Lessons Learned from Modelling the NHL
Playoff Qualification Problem

Tyrel Russell and Peter van Beek

Cheriton School of Computer Science
University of Waterloo
{tcrussel,vanbeek }Quwaterloo.ca

Abstract. The modelling of complex problems tends to be most effec-
tive when modelling is calibrated using a concrete solver and modifica-
tions to the model are made as a result. In some cases, the final model is
significantly different from the simple model that best fits the constraints
of the problem. While there are several projects that are attempting to
create black box solvers with generic modelling languages, for the mo-
ment the modelling processes is intimately tied to the solving and search
procedure. This paper looks at the changes to the simple model and the
search procedures that were made to create an efficient solution to the
NHL Playoff Qualification problem. The approaches for improving the
model could be extended to other applications as the techniques are not
specific to this problem.

1 Introduction

The specific choices for modelling a given problem have a significant impact on
the ability to solve that problem efficiently [22]. Compounding the difficulties
in this task is the observation that, unlike modern SAT solvers, CP solvers are
not yet black box solvers and solving a problem with a CP solver can require
significant interplay between the solving and modelling phases. In this paper,
we discuss the difficulties associated with modelling a real world combinatorial
optimization problem, the NHL Playoff Qualification Problem [18,19]. Unlike
our previous work where we present solutions to such problems, in this paper we
discuss the issues arising from not only modelling the problem but the specific
solving methods which drove the changes to the original model.

This paper highlights some of the challenges arising from modelling a combi-
natorial optimization problem as a constraint programming problem and illus-
trates some techniques that have been used to solve the problem. Specifically,
we discuss how enumeration of logical constraints into decomposed models can
allow for more direct propagation of constraints. Disjunctive constraints, which
underlie implication constraints, have efficient GAC propagators but the result-
ing pruning is still quite weak in practice [2,7, 11, 24]. We identify the conditions
needed to apply this technique to solve other problems. We also re-illustrate the
effectiveness of solving relaxations of the original problem, which can give good
bounds on the original problem [6]. In our case, we used enumeration to generate

models where a simple relaxation of the model allows for a polynomial solution
to the relaxed models. The addition of symmetry and dominance constraints to
the model also had a significant impact on the speed at which solutions were
obtained.

One other technique that we used in solving these problems was the decom-
position of mutually exclusive disjunctive constraints into solving phases. The
observation that further decomposition allowed for simple polynomial solutions
in some cases led to a significant speed up in the time needed to solve the prob-
lem. A combination of further enumeration and constraint programming was
used to solve these decomposed phased models.

2 The Abstract NHL Qualification Problem

The NHL Qualification Problem is a winner determination problem where the
goal is to determine the number of points needed to just earn a playoff spot
rather than win the league. The NHL is a two part competition broken into a
regular season and a playoff tournament. The winner of the playoffs wins the
Stanley Cup, which is regarded as the most prestigious cup in North American
hockey. Since a team must qualify for the playoffs during the regular season,
it shows why determining whether you have earned a spot in the playoffs is so
important.

The NHL has thirty teams that are broken up into two conferences of fifteen
teams. Each conference is further broken into three divisions each with five
teams. A playoff spot is earned if either the team is the top ranked team in their
division or they earn one of the five wild card spots for their conference. A wild
card spot is a playoff spot given to a team that did not win their division but
was one of the top five non-division winners in their conference. The ranking is
decided on several criteria applied in order: most points, most wins, most points
earned against teams that have equal points and wins and most goals scored
by the team against other teams. In this work we do not consider the last tie
breaking criteria as the number of goals scored is unbounded in any given game.

Definition 1. Given a remaining schedule of games left to play, the results up
to a given point of the season, i.e. points and wins earned by teams so far, and
a distinguished team k, an NHL Playoff Qualification Problem is the problem of
determining the number of points needed by k such that if they earn that number
of points there exists no scenario, i.e. a completion of the remaining games, such
that they do not qualify for the playoffs.

This problem is known to be NP-Hard when there are m spots that make
the playoffs from each conference or when there are wild card spots [13,5]. The
current playoff structure used by the NHL is an instance of both classes of
problems. Similar problems have been solved for Brazilian soccer [17], which has
m = 8 spots that make the playoffs, and MLB baseball [1], which has a single
wild card per conference.

Before we introduce the model, we first present some notational definitions.
We denote the current day or date of the season as dy, the end date of the season
as d., and an arbitrary date as dg, dy < d; < d... For every team, we have a win
variable, w, and overtime loss variable, ol, for each opponent and subscript each
variable with the indices ¢ which denotes that team i achieved the result over
team j. We also superscript the variable with the given date, especially to denote
the difference between wins earned up to the current date, w%?’, and wins earned
at the end of the season under some scenario, wf; The points earned by the
team 7 against an opponent j is the weighted sum of the wins, worth two points,
and the overtime losses, worth a single point, denoted p?j = 2u)§i; + olfj?’. We
also denote the number of games remaining for a team i against a team j at
date d; as gfjt and the sum of games remaining for team i against all teams as
gft =) y gfjt. The total points earned at a given date d; is simply the points
earned against all opponents, denoted p?t =3 ; (pf;) Sets C;, D;, and T B; are
used to denote the set consisting of all teams in the same conference as team
1, the set consisting of all teams in the same division as team ¢ and the set of
teams tied with team ¢ in both points and wins.

A basic model includes the constraints that the points of k£ must be maxi-
mized (1), the total number of wins must be equal to the number of games (2),
the number of wins and overtime losses must be less than the number of games
(3), there must be eight teams, three division leaders and five wild cards, which
either have more points or have better tie breakers ((4) and (5)).

maxp (1)

de de _ ,d d d
Vij wif Hwi = wig +wil 957 (2)
Vij wflje + Ol;»ije < ngp + olgjg + g;ijp , (3)

de de
Vs (p,- >pk>
de _ de de de
V (pi =p° Aw; >wk>
de _ de de _ . de de de
U e R T D e S
JETBe JETBe
de de
v [VdeDi (Pi > Py)
de _ de de de
\/<pi =pg° Nw; >wd)
de _ . de de _ ,de de de
V| Pt =pg" Awpt =wgt A Z Dij > Z Pg;

JETBIeAjED; JETBAjED;
=4 bl =1, (4)

d bi>8. (5)

1€Cl,

We introduced an indicator variable b; which is 1 if and only if ¢ has more
points, better tie breakers or is a division leader. If there exists eight or more
teams where this is true then team k needs pge + 1 points to guarantee a playoff
spot. The problem with this model is that the core of the model is a combina-
tion of implication and disjunction constraints. However, like other real world
problems, the NHL is of bounded size and, therefore, it is sometimes practical
to enumerate some of the variables or constraints of the model. In the next
sections, we will discuss how we used enumeration and decomposition to find
feasible solution to models with (4).

3 Enumerating the Set of Implication Constraints

Implication constraints are widely used in constraint models. Examples of appli-
cations that include implication constraints include protein folding [3], configura-
tion problems [8], telecommunication feature subscription [10], pipeline planning
and scheduling [14], and the travelling salesman problem with time windows [16].
However, while they easily capture the constraints inherent in many applications,
they provide relatively weak propagation [11].

For example, take a simple constraint, “if the power supply has a power
rating of 150 watts then only use low power components,” that might be found
in a configuration problem. This constraint, which we will simplify as p = 150 =
use_low_power, has very weak propagation. The constraint cannot be propagated
until the left hand side has been instantiated to a specific value or the right
constraint has been falsified. This can be seen easily if the constraint is rewritten
as a disjunction, =(p = 150) V (use_low_power). No propagation occurs until
either a 150 watt power supply is selected or a high power component is selected.
This problem is still apparent even when generalized arc consistency is enforced
on the disjunction [11]. Note that in the example as long as another power supply
is possible or the use_low_power constraint can be satisfied then no propagation
occurs unless the two constraints shared a variable.

Enumeration is a common operations research and constraint programming
technique for decomposing a problem into more manageable sub-problems. The
goal is to enumerate the values of specific variables to decompose the constraint
graph or propagate a singleton value. This differs from the goal here which is to
allow constraints to be posted earlier to increase the propagation available to the
solver. Examples of applications which use this decomposition technique include
sports scheduling problems [15], instruction scheduling [12], and diagnostics [20].

Tree decompositions can be used in combination with enumeration. When
converting from a regular cyclic hypergraph to an acyclic graph, the solutions
of the sub-problems generated can be enumerated to generated a completely
acyclic constraint graph [4]. Rymon introduced a technique for enumerating the
power set of possible sets systematically in a best first fashion [20]. This is similar
to the technique used here but again the enumeration used by Rymon was on
variable values where as, in this work, it is on constraint implications which does

not necessarily result in any singleton variable propagation but rather allows the
implied constraint to be posted earlier than in the simple model.

Given the limited size of an NHL conference, it is possible to enumerate all
of the different ways that the indicator variables b; could be set in the model. If
we only look at one side of the logical equivalence, we end up with a constraint
that looks like,

b= (vl > pif) Vil =i A (6)

In the literature, we find there are a number of different applications that
have similar structures with a single indicator variable implying a constraint on
the model [10, 14, 16]. If we take a generic implication, p = ¢, we can rewrite
this constraint as a simple disjunction —p V ¢q. If p is a simple indicator variable
which needs a specific value, an arc consistent propagator will correctly prune
no values from the variables in the constraint ¢ unless p has be set to the specific
value under consideration. While this behaviour is logically correct, in practice
it means that the constraint ¢ may not propagate any values until late in the
search tree when it may have been the case that p must have been the specified
value in every solution. Note, however, that if p is not set to the specific value
then the constraint ¢ can either be true or false. Constraint (4) is a constraint of
logical equivalence and does not necessarily have this property. However as long
as (b) is satisfied, we can substitute (6) for (4) and search for solutions to the b;
variables as it does not strictly matter if there is nine or more teams better than
k as long as there is eight. In other words, if another team j should be better
than k£ by the constraint we do not need to enforce that b; is true as long as the
sum of the b; variables is greater than or equal to eight.

With this in mind, we can look at solutions of the b; variables which lead to
immediate propagation of the right hand side of Constraint (6). We do not have
to strictly look at sets of nine or more because if a larger set has a feasible solution
then a smaller subset would have a feasible solution as long as no constraint on
the indicator variables (i.e. (5)) is violated. We can generalize this result in some
cases as long as we have a set of implication constraints with indicator variables
of the form, p; = ¢;, and feasibility of the constraints on the indicator variables
can be established. In the following result, we look at specific configurations of
the indicator variables. We define an assignment of the indicator variables p; as
the set of indicator variables Pr which are set to true and all other indicator
variables set to false. For each indicator variable p; € Pr, there is a corresponding
¢; constraint which must be satisfied in the model and we denote the set of
constraints that must be satisfied under an assignment Pr as Q7. We define the
set of constraints that can be affected by fixing the value of an indicator variable
pi, directly or by chaining through other variables in the constraints, as the set
I(p;) and the set of all constraints affected by setting a set of indicator variables
Pr as I(Pr) = U,,cp, I(pi). We say that a constraint ¢ can be affected by
chaining if there exists a sequence of constraints from c to a constraint containing
the indicator variable p; such that each constraint in the sequence shares at least
one variable with its predecessor and successor in the sequence.

Lemma 1. Given a set of implication constraints, p; = q;, if there exists a
solution where a set of p; variables, Pr, set to true yields a feasible solution then
any subset P, C Pr of variables set to true yields a feasible solution as long as
the constraints in I(PT) have a feasible solution for the assignment of variables
in Pr.

Proof. Assume that there is a solution where the indicator variables in the set Pr
are set to true and the other variables set to false. Now assume that the model
is infeasible for some subset of Pr, Py . This means that some constraint in the
model that was not violated under the assignment Pr has now been violated
under the assignment P;.. However, the constraints in the model for P, are a
subset of the constraints in the model under the assignment Pr and the model
is strictly more relaxed, the only constraints which could have caused the model
to become infeasible are those in the set I(Pr). O

There exists another dominance in the set of indicator variables. If the con-
straints enforced by an assignment is infeasible then any set containing that
assignment must also be infeasible. If the the set of constraints Q)7 is infeasible
under the assignment Pr, then any set P;f such that Pr C P;f is also infeasible.,

Lemma 2. If the set of constraints Qr associated with an assignment Pr are
infeasible, then any set Py, such that Pr C Pj‘f, will enforce an infeasible set of
constraints.

Proof. Since the set of constraints Q}' enforced by P:,Jf contains the an infeasible
subset of constraints), the entire set of constraints is infeasible. a0

Sets of indicator variables which have been instantiated form a distinctive
lattice structure where each set of size k has a number of parents of k+1 indicator
variables (see Figure 1). Using Lemma 1, we know that if there is a solution for
some value £ > 8 in the lattice then we immediately have a solution for a set
of size 8. This can be useful later when testing tie breaking criteria which can
be easier on smaller sets of implication constraints. Lemma 2 tells us that if we
find any solution of any size that is infeasible then one need not look at any set
which contains that subset. This allows us to prune sets of indicator variables
which cannot be mutually satisfied.

Since there are fewer solutions at the top and the bottom of the lattice, it
can be beneficial to test these sets as the most benefit is gained from pruning.
However, the small sets are the ones least likely to be infeasible and the large sets
are the least likely to be feasible. Therefore, it can be useful to search various
locations in the tree to achieve maximum pruning and lead to a solution as early
as possible. However, in the next section, we discuss how almost all of the subsets
are dominated using bounding and thus do not need to be examined.

4 Bounding and Pruning the Sets

It is well known that tight lower bounds are useful in solving combinatorial opti-
mization problems. The most common use is in branch and bound search where

Fig. 1. Shows the lattice of possible sets of indicator variables that can be generated for
the implication constraints. Within this graph, it is possible to find chains of dominance
and infeasibility.

lower and upper bounds are used to prune infeasible regions of the search space.
Mixed integer programming relies heavily on this technique due to the existence
of an easily obtainable polynomial relaxation, the LP relaxation. In a constraint
programming context, an integer optimization function may be represented as a
constrained integer whose domains may be pruned by good bounds.

Since the NHL Playoff Qualification problem is an optimization problem, not
all of the feasible solutions lead to an optimal solution. Lemma 1 tells us that
if there is a feasible solution with more than eight constraints enforced, there
is a feasible solution with exactly eight implication constraints enforced. In this
section, we show that we can bound the quality of the assignment of indicator
variables and that a smaller feasible set always has a value at least as large as
a super set. We also show that using bounds pruning we can remove many of
the sets with feasible solutions for eight teams. We integrate this idea into our
dominance rules from the indicator variable lattice to help prune sets of indicator
solutions.

We construct a bound by taking a set of indicator variables and we relax
Constraint (6) to,

bi = (pfe > p%) : (7)

Constraint (7) forms the relaxed form of the original constraint where we
are considering only the first tie breaking condition. In other words, we only
consider the world where a set is at least as good k. This is a lower bound on
the original problem since the distinguished team may need one more point to
actually break ties which are relaxed using (7). The following lemma formalizes
this notion.

Lemma 3. The basic constraint model given an assignment Pr and where Con-
straint (6) is replaced by Constraint (7) provides a tight lower bound which is at
most one less than the actual solution for the given set of indicator variables if
a solution exists.

Proof. The solution obtained by substituting the relaxed constraint finds the
maximum value of pzﬁ such that each team i € Pr has at least as many points.
Note that if £ earns one more point then there must exist one team in Pr that
cannot simultaneously obtain pze + 1 points along with & or the solution was not
a true maximum. Therefore, if k earns one more point than the relaxed bound,
they necessarily qualify and could qualify at the lower bound if they are better
on tie breaks. a

Using Lemma 3, we know that if we can calculate the points for a specific
set of indicator variables we have both a tight lower and a tight upper bound on
the value for that given set of indicator variables. When checking for feasibility,
we noted that a feasible solution for a large set of variables meant there was a
feasible solution for all subsets as long as the assignment of indicator variables
did not violate the constraints. Now, we show that the smaller sets necessarily
have a bound value that is at least as large as a set containing the small set.

Lemma 4. Given two sets of fized indicator variables, Pyt and Pr, such that
Pr C Pj'f the solution for the NHL Qualification model under the assignment
Pr has a solution whose value is at least as large as the value of the solution
to the NHL Qualification model under the assignment P;f as long as there is a
feasible solution to both models.

Proof. Assume there is a feasible solution to both models and that the solution
under the model enforcing the constraints in @7 has a value that is less than
the value of the solution to the model enforcing the constraints in Q; However,
the constraints in model under the assignment P include all the constraints,
possibly with some extra constraints, that are in the model with the under the
assignment Pr. Therefore, any solution to the P:}i' model is a solution to the Pr
model as long as (5) is satisfied under Pp which is given since we assume there
exists a feasible solution to the Pr model. Therefore, we have a contradiction
and the solution to model under the assignment Pr must have a value at least
as large as the value of the solution to the model under the assignment Pj\. O

Lemma 4 states that smaller sets are optimal if they are feasible and Lemma
2 shows that any super set of a small set is infeasible if the small set is infeasible.
As a corollary, this means that it is sufficient to only look at the smallest sets

Fig. 2. This figure shows the flow network for a four team problem where the first
team earns w{® wins. This means that the other three teams must earn less than wé<.
Assuming that no team has not already earned that many wins, the number of wins
that the team cannot exceed is n; = wfﬁ - w;-io. Assume that the lower bound capacity

is zero unless a range is given.

that satisfy both the constraints on the indicator variables and the constraints
on the rest of the model.

We have discussed why finding bounds on the values is an effective technique
for pruning different sets of models but we have not discussed how this is done
specifically for this problem. Schwartz [21] showed in 1966 that a similar problem,
the winner determination problem, could be solved in polynomial time for a win-
loss scoring model. Kern and Paulusma [9] showed that the same approach could
be used for other scoring models if they are normalized. McCormick [13] and
Gusfield and Martel [5] showed that playoff determination problems are often
NP-Complete. However, if we enumerate the solutions, we can use a method
similar to that used by Kern and Paulusma [9]. One thing that differs is that we
cannot make as strong of assumptions about the play of the distinguished team.
As well, Kern and Paulusma’s model does not explicitly state how to deal with
the factors removed during normalization when they are reincorporated into the
model. The basic method described by Schwartz [21] uses a flow network to
partition remaining games to individual teams. If there exists a feasible flow,
which represents an assignment of wins, then there exists a scenario where the
distinguished team earns the most points and they have not be eliminated. Figure
2 shows an example of a flow network constructed using Schwartz’s method.

The NHL uses an unusual {(0, 2), (1,2), (2, 1), (2,0)} model for scoring games
which normalizes to the win-loss model. However, the normalization procedure
assumes two things that are not necessarily true in the problem we are describ-
ing. First, it assumes that (1,2) and (2,1) always dominates (0,2) and (2,0),
respectively. The second issue that is not described is how to deal with the extra
points removed when the model is reduced from {(1,2), (2,1)} to {(0,1),(1,0)}.

Fig. 3. This figure shows the same flow network as Fig. 2 but here we must include

team 1 since we cannot make assumptions about the remaining games for team 1.

Assume this graph is calculated for w wins. Now we also want the teams to reach

or exceed the wins of team 1. The number of wins is calculated in the same manner,
— do .

n; = w — w;°, but forms a lower bound in the graph.

These points for each team except the distinguished team can be directly incor-
porated into flow graph.

In a playoff qualification problem, we are looking for scenarios on the edge
of feasibility. Those solutions where the distinguished team &k may earn a playoff
spot but earning one more point will surely earn them a playoff spot. These
situations do not occur in the problems introduced by Schwartz as they did
not consider tie breaking. Therefore, we are looking for a scenario where a set of
teams denoted earn at least as many points as k. As well, given the enumeration,
we know which teams we want to reach the bound so our graph need only include
second layer nodes if the team is in the set or is k as all others have no bound
associated with them. An example of the new graph associated with the playoff
qualification problem is shown in Fig. 3.

5 Decomposition of Mutually Exclusive Disjunctions:
Phased Solver Approach

Recall that (4) is a combination of a logical implication and a disjunction where
even maintaining arc consistency may prune very few domains until late in the

search. However, mutually exclusive disjunctions provide a simple method for de-
composing the model as only one of the conditions can be true at any given time.
One method for dealing with mutually exclusive disjunction is through branching
on exclusive choices in the disjunction as described by Van Hentenryck [23, pg.
169]. Our approach, of enumerating and using different solvers, differs because
we can easily check feasibility of combinations of disjunctions and determine
when a problem is hard and can be reserved until later, if needed. Observe in
(4) that the first three conditions have a mutually exclusive structure,

de de de de de de
(pi > DL) \ (pi =Pt AWt > wy)

de — de de de de de
Vo pit = Awic > wit A Z pi; > Z |- (8)
JETBe JET B

Each constraint naturally excludes the others being true and thus provides a
simple decomposition point as each term in the constraint being true means the
other terms cannot be true. These terms form a tie breaking constraint which
means that the relaxed version of the first, where we allow equality, would include
all solutions to the second and third and the relaxed version of the second with
equality would include the solutions to the third.

These observations allow for a phased strategy where we take the enumeration
of constraints and extend it to not just the relaxed constraint but all three terms
listed in (8). In the first phase, we determine the bounds on the enumerated sets
as described in Section 4 and keep only those teams with the highest lower
bound, p. Using only the models with eight implication constraints set, we post
the first disjunction instead of the entire constraint. If there is a solution where
every team earns more than the bound then we return the solution and we are
done. Note it is possible for this to happen as the bound may be limited by
the maximum number of points earned by k. Then, we relax the constraint by
adding equality and check for feasibility. If there is now a solution then there
may be a solution under tie breaking and we store that set to check later. If
there is no solution to the relaxed problem, then we know there is no solution
for that set and we discard.

In the second phase, we have only sets where teams can reach the point bound
p and we know from the results of the first phase that there exists no scenario
where every team earns more points than the bound. Therefore, we determine if
in those scenarios where teams just reach the bound, the tied teams earn more
wins. Observe that k has a certain number of earned wins pio initially and some
maximum and minimum possible given the number of points needed to reach
the bound. The difference between the maximum and minimum is due to the
possibility of overtime losses which earns the team an extra point. This range
of wins can be used to prune the number of different sets that we examine. For
example, if k£ can earn between 21 and 24 wins to reach a point bound of 53
points and each team in the set needs to reach at least 53 points then many
of those teams would not reach or exceed the point total without also earning

more or less wins than is possible for k given the possible unevenness in the
overtime losses. Therefore, if we enumerate the possible win totals for k£ for each
set then we can determine for each win value which teams could be tied. By
examining all sets of tied teams and enforcing the second disjunction only for
those teams while leaving the remainder constrained by just the first disjunction,
we can solve the problem efficiently. Note we discard any scenario where some
team cannot reach or exceed either the point bound or the win bound, when
tied. Again as in the first phase, if there is a solution without equality then stop
with a solution. If there is a solution with equality, then save it for the the next
level of tie breaking and if no solution then there is no feasible solution for a
given p.

The third phase is similar to the second phase except that we are looking
for sets of teams that have equal number of points and wins and all other sets
can be ignored. Here, however, we must consider the entire set of teams and
not just sets of size eight as the dominance that worked for the first two rounds
no longer holds. It is possible for there to be a solution where more than eight
teams are tied with £ but not with eight due to the fact that the teams left out
may help everyone but k£ and thus create a circumstance where a larger set is
necessary. Increased propagation is possible in this phase by adding constraining
tied teams to the known point and win bounds.

The first two phases can be solved with network flows once the enumeration
has occurred but the third stage is still hard and requires that a constraint
programming solver be used for the last stage.

6 Symmetry and Dominance

Another common modelling method is to add additional constraints, either stat-
ically or dynamically, to remove symmetries and dominances from the solution.
One reason to add these constraints is to avoid the search of identical solutions
and thus reduce the tree search. However, it is well known that this technique
does not always payoff as the static variable ordering technique sometimes con-
flicts with the branching heuristic and the overhead from the dynamic checks
and constraint posting may be too large. We use this technique combined with
the initial enumeration to remove symmetries and dominances that could not be
easily detected without the enumeration.

Once we know the point bound and have fixed the set of implication con-
straints that will be active in the model, there are symmetric and dominated
solutions that can be removed by static symmetry breaking constraints. In this
section, we describe some of the symmetry techniques that can be used by enu-
merating the features that make nearly symmetric solutions symmetric.

The most obvious is that we can discard those fixed sets of implication con-
straints which do not have an upper bound equal to the point bound. Those
solutions are dominated by those sets with a better lower bound.

There is very little true symmetry in the NHL Playoff Qualification problem
as each team often has a different number of games remaining, points, wins and

‘Enumeration‘Bounding‘Phased Solver‘Symmetry Breaking

Timeouts (300 s) 5075 T 4217 2 0
Latest Date of Failure Apr 4 Apr 4 Oct 5 N/A
Earliest Problem Solved| Mar 18 Dec 5 Oct 4 Oct 4

Table 1. Results from the 2006-07 season. Instances are solved for every game day,
working in reverse order from the end of the season (Apr 8) to the beginning of the
season (Oct 4). There are a total of 5430 instances.

different opponents for their remaining games. However, by using the phased ap-
proach combined with enumeration we are able to identify some classes of teams
where symmetries can be applied to reduce the search space of the problem.
Specifically, the enumeration tells us when constraints will be used and thus
when disjunctions do not have to be posted. Therefore, we know when we can
force certain assignments as they always lead to a solution if there exists a
solution. The first is that teams that have no constraints, i.e. the indicator
variable is not true, need not win any games. The second is that in many cases the
specific overtime losses can be fixed especially for teams that have no constraints.

7 Experimental Results

The combination of the various techniques generates a set of models for each
problem that can be easily solved. Each component builds on the techniques
used previously. The initial enumeration is used to deal with the implication
constraints and the cardinality constraint on the indicator variables. Once the
sets have been enumerated, it is easy to prune the sets since bounds can be
calculated efficiently. The phased solver method takes the idea of enumeration
and extended that to disjunctions as well as implication constraints. Lastly, once
the enumeration has fixed both the points and wins earned by the distinguished
team, it is possible to fix many of the other variables due to symmetry.

Table 7 shows the improvements of the various techniques. The solvers were
implemented using C++ using ILOG Solver 4.2 and the Boost Graph Library.
Implementing a sum of variables indexed by a set of indices from a set variable
proved infeasible using ILOG Solver 4.2 so the simple model was not imple-
mented in its pure form. From the results, we see that implementing enumeration
allows some problems to be solved but it must be combined with other techniques
to solve the problem. The largest improvement gain was from using enumeration
and decomposition to create a phased approach. Symmetry breaking constraints
were added to solve the last remaining problems.

! Due to time constraints, timeouts for Enumeration are estimated. Once a team timed
out ten times, it was extrapolated that all of the remaining instances would time
out. This is a relatively safe assumption since the instances get larger towards the
beginning of the season and the gap between the bound and the current points
increases.

8 Discussion

The lessons learned from modelling the NHL Qualification Problem can be ap-
plied to other models. The direct posting of implication constraints can be helpful
but note that in the worst case there is an exponential number of sets to con-
sider. This method works best when the constraints on the indicator variables
can be easily checked, such as in our case where there is a single cardinality
constraint, and the total number of implication constraints is relatively small.
It is also important for the posted constraint to prune the domains; i.e., if the
right hand side of the implication provides no propagation then the enumeration
is purely overhead without any benefit.

Enumeration can also be useful, as in this case, because it reveals problem
structure. By carefully enumerating specific parts of the model, the model can
be decomposed which made it more amenable to other efficient techniques such
as flow networks. Another example where this technique has been used before is
in tree decompositions [4].

Static symmetry breaking constraints can be a very useful tool but only when
coupled with a heuristic that does not conflict with the choices. We took care to
ensure that our symmetry breaking constraints did not conflict with the heuristic
we were using.

9 Conclusion

This paper is a case study in modelling a real world optimization problem. In
the process of modelling the problem, enumeration and decomposition was used
to modify the simple model which encoded the constraints into a set of models
that could be easily solved by themselves. The enumeration of the implication
constraints created models where constraints could be propagated earlier. The
enumeration also allowed several more techniques to be applied, most notably,
bounding and the decomposition of mutually disjunctive constraints. The final
decomposition uncovered symmetry that was not present in the initial model
and the static symmetry breaking constraints helped improve the efficiency.

References

1. I. Adler, A. L. Erera, D. S. Hochbaum, and E. V. Olinick. Baseball, optimization
and the world wide web. Interfaces, 32:12-22, 2002.

2. F. Bacchus and T. Walsh. Propagating logical combinations of constraints. In
Proc. of the 19th Intl. J. Conf. on Al, 2005.

3. R. Backofen. Using constraint programming for lattice protein folding. In Proc. of
the 3rd Pacific Symposium on Biocomputing, 1998.

4. R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intel-
ligence, 38:353-366, 1989.

5. D. Gustfield and C. E. Martel. The structure and complexity of sports elimination
numbers. Algorithmica, 32:73-86, 2002.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

J. Hooker. Logic, optimization, and constraint programming. Informs Journal of
Computing, 14:295-321, 2002.

C. Jefferson and K. Petrie. Efficient propagation of disjunctive constraints using
watched literals. In Proc. of the 7th Intl. Workshop on Constraint Modelling and
Reformulation, 2008.

U. Junker. Preference programming for configuration. In Proc. of the 4th Workshop
on Configuration, 2001.

W. Kern and D. Paulusma. The computational complexity of the elimination
problem in generalized sports competitions. Discrete Optimization, 1:205-214,
2004.

D. Lesaint, D. Metha, B. O’Sullivan, L. Quesada, and N. Wilson. Solving a telecom-
munications feature subscription configuration problem. In Proc. of the 1jth Intl.
Conf. on the Princ. and Prac. of CP, 2008.

O. Lhomme. Arc-consistency filtering algorithms for logical combinations of con-
straints. In Proc. of the 10th Intl. Conf. on the Princ. and Prac. of CP, 2004.

A. Malik, M. Chase, T. Russell, and P. van Beek. An application of constraint
programming to superblock instruction scheduling. In Proc. of the 14th Intl. Conf.
on the Princ. and Prac. of CP, 2008.

S. T. McCormick. Fast algorithms for parametric scheduling come from extensions
to parametric maximum flow. Operations Research, 47:744-756, 1999.

A.V. Moura, C.C. de Souza, A. A. Cire, and T. M. T. Lopes. Planning and
scheduling the operation of a very large oil pipeline network. In Proc. of the 14th
Intl. Conf. on the Princ. and Prac. of CP, 2008.

G. Nemhauser and M. Trick. Scheduling a major college basketball conference.
Operations Research, 26:1-8, 1998.

G. Pesant, M. Gendreau, J.-Y. Potvin, and J.-M. Rousseau. An exact constraint
logic programming algorithm for the traveling salesman problem with time win-
dows. Transportation Science, 32:12-29, 1998.

C. C. Ribeiro and S. Urrutia. An application of integer programming to play-
off elimination in football championships. Intl. Trans. in Operational Research,
12:375-386, 2005.

T. Russell and P. van Beek. Mathematically Clinching a Playoff Spot in the NHL
and the Effect of Scoring Systems. In Proc. of the 21st Conf. of the Canadian
Society for Computational Studies of Intelligence, 2008.

T. Russell and P. van Beek. Determining the number games needed to guarantee
an NHL playoff spot. In Proc. of the 6th Intl. Conf. on the Integration of Al and
OR Techniques in CP for Combinatorial Optimization Problems, 2009.

R. Rymon. Search through systematic set enumeration. In Proc. of the Third Intl.
Conf. on the Princ. of Knowledge Representation and Reasoning, 1992.

B. Schwartz. Possible winners in partially completed tournaments. SIAM Review,
8:302-308, 1966.

H. Simonis. Models for global constraint applications. Constraints, 12:63-92, 2007.
P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
1989.

J. Wurtz and T. Muller. Constructive disjunction revisited. In In Proc. of the 20th
German Conf. on Al 1996.

