Pattern Recognition Letters
journal homepage: www.elsevier.com

Improving the accuracy and low-light performance of contrast-based autofocus using

supervised machine learning

Rudi Chen, Peter van Beek™*
University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada

ABSTRACT

The passive autofocus mechanism is an essential feature of modern digital cameras and needs to be
highly accurate to obtain quality images. In this paper, we address the problem of finding a lens
position where the image is in focus. We show that supervised machine learning techniques can be
used to construct heuristics for a hill-climbing approach for finding such positions that out-performs
previously proposed approaches in accuracy and robustly handles scenes with multiple objects at dif-
ferent focus distances and low-light situations. We gather a suite of 32 benchmarks representative
of common photography situations and label them in an automated manner. A decision tree learning
algorithm is used to induce heuristics from the data and the heuristics are then integrated into a control
algorithm. Our experimental evaluation shows improved accuracy over previous work from 91.5% to
98.5% in regular settings and from 70.3% to 94.0% in low-light.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The passive autofocus mechanism is an essential feature of
modern digital cameras. To maximize the likelihood of ob-
taining high quality images, the mechanism must be quick and
accurate. The two main forms of passive autofocus are phase-
detection and contrast-detection. Phase-detection is faster and
more efficient at tracking subject movement, but typically
requires hardware found on higher-end cameras. Contrast-
detection can be more accurate and uses image processing tech-
niques to obtain a measure of the sharpness of an image that can
be used on a wide range of devices, including point-and-shoot
cameras, mobile phones and DSLRs. This paper focuses on
contrast-detection.

We present a novel algorithm for finding an in-focus lens po-
sition through a local search, in contrast to sweeping through
the entire range of lens positions. We build a control algorithm
supported by supervised machine learning that is used to train
a classifier to transition between the states of the algorithm. In
supervised learning, classifiers are built using training examples
(instances) consisting of a vector of feature values and labeled
with the correct answer. We obtain training and test data using
an offline simulation on a suite of 32 benchmarks with each in-

**Corresponding author: Tel.: +1-519-888-4567, x35344; fax: +1-519-885-
1208;
e-mail: vanbeek@cs.uwaterloo.ca (Peter van Beek)

stance labeled in an automated manner. From the gathered data,
a decision tree learning algorithm (Quinlan, 1993) was used to
induce multiple heuristics. In a decision tree, the internal nodes
of the tree are labeled with features, the edges to the children of
a node are labeled with the possible values of the feature, and
the leaves of the tree are labeled with a classification. To clas-
sify a new example, one starts at the root and repeatedly tests
the feature at a node and follows the appropriate branch until a
leaf is reached. The label of the leaf is the predicted classifica-
tion of the new instance.

The final result is compared with previous work by perform-
ing an extensive evaluation over a range of real-life photogra-
phy situations. Our approach is shown to be more accurate,
including in low-light scenarios and situations where the focus
measure is not unimodal.

2. Background

In this section, we review the necessary background in auto-
focus, focus measures, and focus search algorithms.

2.1. Focus measures

Contrast-detection autofocus (AF) makes use of a focus mea-
sure that maps an image to a value that represents the degree of
focus of the image. Many focus measures have been proposed
and evaluated in the literature (see, for example, Groen et al.,
1985; Mir et al., 2014). In our work, we make use of two focus

3.5e+006

3e+006 -

2.5e+006

2e+006 -

focus measure

1.5e+006

1e+006

0O 20 40 60 80 100 120 140 160
lens position

(a)

(b) (c)

Fig. 1. (a) Focus measures of images at each of the 167 lens positions (Canon
50 mm lens) for an example scene using the squared gradient focus mea-
sure. The two (blue) vertical bars refer to the two images that have objects
that are in maximal focus: (b) flower in focus, and (c) fern and grasses in
focus.

measures: (i) the squared gradient focus measure (Santos et al.,
1997) and (ii) a focus measure based on the convolution of the
image with the derivatives of the Gaussian (Geusebroek et al.,
2000; Gamadia and Kehtarnavaz, 2009b). Let f(x,y) be the lu-
minance or grayscale at pixel (x,y) in an image of size M X N.
The value ¢(p) of the squared gradient focus measure for an
image acquired when the lens is at position p is then given by,

R

N-2

(flr,y + 1) = fx,y)

y=0

é(p) =

X

Il
(=)

The value ¢(p) of the focus measure based on convolution with
the first derivatives of the Gaussian is given by,

$(p) = D DM« GDE P+ [(f + G WP,
x oy

where f is the image, G and GY are the first-order derivatives
of the Gaussian in the vertical and horizontal direction, o is the
scale of the filter (higher values cut off more of the high fre-
quencies of the image), and * is the 2D convolution operator.
Both of these focus measures have been shown to be highly ef-
fective across many types of images (Mir et al., 2014) and the
Gaussian focus measure has excellent noise reduction proper-
ties for low-light situations (Gamadia and Kehtarnavaz, 2009b).

Following Kehtarnavaz and Oh (2003), we assume that the
region of interest (ROI) is the entire image. In practice, a user
can either (i) specify the ROI by moving a rectangle over the
desired part of the image when the camera is in live previous
move, or (ii) have the camera automatically determine the ob-
ject or region of interest to bring into focus, say by using face

2

or object recognition (Rahman and Kehtarnavaz, 2008). Our
proposals are easily adapted to the case where the ROI is an
arbitrary sub-area of an image. Figure 1 shows the focus mea-
sures acquired at all possible lens positions (Canon 50mm lens)
in a sample scene.

2.2. Focus search algorithms

A contrast-based AF algorithm searches for the lens position
with the sharpest image as reported by the focus measure by
iteratively moving the lens. Lenses are moved in discrete steps
using a step motor. The images are streamed from the sensor at
video frame rates (e.g., 24 frames per second on many Canon
cameras) and also shown on the camera’s live preview mode.

At each iteration, step motors can be moved in a single step
or larger steps. In our case, the largest step is equivalent to
eight small steps. Each step, small or large, is followed by a
latency of hundreds of milliseconds. As well, step motors can
suffer from backlash when the lens movement changes direc-
tion, making any absolute measure of lens position unreliable
(Kehtarnavaz and Oh, 2003; Morgan-Mar and Arnison, 2013).
In our work, we assume that the only information available to
the camera in regards to lens position is whether the lens has
reached the first or last lens position. An efficient AF algorithm
will therefore take as large steps as possible and be able to han-
dle losses in accuracy due to backlash.

Given a set of lens positions {a,a + 1,..., b}, an autofocus
algorithm can solve one of several search problems. The first
is to find the lens position that corresponds to the maximum or
highest peak. This often involves finding all peaks. Another
problem is to find a nearby peak. During real usage, the lens
could be resting at any lens position prior to autofocus activa-
tion. In fact, the lens is likely to be near a peak already when
images are taken consecutively. In that case, it is preferable
to start the search from the current position rather than using
an approach that requires moving the lens back to the first lens
position. For lenses with a large number of positions, such as
those used with DSLRs, moving the lens back to the first lens
position would also incur a significant visual artifact in the live
preview where the image goes significantly out of focus before
coming back to focus again. This would not be desirable for the
user. In this paper, we address the problem of finding a nearby
peak without moving the lens back to the first lens position.

3. Related Work

Kehtarnavaz and Oh (2003) develop a rule-based autofocus
algorithm to find the highest peak and all peaks over an inter-
val by performing a full sweep. The hand-crafted rules predict
whether to move the lens a coarse, medium, or fine step at each
iteration as it sweeps the lens from near focus to far focus. The
goal of the heuristic is to move the lens larger steps but without
missing any peaks in the focus measure. Gamadia and Kehtar-
navaz (2009a) later use this sweeping algorithm to focus more
quickly by terminating the search at the first peak. While the
sweeping approach has been shown to be efficient, it requires
the lens to be brought to the first lens position, which is unde-
sirable when the lens is already close to a nearby peak.

He, Zhou and Hong (2003) propose a coarse-to-fine search
where initially the search algorithm predicts whether to move
towards near focus or far focus, then takes coarse or large steps
until a first peak is found and finally, reverses direction and
takes fine steps to determine the peak. Li (2005) uses a similar
method, using medium steps instead of fine steps. Left unclear
is the specific conditions under which the direction is reversed,
and how to handle cases where the initial prediction is incor-
rect. We found that the choice of such conditions can signifi-
cantly affect the success rate of the autofocus algorithm. Our
approach can be viewed as showing how to improve He et al.’s
search algorithm to make it more robust and accurate by using
a more elaborate control algorithm and using machine learning
to automatically learn the heuristics for the control algorithm.
We perform an extensive experimental comparison against He
et al.’s search algorithm in Section 5.

Recent work has also focused on the idea of predicting the
location of a peak based on a few initial measurements. Chen,
Hong and Chuang (2006) sample the focus measures at four
initial lens positions, then fit an equation to predict the loca-
tion of a nearby peak, take coarse steps to be near the predicted
peak, and finally take fine steps within a bisection search algo-
rithm to find the peak. Supervised machine learning approaches
to predicting the location of a peak have also been proposed.
Chen, Hwang and Chen (2010) propose an algorithm that uses a
self-organizing neural network to predict the location of a peak
based on sampling the focus measure at the first three lens po-
sitions. Their approach is one of the first to be based on super-
vised machine learning techniques. Han et al. (2011) also use a
machine learning approach, a variation of 1-nearest neighbor, to
predict the location of a peak by sampling the focus measure at
the first three lens positions. Both approaches require the cam-
era to be moved to the first lens position and in general, predic-
tion algorithms rely on the ratio of consecutive lens positions to
be a good predictor of the location of a peak. While this is often
true with mobile phones and compact cameras where there is a
large depth of field, we find this to not be the case with longer
lenses such as the ones found on a DSLR (see Section 5).

The issue of low-light photography has also been addressed
in the literature. Choi, Lee and Ko (1999) use a frequency se-
lective weighted median filter to reduce noise. Shen and Chen
(2006) use a focus measure involving the coefficients of the im-
age in the discrete cosine transform domain to achieve a higher
discrimination ratio between out-of-focus and in-focus images.
Gamadia et al. (2007; 2009b) show that a focus measure based
on a Gaussian smoothing step, a contrast enhancement step,
and a derivative step, is very effective in low-light situations.
In our low-light experiments, we adopt a simplified, but still
very competitive, version of Gamadia et al.’s proposal, where
we omit the contrast enhancement step and perform Gaussian
smoothing and taking the derivative all in one step.

4. Our Solution

Our proposed solution consists of a hand-crafted control al-
gorithm (Section 4.1), represented as states in Figure 2, which
uses machine learning trained heuristics to transition between

continue

continue

predict near focus backtrack

@ backtrack

continue

start —

success
backtrack

predict far focus

continue

Fig. 2. State diagram illustrating the control algorithm. In the initial state,
a prediction is made about the direction of a peak. The lens will take steps
in that direction (possibly backtracking once) until a peak is found or the
search fails.

states while searching for the best-in-focus lens position. The
construction of heuristics begins with the creation of a set of
features (Section 4.2), followed by the collection of training
data (Section 4.3) and the training of two decision tree classi-
fier (Section 4.4).

4.1. Control algorithm

The states of the control algorithm are illustrated in Figure 2.
Initially, the lens is at rest at an arbitrary position and the al-
gorithm needs to determine whether to look for a peak towards
near focus or far focus. The focus value is measured at three
consecutive lens positions by taking two fine steps towards far
focus. These three measurements are used by a decision tree
T, that will predict the direction, near or far, in which a peak is
more likely to be found.

The algorithm will then begin a search by moving the lens
in coarse steps in the chosen direction to find a peak. At each
step, a tuple (i, f;) is recorded where i is the number of steps
taken during the search (ith step) and f; is the corresponding
focus value measured after the step was taken. The tuple (0, f;)
corresponds to the focus value at the initial lens position. The
recorded tuples are then used by a second decision tree Tz with
one of three labels at each leaf : “continue” or “backtrack”,
“success”. Each label represents a possible state transition:

label
continue

description

Continue the search by taking another step in
the same direction and repeat the process.

The initial direction chosen is predicted to have
been incorrect and there is unlikely to be a peak
in that direction. Return the lens to the position
where it started and repeat the search process in
the opposite direction, reinitializing the list of
measured focus values. If this label is obtained
a second time, the search is considered a failure
and the algorithm falls back to a full sweep.

A peak is predicted to be close to one of the vis-
ited lens positions. Reverse direction and return
the lens to the position where the focus value is
highest among visited lens positions.

backtrack

success

When the search is considered a success and the lens has been
returned to the visited position with the highest focus value, it
is expected that the lens is either at a peak or close to one. A
local search is then performed, which consists of a simple hill-
climbing algorithm where the lens moves in fine steps until the
focus value stops increasing. The local search maximizes the
focus value and increases tolerance to sources of error such as
backlash or small changes in the peak location during autofo-
cus due to camera or subject movement. Since we only perform
local search when the primary ML-based search outputs “suc-
cess”, the lens is already close enough to a peak that the local
search will not be affected by local extrema.

4.2. Features

In supervised machine learning, the construction of a set of
features represented in each instance is an important factor in
the success of the approach. Features should enable effective
discrimination between the different classifications of each set
of instances.

Two sets of features were manually designed. The first set
of features, denoted F,, is used to train a heuristic to determine
whether to move the lens towards near focus or far focus af-
ter taking the initial three focus measurements (see Table 1 for
the definitions of these features). The features in this set are
Boolean-valued and consist mainly of a comparison between
those three focus values with varying levels of granularity.

The second set of features, denoted Fpg, is used to train a
heuristic to decide between the state transitions “continue”,
“backtrack” and “success” (see Appendix A for the definitions
of these features). These features have numerical values and
describe at a higher level the focus values recorded during the
search procedure. Examples of features include the number of
steps taken, the slope between the two most recent focus values
and the ratio between the current focus value and the largest
focus value encountered so far. Focus values represented as de-
scriptive features are easier to handle for a machine learning
scheme than the focus values themselves.

A challenge in constructing features is that each camera and
lens (if considering a camera with interchangeable lenses) will
have a different number of total lens positions 7,. This will af-
fect the distribution of values of instances of each feature. For
example, if a camera has fewer lens positions (coarser granular-
ity), it is clear that the slope of the focus values would increase
more quickly with each step, all else being equal. Another chal-
lenge is that the scale on which focus values are measured is
arbitrary and influenced by the amount of detail in the scene
as well as lighting conditions (Han et al., 2011). Therefore, to
ensure generality, lens position counts are normalized to [0, 1]
whenever they are used in the calculation of a feature and focus
values are also normalized when necessary. For example, a fea-
ture F' that involves the slope between two points (x, fx), (7, f;)
will be calculated as,

normalize by focus value
B+fo)
h -5
o-x /T,)

normalize by total lens positions

F((x, £, 0,) =

Table 1. Set of features F, for learning the heuristic to predict the direction
in which a peak is most likely to be found. The values f, />, f5 are the first
three focus measurements taken by moving two fine steps.

I={1.64,132,...,1.01,1,1/1.01)
J ={-0.64,-0.32,...,-0.01,0,0.01,...,0.64}
ratio(k) = (f‘ > k) kel
diffMax(k) = (52l > k). ke J
diffMin(k) = (55 > k).ke J
curving(k) = (f'”‘ AN k) kel

curvingRatio(k) = (];Tz > k),k eJ
downtrend = f; > f5 > f3
uptrend = f3 > f» > fj

4.3. Data Collection

Another important factor in the success of a supervised ma-
chine learning approach in this context is to have data represen-
tative of photography situations seen in practice. During data
collection, a set of benchmark images was taken for each of 32
everyday scenes that covered a range of common photography
settings including landscapes, closeups, interiors, still lifes, and
so on. Among these scenes, 10 exhibit more than one peak, for
a total of 53 peaks.

To gather the benchmark scenes, we use a remote camera ap-
plication to control a Canon EOS 550D/Rebel T2i camera con-
nected to the computer via a USB cable. The remote camera
application can display the camera’s live view video stream and
move the lens in small or coarse steps using the Canon SDK
(v2.13). Using this setup, for each scene, a JPEG image is cap-
tured at each of the 167 different lens focus positions with a two
second delay between each capture to ensure the lens stabilizes.
The JPEG images are taken directly from the live-view at each
possible lens position. The square gradient focus measure is
applied to each image to calculate the focus value.

Once the images are collected, the machine learning training
data is generated. The data is a set of instances, where each
instance is a vector of feature values and a label representing
the correct classification for that instance. The heuristics used
by the control algorithm discussed in Section 4.1 require two
training sets. The first training set is used to determine whether
to start the search towards the left side (near focus) or right side
(far focus). The data is gathered as follows: for each three con-
secutive focus values [f,—2, fv-1, fx], * € [2, 166] in each scene
where the lens positions are numbered 0, . . ., 166, an instance is
created by evaluating the features in F, with those focus values
as parameters. These correspond to the initial three measure-
ments. The class label for that instance is generated automati-
cally using a simple rule: if the closest peak at position x in the
focus measure curve is on the left of x, corresponding to near
focus, then the label is “near”; otherwise, the label is “far”. Al-
ternative classification rules involving the height of a peak were

considered, but did not lead to better results. This gives a total
of 9,218 training instances across all scenes.

Algorithm 1: Decision tree T, for selecting the direction of
the first sweep.

input: Focus measures fi, f2, f3
if ratio(1) = 0 then

L initialDirection < near
if ratio(1) = 1 then

| initialDirection < far

The second training set is used to decide whether to continue
searching, backtrack, or end the search with a success. The in-
stances are generated by simulating a peak search starting at an
arbitrary lens position. The simulation has full information of
the focus curve. It is run once for every lens position, as it is
assumed that the lens could be at rest at any position prior to
autofocus, and in both the near focus and far focus directions.
At every step during the search, (i) the focus values at the cur-
rent lens position and number of steps taken so far are recorded,
(ii) the features in F for a new instance are evaluated with the
recorded focus values and (iii) the instance is then labeled with
the correct action to take at this point in the search. This is re-
peated until the first or last lens position is reached. The label
is assigned to be “success” if a peak has been passed two or
more steps ago, “backtrack” if at least four coarse steps have
been taken and there are no more peaks in the current direc-
tion, “continue” otherwise. This gives a total of 22,691 training
instances across all scenes.

A few techniques improved the quality of the data and the
resulting efficiency and accuracy of our approach.

1. The dataset was balanced such that instances with labels
“backtrack”, “success” and “continue” appear in a 1:1:3
ratio in the final training set. This introduced a bias during
classifier training in favor of taking more steps, which is
preferable to terminating the search prematurely.

2. The frequency of instances associated with states that are
unlikely to occur was reduced. For example, it is unlikely
in practice for a search to pass over two or more peaks
without terminating, whereas in the simulation, the search
will continue until the lens reaches the very last position.
To do so, each lens step taken during the simulation of a
given search reduced the likelihood that the instance asso-
ciated with that state will appear in the training data by a
factor u when the correct label at that step is “continue”
and vy otherwise. That is, the likelihood of selecting an in-
stance is p = p*y"~* where x is the number of instances
labeled “continue” and 7 is the total number of steps taken
during the search up to this point. The instances were then
randomly sampled by p. This improved the robustness of
the learning scheme. In our setting where a full sweep is
19 coarse steps, we use u = 0.99,y = 0.93 such that a full
sweep encountering no peaks will have p = 0.99" ~ 90%
and a full sweep encountering a peak in the beginning will
have p = 0.93"° ~ 25%, which we found to work well.

3. Some noise, up to 10% of the lowest focus value, was
added to the focus value measurements.

Algorithm 2: Decision tree Tg for selecting the transition
between states after n steps were taken and n+1 focus values
are obtained.

input: Records {{0, fo}, {1, fi},{2, /2},.. .. {n, fu}}

if distanceToMax < 0.03 then
if ratioToMax < 0.673 then
if ratioMinToMax < 0.378 then

if currentSlopeLarge < —0.465 then
L result « success

if currentSlopeLarge > —0.465 then
L result « continue

if ratioMinToMax > 0.378 then
L result « continue

if ratioToMax > 0.673 then
L result « continue

if distanceToMax > 0.03 then
if ratioMinToMax < 0.352 then

if downslopelstHalf < 0.833 then
L result « success

if downslopelstHalf > 0.833 then

if ratioMinToMax < 0.126 then
L result « success

if ratioMinToMax > 0.126 then
L result « backtrack

if ratioMinToMax > 0.352 then
L result < backtrack

4.4. Classifier Selection

Using the data collected, the final step is to learn the clas-
sifiers. This was done with Weka’s (Witten et al., 2011) J48
implementation of Quinlan’s (1993) C4.5 decision tree learn-
ing algorithm. Among the classification-based machine learn-
ing algorithms that were tested, decision trees performed con-
sistently well. Decision trees also have the advantage of being
efficient to evaluate and produce human-understandable output.
The software was run using default settings, with the exception
of the minimum number of instances per leaf, which was set to
512. Increasing this value is a standard technique to obtain sim-
pler trees and reduce overfitting when lots of data is available.
The decision trees generated are shown in Algorithm 1 and Al-
gorithm 2. Notice that the classifier for determining the initial
direction (Algorithm 1) is a simple decision stump, comparing
whether the near focus or far focus position has the largest fo-
cus value. However, despite being the best classifier, only 87%
of instances are correctly classified on our dataset, justifying
the need for the ability to backtrack in cases where the initial
direction chosen is incorrect.

For Algorithm 2, the features in the training set for the deci-
sion tree learning algorithm (J48) are continuous (numeric) fea-
tures. For a feature f, J48 automatically chooses a binary split
point ¢ that gives the highest information gain and branches on
that split point; i.e., f < ¢ is one branch and f > c is the other
branch. Thus, each of the values in Algorithm 2 is automati-
cally chosen by J48 as part of the learning process. Notice that,

while many possible features where made available to the deci-
sion tree learning algorithm (see Table 1 and Appendix A), only
subsets of these features were actually chosen by J48 for inclu-
sion in the final decision trees that are shown in Algorithm 1
and Algorithm 2.

5. Experimental Evaluation

We perform an empirical evaluation of the effectiveness of
our machine-learning based (ml-based) approach on the criteria
of speed and accuracy. Speed is defined as the number of steps
used to autofocus. We found that the Canon Rebel T2i camera
used in these experiments exhibits the same latency between
fine steps and coarse steps, which suggests a strong correlation
between the number of steps and the total time taken to focus.
Accuracy is defined as the proportion of simulations of the aut-
ofocus algorithm where the final lens position is within one lens
position of a peak (i.e., a peak was found). We find that a differ-
ence of more than one lens position from the peak is noticeable,
even with 1 megapixel images.

We compare, using the information we could obtain, against
the hill-climbing method proposed in (He et al., 2003), where
coarse or large steps are taken until a peak is found, after which
the direction is reversed and fine steps are taken to narrow down
on the peak and the conditions for reversing direction are man-
ually created. (The proposal in (Li, 2005) differs mainly in the
step size used and in relaxing the accuracy goal, but uses the
same underlying idea.) Similarly to our approach, their goal is
to find a nearby peak given any starting lens position.

In He et al. (2003), the first step taken to determine the initial
direction is a coarse step, and the direction is determined by the
largest of two focus values. Backtracking will occur if and only
if the first step after deciding on the initial direction causes the
focus value to decrease. The other decision that needs to be
made is when to stop the search, reverse direction and switch
to fine steps. In (He et al., 2003), this happens after the focus
value decreases. (The precise condition is not specified in (Li,
2005)). In our comparison, we reverse direction when the focus
value drops below 90% of the maximum focus value seen so
far, which gives their hill-climbing method higher accuracy.

The test suite consists of the same 32 sets of benchmark im-
ages used during data collection in Section 4.3. Each set con-
sists of 167 images, one for every lens position. He et al.’s
(2003) hill-climbing method was run directly on each of the 32
sets, with one test for each starting lens position.

To evaluate the ml-based heuristics, we use a variation of
leave-one-out cross-validation. For each of the 32 benchmarks
to be tested, the training data is collected as in Section 4.3 us-
ing only the remaining 31 benchmarks. In other words, the test
benchmark is left out from the training data. Classifier selection
is then performed on the training data and the results are incor-
porated into heuristics as decision trees. The search algorithm
using those heuristics is then evaluated against the test bench-
mark on each of the 165 starting lens position (lens positions
2, ..., 166). This procedure assesses the generalization perfor-
mance of the heuristics. By excluding the test benchmark, the
heuristics are evaluated on their ability to handle new data. In

Table 2. Results of comparing He et al.’s (2003) hill-climbing approach
and our machine-learning approach (ml-based) using leave-one-out cross-
validation. Simulations include backlash and noise simulation. Each
benchmark was run over the 165 starting lens positions. The accuracy is
the percentage of such simulations where a peak was found and the num-
ber of steps are averaged over those simulations. Benchmarks marked with
(*) have more than one peak.

He et al. (2003) ml-based
benchmark || accuracy | avg step | accuracy | avg step
backyard 99.4 20.2 100.0 19.3
bench 75.5 17.2 76.4 18.6
book 85.5 18.6 98.2 24.0
books1 96.9 20.6 100.0 24.0
books2 97.5 20.3 100.0 21.8
books3 99.4 20.1 100.0 23.8
books4 98.7 18.5 100.0 25.8
bridge 98.7 16.2 100.0 22.3
building1 89.9 15.2 99.4 22.3
building?2 83.0 15.0 99.4 22.5
building3 98.7 18.4 100.0 21.8
cupl 88.7 16.8 100.0 17.9
cup2* 94.3 14.8 100.0 17.7
cup3* 62.9 13.3 100.0 19.8
cup4* 89.3 15.4 98.8 17.3
fabric 98.7 16.7 99.4 17.6
flower* 100.0 16.0 99.4 16.1
gametree* 84.9 15.1 100.0 21.6
gorillapod* 99.4 19.2 92.1 21.5
granola* 54.1 12.7 98.8 194
interiorl 99.4 19.9 100.0 20.1
interior2* 94.3 15.9 100.0 16.9
lamp* 90.6 14.3 100.0 15.7
landscapel 93.7 16.9 100.0 22.6
landscape?2 96.9 16.0 100.0 21.9
landscape3 96.9 14.0 100.0 19.3
screen™ 95.0 16.7 100.0 15.5
snails 100.0 17.1 98.8 17.8
stillLife 86.8 17.4 98.8 19.0
timbuk 92.5 13.9 100.0 21.8
ubuntu 84.9 16.6 96.4 21.7
vase 100.0 17.9 97.6 17.2
average 91.5 16.8 98.5 20.1

all cases, the simulated camera model will generate some noise
at each focus measurement, up to 5% of the lowest focus mea-
sure. We found that this approximately corresponds to mod-
erate amounts of camera shake. We also simulate backlash—
when the direction changes, the step taken will be thrown off
by up to 30%.

As shown in Table 2, our method takes 20% more steps, but is
significantly more accurate in finding peaks (98.5% vs 91.5%).
The only benchmark in which it struggles is “bench”, which is
an outdoor scene where the lighting conditions changed con-
siderably while the set of images was acquired (clouds covered
the sun in some images, but not others). Our method performs
considerably better on benchmarks with more than one peak

Table 3. Result of simulating He et al.’s (2003) hill-climbing and our ml-based approaches on low-light benchmarks, using the squared gradient and Gaus-
sian derivative focus measure. Simulations include noise and backtracking. Each benchmark was run over the 165 starting lens positions. Benchmarks
marked with (*) have more than one peak. The column r shows the ratio between the focus value at the 1st decile and the largest focus value.

Squared Gradient Gaussian first-derivative, o = 2
He et al. (2003) ml-based He et al. (2003) ml-based

benchmark r | accuracy | avgstep | accuracy | avg step r | accuracy | avgstep | accuracy | avg step
blackboard1* || 0.6 43.0 13.6 20.5 284 | 0.1 62.5 14.0 95.2 18.5
blackboard2* || 0.8 0.6 11.3 1.1 252 | 0.2 85.0 17.5 80.7 20.2
pillow1 0.8 9.9 12.2 5.1 28.6 | 0.1 86.0 17.5 100 19.4
pillow2 0.9 0.0 14.6 0.0 26.1 | 0.3 75.9 16.6 98.2 19.4
pillow3 0.8 0.6 11.8 10.7 305 | 03 42.0 13.7 86.9 19.5
projectorl 0.3 78.5 16.5 86.0 18.8 | 0.0 100 19.4 100 19.1
screws] 0.5 57.4 15.2 67.3 29.2 | 0.1 88.3 18.1 98.8 21.7
screws2* 0.9 2.4 13.0 0.0 243 | 0.2 61.7 13.3 96.5 22.5
whiteboard1 0.9 0.0 14.8 0.0 249 | 0.1 40.6 15.1 92.8 20.0
whiteboard2 || 0.9 0.0 14.8 0.0 24.7 | 0.1 43.8 13.8 84.9 20.6
whiteboard3 || 0.8 1.2 145 0.6 25.8 | 0.0 87.5 19.2 100 21.1
average 0.7 176 138 17.4 260 | 0.1 70.3 16.2 94.0 20.2

(98.9% vs 86.5%). The limited backtracking support of He et s

al.’s (2003) hill-climbing algorithm also causes it to fail in some °

scenes where the lens starts in an out-of-focus region where the S 4 104 0 137 154

focus value curve is mostly flat and noise. When the lens starts 165 o0 i ‘

the search in the wrong direction, it may never recover. As 162 102

our classifier was trained to be conservative about backtrack- g | 050 s

ing, fluctuant focus curves did not in general cause a reduction " 150 163 02,

in performance. 2 163 ¢ 7 ysge

Recall that Han et al. (2011) also propose a machine learning S o

approach (see Section 3). Han et al. (2011) bring the camera to ' .

the front, then take two steps to obtain three focus values, which 161

are then used to calculate two relative focus measures. Using g |

1-nearest-neighbor, these two features are used to predict the 7 .

location of the next peak. They show that the technique works 5

well in mobile phones and compact cameras where there is a 06 oo o0 000 .

large depth of field. However, in our DSLR setting, our bench-
mark scenes often contain focus curves with long flat segments.
As shown in Figure 3, the features used by Han et al. are unable
to discriminate between mid-distance subjects and landscape
images with very distance objects in focus. Other prediction-
based techniques such as Chen et al. (2010) use similar fea-
tures, leaving us doubtful that these techniques can be adapted
to a DSLR setting.

To assess the low-light performance of our method, we ac-
quired 11 more set of images, taken in darkened rooms. For
every image in every set, the squared gradient focus measure
was again computed. These image sets were not included in
our training set. Initially, this led to a very low success rate of
approximately 17% for both He et al.’s hill-climbing approach
and our ml-based approach (Table 3), which is also approxi-
mately the same success rate as the Canon Rebel T2i’s default
autofocus for the same scenes. A closer examination reveals
that the root cause is the lack of discrimination power between
the focus measure of out-of-focus images and in-focus images.
In our benchmarks using the squared gradient focus measure,
the smallest focus measure often reaches 80% of the value of
the largest. We find that the smallest focus measure needs to be

ratio1

Fig. 3. Plot of the location of the lens position (0-166) of the nearest peak,
indicated by labels for a subset of our benchmark scenes. The x and y axis
are the relative focus measure difference between the first and second focus
value measurement and second and third value measurement, respectively.

no more than 50-60% of the largest for our algorithm to suc-
ceed. The ratio r between the focus value at the 1st decile and
the largest focus value is shown in Table 3. A decile is used
to discount outliers at low focus values, but is unnecessary for
large focus values as they correspond to the peak. A value close
to 1.0 indicates that the peak in the focus measure differs little
from the non-peak values, which makes focusing difficult; a
value close to 0.0 indicates the peak has high amplitude, which
makes focusing potentially easier for a focusing algorithm.

The reduced difference between out-of-focus and in-focus
images in low-light situations is due to a lower signal-per-noise
ratio. The features of the image (signal) have a smaller range
on the RGB scale whereas the value added to the focus mea-
sure by noise remains constant or increases in low-light condi-

tions, often due to increased ISO. This reduces the discrimina-
tion power. However, low-light noise will typically be found at
higher frequencies relative to the features of the image. Thus,
we want a focus measure that acts as a low-pass filter to remove
the contribution of the noise to the focus measure effectively.
As it has the desired properties, we chose a first-derivative
Gaussian filter, which is a simplified, but still very competi-
tive, version of Gamadia et al.’s proposal (see Section 3). Re-
placing the squared gradient focus measure with the Gaussian
focus measure with o = 1 helps alleviate this issue, and o = 2
solves it completely. The ml-based approach performs particu-
larly well (94% vs 70.3%) compared to He et al.’s hill-climbing
approach. We also note that the measure of the number of steps
is only over the number of times that an algorithm succeeds.
Thus, while He et al. can perform fewer steps on average than
our method, this is only because it fails more often.

Our goal was to emphasize our algorithm’s high performance
versus previous work rather than advocate for particular focus
measures. However, it should be noted that, while implement-
ing the Gaussian filter (with o = 2 where the tail of the Gaus-
sian is cutoff at 307) on a smartphone controlling an onboard
camera or tethered to a DSLR is feasible, implementing the
filter onboard a camera may require the addition of a floating
point co-processor and/or additional memory (in general, cam-
era processors are proprietary and information is sparse). One
plus is that Gaussian filters do have the nice property that they
are separable: a two dimensional filter can be implemented us-
ing two independent one-dimensional calculations.

6. Conclusion

Previous proposals for finding nearby peaks in autofocusing
involve a hill-climbing search where the conditions for state
transition (backtrack, reverse direction) are hand-crafted. We
show that supervised machine learning techniques can be used
to construct heuristics to determine those transitions and out-
performs previous work on accuracy (98.5% vs 91.5%). In par-
ticular, we show that our algorithm is more robust, even in diffi-
cult cases where multiple peaks in the focus measure are present
and, by using the first-order Gaussian derivative focus measure,
also more robust in low-light conditions.

Acknowledgments

This work was supported in part by an NSERC USRA award
and an NSERC Discovery Grant.

References

Chen, C., Hong, C., Chuang, H., 2006. Efficient auto-focus algorithm utilizing
discrete difference equation prediction model for digital still cameras. IEEE
Trans. Consum. Electron. 52, 1135-1143.

Chen, C.Y., Hwang, R.C., Chen, Y.J., 2010. A passive auto-focus camera con-
trol system. Applied Soft Computing 10, 296-303.

Choi, K.S., Lee, J.S., Ko, S.J., 1999. New autofocusing technique using
the frequency selective weighted median filter for video cameras. IEEE
Trans. Consum. Electron. 45, 820-827.

Gamadia, M., Kehtarnavaz, N., 2009a. Enhanced low-light auto-focus system
model in digital still and cell-phone cameras, in: IEEE International Confer-
ence on Image Processing, pp. 2677-2680.

8

Gamadia, M., Kehtarnavaz, N., 2009b. Real-time implementation of single-
shot passive auto focus on DM350 digital camera processor, in: Real-Time
Image and Video Processing (SPIE Vol. 7244).

Gamadia, M., Kehtarnavaz, N., Roberts-Hoffman, K., 2007. Low-light auto-
focus enhancement for digital and cell-phone camera image pipelines. IEEE
Trans. Consum. Electron. 53, 249-257.

Geusebroek, J.M., Cornelissen, F., Smeulders, A.W.M., Geerts, H., 2000. Ro-
bust autofocusing in microscopy. Cytometry 39, 1-9.

Groen, F., Young, 1., Ligthart, G., 1985. A comparison of different focus func-
tions for use in autofocus algorithms. Cytometry 6, 81-91.

Han, J.W., Kim, J.H., Lee, H.T., Ko, S.J., 2011. A novel training based autofo-
cus for mobile-phone cameras. IEEE Trans. Consum. Electron. 57, 232-238.

He, J., Zhou, R., Hong, Z., 2003. Modified fast climbing search auto-focus
algorithm with adaptive step size searching technique for digital camera.
IEEE Trans. Consum. Electron. 49, 257-262.

Kehtarnavaz, N., Oh, H.J., 2003. Development and real-time implementation
of a rule-based auto-focus algorithm. Real-Time Imaging 9, 197-203.

Li, J., 2005. Autofocus searching algorithm considering human visual system
limitations. Optical Engineering 44, 113201-113201-4.

Mir, H., Xu, P, van Beek, P., 2014. An extensive empirical evaluation of focus
measures for digital photography, in: Proc. SPIE 9023, Digital Photog. X.
Morgan-Mar, D., Arnison, M.R., 2013. Focus finding using scale invariant

patterns, in: Proc. SPIE 8660, Digital Photography IX.

Quinlan, J.R., 1993. C4.5: Programs for Machine Learning. MK.

Rahman, M., Kehtarnavaz, N., 2008. Real-time face-priority auto focus for
digital and cell-phone cameras. IEEE Trans. Consum. Electron. 54, 1506—
1513.

Santos, A., Ortiz de Sol6rzano, C., Vaquero, J.J., Pefia, J.M., Malpica, N., del
Pozo, F., 1997. Evaluation of autofocus functions in molecular cytogenetic
analysis. Journal of Microscopy 188, 264-272.

Shen, C., Chen, H., 2006. Robust focus measure for low-contrast images, in:
Consumer Electronics, 2006. ICCE *06. 2006 Digest of Technical Papers.
International Conference on, pp. 69-70.

Witten, L.H., Frank, E., Hall, M.A., 2011. Data Mining. 3rd ed., MK.

Appendix A. Features for state transition heuristics

Set of features Fj for learning the state transition heuristic,
where T, is the total number of positions on the lens, s; is
the size of a large step (8 in our experiments), and the records
{o, fo}, {1, i}, {2, fo},...,{n, f,}} are the focus measures ob-
tained so far during the search in the current direction. In the
definitions of the features, avg(x,y) = 5.

n
distanceSwept = I

p
ratioToMax = _f n
max; f;
ratiocToRange = #
max; f; — min; f;
ratioMinToMax = M
max f]
distanceToMax = si(n — arg max; f;)
T,
simpleSlope = (n = Jo) ave(fu, fo)
n/T,
currentSlope = (Jn = Ja-D/ avg(f, fn-1)
n/T,
currentSlopeLarge = (n = fa-2)] ave(fa, fn-2)
n/T,

downslopelstHalf = [{(f;, fix1) : fi > fir1,0 < E}I/n

NI

downslope2ndHalf = [{(f;, fix1) : fi > firr,i 2 S}/n

