaf
node

Sum of latencies to all immediate
successors of the latencies
Critical-path distance to leaf node
Critical-path distance from root
Path length to leaf node

Path length from root

Slack—the difference between earli-
est and latest start time

Earliest start time updated by cur-
rent time and partial schedule
Number of instructions of type in-
teger that would be added to the
ready list for the current time cy-
cle if the instruction was scheduled
Number of instructions of type
floating point that would be added
to the ready list for the current
time cycle if the instruction was
scheduled

66

14.

15.

16.

17.

18.

19.

20.

Number of instructions of type
load/store that would be added to
the ready list for the current time
cycle if the instruction was sched-
uled

Number of instructions of type
branch that would be added to the
ready list for the current time cy-
cle if the instruction was scheduled
Number of instructions of type in-
teger that would be added to the
ready list for the next time cycle
if the instruction was scheduled
Number of instructions of type
floating point that would be added
to the ready list for the next time
cycle if the instruction was sched-
uled

Number of instructions of type
load/store that would be added to
the ready list for the next time cy-
cle if the instruction was scheduled
Number of instructions of type
branch that would be added to the
ready list for the next time cycle if
the instruction was scheduled
Maximum of feature 4 and feature
6

Appendix B

Super Block Features

This appendix contains the remainder of the super block features along with the
explanations of any of the new features. The remainder of the super block features
can be viewed in Table B.1.

The maximum (or minimum) possible cost for an instruction ¢ finds what per-
centage of the maximum cost that the weighted maximum distance to branch ac-
counts for within the DAG. This feature can be formalized as,

max_wdb()

max_db(i) Y, cpw(b)

Instead of finding the ratio of weighted maximum to total maximum, for the next
feature, we reverse the ratio and find what percentage the weighted minimum is of
the total maximum cost and vice versa. This allows us to determine the likelihood
that the remaining branches are closer to the maximum distance to branch or
minimum distance to branch. These features can be described formally as,

max_cost(i) = (B.1)

min_wdb(q)
max_db(i) Y 5 w(b)

The sink to root ratio is a simple ratio of the distance to the sink node of the
DAG and the root node of the DAG. This ratio gives an estimate of the position
of the node within the graph. This feature can be formally stated as,

(B.2)

max_ratio(i) =

sink/root = cp(i,n)/cp(1,1). (B.3)

67

The projected slot is a simple measurement of the number of slots in the graph
and the slot of the instruction based on the original order. This feature can be
formalized as,

pslot = order (i) /num_instructions, (B.4)

where order(i) is the original position of the instruction generated by the code
generator and num_instructions is the number of instructions in the graph.

The projected schedule is a dynamic measurement of how far the original maxi-
mum distance has been delayed by resource constraints. This feature can be denoted
as,

psched(i) = maz Delay(currentTime — cp(1,1)). (B.5)

The projected schedule and projected slot of an instruction can be used to
identify a possible release time for the instruction. The initial estimate of release
combined with the newly recalculated schedule length provides a simple method of
calculating a new release time. The estimated release time can be formally defined
as,

ert(i) = pslot(i)psched(i). (B.6)

68

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

Table B.1: Features Within the Domain of Super block Scheduling

Helped weight—sum of weights of
each helped branch

Helped count—count of helped
branches

Minimum of critical-path dis-
tances to each branch
Weight—sum of the exit probabil-
ities of every descendant branch
Estimated release time (see Equa-
tion B.6)

Order of instruction in the original
instruction stream

Projected slot (see Equation B.4)
Ratio of minimum distance to
maximum possible cost (see Equa-
tion B.2)

Probability of minimum possible
cost (see Equation B.1)

Number of immediate successors
of the instructions

Minimum latest start time with
respect to any branch

Execution time of the instruction
Sum of the latencies to all imme-
diate successors of the instruction
Sink to root ratio (see Equation
B.3)

Ratio of maximum distance to
minimum possible cost (see Equa-
tion B.2)

69

41.

42.

43.

44.
45.

46.
47.

48.

49.

50.

ol.

Critical-path distance from the
root

Earliest start time of the instruc-
tion

Projected schedule (see Equation
B.5)

Updated earliest start time
Probability of maximum possible
cost (see Equation B.1)

Path length from the root
Number of instructions of type
branch that would be added to the
ready list for the current time cy-
cle if the instruction was scheduled
Feature 47 minus the number
of slots currently available for
scheduling branch instructions
Number of instructions of type in-
teger that would be added to the
ready list for the current time cy-
cle if the instruction was scheduled
Feature 49 minus the number
of slots currently available for
scheduling integer instructions
Number of instructions of type
load/store that would be added to
the ready list for the current time
cycle if the instruction was sched-
uled

52.

53.

54.

95.

Table B.2: Features Within the Domain of Super block Scheduling

Feature 51 minus the number
of slots currently available for
scheduling load/store instructions
Number of instructions of type in-
teger that would be added to the
ready list for the next time cycle
if the instruction was scheduled
Number of instructions of type
load/store that would be added to
the ready list for the next time cy-
cle if the instruction was scheduled
Rank—the earliest start time of
the instruction divided by the
exit probability of the instruction.
Only defined for branches

70

56.

o7.

58.

59.

60.

Number of instructions of type
floating point that would be added
to the ready list for the current
time cycle if the instruction was
scheduled

Feature 56 minus the number
of slots currently available for
scheduling floating point instruc-
tions

Type of instruction

Number of instructions of type
floating point that would be added
to the ready list for the next time
cycle if the instruction was sched-
uled

Number of instructions of type
branch that would be added to the
ready list for the next time cycle if
the instruction was scheduled

Bibliography

1]

S. G. Abraham, W. M. Meleis, and 1. D. Baev. Efficient backtracking instruc-
tion schedulers. In Proceedings of the 2000 International Conference on Parallel
Architectures and Compilation Techniques (PACT 00), pages 301-308. IEEE
Computer Society, 2000.

S. Beaty, S. Colcord, and P. Sweany. Using genetic algorithms to fine-tune
instruction scheduling heuristics. In Proceedings of the IEEE International
Conference on Massively Parallel Computing Systems (MPCS °96), 1996.

D. Bernstein and M. Rodeh. Global instruction scheduling for superscalar
machines. In Proceedings of the ACM SIGPLAN 1991 Conference on Pro-
gramming Language Design and Implementation (PLDI "91), pages 241-255.
ACM Press, 1991.

R. J. Blainey. Instruction scheduling in the TOBEY compiler. IBM J. Res.
Dewvelop., 38(5):577-593, 1994.

A. L. Blum and P. Langley. Selection of relevant features and examples in
machine learning. Artificial Intelligence, 97(1-2):245-271, 1997.

R. A. Bringmann. Enhancing Instruction Level Parallelism through Compiler-
Controlled Speculation. ~ PhD thesis, University of Illinois at Urbana-
Champaign, 1995.

B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer, and
B. Zorn. Evidence-based static branch prediction using machine learning. ACM
Transactions on Programming Language Systems, 19(1):188-222, 1997.

J. Cavazos. Automatically Constructing Compiler Optimization Heuristics Us-
ing Supervised Learning. PhD thesis, University of Massachusetts Amherst,
2004.

71

[9]

[14]

C. Chekuri, R. Johnson, R. Motwani, B. Natarajan, B. R. Rau, and
M. Schlansker. Profile-driven instruction level parallel scheduling with ap-
plication to super blocks. In Proceedings of the 29th Annual ACM/IEEE In-
ternational Symposium on Microarchitecture (MICRO 29), pages 58-67. IEEE
Computer Society, 1996.

K. D. Cooper and L. Torczon. FEngineering a Compiler. Morgan Kaufmann,
2004.

SPEC Corporation. SPEC 2000 cpu benchmarks, 2000.

R.C. Correa, A. Ferreira, and P. Rebreyend. Scheduling multiprocessor tasks
with genetic algorithms. IFEE Transactions on Parallel and Distributed Sys-
tems, 10(8):825-837, 1999.

B. L. Deitrich and W. W. Hwu. Speculative hedge: Regulating compile-
time speculation against profile variations. In Proceedings of the 29th An-
nual ACM/IEEE International Symposium on Microarchitecture (MICRO 29),
pages 70-79. IEEE Computer Society, 1996.

A. E. Eichenberger and W. M. Meleis. Balance scheduling: Weighting branch
tradeoffs in superblocks. In Proceedings of the 32nd Annual ACM/IEEE Inter-
national Symposium on Microarchitecture (MICRO 32), pages 272-283. IEEE
Computer Society, 1999.

P. Faraboschi, J.A. Fisher, and C. Young. Instruction scheduling for instruction
level parallel processors. Proceedings of the IEEE, 89(11):1638-1659, 2001.

J. A. Fisher. Trace scheduling: A technique for global microcode compaction.
IEEFE Transactions on Computers, c-30(7):478-490, 1981.

J. A. Fisher. Global code generation for instruction-level parallelism: Trace
scheduling-2. Technical Report HPL-93-43, Hewlett Packard, July 1993.

R. Govindarajan. Instruction scheduling. In Y. N. Srikant and P. Shankar,
editors, The Compiler Design Handbook, pages 631-687. CRC Press, 2003.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection.
Journal of Machine Learning Research, 3:1157-1182, 2003.

W. Havanki, S. Banerjia, and T. Conte. Treegion scheduling for wide is-
sue processors. In Proceedings of the 4th International Symposium on High-
Performance Computer Architecture (HPCA "98), pages 266—276. IEEE Com-
puter Society, 1998.

72

[21]

[22]

[23]

[24]

[25]
[26]

[27]

28]

[29]

[32]

J. L. Hennessy and T. R. Gross. Code generation and reorganization in the
presence of pipeline constraints. In Proceedings of the 9th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’82),
pages 120-127. ACM Press, 1982.

S. Hoxey, F. Karim, B. Hay, and H. Warren. The PowerPC Compiler Writer’s
Guide. Warthman Associates, 1996.

T. C. Hu. Parallel sequencing and assembly line problems. Operations Re-
search, 9(6):841-848, 1961.

W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.
Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G.
Holm, and D. M. Lavery. The superblock: An effective technique for VLIW
and superscalar compilation. Journal of Supercomputing, 7(1-2):229-248, 1993.

Rocket Software Inc. The rocket compiler, 2006.

D. Jimenez and C. Lin. Perceptron learning for predicting the behavior of

conditional branches. In Proceedings of the International Joint Conference on
Neural Networks (IJCNNO1), pages 2122-2126, 2001.

H. S. Warren Jr. Instruction scheduling for the IBM RISC system /6000 proces-
sor. IBM Journal of Research and Development, 34(1):85-92, 1990.

R. Kohavi and F. Provost. Glossary of terms. Machine Learning, 30:271-274,
1998.

S. M. Krishamurthy. A brief survey of papers on scheduling for pipelined
processors. SIGPLAN Notices, 25(7):97-106, 1990.

M. Langevin and E. Cerny. A recursive technique for computing lower-bound
performance of schedules. ACM Transactions on Design Automation of Elec-
tronic Systems, 1(4):443-455, 1996.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: a tool for
evaluating and synthesizing multimedia and communicatons systems. In Pro-

ceedings of the 30th annual ACM/IEEE international symposium on Microar-
chitecture (MICRO 30), pages 330-335. IEEE Computer Society, 1997.

C.-Y. Lee, S. Piramuthu, and Y.-K. Tsai. Job shop scheduling with a genetic
algorithm and machine learning. International Journal of Production Research,
35(4):1171-1191, 1997.

73

[33]

[34]

[35]

[38]

[39]

[40]

[41]
[42]

[43]

X. Liand S. Olafsson. Discovering dispatching rules using data mining. Journal
of Scheduling, 8:515-527, 2005.

S. Long and M. O’Boyle. Adaptive java optimisation using instance-based
learning. In Proceedings of the 18th Annual International Conference on Su-
percomputing (ICS °04), pages 237-246. ACM Press, 2004.

S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann.
Effective compiler support for predicated execution using the hyperblock. In

Proceedings of the 25th Annual International Symposium on Microarchitecture
(MICRO 25), pages 45-54. IEEE Computer Society Press, 1992.

A. Malik, M. Chase, T. Russell, and P. van Beek. Optimal superblock in-
struction scheduling for multi-issue processors using constraint programming.
Technical report, School of Computer Science, University of Waterloo, 2006.

A. M. Malik, J. Mclnnes, and P. van Beek. Optimal basic block instruction
scheduling for multiple-issue processors using constraint programming. Tech-
nical Report CS-2005-19, School of Computer Science, University of Waterloo,
2005.

A. McGovern, J. E. B. Moss, and A. G. Barto. Building a basic block instruc-
tion scheduler using reinforcement learning and rollouts. Machine Learning,
49(2/3):141-160, 2002.

W. M. Meleis, A. E. Eichenberger, and I. D. Baev. Scheduling superblocks with
bound-based branch trade-offs. IEEE Transactions on Computers, 50(8):784—
797, 2001.

G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw Hill,
1994.

T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

A. Monsifrot, F. Bodin, and R. Quiniou. A machine learning approach to
automatic production of compiler heuristics. In Proceedings of the 10th In-
ternational Conference on Artificial Intelligence: Methodology, Systems, and
Applications (AIMSA 02), pages 41-50. Springer-Verlag, 2002.

J. E. B. Moss, P. E. Utgoft, J. Cavazos, D. Precup, D. Stefanovic, C. E. Brodley,
and D. T. Scheeff. Learning to schedule straight-line code. In Proceedings of

the 10th Conference on Advances in Neural Information Processing Systems
(NIPS), pages 929-935, 1997.

74

[44]

[45]

[46]

[47]

[48]

S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers Inc., 1997.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers Inc., 1993.

T. Russell, A. M. Malik, M. Chase, and P. van Beek. Learning basic block
scheduling heuristics from optimal data. In Proceedings of the 15th CASCON,
Toronto, 2005.

M. Schlansker. Compilation for VLIW and superscalar processors. In ASPLOS-
IV Tutorial, pages 1-74, April 1991.

J.-J. Shieh and C. Papachristou. On reordering instruction streams for
pipelined computers. In Proceedings of the 22nd Annual Workshop on Micro-
programming and Microarchitecture (MICRO 22), pages 199-206. ACM Press,
1989.

J.-J. Shieh and C. A. Papachristou. An instruction reoderer for pipelined
computers. In Proceedings of the 23rd Annual Workshop and Symposium on
Microprogramming and Microarchitecture (MICRO 23), pages 135-142. IEEE
Computer Society Press, 1990.

G. Shobaki and K. Wilken. Optimal superblock scheduling using enumeration.
In Proceedings of the 37th Annual International Symposium on Microarchitec-
ture (MICRO 37), pages 283-293. IEEE Computer Society, 2004.

R. Sites. Alpha architecture reference manual. Technical report, Digital Equip.
Corp., 1992.

M. Smotherman, S. Krishnamurthy, P. S. Aravind, and D. Hunnicutt. Effi-
cient dag construction and heuristic calculation for instruction scheduling. In

Proceedings of the 24th Annual International Symposium on Microarchitecture
(MICRO 24), pages 93-102. ACM Press, 1991.

M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O'Reilly. Genetic
programming applied to compiler heuristic optimisation. In The 6th European
Conference on Genetic Programming, 2003.

M. Stephenson, S. Amarasinghe, M Martin, and U.-M. O’Reilly. Meta op-
timization: Improving compiler heuristics with machine learning. SIGPLAN
Notices, 38(5):77-90, 2003.

5

[55]

[56]

[58]

[59]

M.D. Tiemann. The GNU instruction scheduler. Cs343 course report, Stanford
University, Jun. 1989.

P. van Beek and K. Wilken. Fast optimal instruction scheduling for single-issue
processors with arbitrary latencies. In Proceedings of the 7th International
Conference on Principles and Practice of Constraint Programming (CP ’01),
pages 625-639, 2001.

S. Weiss and J. E. Smith. A study of scalar compilation techniques for pipelined
supercomputers. In Proceedings of the Second International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pages
105-109, 1987.

K. Wilken, J. Liu, and M. Heffernan. Optimal instruction scheduling using
integer programming. In Proceedings of the SIGPLAN 2000 Conference on
Programming Language Design and Implementation (PLDI), pages 121-133,
Vancouver, 2000.

[.LH. Witten and E. Frank. Data Mining. Morgan Kaufmann, 2000.

76

