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Abstract

Modern processors have multiple pipelined functional units and can issue more than one in-

struction per clock cycle. This puts great pressure on the instruction scheduling phase in a

compiler to expose maximum instruction level parallelism. Basic blocks and superblocks are

commonly used regions of code in a program for instruction scheduling. Instruction scheduling

coupled with register allocation is also a well studied problem to produce better machine code.

Scheduling basic blocks and superblocks optimally with or with out register allocation is NP-

complete, and is done sub-optimally in production compilers using heuristic approaches. In this

thesis, I present a constraint programming approach to the superblock and basic block instruction

scheduling problems for both idealized and realistic architectures. Basic block scheduling with

register allocation with no spilling allowed is also considered. My models for both basic block and

superblock scheduling are optimal and fast enough to be incorporated into production compilers.

I experimentally evaluated my optimal schedulers on the SPEC 2000 integer and floating point

benchmarks. On this benchmark suite, the optimal schedulers were very robust and scaled to the

largest basic blocks and superblocks. Depending on the architectural model, between 99.991% to

99.999% of all basic blocks and superblocks were solved to optimality. The schedulers were able to

routinely solve the largest blocks, including blocks with up to 2600 instructions. My results com-

pare favorably to the best previous optimal approaches, which are based on integer programming

and enumeration. My approach for basic block scheduling without allowing spilling was good

enough to solve 97.496% of all basic blocks in the SPEC 2000 benchmark. The approach was

able to solve basic blocks as large as 50 instructions for both idealized and realistic architectures

within reasonable time limits. Again, my results compare favorably to recent work on optimal

integrated code generation, which is based on integer programming.
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Chapter 1

Introduction

In this chapter, I informally introduce my research area: optimal instruction scheduling for multi-

issue processors. I give a short introduction to the compilation phase and the instruction schedul-

ing problem for modern processors. Further, I motivate the interest of the optimal instruction

scheduling problem and summarize the contributions of my work.

1.1 Compilation phase

A typical compilation path for a compiler is shown in Figure 1.1. A compiler takes as input

a source program written in some high-level language and performs lexical analysis (scanning),

syntax analysis (parsing) and semantic analysis (type checking) in the front-end. It performs

control flow analysis, data flow analysis, various optimizations, instruction scheduling, register

allocation and then finally generates machine code in the back-end. These traditional front-end

compiler analysis and back-end optimizations steps are quite mature and well understood and are

routinely employed in production compilers. The back-end optimization phases play a key role in

the quality of the final machine code.

1.2 Instruction scheduling

A key feature in modern processors is multiple pipelined functional units. Examples of functional

units include arithmetic-logic units (ALUs), floating point units, memory or load/store units which

perform address computations and accesses to memory hierarchy, and branch units which execute

branch and call instructions. Having multiple functional units allows the processor to issue more

than one instruction in each cycle. This phenomenon is known as instruction level parallelism
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Figure 1.1: Typical compilation path of a compiler for modern processors.

(ILP). Instruction level parallelism increases the throughput of a processor; i.e., the rate at which

instructions of an application program can be executed. As we are approaching the technological

limits to processor cycle time, ILP has become a key area of research in the compiler field.

For a pipelined functional unit, each instruction is divided into different sections and each

section of the instruction requires different hardware on a functional unit. The number of sections

defines the pipeline depth of a functional unit. The number of sections varies depending on

processors and instruction types but typically there are four: instruction fetch and decode, address

generation and data fetch for memory instructions, instruction execute, and write back. Supposing

that n such sections can be identified in an instruction, the pipeline depth for the unit taking care

of that instruction is n. Ideally n instructions can be in-flight in each cycle. In-flight instructions

are those instructions that have been issued but have not yet been completed. If there are m

pipelined functional units in a processor, then there are at most m × n instructions in-flight in

each cycle. A functional unit capable of issuing a new instruction in each cycle is called a fully

pipelined functional unit. The number of instructions in-flight measures the amount of parallelism

that a compiler must provide to keep a processor busy. But in real processors, this is not always

true. Sometimes, instructions get hung in one pipeline stage for multiple cycles. There are a

number of reasons why this might happen1. When it happens, the pipeline is said to be stalled.

All of the instructions in the stage below the one where the stall happened continue advancing

normally, while the stalled instruction just sits in its stage and backs up all the instructions

behind it. The number of clock cycles an instruction takes to pass through the pipeline is known

as the instruction latency. In real processors, the instruction latency is not necessarily equal to

the number of pipeline stages. Because, instructions can get hung in one or more pipeline stages

1See Chapter 2 for details.
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for multiple cycles, each extra cycle that they spend waiting in a pipeline stage adds one more

cycle to their latency.

To ensure enough instructions are available to keep all the functional units busy, the com-

piler rearranges the instructions, which makes instruction scheduling an important phase in any

compiler. Instruction scheduling is a code reordering transformation that attempts to hide the

latencies inherent in modern processors. The latency of an instruction determines how long the

following instructions have to wait to see the result produced by that instruction. This wait or gap

needs to be filled with other available instructions that do not depend on the stalled instruction.

If the compiler cannot find any such instruction then it inserts NOPs (no operations) to preserve

the semantics of the program.

Instruction scheduling is done on certain regions of a program. Commonly used scheduling

regions include basic blocks and superblocks. A basic block is a collection of instructions with a

unique entrance and a unique exit point and is used for the local instruction scheduling problem.

A superblock is a collection of basic blocks with a unique entrance but multiple exit points and

is used for the global instruction scheduling problem. I will discuss both of these problems in

detail in the next chapter. Dependencies among instructions in scheduling regions are normally

represented by a directed acyclic graph (DAG). In a DAG, each node represents an instruction.

There is an edge from node A to node B in a DAG, if instruction B is dependent on instruction

A. The edge is labeled with an integer number that is the latency associated with instruction A.
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(a)

A r1 ← a

B r2 ← b

C r3 ← c

D r4 ← d

E r1 ← r1 + r2

F r4 ← r4× r3

G r1 ← r1 + r4

(b)

Figure 1.2: (a) Dependency DAG associated with the instructions to evaluate (a + b) + (c × d);

(b) assembly code for the DAG.

Example 1.1 Figure 1.2 shows a simple dependency DAG associated with the instructions to

evaluate (a + b) + (c× d). Assume a processor with two fully pipelined functional units capable of
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executing all types of instructions and that loads from memory have a latency of three cycles and

all other operations have a latency of one cycle. Two possible schedules are shown in Table 1.1.

The optimal schedule requires only four NOPs and is three cycles shorter than the non-optimal

schedule. This shows the importance of a good instruction scheduler.

Cycle Non-Optimal Schedule Optimal Schedule

0 r1← a r2← b r1← a r2← b

1 r3← c r4← d

2

3 r1← r1 + r2 r3← c r1← r1 + r2

4 r4← d r4←r4× r3

5 r1←r1 + r4

6

7 r4← r4× r3

8 r4← r1 + r4

Table 1.1: Two possible schedules for the DAG in Figure 1.2. Empty slots represent NOPs.

Besides using an instruction scheduler to exploit the parallelism of a processor by rearranging

instructions, a compiler attempts to ensure that the data needed and produced by the instructions

is available in a memory which is fast and close to the processor. In a memory hierarchy, physical

registers are considered the fastest and closest to a processor. The register allocation phase is used

by a compiler to decide which data values should reside in physical registers. However, there are

a limited number of registers in any processor. It is impossible to keep the values of all variables

present in a program in the registers all the time. At certain points in a program, the number of

variables may exceed the number of available registers. At these points, a compiler has to decide

which values should be moved to a cache memory, which is next to registers in any memory

hierarchy. This movement of data from registers to memory is called spilling. The movement of

data between a cache and registers consumes many clock cycles and affects the throughput of a

processor. The register allocation phase is usually done after the instruction scheduling phase.

Thus, any gain from the instruction scheduling phase due to a shorter schedule may be lost due

to excessive spilling in the register allocation phase. Co-ordination between these two phases

is an important factor in increasing throughput. This co-ordination is achieved by maintaining

the number of data variables alive at each point in a program within certain limits during the

instruction scheduling phase. In the compiler literature, one finds the following two definitions

for liveness of a variable:

1. A data variable is alive in a register between its first load and last use [51].

2. A data variable is alive in a register between its first load and before the next write update

to the register [27].
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Cycle Schedule 1 Schedule 2

0 r1← a r2← b r1← a r2← b

1 r3← c

2

3 r1← r1 + r2 r3← c r1← r1 + r2

4 r4← d r2← d

5

6

7 r4← r4× r3 r2← r2× r3

8 r4← r1 + r4 r1← r1 + r2

Table 1.2: Two possible schedules for the DAG in Figure 1.2 with different maximum number of

variables alive. Empty slots represent NOPs.

According to the first definition, variable b in Table 1.1 is alive in r2 between cycle 0 and 3 for

both non-optimal and optimal schedules. But, it is alive throughout both the schedules according

to the second definition. For my work, I consider the second definition. The number of data

variables alive at a point in a program is also known as the register pressure at that point.

Example 1.2 Consider the DAG in Figure 1.2 again. Two possible schedules are shown in

Table 1.2. In Schedule 1, we have a maximum of four variables alive at any point (e.g., cycle

5). In Schedule 2, we have a maximum of three variables alive at any point (e.g., again cycle 5).

Schedule 2 is preferred over Schedule 1, as it only uses three registers.

1.3 Importance of the work

Instruction scheduling is NP-complete for realistic architectures. This has led to the belief that in

production compilers, a heuristic or approximation algorithm approach must be used rather than

an exact approach to instruction scheduling [51]. The most commonly used heuristic approach is

the list scheduling algorithm, which is a greedy algorithm. Although heuristic approaches have the

advantage that they are fast, a scheduler which finds provably optimal schedules may be useful

when compiling for software libraries, digital signal processing or embedded applications [27]. As

well, an optimal scheduler can be used to evaluate the performance of heuristic approaches. Such

an evaluation can tell whether there is a room for improvement in a heuristic or not. Finally,

an optimal scheduler can be used to automatically create new heuristics using techniques from

machine learning.
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1.4 Main motivation behind the work

A major challenge when developing an exact approach to an NP-complete problem is to develop a

solver that scales and is robust in that it rarely fails to find a solution in a timely manner on a wide

selection of real problems. Recently, Wilken, Liu and Heffernan [66] and Shobaki and Wilken [60]

showed that through various modeling and algorithmic techniques, integer linear programming

and enumeration techniques could be used to produce optimal instruction schedules for large basic

blocks and superblocks targeted to a multi-issue processor. However, these approaches are either

restricted to single-issue architectures or apply only to idealized architectures. Dynamic program-

ming approaches have also been proposed. However, they are limited to 10 to 40 instructions [42].

Recently, van Beek and Wilken [65] presented a constraint programming approach for single-issue

processors that is fast and optimal for larger basic blocks. The results from their work motivated

me to apply constraint programming techniques to the harder instruction scheduling problems on

more realistic architectures.

1.5 Contributions

In this thesis, I present a constraint programming approach to instruction scheduling for multiple-

issue processors that is robust and optimal. In a constraint programming approach, one models a

problem by stating constraints on acceptable solutions. A constraint is simply a relation among

several unknowns or variables, each taking a value in a given domain. The problem is then usually

solved by interleaving a backtracking search with a series of constraint propagation phases. In the

constraint propagation phase, the constraints are used to prune the domains of the variables by

ensuring that the values in their domains are locally consistent with the constraints. In developing

my optimal scheduler, the keys to scaling up to large, real problems were improvements to the

constraint model and to the constraint propagation phases.

As already mentioned, attempts have been made to solve instruction scheduling problems

optimally. However, test suites used in these works are often small and simple. As well, previous

work often assumes a fully pipelined architecture, which is not a realistic architecture. In contrast,

in my work I consider both idealized and realistic architectures. Also, the test suites which I use

to evaluate my model contain all blocks from the SPEC 2000 benchmark with size as large as

2600 instructions and latency as large as 36 cycles. Scheduling blocks were collected before and

after the register allocation phase. The main contributions of this work are:

1. A fast and optimal basic block instruction scheduler for both idealized and realistic multi-

issue architectures.

2. A fast and optimal superblock instruction scheduler for both idealized and realistic multi-

issue architectures.
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3. An optimal basic block instruction scheduler for the combined instruction scheduling and

register allocation without spilling problem for both idealized and realistic multi-issue ar-

chitectures.

With the exception of [31, 32, 65, 66], previous approaches on optimal instruction scheduling

have only been evaluated on a few problems with sizes of the problems ranging between 10 and 50

instructions and their experimental results suggest that they would not scale up beyond problems

of this size. Further, many previous approaches are for idealized architectures. A major challenge

when developing an optimal approach to an NP-complete problem is to develop a solver that

scales and is robust in that it rarely fails to find a solution in a timely manner on a wide selection

of real problems. In this thesis, I present constraint programming approaches to basic block and

superblock scheduling for multiple-issue processors that are robust and optimal for both idealized

and realistic architectures. The novelty of my approach is in the extensive computational effort

put into a preprocessing stage in order to improve the constraint model and thus reduce the effort

needed in backtracking search. I experimentally evaluated my optimal schedulers for basic block

and superblock scheduling on the SPEC 2000 integer and floating point benchmarks, using four

different idealized architectural models and four realistic architectural models. On this benchmark

suite, the optimal schedulers scaled to the largest blocks and were very robust. Depending on the

architectural model, at most 3 basic blocks and 15 superblocks out of the hundreds of thousands

of blocks used in our experiments could not be solved within a 10-minute time bound. This

represents approximately a 50-fold improvement, in terms of number of problems solved, over

previous work.

I also present a constraint programming approach for basic block integrated with register

allocation. My approach for basic block scheduling without spilling allowed was able to solve

97.496% of all basic blocks in the SPEC 2000 benchmark. The approach was able to solve basic

block as large as 50 instructions for both idealized and realistic architectures with in 10 minutes.

This compares favorably to the recent work by Bednarski and Kessler [5, 6] on optimal integrated

code generation using integer programming. The approach by Bednarski is targeted towards a

theoretical idealized multi-issue VLIW processor and is able to solve basic block as large as 50

instructions with in 20 minutes for unit latency and basic blocks as large as 20 instructions with

arbitrary latencies.

It should be noted that the scope of this work is limited to instruction scheduling of acyclic

code. Cyclic scheduling techniques such as loop unrolling and software pipelining [51] are beyond

the scope of this thesis.

1.6 Origin of the thesis

Van Beek and Wilken [65] presented a constraint programming approach for a idealized single-

issue processor that is fast and optimal for larger basic blocks. I continued the research on harder
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instruction scheduling problems and more realistic architectures. A large part of the material in

this thesis originates from the following publications.

• Abid M. Malik, Jim McInnes and Peter van Beek. Optimal Basic Block Instruction Schedul-

ing for Multiple-Issue Processors using Constraint Programming. International Journal on

Artificial Intelligence Tools, Accepted June 2007. A preliminary version appears in Pro-

ceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence,

Washington, DC, 2006.

• Abid M. Malik, Tyrel Russell, Michael Chase, and Peter van Beek. Learning List Scheduling

Heuristics for Basic Block Scheduling. Journal of Heuristics, Accepted January 2007. A

preliminary version appears in Proceedings of the 15th CASCON, Toronto, 2005.

• Abid M. Malik, Tyrel Russell, Michael Chase, and Peter van Beek. Optimal Superblock

Instruction Scheduling for Multiple-Issue Processors using Constraint Programming. Tech-

nical Report, CS-2006-37, School of Computer Science, University of Waterloo, 2006.

• Michael Chase, Abid M. Malik, Tyrel Russell and Peter van Beek. An Optimal Scheduler

and a Performance Analysis of List Scheduling for Superblocks. In preparation.

• Tyrel Russell, Abid M. Malik, Michael Chase, and Peter van Beek. Learning List Schedul-

ing Heuristics for Superblock Scheduling. 19 pages. Submitted to IEEE Transactions on

Knowledge and Data Engineering. Through one round of reviewing.

1.7 Organization of the thesis

The rest of the thesis is organized as follows: Chapter 2 gives the technical background neces-

sary for understanding the problems addressed in this thesis. Chapter 3 describes the constraint

programming approach for basic block instruction scheduling. Chapter 4 describes the constraint

programming approach for superblock scheduling. Chapter 5 describes the constraint program-

ming approach for basic block instruction scheduling without spilling. Chapter 6 concludes the

thesis and discusses potential future work.
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Chapter 2

Background

In this chapter, I describe the technical background needed to understand the instruction schedul-

ing problems addressed in this thesis. I define the main terms used in this thesis, present the

main issues in the instruction scheduling problems, and introduce constraint programming and

how constraint programming can be applied to model an instruction scheduling problem.

2.1 Fundamental constraints

An instruction scheduler reorders instructions to maximize instruction level parallelism. However,

in order to preserve the semantics of a given program the reordering of instructions is done under

certain constraints. A fundamental problem that arises in compilers is to find a better instruction

schedule subject to data dependency, control and resource constraints.

2.1.1 Data dependency constraints

Two instructions I1 and I2 are data dependent if data produced by one instruction is used by the

other instruction. There are three types of data dependency:

• Instruction I2 is flow dependent on instruction I1 if I1 computes a value that I2 uses, as in

the following two instructions:

(I1) r1← r2 + r3

(I2) r4← r5 + r1

If I2 is scheduled before I1 then the data in register r1 will be different from what is required

for I2. Hence, I2 would compute the wrong result.

9



• Instruction I2 is anti-dependent on instruction I1 if I1 reads some location (register or

memory cell) that I2 writes to, as in the following two instructions:

(I1) r1← r2 + r3

(I2) r2← r5 + r4

Instruction I2 overwrites the data in r2. Instruction I1 would compute the wrong result if

I2 is scheduled ahead of I1.

• Instruction I2 is output dependent on instruction I1 if I1 and I2 write to the same location

(register or memory cell), as in the following two instructions:

(I1) r1← r2 + r3

(I2) r1← r5 + r4

If I2 is scheduled before I1 then all the instructions after I2 using r1 get the result of the

wrong computation.

2.1.2 Control constraints

A control dependency occurs between a branch and subsequent instructions. An instruction is

dependent on a branch if the outcome of that branch controls whether the instruction is executed

or not. Example 2.1 explains control dependency among instructions.

Example 2.1 Consider the code in Figure 2.1. Here the two move instructions, I2 and I3, are

control dependent on the branch instruction I1. However, the add instruction I4 is not, since it

will be executed regardless of the branch.

(I1) if r1 == 0 goto L1

(I2) r2← 1

(I3) L1: r2← 2

(I4) r1← r1 + r2

Figure 2.1: Control dependency constraint.
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2.1.3 Resource constraints

A resource dependency occurs when two instructions need the same functional unit. If there is a

resource dependence between two instructions then they cannot execute at the same time, but in

the absence of other dependencies, they can execute in any order. Example 2.2 explains resource

dependency among instructions.

Example 2.2 Consider the code in Figure 2.2. Assume both instructions I1 and I2 are fixed

point instructions and require a fixed point functional unit for their execution. Suppose there is

only one fixed point functional unit available in the processor. Only one of the instructions can

be executed at a time. Since there does not exist any dependency between these two instructions,

they can be issued in any order.

(I1) r1← r1 + r2

(I2) r3← r4 + r5

Figure 2.2: Resource dependency constraint.

2.2 Instruction scheduling regions

This section discusses the regions used in the instruction scheduling problems. In a compiler,

a program is represented by a call graph. A call graph is an abstract data structure. In a call

graph, each procedure of the program is represented by a node, and edges between nodes indicate

that one procedure calls another procedure. Each procedure node in a call graph is represented

by a control flow graph (CFG) which is also an abstract data structure. Directed edges in a

CFG represent jumps within a procedure or program. A CFG is essential to several compiler

optimizations based on global dataflow analysis. Both call graphs and CFGs are not used directly

in instruction scheduling, but they help in building various regions for instruction scheduling.

Each node in a CFG is a basic block. A basic block is a sequence of instructions with a

unique entrance and a unique exit point. A basic block is for local instruction scheduling by a

compiler. Other instruction scheduling regions are formed by combining basic blocks in different

ways. Figure 2.3(b) shows a CFG for the procedure in Figure 2.3(a). In Figure 2.3(b), instructions

1 through 4 form basic block B1. Instructions 8 through 12 form basic block B6. Instruction 13

forms B2, instruction 5 forms B3, instruction 6 forms B4 and instruction 7 forms B5. Section 2.4

discusses the issues related with basic block instruction scheduling in detail.

On modern processors, the main job of an instruction scheduler is to increase instruction level

parallelism (ILP). Basic block scheduling exposes a limited amount of ILP. By combining basic

blocks, ILP can be increased. In Figure 2.3(b) instructions in basic block B2 are independent
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(I1) receive m

(I2) f0← 0

(I3) f1← 1

(I4) if m ≤ 1 goto L3

(I5) i← 2

(I6) L1: if i ≤ m goto L2

(I7) return f2

(I8) L2: f2← f0 + f1

(I9) f0← f1

(I10) f1← f2

(I11) i← i + 1

(I12) goto L1

(I13) L3: return m
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Figure 2.3: (a) Assembly code for a procedure computing Fibonacci numbers; (b) control flow

graph for the code.

of the instructions in basic blocks B3, B4, B5, and B6. The ILP can be increased by inserting

instructions from B2 into the free slots available in the schedule for B3, B4, B5, and B6. This is

only possible if one schedules instructions in all basic blocks at the same time. In global instruction

scheduling, more than one basic block is considered simultaneously.

Fisher [22] introduced the concept of trace for global instruction scheduling. A trace is the

most frequently executed loop-free path and is determined by profiling. Unlike a basic block,

a trace may contain more than one entry point and exit point. The side entry points are also

known as join points. Figure 2.4 shows a trace consisting of basic blocks A, B, D, E, G and

H. We have join points in basic blocks D (from C) and H (from F ). In trace scheduling, a

trace is scheduled independently ignoring side exit and side entrance points. This may move some

instructions across side exit and side entrance points. Bookkeeping is done to ensure the correct

execution of the program. Figure 2.5 explains the bookkeeping process for downward movement

of an instruction across a side exit point. Trace-1 and Trace-2 are connected by the control

flow from instruction 2 (exit point in Trace-1) to instruction 3 (side entrance point in Trace-2).

Trace scheduling moves instruction 1 across instruction 2 in the downward direction. In order

to ensure execution of instruction 1, even if the program jumps from instruction 2 to instruction
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Figure 2.4: Path A → B → D → E → G → H has the highest execution probability. The path

forms a trace.

3, a copy of instruction 1 is placed between instruction 2 and instruction 3. Upward movement

of an instruction across a side exit point is known as speculation and the moved instruction is

called a speculative instruction. An instruction is allowed to be a speculative instruction if (i) the

destination of the speculative instruction is not used before it is redefined when the exit point

is taken and (ii) the speculative instruction will never cause an exception that may terminate

program execution when the exit point is taken. Special hardware support is needed to handle

speculative instructions, but no bookkeeping is done.

Complex bookkeeping is done when an instruction is moved across a side entrance. In Fig-

ure 2.6(a), instruction 5 is moved upward across the side entrance point. To ensure the execution

of instruction 5, if the control is entering the trace through the side entrance, a copy of instruction

5 is placed at the entrance point. In Figure 2.6(b), instruction 1 is moved downward across the

entrance point, and placed after instruction 4. For correct execution of the program, if the control

enters the trace through the side entrance, instruction 1 should not be executed. The entrance

point is moved down after instruction 1 and copies of instruction 3 and instruction 4 are placed

at the side entrance. Bookkeeping for side entrance points makes other compiler optimization

phases more difficult. This can be avoided by removing side entrance points in traces.

Hwu et al. [35] gave a solution by introducing superblocks which have unique entrance and

multiple exit points. Superblocks are built from traces, and tail duplication is performed to

remove the side entrances into a trace. All blocks from the side entrance to the end of the trace
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Figure 2.5: Bookkeeping for the downward movement across a side exit point: Instruction 2 is

a side exit point for Trace-1 and instruction 3 is a side entrance point in Trace-2. Instruction 1

is moved downward across instruction 2. A copy of instruction 1 is placed between instruction 2

and instruction 3.

are duplicated, and all side entrances are redirected into the copy. Therefore, a superblock can

have a single entry point but might have more than one exit point. Figure 2.7 shows the formation

of a superblock. Basic blocks B1, B2 and B4 form superblock S1. Basic blocks B3 and B′
4 form

superblock S2. Section 2.5 describes issues related with superblock scheduling in more detail.

Mahlke et al. [46] introduced hyperblocks. A hyperblock is very similar to a superblock. The

difference is that the instructions within a hyperblock are predicated instructions. While, a

superblock contains only instructions from one path of control, a hyperblock combines basic block

from multiple paths of control. Thus, optimizations using hyperblock are not biased towards

any exit instruction. Hyperblocks require special support from the hardware, such as special

registers, to execute predicated instructions. If-conversion replaces a set of basic blocks containing

conditional control flow between the blocks with a single hyperblock of predicated instructions.

Figure 2.8(b) illustrates a resultant flow graph after if-conversion is applied to the control flow

graph in Figure 2.8(a).
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Figure 2.6: Bookkeeping: (a) upward movement across side entrance instruction; (b) downward

movement across side entrance instruction.

For my work, I selected superblocks because they are simple, which makes them an attractive

choice for global instruction scheduling in compilers [60].

2.3 Target machine architecture

There are two major architecture types, superscalar and VLIW (very large instruction word).

Both allow ILP. The major difference between superscalar and VLIW is that superscalar does not

parallelize instructions until runtime, while VLIW combines the instructions during compilation

and issues them in a block or group. A superscalar processor is capable of executing instructions

out of the sequence given by a compiler. This is known as out-of-order execution. A VLIW

processor strictly follows the sequence of instructions given by a compiler. This is known as in-

order execution. Both types of architecture benefit from reordering the instructions to improve

the overall schedule cost.

In this thesis, I consider multiple-issue processors. On such processors, there are multiple

functional units, and multiple instructions can be issued (begin execution) in each clock cycle.

The maximum number of instructions that can be issued in one cycle is known as the processors’

issue width. The issue width for a particular architecture must be less than or equal to the

number of functional units. Associated with each instruction is a delay or latency between when
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Figure 2.7: Superblock formation: Bi is a basic block in a CFG (a) Path B1 → B2 → B4

has the highest probability of execution; (b) in order to remove the entrance from B3 to path

B1 → B2 → B4, a copy of B4 is created, called tail duplication, and the flow from B3 is directed

towards B′
4.

the instruction is issued and when the result is available for other instructions that use the result.

I consider both fully pipelined and non-fully pipelined units. In a fully pipelined unit, one can

begin a instruction on the unit on each cycle. In a non-fully pipelined functional unit one cannot

begin a new instruction on the unit on each cycle. I assume that both instructions and functional

units are typed and instructions of a given type only execute on one type of functional unit.

Examples of types of instructions are load/store, integer, floating point, and branch instructions.

The IBM PowerPC 604 [36] is a superscalar multi-issue processor, which has the aforemen-

tioned architectural properties. The IBM PowerPC is the target machine architecture for this

work. It has six functional units: a branch unit, two integer units for simple instructions, an

integer unit for more complex instructions, a floating point unit, and a load/store unit for data

transfer to and from memory. The PowerPC 604 has an issue width of 4, so not every functional

unit will begin executing a new instruction every cycle. Most instructions are fully pipelined, and

thus the PowerPC 604 can often dispatch a new instruction for execution each cycle on the same

functional unit. However, some instructions are not fully pipelined and monopolize a functional

unit for the entire duration of their execution. For example, a floating point division takes 36

cycles and during this period no other floating point instruction can be issued on the floating

point functional unit [36].
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instr1

instr2

if (a == b) then

instr3

instr4

else

instr5

instr6

endif

instr7

instr8

instr1

instr2

P1 = (a==b)

instr3 if P1

instr4 if P1

instr5 if not P1

instr6 if not P1

instr7

instr8

(a) (b)

Figure 2.8: Hyperblock formation: (a) A region consisting of four blocks. Instruction instr1 and

instr2 forms B1, instr3 and instr4 form B2, instr5 and instr6 form B3, instr7 and instr8 form

B4. Basic block B2 and B3 are independent of each other. (b) The region is converted into a

hyperblock using control registers P1 and P2. Basic block B2 and B3 are combined using P1

and P2. Control dependencies have been converted into data dependencies using P1 and P2.

2.4 Basic block scheduling

This section discusses instruction rearrangement within a basic block. I use the standard labeled

directed acyclic graph (DAG) representation of a basic block. Each node corresponds to an

instruction and there is an edge from i to j labeled with a non-negative integer l(i, j) if j must

not be issued until i has executed for l(i, j) cycles. In particular, if l(i, j) = 0, j can be issued

in the same cycle as i; if l(i, j) = 1, j can be issued in the next cycle after i has been issued;

and if l(i, j) > 1, there must be some intervening cycles between when i is issued and when j is

subsequently issued. These cycles can possibly be filled by other instructions.

The critical-path distance from a node i to a node j in a DAG, denoted cp(i, j), is the maximum

sum of the latencies along any path from i to j. A node i is a predecessor of a node j if there

is a directed path from i to j; if the path consists of a single edge, i is also called an immediate

predecessor of j. A node j is a successor of a node i if there is a directed path from i to j; if the

path consists of a single edge, j is also called an immediate successor of i. A sink node is a node

with no successors. For convenience, I assume that a fictitious sink node, hereafter called the sink

node, is added to each DAG and that an edge is added from each node i in the DAG to the sink

node, where the label on the edge is the latency of instruction i.

Given a labeled dependency DAG for a basic block, a schedule for a multiple-issue processor

specifies an issue or start time for each instruction or node such that the latency constraints are
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1 3

D C

A B

E

(a)

A r1← a

B r2← b

nop

nop

D r1← r1 + r2

C r3← c

nop

nop

E r1← r1 + r3

(b)

A r1← a

B r2← b

C r3← c

nop

D r1← r1 + r2

E r1← r1 + r3

(c)

Figure 2.9: (a) Dependency DAG associated with the instructions to evaluate (a + b) + c on

a processor where loads from memory have a latency of 3 cycles and integer operations have a

latency of 1 cycle; (b) non-optimal schedule for a single-issue processor; (c) optimal schedule.

satisfied and the resource constraints are satisfied. The latter are satisfied if, at every time cycle,

the number of functional units that can execute a set of instruction types is greater than or equal

to the number of instructions of those types issued at that cycle. The length of a schedule is the

number of the cycle in which the sink node is issued.

Definition 2.1 (Basic block instruction scheduling) Given a labeled dependency DAG for

a basic block, the basic block instruction scheduling problem is to find a schedule with minimum

length.

The basic block instruction scheduling problem for fully pipelined functional units is a special

case of resource-constrained project scheduling (see, e.g., [20]) where all of the activities have unit

execution times (i.e., unit latency) and we seek a schedule which minimizes the makespan.

Example 2.3 Figure 2.9 shows a simple dependency DAG and two possible schedules for the

DAG, assuming a single-issue processor that can execute all types of instructions. The schedule

(b) requires four nop instructions (null operations) because the values loaded are used by the

following instructions. The better schedule (c), the optimal or minimum length schedule, requires

only one nop and completes in three fewer cycles.

2.5 Superblock scheduling

This section discusses instruction rearrangement within a superblock. As for basic blocks, I use

the standard labeled directed acyclic graph (DAG) representation for a superblock. There are
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Figure 2.10: A simple superblock and corresponding minimum cost schedule for a single issue pro-

cessor. A NOP (No OPeration) instruction is used as a place holder when their are no instructions

available to be scheduled.

some special nodes in the DAG of a superblock, known as exit nodes. Exit nodes represent branch

instructions. Some weightage is associated with each exit node. The weightage represents the

chance that the flow of control will leave the superblock through this exit point and is calculated

using profiling. The weightage for an exit node ei, denoted by wi, is also known as the exit

probability. Figure 2.10 shows a DAG for a superblock.

When scheduling a basic block in local instruction scheduling, the objective is to minimize

the schedule length of the basic block. In the case of global scheduling with superblocks, the

objective is to minimize the weighted completion time (WCT ); i.e., the number of cycles from the

entry point to each exit point, weighted by the exit probability. The weighted completion time is

referred to as the cost function for the superblock scheduling problem.

Definition 2.2 (Weighted completion time) The weighted completion time or cost of a su-

perblock schedule is
∑n

i=1
wiei, where n is the number of exit nodes, wi is the weight of exit ei,

and ei is the clock cycle in which exit i will be issued in the schedule.

A schedule for a superblock is an assignment of a clock cycle to each instruction such that the

precedence, latency and resource constraints are satisfied.

Definition 2.3 (Superblock instruction scheduling) The superblock instruction scheduling

problem is to construct a schedule with minimum weighted completion time.
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Example 2.4 Consider the superblock shown in Figure 2.10. The two exits from the graph are

from instructions F and G. Each exit is marked with a corresponding exit probability. The min-

imum cost schedule is shown for a single issue processor. Instruction F is scheduled at time

cycle nine and instruction G is scheduled at time cycle ten. Thus, the cost of the schedule is
∑

b∈B wbeb = 0.40× 9 + 0.60× 10 = 9.60 clock cycles.

2.6 List scheduling

Finding an optimal solution to both the local and global instruction scheduling problems is NP-

complete [33]. Hennessy and Gross [33] were the first to give a non-optimal polynomial algorithm

for the instruction scheduling problem with worst-case runtime of O(n4), where n is the number of

instructions. Gibbons and Muchnick [51] improved the worst-case runtime to O(n2). This refined

algorithm, known as the list scheduling algorithm, has become the most popular instruction

scheduling algorithm, and is used almost exclusively in production compilers.

The list scheduling algorithm is so-called because of its use of a ready list. The algorithm

iterates through machine cycles sequentially, and at each cycle it populates the ready list with

the set of all candidate instructions which could begin execution in the current cycle. It then

selects the best instructions from the ready list to begin execution in the current cycle, subject

to resource constraints [51]. The algorithm also makes use of an execution list : whenever an

instruction is issued, it is placed on the execution list, a list of all instructions currently being

executed. When an instruction i finishes executing, any successor j of i becomes a candidate

instruction as long as all other predecessors of j have also finished executing. The execution list is

used to easily identify instructions that have finished executing, so it can quickly be determined

if j may be added to the ready list. Algorithm 2.1 presents a formal representation of the list

scheduling algorithm [27].

The method selectBestInstruction is the main part of the list scheduling algorithm. It

returns the best instruction available in the ready list for the time cycle under consideration. A

number of heuristics have been developed to select the best instruction. If there is no instruction

among the ready instruction that can be issued in the current cycle, the method returns NOP.

This process is continued until all instructions are scheduled.

2.6.1 Common scheduling heuristics

When the list scheduler chooses an instruction to be scheduled in the current cycle, it uses a

heuristic to choose the best instruction from the ready list of instructions [51]. Each instruction

has a set of features. A feature is a significant property of the instruction. Features may be static

or dynamic. The values of static features do not change during the scheduling phase while the

values of dynamic features may change during the scheduling. A list scheduling heuristic is a
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Algorithm 2.1: List Scheduling algorithm.

input : A DAG G = (V, E), issue width W , number of functional units f(t) of type t.

output: A valid schedule satisfying the precedence constraints of G and the architectural

constraints of W and f(t) of type t.

cycle = 0;

ready-list = all source nodes in G;

execution-list = empty;

while ( ready-list or execution-list are not empty ) do

opi = selectBestInstruction( ready-list );

while ( opi is not null ) do

remove opi from ready-list and add to execution-list;

for all instructions opj such that (opi, opj) ∈ E do

Add opj to ready-list if opj is ready to be executed;

opi = selectBestInstruction( ready-list );

cycle = cycle + 1;

for ( opi = all nodes in execution-list ) do

if ( opi finishes in cycle cycle ) then

remove opi from execution-list;

for all instructions opj such that (opi, opj) ∈ E do

Add opj to ready-list if opj is ready to be executed;

function that takes as input a pair of instructions, and based on the features of those instructions,

gives a preference of one instruction over the other. Not all possible features for instructions

are used in a heuristic. If two instructions agree on every feature in the heuristic, one is chosen

arbitrarily.

Smotherman et al. [62] provide a survey of common scheduling heuristics used for local instruc-

tion scheduling. They also describe a large number of features that can be used for both local and

global instruction scheduling. I describe here the features used in the heuristics I compare against

my constraint programming model during experimentation. For more detail on these features

see [62].

Critical path distance to sink: The critical path distance between two nodes in a DAG

is defined as the maximum length path between the two nodes, where path length is the sum of

latencies encountered along the path. Critical path distance to sink refers to the distance between

any node and the sink in the DAG. This feature is what is generally meant by “critical path,” and

is labeled as such throughout the remainder of this thesis. For example, the critical path distance

from node B to node E in the DAG in Figure 2.11 is 4.
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Dependence height: The dependence height of a node in a DAG is the number of nodes on

the longest path from the node to the sink [23].

Earliest starting time: A static estimate of the earliest cycle in which an instruction can

begin execution. The root node has an EST of 1, the first cycle for scheduling. Any other node j

has an EST of max{l(i, j) + EST (i)} for any parent i of j.

Instruction type: In my critical path heuristic, I favor floating point instructions above all

other instructions and treat remaining instructions equally with respect to their instruction type,

as done in [9].

Maximum latency: This feature is simply the maximum latency of an edge from a DAG

node to any other DAG node. Maximum latency can also be thought of as the longest possible

time that any other node in a DAG will have to wait for a result from the current node once the

current node begins execution.

Number of successors: The total number of nodes reachable by following a single edge from

the current node.
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Figure 2.11: Critical path distance to sink.

Example 2.5 Consider the basic block and its DAG shown in Figure 2.9. Table 2.1 and Table 2.2

show the step by step simulation of list scheduling for a single-issue processor and for a double-

issue processor, respectively. The priority of a node is calculated by the critical path distance

between the node and the sink of the basic block.

Cycle 1 2 3 4 5 6

Candidates A, B B D, C D D E

Schedule A B C D E

Table 2.1: Schedule for a single-issue processor for Example 2.5. Empty slot represents a NOP.

In Table 2.1 and Table 2.2, the first row shows the available cycles. The second row gives the

available ready instructions against each cycle. The third row gives the actual instruction picked

by the list scheduler.
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Cycle 1 2 3 4

Candidates A, B C, D D E

Schedule A, B C D E

Table 2.2: Schedule for a double-issue processor for Example 2.5.

List scheduling is simple and efficient. Its main short coming is the list scheduling algorithm

itself. As already said, the algorithm greedily constructs a single schedule from the solution space

of all possible schedules based on a given priority heuristic. As a result, the schedule may not be

the best possible schedule.

2.7 Instruction scheduling under register pressure constraint

Like instruction scheduling, register allocation is an important optimization phase in any compiler.

A register is fast computer memory used to speed the execution of computer programs by providing

quick access to commonly used values. Registers are limited in number. Almost every optimization

phase assumes unlimited registers for its implementation. These unlimited registers are known

as symbolic registers. The register allocation phase decides which symbolic register should be

mapped to a real physical register.

Definition 2.4 (Register pressure) The register pressure of an instruction schedule is the

maximum number of variables alive simultaneously at any time slot in the schedule.

Register allocation is often done using a graph coloring algorithm and an interference graph.

An interference graph is a special graph for a given schedule of instructions in which each node

represents a symbolic register in the given schedule and each edge indicates a pair of symbolic

registers that cannot be assigned to the same register. Usually, this phase of optimization is

done after the instruction scheduling phase. The main disadvantage of assigning registers first

is the creation of false dependences in the code, limiting the possibilities to reorder instructions.

Performing register allocation after instruction scheduling allows the greatest freedom to the

instruction scheduler, but some bookkeeping has to be done in order to add spill code. Adding

spill code after scheduling is a critical task, which must be done carefully to avoid degradation in

performance. There is a chance that spill code insertion is unavoidable since instruction scheduling

before register allocation tends to lengthen the live ranges of values, thereby increasing the register

pressure. Example 2.6 explains the struggle between the two phases.

Example 2.6 Figure 2.12 shows a simple dependency DAG associated with the instructions to

evaluate (a + b) + (c × d). Assume a processor with two fully pipelined functional units capable

of executing all types of instructions and that loads from memory have a latency of three cycles
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(a)

A r1← a

B r2← b

C r3← c

D r4← d

E r1← r1 + r2

F r4← r4× r3

G r1← r1 + r4

(b)

Figure 2.12: (a) Dependency DAG associated with the instructions to evaluate (a + b) + (c× d);

(b) assembly code for the DAG.

Cycles Schedule S1 Schedule S2

0 r1← a r2← b r1← a r2← b

1 r3← c r4← d

2

3 r1← r1 + r2 r3← c r1← r1 + r2

4 r2← d r4← r4× r3

5 r1← r1 + r4

6

7 r2← r2× r3

8 r2← r1 + r2

Table 2.3: Two possible schedules for the DAG in Figure 2.12. Empty slots represents NOPs.

and all other operations have latency of one cycle. Two possible schedules are shown in Table 2.3.

Schedule S1 is obtained by performing register allocation before instruction scheduling. Schedule

S2 is obtained by performing instruction scheduling before register allocation. Schedule S1 has a

register pressure of three, while S2 has a register pressure of 4.

Which phase to run first is largely dependent on the target architecture and the code being

compiled. One problem is that DAG graphs are different from interference graphs, and edges and

nodes have different meanings. Therefore, it is not easy to combine the DAG and the interference

graph, and new data structures have to be used to achieve good results. There are two approaches:

integrated and cooperative. In an integrated approach, the phase ordering problem is solved

by performing instruction scheduling and register allocation simultaneously. In a cooperative
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approach, instruction scheduling and register allocation are done as separate phases but one phase

is sensitive to the needs of the other. One method for cooperation is through register pressure

in which instruction scheduling is done by keeping the register pressure within a certain range,

which makes the register allocation phase more effective.

Chen [14] divides the register pressure, with respect to the instruction scheduling problem,

into four groups. Consider an instruction sequence I with a schedule S:

1. Register pressure of a given fixed schedule (RP): The register pressure RP is the maximum

register pressure over all time slots of a given instruction schedule.

2. Length-restricted minimum register pressure (LP): The length-restricted minimum register

pressure LP is the minimum RP value for all schedules of I that are bounded to be of a

schedule length less than or equal to the schedule length of S. The difference between RP

and LP is known as excessive register pressure EP . EP is the pressure that we pay when

we do not realize that there is an equivalent schedule with less register pressure. EP is the

part that we should eliminate first.

3. Minimum register pressure (MP): The minimum register pressure MP is the minimum

RP value for all schedules of I. The difference between LP and MP is parallel register

pressure PP . PP represents the register pressure that we pay to achieve a certain amount

of parallelism.

4. Constant register pressure (CRP): The constant register pressure CRP is the maximum

number of register operands required by an instruction in I.

Definition 2.5 (Basic block instruction scheduling without spilling) The basic block in-

struction scheduling without spilling problem is to construct a schedule with minimum length that

has register pressure RP equal to or less than the number of available physical registers.

Figure 2.13 explains the basic block scheduling without spilling. Point A represents an optimal

schedule Sop for a given basic block without any register pressure constraint. Let Pa be the

length-restricted minimum register pressure at point A, i.e., Pa = LP (Sop). Point B represents a

schedule S with register pressure Pb such that Pb = MP (S) and Pa ≥ Pb. Beyond point B, the

length-restricted minimum register pressure remains constant. Let Pc be the available number

of physical registers. If Pa ≥ Pc ≥ Pb, then optimal schedule for the given basic block without

any spilling will be a point between A and B, where register pressure is less than or equal to

Pc. An optimal schedule without spilling ensures no spilling during the register allocation phase.

Instruction scheduling in the case where Pc ≤ Pb is beyond the scope of this thesis, as this would

require spilling during the register pressure phase.
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Figure 2.13: Breakdown of register pressure (from Chen [14]).

2.8 Constraint programming

This section is a short introduction to the constraint programming approach. For details on this

area, consult [48, 58]. Constraint programming is the study of computational systems based on

constraints. The idea of constraint programming is to solve a problem by stating constraints

on acceptable solutions. The set of constraints on acceptable solutions is also referred to as a

constraint satisfaction problem (CSP). In the past few years, constraint programming has at-

tracted much attention from many areas including compiler optimization because of its potential

for solving hard real-life problems.

Definition 2.6 (Constraint satisfaction problem) A constraint satisfaction problem consists

of a set of variables X = {x1, · · · , xn}; for each variable xi, a finite set domxi of possible values

(its domain); and a set of constraints restricting the values that the variables can simultaneously

take on.

A solution to a CSP is an assignment of a value from its domain to every variable in such a way

that all constraints are satisfied at once. Example 2.7 shows a simple application of constraint

programming.

Example 2.7 Graph coloring can be formulated as a CSP. Consider the graph in Figure 2.14 and

suppose I wish to color each node of the graph red, yellow or blue such that no two adjacent nodes
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receive the same color. In the CSP, there would be a variable Xi for each node i, i = 1, . . . , 6,

and the domain of each variable would be red, yellow, blue. The following constraints capture that

adjacent nodes should not be filled with the same color.

X1 6= X2; X1 6= X4; X2 6= X4

X2 6= X3; X3 6= X4; X3 6= X5

X4 6= X5; X5 6= X6; X4 6= X6

 

2 3 1 

4 5 

6 

Figure 2.14: Graph for Example 2.7.

Solutions to a CSP can be found by searching through the possible assignments of values to

variables. Backtracking is the usual method for solving CSP problems. It starts with an empty

assignment set, i.e., no variables has been assigned a value and incrementally extends the solution

by initializing the variables one by one in such a way that the constraints are not violated. This

process is continued until a complete solution is found. If at any stage a partial solution violates

any of the given constraints, backtracking is performed to the most recently initialized variable

that still has alternative values available in the domain. Whenever a partial solution violates a

constraint, backtracking eliminates a subspace from the Cartesian product of all variable domains.

A backtracking algorithm can be improved by removing the values from the domains of variables

which are not consistent with the constraints of a model. This process is known as constraint

propagation. One form of constraint propagation is bounds consistency.

Definition 2.7 (Bounds consistency) A constraint C over the variables x1, ..., xn with do-

mains dom(x1), ..., dom(xn) is bounds consistent with respect to xi with domain dom(xi) =

{l, ..., r} (i ∈ {1, ..., n}) iff:

∃d ∈ dom(x1)× ...× dom(xn) such that d(xi) = l and d ∈ C
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and

∃d ∈ dom(x1)× ...× dom(xn) such that d(xi) = r and d ∈ C.

Example 2.8 Let x ∈ {3, ..., 6}, y ∈ {2, 3}, z ∈ {5, ..., 9}, x + y = z is bounds consistent while

x ∈ {2, 3}, y ∈ {3, ..., 6}, z ∈ {1, ..., 19}, 3× x = y + z is not bounds consistent.

Example 2.9 explains how constraint programming can be used to model an instruction

scheduling problem.
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Figure 2.15: (a) Superblock (taken from [49]) for Example 2.9. Nodes D and G are branch

instructions; (b) a possible schedule for Example 2.9.

Example 2.9 Consider the constraint model of the small instruction scheduling problem in Fig-

ure 2.15(a) with variables A, . . . , G, each with domain {1, 2, 3, 4}, and the constraints,

C1: D ≥ A + 1, C3: D ≥ C + 1, C5: G ≥ F + 1,

C2: D ≥ B + 1, C4: F ≥ E + 2, C6: G ≥ D + 1,

C7: gcc(A, B, C, D, E, F, G, width = 2),

where constraint C7, a global cardinality constraint (gcc), enforces that at most two instructions

can be issued in any cycle. The constraints are not bounds consistent. For example, the minimum

value 1 in the domain of D does not have a support in constraint C1, C2 and C3 as there is no

corresponding values for A, B and C that satisfies the constraints. Enforcing bounds consistency

using constraints C1 through C6 reduces the domains of the variables as follows: dom(A) =

{1, 2}, dom(B) = {1, 2}, dom(C) = {1, 2}, dom(D) = {2, 3}, dom(E) = {1, 2}, dom(F) = {3},

28



and dom(G) = {4}. I am considering a dual-issue fully pipelined processor. Enforcing bounds

consistency using C7 reduces the domain of D to dom(D) = {3}. Now, arbitrarily picking1 A and

E for the first cycle and enforcing bounds consistency using C7 again will reduce the domains of

variables as follows: dom(A) = {1}, dom(B) = {2}, dom(C) = {2}, dom(D) = {3}, dom(E) =

{1}, dom(F) = {3} and dom(G) = {4}, which is schedule S given in Figure 2.15(b).

2.9 Summary

In this chapter, I introduced the basic block and superblock instruction scheduling problems. I

also introduced the basic block scheduling without spilling problem. I also covered the material

necessary to understand the constraint programming techniques. In the next chapter, I discuss

the related work on basic block instruction scheduling and I present my fast and optimal scheduler

for basic blocks.

1In constraint programming, special heuristics are adopted to select variables.
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Chapter 3

Basic Block Scheduling for

Multi-Issue Processors

In this chapter, I present my constraint programming approach for basic block instruction schedul-

ing for both idealized and realistic architectures. I discuss the related work in the field and present

the experimental results using the constraint programming model with different architectures and

compare it with the previous work.

3.1 Related work

Basic block instruction scheduling for realistic multiple-issue processors is NP-complete [33], and

most compilers use a heuristic approach. The list scheduling algorithm is the most commonly

used algorithm and is considered near optimal. Theoreticians have worked out some upper bounds

on its optimality. R.L. Graham [29] proves that for n identical processors, an upper bound for

the optimality of the list scheduling algorithm is 2 − 1/n. Bernstein and Gertner [7] present a

polynomial algorithm that exactly solves the instruction scheduling problem for the special case

where the maximum latency, m, of any instruction is 2. Their result also acts as an approximation

algorithm when m > 2, with the schedule produced having length within 2 − 2/m times that of

an optimal schedule.

3.1.1 Approaches for optimal solutions

Previous work on optimal approaches to basic block instruction scheduling can be categorized

by those approaches that are targeted only towards idealized architectural models and those
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approaches which have been developed for more realistic architectural models. Broadly speaking,

previous work has shown that (i) for an idealized single-issue processor, optimal approaches can

scale up to the largest basic blocks which arise in practice, and (ii) for more realistic architectures,

optimal approaches can be used but do not yet scale up. In my work, I present a constraint

programming approach which applies to realistic architectures and scales up to the largest blocks.

I now present previous work in more detail.

Wilken et al. [66] presented an integer programming approach for basic block scheduling.

They tested their model on SPEC95 floating point benchmark. The basic blocks were obtained

by compiling the benchmark using the Gnu Compiler Collection(GCC) with the highest level of

optimization. The largest basic block contained up to 1200 instructions. The target architecture

was an idealized single issue, fully pipelined processor, with a maximum instruction latency of

3. Their work shows that integer programming techniques scale well for a simple single issue

architecture but is quite slow for large basic blocks. Their model was able to improve 0.39% of

total basic blocks in terms of schedule length when compared with the list scheduler.

Van Beek and Wilken [65] presented a constraint programming model for the same idealized

single issue processor. Constraint programming led to a simpler, more efficient solution. All basic

blocks were optimally scheduled, and 0.39% of basic blocks were improved over list scheduling, as

in [66]. My work builds on their approach.

Heffernan and Wilken [31] presented graph transformations to reduce the work required for

the scheduler. They tested their transformation on SPEC 2000 and MediaBench benchmarks,

compiled by the GCC with the highest level of optimization. The largest basic block contained

up to 1200 instructions. In their work, they targeted idealized single-issue, 2-issue, and 4-issue

processors with a maximum latency of 4. For each basic block, they compute a lower bound and

use critical path list scheduling. They found that up to 13.2% of the non-trivial basic blocks were

improved after graph transformations. But, only a small percentage of the evaluated basic blocks

were non-trivial.

Ertl and Krall [21] developed an approach to instruction scheduling using constraint program-

ming. Their approach is targeted towards the Motorola 88100 processor, which is a multi-issue

RISC architecture with maximum instruction latency of six cycles. The work did not use the

standard SPEC benchmark and compared the model against the GCC scheduler using five, rel-

atively small applications. About 80% of the basic blocks scheduled by the GCC scheduler were

found to be optimal. However, as our experiments confirm, the constraint model presented by the

work does not scale beyond 50 instructions.

Kästner and Winkel [41] used an integer programming approach for the Intel Itanium archi-

tecture. They adopted a two-phase integer programming formulation to find an optimal solution.

They implemented their approach in Intel Itanium compiler and compared it against their sched-

uler. They used nine benchmark applications from the SPEC95 suite. Their basic blocks were

small in size with an average length of a basic block around 10 instructions. They found about
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96% of the basic blocks scheduled by the list scheduler to be optimal.

Liu and Chow [44] presented an optimal scheduler using enumeration for the VISC architecture.

The VISC has 4 functional units and a maximum instruction latency of 1. Liu and Chow compared

their scheduler to a list scheduler with a benchmark of five network application developed in-house

by Cognigine. A total of 487 basic blocks were scheduled, with an overall average of 9 instructions

per basic block. The enumeration scheduler was guided by a critical path heuristic, and ties were

broken by choosing the instruction involved in the most constraints and then the instruction with

the highest number of successors. The list scheduler used the same heuristic as the enumeration

scheduler. Their enumeration scheduler outperformed the list scheduler, producing 13.2-14.6%

fewer cycles over an entire benchmark application.

Previous work on optimal approaches to basic block instruction scheduling can also be catego-

rized by the approach taken, including branch-and-bound enumeration [15, 30, 31, 44], dynamic

programming [42], integer linear programming [2, 11, 41, 43, 66], and constraint programming

[21, 65]. However, with the exception of [31, 65, 66], to which I do detail comparisons later in

this chapter, these previous approaches have only been evaluated on a few problems with sizes

of the problems ranging between 10 and 50 instructions. Further, their experimental results sug-

gest that none of them would scale up beyond problems of this size. A major challenge when

developing an optimal approach to an NP-complete problem is to develop a solver that scales and

is robust in that it rarely fails to find a solution in a timely manner on a wide selection of real

problems. In this chapter, I present a constraint programming approach to basic block scheduling

for multiple-issue processors that is robust and optimal. The novelty of my approach is in the

extensive computational effort put into a preprocessing stage in order to improve the constraint

model and thus reduce the effort needed in backtracking search.

I experimentally evaluated my optimal scheduler on the SPEC 2000 integer and floating point

benchmarks, using four idealized architectural models and four realistic architectural models. The

results for the idealized architectural models are presented to allow a comparison with previous

work. On the SPEC 2000 benchmark suite, the optimal scheduler scaled to the largest basic block

and was very robust. Depending on the architectural model, at most a few (between zero and 22)

basic blocks out of the hundreds of thousands of basic blocks used in our experiments could not

be solved within a 10-minute time bound. This represents a 50-fold improvement over work. As

well, the scheduler was able to routinely solve the largest basic blocks that I found in practice,

including basic blocks with up to 2600 instructions.
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3.2 Constraint programming model for basic block schedul-

ing

In this section, I present my constraint model of the basic block instruction scheduling problem. In

the constraint programming methodology a problem is modeled in terms of variables, values, and

constraints. The choice of variables defines the search space and the choice of constraints defines

how the search space can be reduced so that it can be effectively searched using backtracking

search.

I model each instruction by a variable with names 1, . . . , n (we use i to refer interchangeably

to variable i, instruction i, and node i in the DAG). The domain of each variable dom(i) is a

subset of {1, . . . , m} which are the available time cycles. Assigning a value d ∈ dom(i) to a

variable i has the intended meaning that instruction i will be issued at time cycle d. The domain

dom(i) = {a, . . . , b} of a variable i is represented by the endpoints of the interval [a, b]. I use the

notation lower(i) and upper(i) to refer to these endpoints.

I now specify the six types of constraints in the model: latency, resource, distance, predecessor

and successor, safe pruning, and dominance constraints. Some of the notation I use is summarized

in Table 3.1. As will be clear, for a minimal correct model of the instruction scheduling problem

all that is needed are the latency and resource constraints. However, it is now well-established

that adding implied (or redundant) constraints and dominance constraints to a constraint model

can greatly improve the efficiency of the search for a solution (see, e.g., [63]). Implied constraints

are constraints which do not change the set of solutions to the constraint model. Dominance

constraints do not necessarily preserve the set of solutions but do preserve at least one of the

solutions. Both types of constraints can increase the amount of constraint propagation and so

cause the domains of the variables to be further restricted. In my context, adding the distance,

predecessor and successor, safe pruning, and dominance constraints was found to be essential

in improving the efficiency of the backtracking search for a schedule—without them, only small

problems could be consistently solved. For example, for a single-issue architecture (the simplest

version of the problem), the minimal model without any redundant constraints and dominance

constraints does not scale beyond 40 instructions. With the redundant constraints and dominance

constraints, the improved model scales up to instances with 2600 instructions (the largest that

I have found in practice) on multiple-issue architectures. Many instances of each of these four

types of constraints are added in an extensive preprocessing stage.

3.2.1 Latency constraints

Given a labeled dependency DAG G = (N, E), for each pair of variables i and j such that

(i, j) ∈ E, a latency constraint of the form j ≥ i + l(i, j) is considered for addition to the

constraint model. A latency constraint is added if it is not redundant. A latency constraint
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Table 3.1: Notation used in specifying the constraints.

lower(i) lower bound of domain of variable i

upper(i) upper bound of domain of variable i

type(i) type of node/instruction i

kt number of functional units of type t

l(i, j) latency on edge between nodes i and j

cp(i, j) critical-path distance between nodes i and j

d(i, j) lower bound on distance between nodes i and j

onpath(i, j, t) set of all nodes of type t that are on some path from node i to node j. Note

that i ∈ onpath(i, j, t) if type(i) = t and j ∈ onpath(i, j, t) if type(j) = t.

These are all of the instructions of type t that must be issued with or after

node i is issued and must all be issued with or before node j is issued.

pred(i) set of all immediate predecessors of node i

succ(i) set of all immediate successors of node i

pred(i, t) set of all immediate predecessors of node i that are of type t

succ(i, t) set of all immediate successors of node i that are of type t

I([a, b], t) set of all variables of type t whose domains intersect the interval [a, b].

These are all of the instructions of type t that may need these time cycles

to execute on functional units of type t.

between i and j is redundant if there exists a k < j such that, l(i, j) ≤ l(i, k) + cp(k, j). In other

words, the constraint is redundant if there is a path from i to j that goes through k that is equal

to or longer than the direct path l(i, j). (If the constraint is redundant, adding it will have no

effect as the remaining latency constraints will derive a stronger result.) Since I am enforcing

bounds consistency, the actual form of the constraints added to the constraint model is,

lower(j) ≥ lower(i) + l(i, j)

and its symmetric version,

upper(i) ≤ upper(j)− l(i, j).

The latency constraints are easy to propagate when establishing lower and upper bounds for the

variables, and easy to propagate incrementally during the backtracking search.

34



3.2.2 Resource constraints

For each type t of instruction/functional unit a resource constraint is needed to ensure that the

number of instructions of type t issued at each time cycle does not exceed the number of functional

units of type t. Such resource constraints are a special case of a well-studied constraint called

the global cardinality constraint [57]. A global cardinality constraint over a set of variables and

values states that the number of variables instantiating to a value must be between a given upper

and lower bound, where the bounds can be different for each value. Here, for each type t a global

cardinality constraint over all variables of type t is added to the constraint model, where all of

the lower bounds are set equal to zero and all of the upper bounds are set equal to the number

of functional units of type t. Note that when all of the upper bounds are set equal to one—in

my case, when there is a single functional unit for some type t—the global cardinality constraint

is equivalent to the well-known all-different constraint, which enforces that its arguments are

pair-wise different.

Fast algorithms for enforcing bounds consistency on a global cardinality constraint have been

proposed. In my implementation, I used the efficient algorithm presented in [45, 56]. The

algorithm runs in time O(t + n), where t is the time to sort the bounds of the domains of

the variables and n is the number of variables. I note that for scheduling basic blocks, it has

been shown that bounds consistency is dramatically better than other, more expensive, forms of

consistency [45, 56].

3.2.3 Distance constraints

For each pair of nodes i and j, a distance constraint of the form j ≥ i + d(i, j) is considered for

addition to the constraint model. A distance constraint is added if it is an improvement over

the critical-path distance; i.e., d(i, j) > cp(i, j). (If the distance is not greater than the critical-

path distance, adding the constraint will have no effect as the latency constraints will derive a

stronger result.) The distance constraints are lower bounds on the number of cycles that must

elapse between when i is scheduled and j is scheduled. Although syntactically identical to latency

constraints and hence propagated in the same manner, they are conceptually distinct and are

key factors in effectively reducing the size of the search space. The distance constraints differ in

that they take into account the architecture’s resource constraints and can be much stronger than

critical-path distances.

In what follows, I am interested in subgraphs called regions [66], which are induced from a

given dependency DAG. Basic blocks typically contain many such regions embedded within them,

with larger blocks containing many thousands.

Definition 3.1 (Region [66]) A pair of nodes i, j in a DAG define a region if there is more

than one path between i and j and there does not exist a node k distinct from i and j such that

35



Table 3.2: Additional notation used in specifying the distance constraints.

r1(i, j, t) The minimum number of cycles that must elapse before the first instruction

in onpath(i, j, t) can be issued; i.e., min{cp(i, k) | k ∈ onpath(i, j, t)}, the

minimum critical-path distance from node i to any node in onpath(i, j, t).

r2(i, j, t) The minimum number of cycles to issue all of the instructions in

onpath(i, j, t); i.e., ⌈|onpath(i, j, t)|/kt⌉, the size of the set of instructions

divided by the number of functional units that can execute instructions of

type t, rounded up to the next highest integer value.

r3(i, j, t) The minimum number of cycles that must elapse between when the last

instruction in onpath(i, j, t) is issued and node j can be issued; i.e.,

min{cp(k, j) | k ∈ onpath(i, j, t)}, the minimum critical-path distance from

any node in onpath(i, j, t) to node j.

every path between i and j goes through k.

Given a region defined by nodes i and j, I wish to add a distance constraint j ≥ i+ d(i, j), for

some integer value d(i, j). Following [66], if the region is small enough, I solve the region exactly

(in isolation) and determine the optimal value for d(i, j). To solve a region in isolation, I use the

same constraint solver as for an entire basic block, but the constraint model is restricted to just

the latency and resource constraints, plus any distance constraints that have been found so far.

The regions in the DAG are examined in an “inside-out” manner so that distance constraints for

inner regions can be used when solving larger outer regions.

For larger regions, I estimate the value, ensuring that my estimate is always less than or equal

to the optimal value. I found that a threshold of 25 nodes worked well in practice; for regions

larger than this the distance was estimated. Consider the notation shown in Table 3.2. For larger

regions, initially I estimate d(i, j) using,

d(i, j) = max
t
{r1(i, j, t) + r2(i, j, t) + r3(i, j, t)− 1},

where I am finding the maximum over all instruction types t. Note that the nodes that are on a

path from node i to node j can be determined quickly given the critical-path distances between

all pairs of nodes, since a node k is on a path from i to j iff cp(i, k) ≥ 0 and cp(k, j) ≥ 0.

The estimate of the distance can sometimes be improved by “removing” a small number of nodes

(between one and three nodes) from onpath(i, j, t). This was done whenever removing these nodes

led to an increase in the value of d(i, j); i.e., the decrease in r2(i, j, t) was more than offset by

the increase in r1(i, j, t) + r3(i, j, t). The estimate is a generalization and improvement over the

distance constraints presented in [65], to handle multiple-issue, multiple types of instructions, and

zero latency edges.
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Example 3.1 Consider the dependency DAG shown in Figure 3.1 where the clear nodes are of

one instruction type and the shaded (yellow) nodes are of a different instruction type. Assume

there is a single functional unit for each type of instruction. For the region defined by A and

F, the initial estimate of the distance is d(A, F) = 4. Similarly, for the region defined by A

and G, the initial estimate of the distance is d(A, G) = 5. The estimate of the distance d(A, G)

can be improved to d(A, G) = 6 by “removing” node G from onpath(A, G, shaded). The distance

constraints F ≥ A + 4 and G ≥ A + 6 would be added to the constraint model, as both d(A, F)

and d(A, G) are improvements over the critical-path distances between those nodes.
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Figure 3.1: Example of adding distance constraints between nodes that define regions. The

constraints F ≥ A + 4 and G ≥ A + 6 would be added to the constraint model.

3.2.4 Predecessor and successor constraints

For each node i which has more than one immediate predecessor, a single predecessor constraint

of the following form is added,

min(dom(i)) ≥ min{min(dom(k)) | k ∈ P}

+ ⌈|P |/kt⌉ − 1

+ min{l(k, i) | k ∈ P}

for every type t and every subset P of pred(i, t) where |P | > kt,
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where the operator ⌈x⌉ returns the smallest integral value not less than x. It can be seen that a

predecessor constraint can be propagated in O(|pred(i)|2) time by first sorting the predecessors

of i by increasing lower bounds and then stepping through the lower bounds, each time finding

the minimum latency among the remaining predecessors. A symmetric version, called successor

constraints, for the immediate successors of a node is given by,

max(dom(i)) ≤ max{max(dom(k)) | k ∈ P}

− ⌈|P |/kt⌉+ 1

− min{l(i, k) | k ∈ P},

for every type t and every subset P of succ(i, t) where |P | > kt.

The predecessor and successor constraints are propagated in a preprocessing stage and also during

search. They can be viewed as an adaptation of edge-finding rules (see [4]) and are an easy

generalization of the similarly named constraints presented in [65] to handle multiple-issue and

multiple types of instructions.

Example 3.2 Consider the partial DAG shown in Figure 3.2, where the domains of the variables

are as shown. Assume there is a single functional unit for each type of instruction. Propagating

the predecessor constraint associated with node E improves the lower bound of the variable. The

earliest that the set P = {C, D} of immediate predecessors of node E can be scheduled is cycle 8,

and, therefore, cycle 9 is the earliest that the last of its predecessors could be scheduled. Therefore,

the earliest that E can be scheduled is cycle 11.
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Figure 3.2: Example of improving the lower bound of a variable using a predecessor constraint.

3.2.5 Safe pruning constraint

Given a constraint model, I say that it is safe to add a constraint to a constraint model whenever

it is the case that, if there was a solution to the constraint model before adding the constraint,

there is still a solution after adding the constraint. Adding safe pruning constraints is based on

the following theorem.
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Theorem 3.1 Suppose that all of the latency and resource constraints have been propagated. If

there exists an interval [a, b] such that,

(i) for all i ∈ I([a, b], t), min(dom(i)) = a,

(ii) for all i ∈ I([a, b], t), for all k ∈ pred(i), max(dom(k)) + l(k, i) ≤ min(dom(i)),

(iii) | I([a, b], t) | ≤ (b− a + 1)× kt,

then it is safe to prune the upper bounds of the variables i ∈ I([a, b], t) as follows,

max(dom(i)) = min(max(dom(i)), b).

Proof. Suppose there was a solution to the constraint model before pruning. Call this the

original solution. There are two cases.

1. Suppose that in the original solution each variable in I([a, b], t) is assigned a value from its

domain that is less than or equal to b. Clearly this is still a solution after pruning.

2. Suppose that in the original solution there exist variables in I([a, b], t) that have been as-

signed values from their domains that are greater than b. We will show that each of these

variables can be given a consistent value from [a, b].

a. Latency constraints: I will show that any value in [a, b] satisfies the latency constraints.

Let i be any variable that has been reassigned a value. Let k be an immediate prede-

cessor of i and consider the latency constraint k + l(k, i) ≤ i. Lowering the value of i

cannot violate the constraint since max(dom(k))+ l(k, i) ≤ min(dom(i)) (by condition

(ii)) and I assumed that the latency constraints have been propagated. Thus, any value

in the domain of i will satisfy this constraint. Let k be an immediate successor of i and

consider the latency constraint i + l(i, k) ≤ k. Lowering the value of i cannot violate

this constraint.

b. Resource constraints: I will show that it is possible to reassign values to these variables

from [a, b] and satisfy the relevant resource constraint. Condition (i) implies that

before pruning there is no variable i of type t such that min(dom(i)) < a and a ≤

max(dom(i)); i.e., before pruning there is no variable whose domain intersects both

[c, a − 1] and [a, d] where c < a ≤ d ≤ b. I also know that after pruning there is

no variable whose domain intersects both [c, b] and [b + 1, d] where a ≤ c ≤ b < d.

This means that I can look at the resource constraint over the variables in I([a, b]) in

isolation; whatever values are assigned to the variables in this set cannot impact the

values that variables outside of this set can be assigned. Condition (iii) ensures there

are enough values so that all of the variables in I([a, b], t) can be assigned a value such

that the resource constraint is satisfied.
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Corollary 3.1 Suppose that all of the latency and resource constraints have been propagated. If

there exists an interval [a, b] such that,

(i) for all i ∈ I([a, b], t), max(dom(i)) = b,

(ii) for all i ∈ I([a, b], t), for all k ∈ succ(i), max(dom(i)) + l(i, k) ≤ min(dom(k)),

(iii) | I([a, b], t) | ≤ (b− a + 1)× kt,

then it is safe to prune the lower bounds of the variables i ∈ I([a, b], t) as follows,

min(dom(i)) = max(min(dom(i)), a).
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Figure 3.3: Improving bounds of variables using safe pruning constraints.

Example 3.3 Consider the partial DAG shown in Figure 3.3, where the domains of the variables

are as shown. Assume there is a single functional unit for each type of instruction. The safe prun-

ing constraint can be applied iteratively as follows. First, the interval [2,2], where I([2, 2], clear)

= {B}, satisfies the theorem. Hence, node B can have its domain pruned to [2,2]. Second, the

interval [3,3], where I([3, 4], clear) = {C}, now satisfies the theorem. Hence, node C can have

its domain pruned to [3,3]. Third, the interval [3,4], where I([3, 4], shaded) = {D, E}, also now

satisfies the theorem. Hence, nodes D and E can have their domains pruned to [3,4].

3.2.6 Dominance constraints

Heffernan and Wilken [31] present a set of graph transformations for dependency DAGs for ba-

sic blocks and show that optimally scheduling the transformed DAGs using branch-and-bound

enumeration is faster and more robust. The DAG transformations reduce the search space while

preserving optimality. I found that adaptation of these transformations also worked well in my

40



constraint programming approach. In my context, the transformations add simple constraints to

the model of the form i ≥ j, which I call dominance constraints.

In what follows, I am interested in pairs of disjoint, isomorphic subgraphs A and B induced

from a given dependency DAG. Subgraphs A and B are isomorphic if there is a mapping from the

node set of A to the node set of B such that A and B are identical (identical instruction types,

edges, and latencies on the edges).

Using terminology similar to that for the safe pruning constraint, I say that it is safe to add

a constraint to a constraint model whenever it is the case that, if there was a solution to the

constraint model before adding the constraint, there is still a solution after adding the constraint.

Adding dominance constraints, when it is safe to do so, is based on the following theorem.

Theorem 3.2 (Heffernan and Wilken [31]) Let A and B be isomorphic subgraphs with node

sets V (A) = {a1, . . . , ar} and V (B) = {b1, . . . , br}. If,

(i) ai is neither a predecessor or a successor of bi, 1 ≤ i ≤ r,

(ii) for all k ∈ pred(ai) such that k 6∈ V (A), l(k, ai) ≤ cp(k, bi), 1 ≤ i ≤ r,

(iii) for all k ∈ succ(bi) such that k 6∈ V (B), l(bi, k) ≤ cp(ai, k), 1 ≤ i ≤ r,

(iv) for any edge (bi, aj), l(bi, aj) ≤ cp(ai, bj),

then adding the constraints ai ≤ bi, 1 ≤ i ≤ r is safe.

Example 3.4 Consider the DAG shown in Figure 3.4a. Dominance constraints can be added

iteratively as follows. First, the subgraphs with nodes V (A) = {B, D} and V (B) = {C, E} are

isomorphic and satisfy the conditions of the theorem. Hence, the constraints B ≤ C and D ≤

E can be added to the model. Adding these constraints updates the critical path distances. In

particular, cp(D, E) was −∞ and is now 0. Second, the subgraphs with nodes V (A) = {F} and

V (B) = {E} are isomorphic and now satisfy the conditions of the theorem. Hence, the constraint

F ≤ E can be added to the model.

Heffernan and Wilken [31] find isomorphic subgraphs that satisfy the theorem using back-

tracking search with a time cutoff. The search starts with isomorphic subgraphs that consist of

single nodes (i.e., they have the same instruction type) that satisfy condition (i) of the theorem

and either condition (ii) or condition (iii). These nodes are called seed nodes. The backtracking

search expands these subgraphs to adjacent nodes, maintaining isomorphism, until either (a) all

of the conditions of the theorem are satisfied (in which case, dominance constraints can be added),

or (b) the subgraphs cannot be expanded any further or the time cutoff is reached (in which case,

this pair of seed nodes leads to failure and we try another pair of seed nodes).
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Figure 3.4: Examples of adding dominance constraints: (a) (adapted from [31]) the constraints B

≤ C, D ≤ E, and F ≤ E would be added to the constraint model; (b) the constraints B ≤ C, C

≤ D, . . . , F ≤ G would be added to the constraint model.

In my work, I find isomorphic subgraphs by focusing on regions (see Definition 3.1). Given a

region defined by nodes i and j, I conceptually remove the source node i and the sink node j of

the region and perform a depth-first search to find the separate components or subgraphs of the

region. I then check whether pairs of components are isomorphic and satisfy the conditions of the

theorem (or can be made to do so by dropping a few nodes). I focus on separate components of

regions as during the backtracking search for a solution, often both orderings of these components

must be tried to verify that there is no solution. Thus, the dominance constraints, by establishing

an ordering on the variables between these components, can greatly reduce the search space.

Testing sub-graph isomorphism is NP-complete in general. Here, a fast heuristic test is used

to determine whether two components are isomorphic. The nodes in each component are indepen-

dently sorted based on features of the nodes, and the order of the nodes constitutes a potential

isomorphism mapping, which is then verified. Observe that whenever the heuristic (sort) test re-

turns true, the pair of subgraphs is isomorphic, and that sometimes the heuristic returns false even

though there exists a true mapping. However, experimental evidence suggests that the heuristic

works well. Consider the following sets S1 and S2, where S1 ⊆ S2. Construct the first set S1

as follows. For all pairs of components, add only those pairs to S1 that pass the heuristic test.

This gives some of the pairs of components that are isomorphic (although it may miss some);

i.e., S1 is a subset of the set of all isomorphic pairs of components. Construct the second set S2

as follows. For all pairs of components, add only those pairs to S2 that have the same numbers

of instructions of each instruction type. This gives the pairs of components that are potentially
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isomorphic (although some may not be); i.e., S2 is a superset of the set of all isomorphic pairs of

components. I found that the difference S2 − S1 was most often empty and always small, thus

providing evidence that the heuristic test catches almost all isomorphic pairs of components.

A special case of the theorem was found to occur often in practice. Consider the DAG shown

in Figure 3.4b where the region defined by A and H contains many nodes all of the same type

and all at the same latencies. All of these nodes are symmetric and the dominance constraints

that would be added are equivalent to so-called symmetry-breaking constraints. I recognize this

special case as follows. For each instruction type t, we sort the variables by their lower bounds,

and then step through all instructions with the same lower bound and check if the pairs of nodes

satisfy the theorem. If so, dominance constraints are added.

Overall, I found that my techniques often discovered many pairs of components within a basic

block that satisfied the theorem, sometimes with several hundred nodes each. I also found that

the dominance constraints that were added greatly improved the efficiency of the search for a

schedule, thus providing additional evidence for the effectiveness of the graph transformations

proposed by Heffernan and Wilken [31].

3.3 Additional constraints for realistic architectures

The model presented in Section 3.2 assumes the issue width is equal to the number of functional

units in a processor and that each unit is fully pipelined. My group extended the model to a

more realistic architecture. Chase [12] introduced issue width, non-fully pipelined and serialize

instruction constraints for a realistic architecture. I will briefly discuss these constraints here.

Definitions and examples are taken from [12].

3.3.1 Issue width constraint

On many architectures, such as the IA-64 [41] and PowerPC [36], the issue width does not equal

the number of available functional units. Adding an issue width constraint is a straight-forward

modification to the initial model. The initial model already uses global cardinality constraints to

ensure that the number of instructions of any type t issued each cycle does not exceed f(t), the

number of functional units of that type. To ensure that solutions are consistent with respect to

the issue width, we added a global cardinality constraint involving all variables.

3.3.2 Non-fully pipelined processor constraint

Almost all modern architectures are not fully pipelined, including the Intel Pentium and Itanium

and the PowerPC architectures. A fully pipelined architecture requires every instruction to have an
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Figure 3.5: Example DAG with additional nodes B1 and B2 corresponding to pipeline variables.

execution time of 1. On most architectures, some instructions require significantly more processing

time than the majority. For example, compare integer addition with floating point square root

on the PowerPC 604: addition takes one cycle while square root takes 32. In order for every

instruction to have an execution time of one cycle, the cycle time would have to be long enough

for the longest instruction in the architecture to complete. In each cycle where one of those long

instructions was not scheduled, computing power would be wasted. To be more efficient, most

architectures are not fully pipelined, and so there will be cycles in which instructions cannot be

issued on a particular functional unit, since the unit will still be executing a previously-issued

instruction. To model this feature, Chase [12] introduced pipeline variables, special variables that

are added to the CSP.

Definition 3.2 (Pipeline variables) Suppose an instruction i with corresponding CSP variable

Xi has bounds [ai, bi] and execution time e(i), with e(i) > 1. Insert variables pi,j into the CSP, for

1 ≤ j ≤ e(i)− 1. Each variable pi,j is of functional unit type u(i). pi,j has bounds [ai + j, bi + j].

Also add all pipeline variables of type t to the functional unit constraint for type t.

Example 3.5 The DAG in Figure 3.5 has nodes B1 and B2 added to illustrate the use of pipeline

variables. Suppose the target architectural model has one floating point functional unit and that

instruction B is scheduled in cycle 2. As nodes B1 and B2 correspond to pipeline variables, they

must be issued on the floating point unit in cycles 3 and 4, and instruction C cannot be issued

until instruction 5.
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3.3.3 Serializing instruction constraint

A serial schedule is a schedule in which only one instruction is issued per cycle and no two

instructions execute at the same time. Instruction scheduling may produce non-serial schedules

when scheduling for architectures with an issue width greater than one, but the behavior of

the scheduled code must be exactly equivalent to the behavior of a serial schedule. Access to

architectural resources may force a schedule to be partially serialized, or for only one instruction

to be issued in a given cycle if the instruction has certain properties. For example, architectures

may have only one of a particular resource, such as the condition register on the PowerPC 604

[37], and need to ensure that only one instruction is accessing that resource at a time. Some

architectures may enforce instruction ordering on the processor, by stalling some instructions

until it is safe to issue them. Other architectures, including the PowerPC [36, 37] and Intel

Pentium [40] and Itanium [38], require order to be enforced by the compiler, either by providing

instructions that serialize the processor or by creating a serial-friendly schedule.

The PowerPC Compiler Writer’s Guide [36] describes four types of instructions that require

some sort of serialization and occur on the PowerPC architecture. This type of serializing instruc-

tion, labeled execution serialization in PowerPC literature [36, 37], describes a set of instructions

that require exclusive access to the processor in the cycle in which they are issued. These instruc-

tions are held in a queue on the processor until they are the oldest uncompleted instruction on the

processor (in other words, until all previously executing instructions have completed), and then

they are issued. In the cycle in which they are issued, no other instruction can be issued, meaning

that for one cycle, the instruction has sole access to the processor and its resources. Instructions

having these exact properties will be referred to as serializing instructions throughout this thesis.

Serializing instructions can be modeled in a CSP in a manner similar to that of instructions

with a execution time larger than one. Chase [12] introduced a serial variable to implement

serializing instruction constraint.

Definition 3.3 (Serial variables) Suppose an instruction i with corresponding CSP variable

Xi has bounds [ai, bi] and represents a serial instruction. Insert variables si,j into the CSP, for

1 ≤ j ≤ F − 1, where F is the total number of functional units. There is one serial variable for

every functional unit except for the one on which instruction i is issued; the functional unit type

of each serial variable is assigned accordingly. si,j has bounds [ai, bi]. Also add all serial variables

of type t to the functional unit constraint for type t.

Example 3.6 Consider the DAG in Figure 3.6, where node B corresponds to a serial instruction.

Suppose the target architectural model has an issue width of 2. If neither B nor C corresponded

to serial instructions, they could both be issued in cycle 2, allowing D to be issued in cycle 3.

However, since B corresponds to a serial instruction, no other instruction can be issued in the
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Figure 3.6: Example DAG with serial instruction B.

same cycle as B. Thus, if B is issued in cycle 2, C must be issued in cycle 3 and D must be

issued in cycle 4.

3.4 Solving an instance

Solving an instance of an instruction scheduling problem is divided into several phases.

In phase one, I construct the constraint model and use the constraints to establish the lower

bounds of the variables and a lower bound on the length m of an optimal schedule. Given m,

the upper bounds of the variables are similarly established and the constraint model is passed

to the backtracking algorithm. The backtracking search interleaves constraint propagation with

branching on variables. During constraint propagation, bounds consistency is enforced on the

constraints until no further changes result. A dynamic variable ordering is used that selects as

the next variable to instantiate the variable with the least number of values remaining in its

domain, breaking ties by choosing the variable that participates in the most constraints. Given

a selected variable x, the backtracking search first branches on x assigned to lower(x), then on x

assigned to lower(x)+1, and so on, until either a solution is found or the domain of x is exhausted.

If no solution is found, a length m schedule does not exist and the value of m is incremented, the

upper bounds of the variables are re-established using the new value of m, and the new constraint

model is passed to the backtracking algorithm. This is repeated, each time incrementing m until

a solution is found, an upper bound on the length of a schedule is reached, or a time limit is

exceeded. An upper bound on the length of a schedule is established by running a list-scheduling

46



algorithm using a critical-path heuristic. If a solution is found or the upper bound on the length

of a schedule is reached, a provably optimal solution has been found. If, instead, the time limit is

exceeded, I proceed to phase two of the solution process.

In phase two, the level of constraint propagation during backtracking search is increased to

a variation of singleton consistency [18]. In singleton consistency, a variable is temporarily in-

stantiated to a single value and the constraint model is tested for consistency. If the consistency

test fails, the value can be removed from the domain of the variable. In my work, I iteratively

instantiated and tested the consistency of the lower and upper bounds of the domains of the vari-

ables. The consistency test consisted of enforcing bounds consistency on the constraints. I found

that singleton consistency sometimes dramatically reduced the domains of the variables during

search. As well, when testing the consistency of the bounds, I record the number of changes that

are made during the bounds consistency propagation. This information is used in phase two to

select the next variable to branch on. The goal is to branch on a variable that causes the most

reductions in the domains of the other variables. As for phase one, if a solution is found or the

upper bound on the length of a schedule is reached, a provably optimal solution has been found.

In phase three, the level of constraint propagation during backtracking search is increased once

again to perform singleton consistency to a depth of two. Each variable is temporarily instantiated

to a single value and I test whether the constraint model is singleton consistent. This level of

propagation is expensive and is viable only for smaller but difficult basic blocks.

In my experiments, I found that the following scheme worked best for stepping through the

phases. First, if the basic block contains 300 or fewer instructions, phase one is allocated 5 seconds,

phase two is allocated 15 seconds, and the remaining time is allocated to phase three. Second,

if the basic blocks contains more than 300 instructions, phase one is allocated 5 seconds and the

remaining time is allocated to phase two.

3.5 Experimental evaluation

Now I present an experimental evaluation of the performance of my optimal scheduler for both

idealized and realistic architectures.

The constraint programming model was implemented and evaluated on all of the basic blocks

from the SPEC 2000 integer and floating point benchmarks (www.spec.org). The benchmarks

were compiled using IBM’s Tobey compiler [9] targeted towards the IBM PowerPC processor [36],

and the basic blocks were captured as they were passed to Tobey’s instruction scheduler. The

basic blocks contain four types of instructions: branch, load/store, integer, and floating point.

The range of the latencies is: all 1 for branch instructions, 1–12 for load/store instructions (the

largest value is for a store-multiple instruction, which stores to memory the values in a sequence

of registers), 1–37 for integer instructions (the largest value is for division), and 1–38 for floating
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point instructions (the largest value is for square root). The Tobey compiler performs instruction

scheduling before global register allocation and once again afterward, and our test suite contains

both versions of the basic blocks. The compilations were done using Tobey’s highest level of

optimization, which includes aggressive optimization techniques such as software pipelining and

loop unrolling.

3.5.1 Experiments for idealized architectural models

The following table shows the four idealized architectural models I used in my evaluation. Con-

sistent with previous work, I assumed that all functional units were fully pipelined and that the

issue width of the processor was equal to the number of functional units.

1-issue processor executes all types of instructions.

2-issue processor with one floating point functional unit and one functional unit

that can execute integer, load/store, and branch instructions.

4-issue processor with one functional unit for each type of instruction.

6-issue processor with the following functional units: two integer, one floating

point, two load/store, and one branch.

The optimal constraint programming scheduler was compared experimentally with list schedul-

ing, the most popular heuristic method for scheduling basic blocks in compilers [27]. List schedul-

ing is a greedy algorithm which uses a heuristic for which instruction to schedule next. Following

Muchnick [51], my heuristic used critical-path distance as the primary feature and earliest start

time as a tie-breaker. Although a popular heuristic, the primary reason for adopting this heuristic

is that critical-path heuristics were also used in previous work [31, 65, 66], thus allowing a fairly

direct comparison of previous experimental results with our experimental results.

Wilken, Liu, and Heffernan [66] and van Beek and Wilken [65] present experimental results for

a 1-issue processor. Note that, although both of these solvers could solve all of the basic blocks

in the SPEC95 floating point benchmarks in seconds, when the solver in [65] was applied to the

current test suite of basic blocks, hundreds of problems could not be solved. I speculate that the

current test suite contains more difficult problems for the following four reasons. First, the current

test suite contains longer and more varied latencies (in [66], the latencies were uniformly 1 for

integer instructions, 2 for floating point instructions, and 3 for memory instructions). Second, the

current test suite contains shorter latencies (our DAGs contain many latency 0 edges, which are

used to capture anti-dependencies and output dependencies between two instructions). Third, the

current test suite contains many larger basic blocks (previous work used the GCC compiler and

the largest DAG was approximately 1000 instructions). Fourth, the current test suite contains

blocks from both before and after register allocation (previous work only used blocks from after

register allocation).

Heffernan and Wilken [31] were the first to present experimental results on solving large basic

48



blocks targeted towards a multiple-issue processor. Their test suite contains the basic blocks

from the SPEC 2000 floating point benchmarks (with the Fortran90 benchmarks omitted) and

are from after register allocation. They report the number of basic blocks where their optimal

scheduler failed to complete within a time limit of 100 seconds. In their worst case, a 2-issue

processor model, their optimal solver failed on over 200 basic blocks. They used a 3-GHz Pentium

4 processor with 512 MB of main memory for experimentation. If I restrict my experimental

results to the same benchmarks and the same time limit, my optimal solver failed on only 4 basic

blocks, a 50-fold improvement. For my experimentation, I used a 2.40 GHz Pentium 4 processor

with 1GB of main memory.

Table 3.3 gives number of basic blocks in the SPEC 2000 benchmark suite where the optimal

scheduler found an improved schedule (imp.), and the percentage of basic blocks with improved

schedules (%), for various idealized architectural models. Table 3.4 gives average and maximum

percentage improvements in schedule length of optimal schedule over schedule found by list sched-

uler using the heuristic, for various idealized architectural models. The average is over only the

basic blocks in the SPEC 2000 benchmark suite where the optimal scheduler found an improved

schedule. To systematically study the scaling behavior of the optimal scheduler, I report the re-

sults broken down by increasing size ranges of the basic blocks as well. For reference, the number

of basic blocks in each size range is also given (see Tables 3.5 & 3.6). It can be seen that the

optimal scheduler scales well, finding improved solutions for large basic blocks. Not surprisingly,

as the basic block size increases, the heuristic method has more opportunities to make a mistake

and the fraction of basic blocks improved by the optimal scheduler increases. For the largest

basic blocks, up to 32.7% of the schedules are improved by the optimal scheduler (see the 4-issue

architecture in Table 3.5). Table 3.6 shows the average and maximum gain in schedule length

against the heuristic schedule.

Depending on the architectural model, the optimal scheduler took between 2:31:44 (hh:mm:ss)

and 6:44:00 to schedule all of the basic blocks in the entire SPEC benchmark (see Table 3.7).

While such long compile times would not be tolerable in everyday use, these times are well

within acceptable limits when compiling for software libraries, embedded applications, or final

release builds. I note that adding the implied distance constraints and the safe pruning and

dominance constraints were critical to achieving this performance. Without these constraints,

many individual basic blocks could not be solved within the amount of time that I can now solve

the entire ensemble of basic blocks. Table 3.8 gives percentage of all basic blocks in the SPEC

2000 benchmark suite which were solved to optimality, for various idealized architectural models

and time limits for solving each basic block.
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Table 3.3: Critical path heuristic. Number of basic blocks in the SPEC 2000 benchmark suite

where the optimal scheduler found an improved schedule (imp.), and the percentage of basic

blocks with improved schedules (%), for various idealized architectural models.

1-issue 2-issue 4-issue 6-issue

#blocks imp. % imp. % imp. % imp. %

ammp 6,587 121 1.8 160 2.4 122 1.9 108 1.6

applu 1,387 68 4.9 101 7.3 92 6.6 60 4.3

apsi 4,860 102 2.1 218 4.5 221 4.5 129 2.7

art 841 3 0.4 5 0.6 13 1.5 0 0.0

bzip2 2,032 15 0.7 15 0.7 30 1.5 10 0.5

crafty 10,104 136 1.3 136 1.3 176 1.7 57 0.6

eon 9,481 131 1.4 161 1.7 212 2.2 133 1.4

equake 989 8 0.8 12 1.2 16 1.6 9 0.9

facerec 2,657 41 1.5 124 4.7 147 5.5 73 2.7

fma3d 21,314 593 2.8 669 3.1 829 3.9 408 1.9

galgel 11,489 266 2.3 396 3.4 367 3.2 198 1.7

gap 40,354 343 0.8 343 0.8 297 0.7 105 0.3

gcc 88,251 448 0.5 446 0.5 566 0.6 214 0.2

gzip 3,333 40 1.2 40 1.2 69 2.1 5 0.2

lucas 1,929 87 4.5 103 5.3 105 5.4 68 3.5

mcf 771 21 2.7 21 2.7 20 2.6 1 0.1

mesa 31,381 363 1.2 447 1.4 560 1.8 248 0.8

mgrid 428 12 2.8 31 7.2 27 6.3 18 4.2

parser 7,496 50 0.7 50 0.7 50 0.7 16 0.2

perlbmk 33,992 276 0.8 277 0.8 273 0.8 76 0.2

sixtrack 23,518 803 3.4 1,270 5.4 1,265 5.4 640 2.7

swim 733 10 1.4 26 3.5 21 2.9 7 1.0

twolf 15,163 163 1.1 167 1.1 150 1.0 39 0.3

vortex 24,753 159 0.6 157 0.6 269 1.1 116 0.5

vpr 7,023 68 1.0 70 1.0 84 1.2 23 0.3

wupwise 1,245 58 4.7 78 6.3 68 5.5 12 1.0

Total 352,111 4,385 1.2 5,523 1.6 6,049 1.7 2,773 0.8
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Table 3.4: Critical path heuristic. Average and maximum percentage improvements in schedule

length of optimal schedule over schedule found by list scheduler using the heuristic, for various

idealized architectural models. The average is over only the basic blocks in the SPEC 2000

benchmark suite where the optimal scheduler found an improved schedule.

1-issue 2-issue 4-issue 6-issue

ave. max. ave. max. ave. max. ave. max.

ammp 3.6 20.0 3.5 20.0 4.0 20.0 3.3 11.1

applu 2.7 20.0 3.3 20.0 3.5 14.8 2.9 13.3

apsi 4.7 20.0 5.3 20.0 5.7 37.5 5.0 25.0

art 9.4 11.1 10.1 11.1 8.2 11.1 0.0

bzip2 6.9 20.0 6.9 20.0 6.7 30.0 5.1 10.0

crafty 5.4 20.0 5.4 20.0 6.0 27.3 5.2 16.7

eon 3.8 20.0 3.9 20.0 5.8 25.0 4.5 11.1

equake 6.3 16.7 5.0 16.7 5.8 20.0 3.3 7.7

facerec 7.0 20.0 6.5 20.0 5.6 15.1 4.9 11.9

fma3d 4.0 20.0 4.2 24.1 5.4 25.0 4.3 15.0

galgel 5.5 20.0 6.3 33.3 5.1 20.0 5.7 25.0

gap 8.0 20.0 8.0 20.0 9.7 20.0 8.3 25.0

gcc 7.5 21.4 7.5 21.4 7.7 38.9 9.8 33.3

gzip 10.0 20.0 10.0 20.0 10.4 20.0 10.8 16.7

lucas 4.1 10.5 5.8 12.8 5.3 12.8 2.9 6.7

mcf 6.8 20.0 6.8 20.0 8.7 25.0 7.7 7.7

mesa 4.4 20.0 5.6 27.3 7.2 28.6 5.6 32.4

mgrid 3.7 11.1 4.2 11.1 4.3 11.1 4.6 12.5

parser 9.3 20.0 9.3 20.0 10.5 25.0 8.5 14.3

perlbmk 7.4 20.0 7.5 20.0 7.5 20.0 7.1 25.0

sixtrack 4.3 20.0 5.0 25.0 4.9 33.3 3.9 20.7

swim 2.9 9.1 3.4 9.1 3.4 12.5 2.0 4.4

twolf 6.8 20.0 6.9 20.0 7.2 32.0 6.4 17.6

vortex 6.6 20.0 6.7 20.0 6.7 16.7 7.0 16.7

vpr 5.8 20.0 6.0 20.0 7.3 20.0 6.1 11.1

wupwise 3.8 20.0 5.5 33.3 4.5 11.5 6.0 10.0

Overall 5.5 21.4 5.7 33.3 6.2 38.9 5.2 33.3
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Table 3.5: Critical path heuristic. Number of basic blocks in the SPEC 2000 benchmark suite

where the optimal scheduler found an improved schedule (imp.), and the percentage of basic blocks

with improved schedules (%), for ranges of basic block sizes and various idealized architectural

models.

1-issue 2-issue 4-issue 6-issue

range #blocks imp. % imp. % imp. % imp. %

3–5 179,056 338 0.2 350 0.2 182 0.1 0 0.0

6–10 94,066 804 0.9 907 1.0 736 0.8 69 0.1

11–15 32,069 754 2.4 834 2.6 882 2.8 189 0.6

16–20 14,433 364 2.5 392 2.7 741 5.1 345 2.4

21–30 13,911 619 4.4 781 5.6 962 6.9 584 4.2

31–50 9,760 628 6.4 853 8.7 1,013 10.4 615 6.3

51–100 5,669 536 9.5 790 13.9 915 16.1 538 9.5

101–250 2,789 270 9.7 505 18.1 501 18.0 337 12.1

251–2750 358 72 20.1 111 31.0 117 32.7 96 26.8

Total 352,111 4,385 1.2 5,523 1.6 6,049 1.7 2,773 0.8

Table 3.6: Critical path heuristic. Average and maximum percentage improvements in schedule

length of optimal schedule over schedule found by list scheduler using the heuristic, for ranges of

block sizes and various idealized architectural models. The average is over only the basic blocks

in the SPEC 2000 benchmark suite where the optimal scheduler found an improved schedule.

1-issue 2-issue 4-issue 6-issue

range ave. max. ave. max. ave. max. ave. max.

3–5 16.5 20.0 16.8 33.3 15.6 25.0 0.0

6–10 8.8 20.0 9.3 30.0 11.0 33.3 15.0 33.3

11–15 6.0 21.4 6.6 27.3 8.4 27.3 10.3 20.0

16–20 4.5 15.8 4.6 15.8 7.2 37.5 8.3 25.0

21–30 3.6 13.6 4.3 19.0 5.7 28.6 6.1 17.6

31–50 2.6 15.6 3.7 25.0 4.3 32.0 4.4 21.4

51–100 1.9 10.3 2.8 20.0 2.9 38.9 3.1 28.6

101–250 1.3 9.7 2.3 27.3 2.3 27.5 2.2 32.4

251–2750 0.2 0.9 1.9 24.1 1.4 16.3 0.7 4.9

Overall 5.5 21.4 5.7 33.3 6.2 33.3 5.2 33.3
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Table 3.7: Total time (hh:mm:ss) to schedule all basic blocks in the SPEC 2000 benchmark suite,

for various idealized architectural models and time limits for solving each basic block.

1 sec. 10 sec. 1 min. 10 min.

1-issue 50:06 1:20:50 1:43:31 2:31:44

2-issue 50:39 1:32:17 2:19:19 6:44:08

4-issue 46:31 1:26:31 2:09:16 5:31:21

6-issue 47:01 1:27:13 2:00:12 4:37:01

Table 3.8: Percentage of all basic blocks in the SPEC 2000 benchmark suite which were solved to

optimality, for various idealized architectural models and time limits for solving each basic block.

1 sec. 10 sec. 1 min. 10 min.

1-issue 99.792 99.969 99.997 99.999

2-issue 99.771 99.960 99.989 99.993

4-issue 99.791 99.965 99.990 99.995

6-issue 99.792 99.968 99.993 99.996
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3.5.2 Experiments for realistic architectural models

The following table shows the four realistic architectural models I used in my evaluation. In these

architectures, the functional units are not fully pipelined and the issue width of the processor is

not equal to the number of functional units.

issue simple complex memory branch floating

architecture width int. units int. units units units point units

1r-issue 1 1

PowerPC 603e 2 1 1 1 1

(ppc603e)

PowerPC 604 4 2 1 1 1 1

(ppc604)

6r-issue 6 2 2 3 2

Table 3.9 gives number of basic blocks in the SPEC 2000 benchmark suite where the optimal

scheduler found an improved schedule (imp.), and the percentage of basic blocks with improved

schedules (%), for various realistic architectural models. Table 3.10 gives average and maximum

percentage improvements in schedule length of optimal schedule over schedule found by list sched-

uler using the heuristic, for various realistic architectural models. The average is over only the

basic blocks in the SPEC 2000 benchmark suite where the optimal scheduler found an improved

schedule. Tables 3.11 give the number of basic blocks where the optimal scheduler found an

improved schedule over the best schedule for the realistic architecture. One can see that the

optimal scheduler is performing much better than the heuristic for realistic architecture than non-

realistic architecture. Tables 3.12 summarize the percentage improvements in schedule length of

the optimal schedule over the schedule found by a list scheduling algorithm using the critical-path

heuristic.

Depending on the architectural model, the optimal scheduler took between 35:20:21 (hh:mm:ss)

and 233:24:03 to schedule all of the basic blocks in the entire SPEC benchmark (see Table 3.14).

Table 3.13 gives percentage of all basic blocks in the SPEC 2000 benchmark suite which were

solved to optimality, for various idealized architectural models and time limits for solving each

basic block1.

Figure 3.7 shows the percentage of basic blocks, for each architecture, where the list sched-

uler was within a given percentage of optimal when instruction scheduling was performed before

register allocation. For example, the list scheduler is within 10% of optimal for 99.7% of all basic

blocks on the 1r-issue architecture. As another example, for the PowerPC 604, the list scheduler

finds an optimal schedule (i.e. is within 0% of optimal) for 96.5% of all basic blocks. Figure 3.8

shows the percentage of basic blocks, for each architecture, where the list scheduler was within

1For my experimentation, I used 2.40 GHz Pentium 4 processor with 1GB of main memory.

54



a given percentage of optimal when instruction scheduling was shown after register allocation.

These two figures indicate clearly that list scheduling is nearly optimal when scheduling basic

blocks, even on a more realistic architectural model, as list scheduling is optimal at least 94% of

the time.

3.6 Summary

I presented a constraint programming approach to basic block instruction scheduling for multiple-

issue processors. The problem is considered intractable, yet my approach is optimal and robust

on large, real problems. The key to scaling up to large, real problems was in the development

of an improved constraint model and the application of more powerful constraint propagation

techniques. I experimentally evaluated my optimal scheduler on the SPEC 2000 integer and

floating point benchmarks. On this benchmark suite, the optimal scheduler was very robust and

scaled to the largest basic blocks. Depending on the architectural model, between 99.991% to

99.999% of all basic blocks were solved to optimality. The scheduler was able to solve the largest

basic blocks, including blocks with up to 2600 instructions. This compares favorably to the best

previous approach due to Heffernan and Wilken [31]. I also compared the performance of a list

scheduler for basic block scheduling using the critical path heuristic. When scheduling for the

idealized architectural model, the list scheduler solved 98.6%-99.9% of the basic blocks in the

benchmark suite optimally. For the realistic architectural model, the list scheduler produced

optimal schedules for 94.2%-97.8% of the basic blocks. In the next chapter, I will present my

constraint programming model for superblock instruction scheduling problem.
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Table 3.9: Critical path heuristic. Number of basic blocks in the SPEC 2000 benchmark suite

where the optimal scheduler found an improved schedule (imp.), and the percentage of basic

blocks with improved schedules (%), for various realistic architectural models.

1r-issue ppc603e ppc604 6r-issue

#blocks imp. % imp. % imp. % imp. %

ammp 6,587 220 3.3 334 5.1 317 4.8 189 2.9

applu 1,387 104 7.5 209 15.1 205 14.8 138 9.9

apsi 4,860 250 5.1 790 16.3 809 16.6 649 13.4

art 841 5 0.6 57 6.8 67 8.0 54 6.4

bzip2 2,032 18 0.9 100 4.9 67 3.3 46 2.3

crafty 10,104 142 1.4 420 4.2 428 4.2 294 2.9

eon 9,481 280 3.0 641 6.8 782 8.2 583 6.1

equake 989 14 1.4 27 2.7 24 2.4 21 2.1

facerec 2,657 58 2.2 357 13.4 395 14.9 335 12.6

fma3d 21,314 964 4.5 2,508 11.8 2,145 10.1 1,667 7.8

galgel 11,489 329 2.9 1,218 10.6 1,363 11.9 1,043 9.1

gap 40,354 817 2.0 1,410 3.5 967 2.4 827 2.0

gcc 88,251 474 0.5 1,737 2.0 1,597 1.8 1,391 1.6

gzip 3,333 42 1.3 169 5.1 133 4.0 113 3.4

lucas 1,929 89 4.6 297 15.4 321 16.6 171 8.9

mcf 771 19 2.5 53 6.9 42 5.4 31 4.0

mesa 31,381 547 1.7 1,801 5.7 1,723 5.5 1,416 4.5

mgrid 428 12 2.8 43 10.0 52 12.1 30 7.0

parser 7,496 50 0.7 214 2.9 179 2.4 174 2.3

perlbmk 33,992 273 0.8 1,108 3.3 947 2.8 781 2.3

sixtrack 23,518 1,196 5.1 2,877 12.2 2,578 11.0 1,788 7.6

swim 733 28 3.8 83 11.3 73 10.0 43 5.9

twolf 15,163 217 1.4 610 4.0 500 3.3 328 2.2

vortex 24,753 173 0.7 913 3.7 963 3.9 878 3.5

vpr 7,023 122 1.7 317 4.5 272 3.9 233 3.3

wupwise 1,245 69 5.5 152 12.2 150 12.0 91 7.3

Total 352,111 6,512 1.8 18,445 5.2 17,099 4.9 13,314 3.8

56



Table 3.10: Critical path heuristic. Average and maximum percentage improvements in schedule

length of optimal schedule over schedule found by list scheduler using the heuristic, for vari-

ous realistic architectural models. The average is over only the basic blocks in the SPEC 2000

benchmark suite where the optimal scheduler found an improved schedule.

1r-issue ppc603e ppc604 6r-issue

ave. max. ave. max. ave. max. ave. max.

ammp 3.32 16.67 6.15 25.00 5.64 25.00 8.60 25.00

applu 2.88 16.67 4.95 23.53 4.64 23.53 6.51 27.91

apsi 2.97 16.67 5.56 37.50 5.85 30.00 7.53 74.42

art 5.38 10.00 7.99 25.00 8.19 25.00 10.46 25.00

bzip2 5.73 16.67 8.21 33.33 8.07 25.00 7.73 25.00

crafty 4.98 16.67 7.82 33.33 7.15 36.67 6.50 20.00

eon 3.81 17.14 6.00 27.78 5.63 25.00 5.97 27.87

equake 3.79 14.29 4.97 16.67 3.92 11.11 6.02 10.53

facerec 6.33 16.67 6.34 25.00 6.71 25.81 7.16 33.33

fma3d 3.56 16.67 5.32 27.27 5.21 35.00 5.79 44.83

galgel 5.03 16.67 5.97 25.00 6.65 40.00 7.60 40.51

gap 6.25 16.67 10.19 33.33 11.91 25.00 13.10 25.00

gcc 6.69 16.67 8.39 33.33 9.39 30.00 9.63 33.33

gzip 9.15 16.67 10.03 25.00 11.71 25.00 11.90 25.00

lucas 4.16 9.09 6.11 13.33 6.45 21.95 6.27 12.90

mcf 6.62 16.67 7.82 20.00 10.47 20.00 10.02 20.00

mesa 4.85 28.57 7.64 51.72 8.33 51.72 9.51 53.57

mgrid 2.91 10.00 3.87 10.00 5.35 19.23 4.63 10.00

parser 8.29 16.67 9.29 25.00 9.95 27.27 9.77 25.00

perlbmk 6.70 16.67 9.50 33.33 9.60 30.00 10.83 25.00

sixtrack 4.03 16.67 5.73 25.00 5.91 25.00 7.04 50.00

swim 3.36 9.09 4.44 13.89 5.12 12.33 3.96 11.54

twolf 5.88 22.67 9.11 27.69 9.17 26.56 9.16 26.56

vortex 6.14 16.67 7.92 28.00 8.04 25.00 8.68 36.36

vpr 5.02 16.67 7.12 25.00 6.80 25.00 6.77 33.33

wupwise 3.77 16.67 5.69 25.00 5.56 20.00 6.19 20.00

Overall 4.82 28.57 7.10 51.72 7.35 51.72 8.27 74.42

57



Table 3.11: Critical path heuristic. Number of basic blocks in the SPEC 2000 benchmark suite

where the optimal scheduler found an improved schedule (imp.), and the percentage of basic blocks

with improved schedules (%), for ranges of basic block sizes and various realistic architectural

models.

1r-issue ppc603e ppc604 6r-issue

range #blocks imp. % imp. % imp. % imp. %

3–5 182,113 374 0.2 1,559 0.9 1,122 0.6 1,016 0.6

6–10 91,807 1,121 1.2 2,445 2.7 1,674 1.8 1,222 1.3

11–15 31,610 1,350 4.3 2,911 9.2 2,444 7.7 1,490 4.7

16–20 14,323 590 4.1 2,150 15.0 2,130 14.9 1,689 11.8

21–30 13,767 903 6.6 3,042 22.1 3,179 23.1 2,610 19.0

31–50 9,703 988 10.2 3,016 31.1 3,098 31.9 2,537 26.1

51–100 5,645 771 13.7 2,168 38.4 2,181 38.6 1,767 31.3

101–250 2,786 343 12.3 1,057 37.9 1,171 42.0 937 33.6

251–2750 357 72 20.2 123 34.5 129 36.1 62 17.4

Total 352,111 6,512 1.8 18,471 5.2 17,128 4.9 13,330 3.8

Table 3.12: Critical path heuristic. Average and maximum percentage improvements in schedule

length of optimal schedule over schedule found by list scheduler using the heuristic, for ranges of

block sizes and various realistic architectural models. The average is over only the basic blocks in

the SPEC 2000 benchmark suite where the optimal scheduler found an improved schedule.

1r-issue ppc603e ppc604 6r-issue

range ave. max. ave. max. ave. max. ave. max.

3–5 13.2 16.7 19.5 33.3 21.2 25.0 22.9 33.3

6–10 7.5 18.2 10.5 25.0 11.7 33.3 13.4 33.3

11–15 5.5 28.6 7.4 51.7 8.3 51.7 9.4 74.4

16–20 4.1 15.8 6.2 37.5 7.1 28.6 7.6 36.4

21–30 3.8 22.7 5.6 27.8 6.5 35.0 7.4 51.1

31–50 2.8 15.2 4.6 33.3 5.1 30.0 5.6 36.6

51–100 2.0 10.2 3.2 25.0 3.6 40.0 4.3 50.0

101–250 1.6 10.0 2.1 25.9 2.1 28.8 2.5 31.6

251–2750 0.4 4.3 1.7 9.9 1.4 12.9 2.0 12.0

Overall 4.8 28.6 7.1 51.7 7.3 51.7 8.3 74.4
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Table 3.13: Percentage of all basic blocks in the SPEC 2000 benchmark suite which were solved to

optimality, for various realistic architectural models and time limits for solving each basic block.

1 sec. 10 sec. 1 min. 10 min.

1r-issue 99.479 99.727 99.905 99.969

ppc603e 97.822 98.847 99.566 99.805

ppc604 97.831 98.856 99.579 99.838

6r-issue 97.321 98.643 99.442 99.738

Table 3.14: Total time (hh:mm:ss) to schedule all basic blocks in the SPEC 2000 benchmark suite,

for various realistic architectural models and time limits for solving each basic block.

1 sec. 10 sec. 1 min. 10 min.

1r-issue 48:27 4:05:52 11:16:46 35:20:21

ppc603e 2:31:50 16:25:58 47:33:35 179:08:17

ppc604 2:32:16 16:24:20 46:05:36 162:27:33

6r-issue 3:03:45 19:50:42 57:34:06 233:24:03
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Figure 3.7: Basic block scheduling before register allocation. Performance guarantees for the list

scheduler using the critical path heuristic in terms of worst-case factors from optimal, for various

architectures.
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Figure 3.8: Basic block scheduling after register allocation. Performance guarantees for the list

scheduler using the critical path heuristic in terms of worst-case factors from optimal, for various

architectures.
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Chapter 4

Superblock Scheduling for

Multi-Issue Processors

In this chapter, I present my model for the superblock scheduling problem. I discuss the changes

made to the basic block instruction scheduler to solve the superblock scheduling problem, and

evaluate it for the idealized and realistic architectures presented in Chapter 3.

4.1 Related work

Superblock instruction scheduling for realistic multiple-issue processors is NP-complete [33], and

most compilers use a heuristic approach. Researchers have also proposed to solve it optimally. I

will discuss both the approaches separately.

4.1.1 Scheduling heuristics

List scheduling is the commonly used algorithm for superblock scheduling. As already stated

in Chapter 2 it maintains a priority queue of ready instructions which are instructions with no

predecessors. The priority of an instruction is calculated using a heuristic. For a given clock

cycle, the list scheduler picks the top instructions in the priority queue. The number of picked

instructions depend upon the number of functional units and the available free slots in the given

cycle. If it could not find any instruction, it inserts a NOP (No OPeration). It continues this

process until all instructions are scheduled. Many heuristics have been crafted to find a good

schedule including critical path [35], successive retirement [13], dependence height and speculative

yield [22], G∗ [13], speculative hedge [19] and balance scheduling [49]. In my work I did a detailed
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analysis of critical path, G∗, dependence height and speculative yield and speculative hedge

heuristics with respect to their success for finding optimal solutions. I dropped the balance

scheduling and successive retirement heuristics because of their high computational cost.

Superblocks, when introduced [35], were scheduled using the critical path heuristic. The critical

path heuristic is good when the aim is to minimize the distance between the root and the sink

node. In superblock scheduling the objective is to minimize the weighted completion time. Exit

nodes, which define the weighted completion time, may not be on the critical path of a DAG

representing a superblock. Hence, this heuristic may not be a good choice for finding a good

schedule for superblock scheduling.

The dependence height and speculative yield (DHASY) [22] heuristic is a modified version of

the critical path heuristic for superblock scheduling. Instead of a plain critical path, a weighted

critical path to all exit points is used to prioritize the instruction nodes in a superblock. The

priority of an instruction x is calculated as,

priority(x) =
∑

e∈B

(we(cp(1, n) + 1− ((cp(1, e)− cp(x, e)))

where B is the set of exit nodes that are descendants of x, cp(1, n) is the critical path distance

between the root and the sink node, cp(1, e) is the critical path distance between the root node

and exit node e and cp(x, e) is the critical path distance between instruction x and exit node e.

In the G* heuristic [13], a superblock is scheduled using the critical path heuristic. The rank

for each exit point is then calculated by dividing the cycle in which the exit point is scheduled

by the sum of the exit probabilities for the exit point under consideration and its preceding exit

points. The exit points are sorted in ascending order. The final schedule for the superblock is

obtained by taking an exit point from the sorted list one by one and scheduling it as early as

possible with its predecessors.

The speculative hedge [19] heuristic calculates the priority of an instruction by the sum of the

weights of the branches that it helps schedule early. Speculative hedge investigates each operation

to determine whether it helps still unscheduled exit points or not. An operation can help an exit

point in two ways: (i) the operation is on the critical path to the exit point and delaying the

operation will delay the exit point, and (ii) the operation uses a critical resource that is critical

to the exit point, and preferring some other operation will delay the exit point. An operation’s

priority is the sum of the exit probabilities helped by the operation.

4.1.2 Approaches for optimal solutions

Even the best heuristics can produce sub-optimal solutions. In contrast to basic block instruction

scheduling, there has been little work on optimal global instruction scheduling where the region
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of code to schedule consists of more than one basic block—such as in traces, superblocks, or

hyperblocks.

Winkel [67] presents an integer linear programming model for global instruction scheduling for

Itanium processors. However, the approach has a number of deficiencies. First, the evaluation of

the approach is limited, consisting of only nine scheduling regions with sizes up to 200 instructions.

Second, and more importantly, the approach minimizes the length of the schedule. This measure

is appropriate for basic blocks, which consist of straight line code. But it is not appropriate for

global regions which contain multiple exits and whose paths of execution may rarely fall through

to the last instruction (see Section 2.5 and the discussion of weighted completion time).

Shobaki and Wilken [60, 61] were the first to develop a robust optimal scheduler for superblocks

that scaled up to large superblocks. Their experimental work is limited to superblocks with size up

to 1236 instructions. For their work, instruction latencies are 2 cycles for floating point (FP) adds,

3 cycles for loads and FP multiplies, 9 cycles for FP divides and 1 cycle for all other instructions.

My test suite, obtained from the IBM TOBEY compiler, contains larger superblocks with size up

to 2600 instructions and more varied latencies. My test suite also contains zero latency edges,

which are used to capture anti-dependencies and output dependencies1 between two instructions.

This makes the optimal superblock scheduling problem more challenging. As well, Shobaki and

Wilken’s work is targeted to idealized architectures which assume that the functional units are

fully pipelined and that the issue width of the processor is equal to the number of functional units.

In my work, I remove these assumptions and present the first optimal superblock scheduling

approach for realistic architectures. Further, even though the target architectures are realistic, my

approach scales up to more difficult and larger superblocks than in previous work. I experimentally

evaluated my optimal scheduler on the SPEC 2000 integer and floating point benchmarks, using

four idealized architectural models and four realistic architectural models. The results for the

idealized architectural models are presented to allow a comparison with previous work. On the

SPEC 2000 benchmark suite, the optimal scheduler scaled to the largest superblocks and was very

robust. Depending on the architectural model, at most 15 superblocks out of 187,334 superblocks

used in my experiments could not be solved within a 10-minute time bound per superblock.

In my experiments I also performed a detailed analysis of several state-of-the-art heuristics for

superblock scheduling in comparison to the optimal scheduler.

1An anti-dependency occurs when an instruction requires a value that is later updated; an output dependency

occurs when the ordering of instructions will affect the final output value of a variable.
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4.2 Constraint programming model for superblock schedul-

ing

In this section, I present my constraint model of the superblock instruction scheduling problem.

The six main types of constraints in the model are latency, resource, distance, predecessor and suc-

cessor, safe pruning, and dominance constraints. Except the dominance and distance constraints,

all other constraints are taken from the model for basic block scheduling. The dominance and

distance constraints are modified for superblock scheduling. I discuss here only the dominance

constraints and distance constraints for subgraphs in a DAG for a superblock.

4.2.1 Dominance constraints

Heffernan and Wilken [31] present a set of graph transformations for dependency DAGs for basic

blocks and show that optimally scheduling the transformed DAGs using branch-and-bound enu-

meration is faster and more robust. The DAG transformations reduce the search space while pre-

serving optimality and hence are safe. I implemented it successfully for my basic block scheduling

model2. In this section, I will talk about this constraint with reference to superblock scheduling.

Adding a dominance constraint in a dependency DAG for a superblock is safe, if it does not

change the optimal cost function value; i.e, weighted completion time (WCT) of the DAG. The

number of speculative instructions across an exit node define the speculative characteristic of the

exit node. The speculative characteristic of exit nodes and their schedule length affect the WCT

value. Let G be a DAG of a superblock S. Let l∗i be the minimum schedule length of exit node ei

from the root node of G for all schedules of S. If there are n exit nodes in S, then a lower bound,

C∗, on the value of WCT can be calculated as:

C∗ =

n
∑

i=1

wil
∗
i .

Let li be the schedule length of exit node ei from the root node of G in any schedule of S. The

following relationship holds between C∗ and the value of WCT, C, for any schedule:

C =

n
∑

i=1

wili ≥ C∗ =

n
∑

i=1

wil
∗
i .

Let C ′ be the difference between C and C∗ i.e.,

C ′ = C − C∗,

C ′ =

n
∑

i=1

wi(li − l∗i ),

C ′ =

n
∑

i=1

wiδi,

2See Chapter 3 for detail.
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Figure 4.1: DAG for a superblock with node E and node K as exit nodes.

where ∀i, δi = li− l∗i . δi gives the distance of ei from its minimum schedule length in any schedule

for the superblock. In order to ensure an optimal solution for G after a transformation, I have

to ensure that δi does not change after the transformation. The value of δi depends upon the

number of instructions that can be moved across ei; i.e., the speculative characteristic of ei and

the minimum schedule length of ei. If I preserve the speculative characteristic and the minimum

schedule length of ei, I preserve the value of δi and hence the optimal cost function value for G

after transformation.

Definition 4.1 (Immediate predecessor exit node) If all paths from an exit node ei to a

node j do not contain any other exit node, then ei is an immediate predecessor exit node of j.

Definition 4.2 (Immediate successor exit node) If all paths from a node j to an exit node

ei do not contain any other exit node, then ei is an immediate successor exit node of j.

Example 4.1 Consider Figure 4.1. Nodes E and K are exit nodes. Node E is the immediate

predecessor exit node for nodes F, G, H, I and J . Node K is the immediate successor exit node

for nodes F, G, H, I and J .
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I restate the theorem by Heffernan and Wilken [31] for dependency DAGs for superblocks 3.

Theorem 4.1 Let A and B be isomorphic subgraphs in a DAG Gs of a superblock S, with node

sets V (A) = {a1, . . . , ar} and V (B) = {b1, . . . , br}. If, (i) ai is neither a predecessor or a successor

of bi, 1 ≤ i ≤ r, (ii) for all k ∈ pred(ai) such that k 6∈ V (A), l(k, ai) ≤ cp(k, bi), 1 ≤ i ≤ r,

(iii) for all k ∈ succ(bi) such that k 6∈ V (B), l(bi, k) ≤ cp(ai, k), 1 ≤ i ≤ r, (iv) for any edge (bi,

aj), l(bi, aj) ≤ cp(ai, bj), and (v) neither ai nor bi, 1 ≤ i ≤ r, are exit nodes. Then adding the

constraints ai ≤ bi, 1 ≤ i ≤ r in Gs is safe.

ei 

ei+1 

Bi 

Bi+1 

S 

Wi+1 

 

Wi 

B 

A 

ei+2 

 

ei 

ei+1 

Bi 

Bi+1 

S 

Wi+1 

 

Wi 

A 

B 

ei+2 

Figure 4.2: Adding dominance constraints in a superblock. A and B are isomorphic graphs; (a)

case-1: V (B) consists of speculative nodes; (b) case-2: V (A) consists of speculative nodes.

Proof. Figure 4.2 shows the two possibilities of adding a dominance constraint in a superblock.

Subgraph A and B are the same as in Theorem 4.1; i.e., A is superior to B. To show that the trans-

formations are safe, I must show that the transformations preserve the speculative characteristic

and the minimum schedule length of the exit nodes.

Part-1: Preserving the speculative characteristic of exit nodes.

Case-1: V(B) consists of speculative nodes that can be moved across basic blocks. By inserting

zero-latency edges from V(A) to V(B) (adding dominance constraints V (A) ≤ V (B)), I am

restricting the movement of bi ∈ V (B) to be below ei; i.e., ei, which is an immediate predecessor

exit node for ai ∈ V (A), now is also the immediate predecessor exit node for bi ∈ V (B). According

3The theorem has been proved independently by Heffernan and Wilken [32]
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to condition (ii) of Theorem 4.1, there is a path from each predecessor of ai ∈ V (A) to bi ∈ V (B).

As there is a path from ei to each predecessor of ai ∈ V (A), then there is also a path from ei

to bi ∈ V (B), which also makes ei the immediate predecessor exit for bi ∈ V (B). Thus, the

transformations do not change the speculative characteristic of the exit nodes in the superblock.

Case-2: V(A) consists of speculative nodes that can be moved across basic blocks. By inserting

zero-latency edges from V(A) to V(B), I am restricting the movement of ai ∈ V (A) to be above

ei+1; i.e., ei+1, which is the immediate successor exit node for bi ∈ V (B), now is also the immediate

successor exit node for ai ∈ V (A). According to condition (iii) of Theorem 4.1, there is a path

from ai ∈ V (A) to successors of bi ∈ V (B). As there is a path from each successor of bi ∈ V (B)

to ei+1, then there is also a path from each ai ∈ V (A) to ei+1, which also makes ei+1 the

immediate successor exit for ai ∈ V (A). Thus, the transformations do not change the speculative

characteristic of the exit nodes in the superblock.

Part-2: Preserving the minimum schedule length of exit nodes.

The minimum schedule length of ei+1 can be determined by scheduling a subgraph G′ containing

ei+1 and all its predecessors using an optimal scheduler. According to Theorem 4.1, adding

dominance constraint within G′ preserves the minimum schedule length of ei+1.

Case-1: V(B) consists of speculative nodes that can be moved across basic blocks. This case can

be further divided into following three sub-cases:

• When for every bi ∈ V (B), there is a path from bi to ei+1. This makes each bi ∈ V (B) a

predecessor of ei+1, i.e., bi ∈ V (G′). Then the transformations are within subgraph G′. The

transformations preserve the minimum schedule length of ei+1.

• When for every bi ∈ V (B), there is no path from bi to ei+1. It means bi ∋ V (G′). Then the

transformations are outside of subgraph G′. The transformations do not change G′. The

transformations preserve the minimum schedule length of ei+1.

• When for some bi ∈ V (B), there is a path from bi to ei+1 and for some bi ∈ V (B) there is no

path from bi to ei+1. Let B1 be a subgraph of B consisting of bi ∈ V (B) which has a path

to ei+1. Let A1 be a subgraph of A which is isomorphic to B1. Then adding dominance

constraints from ai ∈ V (A1) to bi ∈ V (B1) are within G′ and dominance constraints from

ai ∈ V (A − A1) to bi ∈ V (B − B1) are outside of G′. The transformations preserve the

minimum schedule length of ei+1.

Case-2: V(A) consists of speculative nodes that can be moved across basic blocks. In this case

all immediate successors of bi ∈ V (B) are predecessors of ei+1. According to condition (iii) of

Theorem 4.1, there is a path from ai ∈ V (A) to successors of bi ∈ V (B). As there is a path from

each successor of bi ∈ V (B) to ei+1, then there is also a path from each ai ∈ V (A) to ei+1, which

also makes ei+1 the immediate successor exit for ai ∈ V (A). The transformations are within

subgraph G′. The transformations preserve the minimum schedule length of ei+1.
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Figure 4.3: Example of adding dominance constraints in a superblock: (a) actual DAG; (b) the

constraints C ≤ H and E ≤ I (zero latency edges) would be added to the constraint model. Nodes

A, G and L are exit nodes.

Thus, the transformations are safe. �

Example 4.2 Consider the DAG shown in Figure 4.3(a). Nodes H and I are speculative nodes

as they can be moved across exit node G. Hence, the number of speculative instructions across

exit node G is 2. The subgraphs with nodes V (A) = {C, E} and V (B) = {H, I} are isomorphic

and satisfy the conditions of Theorem 4.1. Hence, the constraints C ≤ H and E ≤ I can be added

to the model. Figure 4.3(b) shows the DAG with the added constraints. The added constraints do

not change the speculative characteristic of exit node G, as node H and node I still can be moved

across node G.

Testing isomorphism is NP-complete in general. In Chapter 3, I explained my fast heuristic

to determine whether two components are isomorphic. For superblock constraint, I adopted the

same strategy for finding isomorphic graphs to add dominance constraints.

4.2.2 Upper bound distance constraints

Wilken et al. [66] introduced the concept of region in their work for optimal basic block scheduling

using integer programming. Using the concept of region, van Beek and Wilken [65] introduced the
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distance constraint in their work for optimal basic block scheduling using constraint programming.

The distance constraint improves the lower bound for the distance that must exist between a

pair of instructions, defining the region, in any schedule. I give an upper bound for the distance

constraint for a region between a pair of articulation nodes. Consider articulation nodes xi and xj

in a superblock, with no exit node in between them, a distance constraint of the form xi +dij ≥ xj

is added to the constraint model. If there is no resource contention at xi, then dij is the minimum

schedule length, l∗ij , between xi and xj in any legal schedule for the superblock. If there is resource

contention at xi, then dij = l∗ij + 1. Adding upper bound distance constraints for such regions is

based on Theorem 4.2.

Definition 4.3 (Articulation node) Let G be a graph. Node Vi ∈ V (G) is an articulation

node for G, if the subgraph of G induced by V (G)/{Vi} is unconnected.

Definition 4.4 (Resource contention) Let G be a DAG for superblock. Let Bi−1 and Bi be

two basic blocks in G connected by exit node ei. If instructions from Bi−1 and Bi compete for slots

available at the clock cycle in which ei can be issued, then there is said to be resource contention

at the exit node ei.

Example 4.3 Consider Figure 4.4. Assume a fully pipelined processor with issue-width equal to

four. Basic block B1 consists of nodes A, B, C, D and E. Basic block B2 includes of nodes E, F, G

and H. Node E is an articulation node. There is resource contention at E in Figure 4.4(b), as

nodes B, C, D from B1 and nodes F, G from B2 compete for the slots in the cycle in which E can

be issued. There is no resource contention at E in Figure 4.4(a).

Theorem 4.2 The schedule length of a region between two consecutive articulation nodes, with

no exit nodes in-between them, cannot be more than l∗ +1, where l∗ is the optimal schedule length

of the region when scheduled independently.

Proof. Consider a region rij between exit nodes xi and xj in a superblock S. Where xi

is a predecessor of xj , and there are no exit nodes between xi and xj as per the statement of

Theorem 4.2. When rij is scheduled independently, all resources are considered at the disposal

of region rij at clock cycle 1. An optimal scheduler will give optimal schedule length l∗ for rij .

In any schedule for S, rij cannot have schedule length less than l∗. When there is no resource

contention at xi, the situation is the same as if the region was being scheduled independently.

If there is resource contention, then some resources might still be occupied by the instructions

which are predecessors of xi. Let ti be the clock cycle of xi. If I insert a free slot at ti + 1, then

all resources will be available for the region rij , and all the nodes in rij can be scheduled within

ti + l∗ + 1 schedule length from xi. Thus, the distance between xi and xj cannot be more than

l∗ + 1 in any schedule for S. �
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Figure 4.4: Articulation node and resource contention: (a) no resource contention at the articu-

lation node E; (b) resource contention at the articulation node E.

Example 4.4 Figure 4.5(a) is a region in a superblock bounded by articulation nodes A and E.

Nodes X and Y are predecessor nodes of A. With latency of more than zero between A and

its predecessor nodes, there is no resource contention at node A. The distance between A and

E cannot be less than the minimum schedule length of the region scheduled independently by an

optimal scheduler. Figure 4.5(b) shows the region in isolation. Considering a dual-issue processor,

Table 4.1 gives a minimum length schedule for the region. In Figure 4.5(c), the latency between

A and its predecessor nodes is zero. This gives rise to resource contention at A. The worst case

is when one of the predecessor node takes the slot parallel to node A. But, I can still schedule all

the nodes in the region (excluding A) within the minimum length after the node A issue slot.

4.2.3 Improved lower and upper bounds for cost variables

The cost function, cost, is given by,
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Figure 4.5: Region for Example 4.4: (a) no resource contention at the articulation node A; (b)

region between node A and E in isolation; (c) resource contention at the articulation node A.

cycle Schedule

1 A B

2 C D

3 E

Table 4.1: An optimal schedule for the region in Figure 4.5(b).

cost =

n
∑

i=1

wixi,

where wi is the exit probability of exit node ei with schedule length xi. The cost function value

from any efficient heuristic approach can be used as an upper bound. Given an upper bound,

c, on cost and bounds on the variables in the cost function, i.e. exit nodes; it is straightforward

to improve upper bounds for each cost function variable by considering each exit node at their

minimum domain value except the exit node under consideration. An upper bound improvement

for exit node ej can be calculated as:
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c ≥
n

∑

i=1

wixi

c ≥ wjxj +
n

∑

i=1

i 6=j

wixi

c−
∑n

i=1

i 6=j
wixi

wj

≥ xj

c−
∑n

i=1

i 6=j
wi ·min(xi)

wj

≥ xj









c−
∑n

i=1

i 6=j
wi ·min(xi)

wj







 ≥ xj

I also use singleton consistency to prune the upper bounds of the cost variables. In singleton

consistency, a variable is temporarily instantiated to a single value and the constraint model is

tested for consistency. If the consistency test fails, the value can be removed from the domain of

the variable. In my work, I iteratively instantiated and tested the consistency on the upper bounds

of the domains of the variables. Let xj be a cost variable and dom(xj) = [a, b]. I temporarily

instantiate xj ← b and test whether the CSP is consistent by propagating the constraints and

also by testing, once the constraints have been propagated and the lower bounds have potentially

been updated, whether Equation 4.1 is satisfied. If the CSP is not consistent or the equation is

not satisfied, the domain of xj is set to [a, b− 1] and the process repeats.

Given a lower bound c on cost and bounds on the variables in the cost function, the lower

bound for each cost function variable can be improved by considering each exit node at their

maximum domain except the node under consideration. A lower bound improvement for exit

node ej can be determined by Equation 4.1.











c−
∑e+1

i=1

i 6=j
ci ·max(xi)

wj











≤ xj (4.1)

I also use singleton consistency to prune the lower bounds of the cost variables. Let xj be a

cost variable and dom(xj) = [a, b]. I temporarily instantiate xj ← a and test whether the CSP

is consistent by propagating the constraints and also by testing, once the constraints have been

propagated and the lower bounds have potentially been updated, whether Equation 2 is satisfied.

If the CSP is not consistent or the equation is not satisfied, the domain of xj is set to [a + 1, b]

and the process repeats.
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4.3 Solving an instance

I construct the constraint model and use the constraints to establish the lower bounds of the

variables and a lower bound on the length m of an optimal schedule. Given m, the upper bounds

of the variables are similarly established. A lower bound on the value of the cost function of an

optimal schedule is given by:

cost =
n

∑

i=1

wixi

≥

n
∑

i=1

wi ·min(xi)

An upper bound on the value of the cost function is found by a heuristic approach. If

lower(cost) = upper(cost), then the schedule given by the heuristic approach is optimal. If

lower(cost) 6= upper(cost), an optimal schedule can be determined depending upon the char-

acteristic of the superblock. For a superblock with all exit points as articulation points, Algo-

rithm 4.1 is adopted. In Algorithm 4.1, ConstraintModel constructs a constraint model of DAG G.

SubConstraintModel gives a sub-constraint model of G with exit node ei as final exit point. Op-

timalSchedule gives the optimal schedule length for exit node ei using sub-constraint model CM′.

The optimal scheduler for basic blocks, given in Chapter 3, has been used as OptimalSchedule.

UpdateDomain makes the domain of exit node ei the singleton domain equal to Li.

Algorithm 4.1: Algorithm for finding an optimal schedule for a superblock with exit points

as articulation points.

input : Dependency DAG G for a superblock S

output: Optimal schedule for S

CM = ConstraintModel (G);

for i = 0 to n do

CM′ = SubConstraintModel (CM, i);

Li = OptimalSchedule(CM′, schedule);

UpdateDomain(i, Li, CM);

return schedule;

Example 4.5 Consider Figure 4.6. Using Algorithm 4.1, an optimal schedule for the superblock

can be obtained by first finding the minimum schedule length of exit node e1, then fixing this node

at its minimum schedule length slot and finding the minimum schedule length for next exit node

e2 and so on. This methodology ensures an optimal solution by the following theorems.
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Figure 4.6: Superblock for Example 4.5. All exit nodes are articulation points.

Lemma 4.1 When scheduling a superblock using Algorithm 4.1, the first basic block of the su-

perblock will have schedule length equal to l∗, where l∗ is the optimal schedule length of the basic

block when scheduled independently.

Proof. When a superblock is scheduled using Algorithm 4.1, the resource condition for the first

basic block is same as when it is scheduled independently using an optimal scheduler. �

Theorem 4.3 Scheduling a superblock with all exit nodes as articulation nodes using Algorithm 4.1,

each exit node in the superblock is at the minimum schedule length from the root node of the su-

perblock.

Proof. Let S be a schedule for a superblock obtained using Algorithm 4.1. Let there be n exit

nodes in the superblock with e0 as the root node. Let Li, 0 ≤ i ≤ n, be the schedule length of exit

node ei from e0 in S. Let S′ be any other feasible schedule of the superblock. Let L′
i, 0 ≤ i ≤ n,

be the schedule length of exit node ei from e0 in S′. My claim is:

∀i, Li ≤ L′
i.

I will use a proof by contradiction approach. Suppose there exist values of i for which this claim

is not true. Let j be the smallest such value; i.e. for ∀i < j, the claim is true, and ej is the first

exit node which contradicts the claim. For this condition to be true, I have to examine two cases.
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Figure 4.7: Case-2: Lj > L′
j exists when Lj−1 < L′

j−1.

Case-1: Lj > L′
j exists when Lj−1 = L′

j−1 .

This is not possible. As I am using a true optimal scheduler. Had there been a schedule which

gives L′
j < Lj , when Lj−1 = L′

j−1, the optimal scheduler would have found it.

Case-2: Lj > L′
j exists when Lj−1 < L′

j−1.

Figure 4.7 explains case-2 graphically. Let Xj be the schedule length of the basic block Bj , that

exists between exit nodes ej and ej−1, in the schedule S, that is found using Algorithm 4.1. Let

X ′
j be the schedule length of the same basic block in the schedule S′, having Lj > L′

j , found by

any other heuristic. The relationship between Xj and X ′
j can be expressed as:

Xj = X ′
j +△1 +△2, (4.2)

where △1 = L′
j−1 − Lj−1 and △2 = Lj − L′

j . I know that Lj > L′
j and Lj−1 < L′

j−1. Therefore,

△1,△2 ≥ 1. Let △total = △1 + △2. Then I can safely say that △total ≥ 2. According to

Theorem 4.2, Xopj
+ 1 ≥ Xj ≥ Xopj

, where Xopj
is the optimal schedule length of basic block Bj

when scheduled independently. When there is resource contention at ej−1, then Xj = Xopj
+ 1

and Equation 4.2 can be written as:

Xopj
= X ′

j +△total − 1 (4.3)

In Equation 4.3, △total − 1 ≥ 1. Thus, Xopj
> X ′

j . This cannot be true. Now, if there is no

resource contention at ej , then Xj = Xopj
. Equation 4.2 can be written as,

Xopj
= X ′

j +△total (4.4)
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In Equation 4.4, △total ≥ 2. Thus, Xopj
> X ′

j . This is not possible. Hence, case-2 is not

possible.

Thus, the contradiction, Li > L′
i, is not true. �

Theorem 4.4 Scheduling a superblock with all exit nodes as articulation nodes using Algorithm 4.1

will give an optimal schedule for the superblock.

Proof. Using Theorem 4.3. �

If lower(cost) 6= upper(cost), and each exit point in a superblock is not an articulation node, I

used backtracking along with constraint propagation, as in my constraint programming approach

for basic block instruction scheduling, to find an optimal solution.

4.4 Experimental evaluation

In this section, I present experimental results gained from scheduling 154,651 superblocks. As

in Chapter 3, the data was obtained from compiling the entire SPEC 2000 benchmark suite

in IBM’s TOBEY compiler backend. Superblocks were collected before instruction scheduling

was performed, both before and after register allocation were performed. Each superblock was

scheduled on several different architectures using both the idealized and realistic architectural

models. The same set of architectures that were used for basic block scheduling, were used again

for superblock instruction scheduling.

4.4.1 Experiments for idealized architectural models

Shobaki and Wilken [60] were the first to present experimental results on solving large superblocks

targeted towards a multiple-issue processor. Their test suite contains the superblocks from the

SPEC 2000 integer and floating point benchmarks. They reported that on average 98.7% of the

superblocks were scheduled optimally within one second. Also, on average they were not able to

solve about 1.3% of superblocks. They also stated that they were able to improve 80% of the

hard problems (the problems that were passed to the enumerator). Comparing with Shobaki and

Wilken’s work, I speculate that my test suite contains more difficult problems for the following

four reasons:

• My test suite contains longer and more varied latencies.

• My test suite contains shorter latencies (our DAGs contain many latency 0 edges, which are

used to capture anti-dependencies and output dependencies between two instructions).
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• My test suite contains many larger basic blocks (work [60] used the GCC compiler and the

largest DAG was 1236 instructions).

• My test suite contains more speculation (more instructions that can move up to higher basic

blocks) as there is little speculation after register allocation.

Table 4.2 gives the total time (hh:mm:ss) to schedule all superblocks in the SPEC 2000 bench-

mark suite, for various idealized architectural models and time limits for solving each superblock.

Depending on the architectural model, the optimal scheduler took between 3:18:13 and 4:59:10 to

schedule all of the superblocks in the entire SPEC benchmark. Table 4.3 gives the percentage of

all superblocks in the SPEC 2000 benchmark suite which were solved to optimality, for various

idealized architectural models and time limits for solving each superblock.

Table 4.4 gives the number of superblocks in the SPEC 2000 benchmark suite where the

optimal scheduler found an improved schedule (imp.), and the percentage of superblocks with

improved schedules (%), for various idealized architectural models over DHASY heuristic. One

can see that the optimal scheduler is able to improve at least 3 superblocks and at most 1059

superblocks in one application. Overall, the improvement is from 2640 to 10,024 superblocks.

Table 4.5 gives an average and maximum percentage improvements in schedule cost of optimal

schedule over schedule found by list scheduler using the heuristic, for various idealized architectural

models. The average is over only the superblocks in the SPEC 2000 benchmark suite where

the optimal scheduler found an improved schedule. The minimum and maximum percentage

improvement per superblock is 4.3 and 49 respectively. The average minimum and maximum

percentage improvement per application is 0.3 and 7.2 respectively. Overall, the improvement is

from 4.0 to 49 percent.

Table 4.6 gives the number of superblocks in the SPEC 2000 benchmark suite where the

optimal scheduler found an improved schedule (imp.), and the percentage of superblocks with

improved schedules (%), for ranges of superblock sizes and various idealized architectural models.

Table 4.7 gives the average and maximum percentage improvements in schedule cost of optimal

schedule over schedule found by list scheduler using the heuristic, for ranges of block sizes and

various idealized architectural models. The average is over only the superblocks in the SPEC 2000

benchmark suite where the optimal scheduler found an improved schedule.

In summary, global instruction scheduling is a more complex problem than local instruction

scheduling, and even on an idealized architectural model, list scheduling does not perform as well

for global instruction scheduling as it did for local instruction scheduling.
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Table 4.2: Total time (hh:mm:ss) to schedule all superblocks in the SPEC 2000 benchmark suite,

for various idealized architectural models and time limits for solving each superblock.

1 sec. 10 sec. 1 min. 10 min.

1-issue 56:30 2:11:39 2:41:13 3:18:13

2-issue 56:54 2:22:30 3:21:46 4:59:10

4-issue 43:16 1:44:18 2:39:38 4:29:38

6-issue 38:29 1:20:52 1:48:14 2:50:52

Table 4.3: Percentage of all superblocks in the SPEC 2000 benchmark suite which were solved to

optimality, for various idealized architectural models and time limits for solving each superblock.

1 sec. 10 sec. 1 min. 10 min.

1-issue 99.225 99.897 99.990 99.999

2-issue 99.196 99.846 99.983 99.995

4-issue 99.454 99.878 99.981 99.995

6-issue 99.578 99.923 99.988 99.997
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Table 4.4: Dependence height and speculative yield heuristic. Number of superblocks in the SPEC

2000 benchmark suite where the optimal scheduler found an improved schedule (imp.), and the

percentage of superblocks with improved schedules (%), for various idealized architectural models.

1-issue 2-issue 4-issue 6-issue

#blocks imp. % imp. % imp. % imp. %

ammp 2,972 147 4.9 150 5.0 103 3.5 94 3.2

applu 306 40 13.1 46 15.0 32 10.5 23 7.5

apsi 1,727 109 6.3 123 7.1 112 6.5 112 6.5

art 439 30 6.8 30 6.8 5 1.1 3 0.7

bzip2 1,087 95 8.7 95 8.7 49 4.5 17 1.6

crafty 4,773 444 9.3 444 9.3 313 6.6 103 2.2

eon 2,514 110 4.4 100 4.0 109 4.3 72 2.9

equake 227 18 7.9 21 9.3 12 5.3 4 1.8

facerec 1,125 70 6.2 83 7.4 91 8.1 43 3.8

fma3d 12,380 757 6.1 832 6.7 670 5.4 313 2.5

galgel 3,839 279 7.3 300 7.8 191 5.0 96 2.5

gap 19,651 840 4.3 840 4.3 676 3.4 254 1.3

gcc 43,509 2,972 6.8 2,963 6.8 1,529 3.5 317 0.7

gzip 1,339 128 9.6 128 9.6 79 5.9 38 2.8

lucas 1,057 34 3.2 42 4.0 48 4.5 21 2.0

mcf 337 18 5.3 18 5.3 16 4.7 7 2.1

mesa 11,555 697 6.0 660 5.7 624 5.4 236 2.0

mgrid 132 13 9.8 14 10.6 16 12.1 7 5.3

parser 3,198 186 5.8 186 5.8 115 3.6 24 0.8

perlbmk 16,915 1,059 6.3 1,059 6.3 680 4.0 195 1.2

sixtrack 7,372 444 6.0 459 6.2 613 8.3 423 5.7

swim 81 6 7.4 7 8.6 8 9.9 3 3.7

twolf 6,832 361 5.3 356 5.2 214 3.1 55 0.8

vortex 8,061 823 10.2 824 10.2 366 4.5 97 1.2

vpr 2,830 198 7.0 197 7.0 141 5.0 65 2.3

wupwise 393 40 10.2 47 12.0 33 8.4 18 4.6

Total 154,651 9,918 6.4 10,024 6.5 6,845 4.4 2,640 1.7
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Table 4.5: Dependence height and speculative yield heuristic. Average and maximum percentage

improvements in schedule cost of optimal schedule over schedule found by list scheduler using the

heuristic, for various idealized architectural models. The average is over only the superblocks in

the SPEC 2000 benchmark suite where the optimal scheduler found an improved schedule.

1-issue 2-issue 4-issue 6-issue

ave. max. ave. max. ave. max. ave. max.

ammp 4.3 47.4 4.2 47.4 3.2 23.3 3.0 14.3

applu 1.2 12.0 1.8 12.0 4.7 12.5 7.1 16.7

apsi 2.5 16.2 2.6 16.2 2.6 16.7 3.2 12.5

art 4.4 48.1 4.4 48.1 3.7 12.4 2.4 5.3

bzip2 4.4 48.8 4.4 48.8 4.9 14.6 4.7 11.8

crafty 5.7 49.0 5.7 49.0 4.7 36.8 3.9 13.3

eon 3.8 48.5 3.9 48.5 3.4 26.5 4.4 26.5

equake 1.5 12.9 2.2 12.9 4.5 11.1 1.6 4.3

facerec 4.1 47.6 4.6 47.6 4.0 15.4 4.4 14.2

fma3d 4.8 48.5 4.6 48.5 3.4 17.4 4.1 17.4

galgel 6.4 49.0 6.2 49.0 5.0 16.7 3.8 14.3

gap 4.7 49.0 4.7 49.0 3.8 16.5 5.5 20.0

gcc 5.8 49.0 5.8 49.0 3.8 80.7 5.5 49.0

gzip 3.5 47.4 3.5 47.4 3.6 21.1 6.9 16.7

lucas 3.6 47.4 3.4 47.4 3.3 10.7 5.5 11.2

mcf 0.3 2.0 0.3 2.0 1.9 8.0 4.6 10.1

mesa 5.7 49.0 6.0 49.0 5.0 26.4 4.7 12.3

mgrid 0.4 1.5 0.8 6.5 2.5 13.8 1.1 4.3

parser 7.2 48.5 7.2 48.5 5.7 20.0 5.0 16.7

perlbmk 4.2 49.0 4.2 49.0 4.1 28.0 4.4 16.8

sixtrack 2.9 48.1 3.1 48.1 3.2 16.7 3.1 19.0

swim 3.0 5.9 2.8 6.7 4.9 8.9 9.4 11.1

twolf 4.9 48.6 5.0 48.6 3.3 16.5 4.8 24.5

vortex 3.9 48.8 3.9 48.8 4.2 14.3 3.3 14.3

vpr 6.2 47.8 6.2 47.8 4.6 29.7 5.1 16.5

wupwise 7.1 25.0 7.1 25.0 7.2 16.7 3.6 11.1

Overall 5.0 49.0 5.0 49.0 4.0 39.0 4.3 49.0
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Table 4.6: Dependence height and speculative yield heuristic. Number of superblocks where the

optimal scheduler found an improved schedule (imp.), and the percentage of superblocks with

improved schedules (%), for ranges of superblock sizes and various idealized architectural models.

1-issue 2-issue 4-issue 6-issue

range #blocks imp. % imp. % imp. % imp. %

3–5 13,629 36 0.3 36 0.3 0 0.0 0 0.0

6–10 39,948 866 2.2 849 2.1 168 0.4 21 0.1

11–15 32,105 1,457 4.5 1,449 4.5 831 2.6 166 0.5

16–20 21,461 1,699 7.9 1,686 7.9 888 4.1 278 1.3

21–30 22,752 2,330 10.2 2,305 10.1 1,680 7.4 575 2.5

31–50 14,876 1,887 12.7 1,939 13.0 1,697 11.4 644 4.3

51–100 7,321 1,155 15.8 1,174 16.0 1,085 14.8 616 8.4

101–250 2,231 398 17.8 484 21.7 399 17.9 260 11.7

251–2750 328 90 27.4 102 31.1 97 29.6 80 24.4

Total 154,651 9,918 6.4 10,024 6.5 6,845 4.4 2,640 1.7

Table 4.7: Dependence height and speculative yield heuristic. Average and maximum percentage

improvements in schedule cost of optimal schedule over schedule found by list scheduler using the

heuristic, for ranges of block sizes and various idealized architectural models. The average is over

only the superblocks where the optimal scheduler found an improved schedule.

1-issue 2-issue 4-issue 6-issue

range ave. max. ave. max. ave. max. ave. max.

3–5 20.2 26.9 20.2 26.9 0.0 0.0

6–10 14.8 49.0 14.9 49.0 9.0 49.0 10.1 49.0

11–15 7.7 48.6 7.8 48.6 6.1 18.9 7.8 20.0

16–20 5.7 47.6 5.7 47.6 5.1 25.6 7.0 24.5

21–30 3.6 46.5 3.6 46.5 4.3 28.0 5.7 26.5

31–50 2.6 45.6 2.7 45.6 3.3 36.8 4.1 20.3

51–100 1.2 40.7 1.3 40.7 2.3 29.7 2.5 17.4

101–250 0.9 13.1 1.1 13.1 1.7 80.7 1.6 9.4

251–2750 0.9 13.3 1.1 13.3 1.7 17.8 0.8 3.9

Overall 5.0 49.0 5.0 49.0 4.0 39.0 4.3 49.0
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4.4.2 Experiments for realistic architectural models

There are no new changes needed to the improved architectural model to accommodate global

instruction scheduling.

Table 4.8 gives the total time (hh:mm:ss) to schedule all superblocks in the SPEC 2000 bench-

mark suite, for various realistic architectural models and time limits for solving each superblock.

Depending on the architectural model, the optimal scheduler took between 22:35:33 and 752:28:12

to schedule all of the superblocks in the entire SPEC benchmark. Table 4.9 gives the percentage

of all superblocks in the SPEC 2000 benchmark suite which were solved to optimality, for various

realistic architectural models and time limits for solving each superblock.

Table 4.10 gives the number of superblocks in the SPEC 2000 benchmark suite where the

optimal scheduler found an improved schedule (imp.), and the percentage of superblocks with

improved schedules (%), for various realistic architectural models for the DHASY heuristic. One

can see that the optimal scheduler is able to improve between 2.7% and 44.4% of all superblocks,

depending on the application. Across all benchmarks, the total improvement is from 8,165 to

32,128 superblocks.

Table 4.11 gives an average and maximum percentage improvements in schedule cost of optimal

schedule over schedule found by list scheduler using the heuristic, for various realistic architectural

models. The average is over only the superblocks in the SPEC 2000 benchmark suite where the

optimal scheduler found an improved schedule. The maximum percentage improvement in an

application ranges from 91.0% to 417.0%. The average percentage improvement in an application

ranges from 2.5% to 20.2%. Overall, the average improvement is from 5.0% to 6.5%.

Table 4.12 gives the number of superblocks in the SPEC 2000 benchmark suite where the

optimal scheduler found an improved schedule (imp.), and the percentage of superblocks with

improved schedules (%), for ranges of superblock sizes and various idealized architectural models.

Table 4.13 gives the average and maximum percentage improvements in schedule cost of optimal

schedule over schedule found by list scheduler using the heuristic, for ranges of block sizes and

various idealized architectural models. The average is over only the superblocks in the SPEC 2000

benchmark suite where the optimal scheduler found an improved schedule.
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Table 4.8: Total time (hh:mm:ss) to schedule all superblocks in the SPEC 2000 benchmark suite,

for various realistic architectural models and time limits for solving each superblock.

1 sec. 10 sec. 1 min. 10 min.

1r-issue 1:37:30 8:27:31 14:08:21 22:35:33

ppc603e 4:31:32 36:41:56 128:10:03 752:28:12

ppc604 2:43:33 21:18:18 74:11:46 399:51:12

6r-issue 3:11:40 26:18:09 91:40:36 534:32:10

Table 4.9: Percentage of all superblocks in the SPEC 2000 benchmark suite which were solved to

optimality, for various realistic architectural models and time limits for solving each superblock.

1 sec. 10 sec. 1 min. 10 min.

1r-issue 97.022 99.128 99.880 99.978

ppc603e 90.410 92.593 96.750 97.455

ppc604 94.451 95.647 98.147 98.709

6r-issue 93.305 94.486 97.650 98.227
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Table 4.10: Dependence height and speculative yield heuristic. Number of superblocks in the

SPEC 2000 benchmark suite where the optimal scheduler found an improved schedule (imp.),

and the percentage of superblocks with improved schedules (%), for various realistic architectural

models.

1r-issue ppc603e ppc604 6r-issue

#blocks imp. % imp. % imp. % imp. %

ammp 2,972 653 22.0 381 12.8 212 7.1 171 5.8

applu 306 110 35.9 98 32.0 38 12.4 62 20.3

apsi 1,727 644 37.3 425 24.6 292 16.9 244 14.1

art 439 85 19.4 39 8.9 17 3.9 12 2.7

bzip2 1,087 267 24.6 159 14.6 52 4.8 40 3.7

crafty 4,773 1,085 22.7 662 13.9 254 5.3 241 5.0

eon 2,514 604 24.0 453 18.0 299 11.9 266 10.6

equake 227 58 25.6 45 19.8 20 8.8 13 5.7

facerec 1,125 330 29.3 217 19.3 142 12.6 152 13.5

fma3d 12,380 2,479 20.0 2,162 17.5 1,039 8.4 1,108 8.9

galgel 3,839 984 25.6 765 19.9 370 9.6 292 7.6

gap 19,651 3,482 17.7 1,940 9.9 653 3.3 602 3.1

gcc 43,509 7,538 17.3 4,242 9.7 1,546 3.6 1,409 3.2

gzip 1,339 323 24.1 227 17.0 107 8.0 77 5.8

lucas 1,057 221 20.9 93 8.8 42 4.0 36 3.4

mcf 337 70 20.8 43 12.8 24 7.1 12 3.6

mesa 11,555 2,155 18.6 1,540 13.3 859 7.4 653 5.7

mgrid 132 56 42.4 31 23.5 16 12.1 16 12.1

parser 3,198 709 22.2 449 14.0 179 5.6 160 5.0

perlbmk 16,915 3,478 20.6 1,844 10.9 1,151 6.8 796 4.7

sixtrack 7,372 2,169 29.4 1,701 23.1 943 12.8 720 9.8

swim 81 36 44.4 22 27.2 22 27.2 8 9.9

twolf 6,832 1,311 19.2 655 9.6 355 5.2 323 4.7

vortex 8,061 2,446 30.3 1,964 24.4 672 8.3 546 6.8

vpr 2,830 731 25.8 503 17.8 221 7.8 192 6.8

wupwise 393 104 26.5 67 17.0 32 8.1 14 3.6

Total 154,651 32,128 20.8 20,727 13.4 9,557 6.2 8,165 5.3
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Table 4.11: Dependence height and speculative yield heuristic. Average and maximum percentage

improvements in schedule length of optimal schedule over schedule found by list scheduler using

the heuristic, for various realistic architectural models. The average is over only the superblocks

in the SPEC 2000 benchmark suite where the optimal scheduler found an improved schedule.

1r-issue ppc603e ppc604 6r-issue

ave. max. ave. max. ave. max. ave. max.

ammp 8.4 124.1 5.7 81.3 4.9 47.4 4.9 43.0

applu 8.8 55.7 3.5 41.7 4.5 32.3 2.7 11.3

apsi 8.3 71.2 5.6 53.7 7.0 62.8 6.1 61.9

art 8.3 63.8 7.5 27.3 4.9 25.0 5.2 21.4

bzip2 5.5 36.7 5.4 40.0 6.0 37.5 6.1 34.6

crafty 6.6 74.9 4.2 40.0 3.7 40.5 3.9 41.2

eon 8.9 62.1 5.1 40.0 5.3 34.9 6.1 45.7

equake 3.7 37.2 5.0 12.3 2.5 6.2 3.0 11.0

facerec 8.0 49.2 4.9 39.6 6.6 46.2 5.6 50.0

fma3d 9.4 137.3 5.2 92.1 6.3 91.0 6.2 91.0

galgel 9.9 119.3 5.1 155.0 6.4 154.5 5.1 40.4

gap 6.4 115.0 5.6 139.4 4.9 45.0 4.6 45.0

gcc 4.7 417.4 4.4 70.0 4.6 56.6 4.3 50.0

gzip 5.7 87.7 4.4 90.0 6.8 88.2 6.4 88.2

lucas 5.1 52.3 3.7 39.8 5.3 40.6 3.7 29.6

mcf 5.0 47.2 5.3 52.7 8.3 53.3 9.2 55.3

mesa 7.6 73.1 5.2 52.8 5.5 52.8 5.4 51.4

mgrid 4.7 21.7 4.1 17.4 5.5 18.9 3.6 12.5

parser 4.6 34.8 4.5 26.2 4.7 36.4 4.4 36.4

perlbmk 4.4 54.0 4.4 46.5 4.9 43.5 4.9 43.5

sixtrack 9.3 341.7 5.3 141.9 5.1 141.9 5.2 77.6

swim 20.2 68.5 6.3 36.1 5.6 19.6 9.5 13.6

twolf 7.0 66.7 5.8 42.9 5.1 40.9 4.6 37.9

vortex 6.3 282.4 5.3 126.4 6.2 62.5 6.2 68.6

vpr 7.2 74.1 5.0 59.5 4.9 44.7 5.7 42.1

wupwise 6.4 23.1 4.0 16.0 4.4 11.0 3.2 13.8

Overall 6.5 417.4 5.0 155.0 5.3 154.5 5.2 91.0
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Table 4.12: Dependence height and speculative yield heuristic. Number of superblocks in the

SPEC 2000 benchmark suite where the optimal scheduler found an improved schedule (imp.), and

the percentage of superblocks with improved schedules (%), for ranges of superblock sizes and

various realistic architectural models.

1r-issue ppc603e ppc604 6r-issue

range #blocks imp. % imp. % imp. % imp. %

3–5 14,811 153 1.0 14 0.1 9 0.1 9 0.1

6–10 40,984 2,460 6.0 615 1.5 242 0.6 179 0.4

11–15 31,622 5,155 16.3 2,375 7.5 669 2.1 559 1.8

16–20 20,717 4,973 24.0 3,095 14.9 1,031 5.0 694 3.3

21–30 22,147 7,410 33.5 5,477 24.7 2,156 9.7 1,889 8.5

31–50 14,610 6,716 46.0 5,971 40.9 3,130 21.4 2,945 20.2

51–100 7,221 3,918 54.3 3,452 47.8 2,343 32.4 1,968 27.3

101–250 2,211 1,185 53.6 1,013 45.8 621 28.1 573 25.9

251–2750 328 174 53.0 140 42.7 103 31.4 89 27.1

Total 154,651 32,144 20.8 22,152 14.3 10,304 6.7 8,905 5.8

Table 4.13: Dependence height and speculative yield heuristic. Average and maximum percentage

improvements in schedule length of optimal schedule over schedule found by list scheduler using

the heuristic, for ranges of block sizes and various realistic architectural models. The average is

over only the superblocks in the SPEC 2000 benchmark suite where the optimal scheduler found

an improved schedule.

1r-issue ppc603e ppc604 6r-issue

range ave. max. ave. max. ave. max. ave. max.

3–5 5.0 58.6 8.8 57.1 0.7 3.6 0.7 3.6

6–10 6.6 214.2 6.6 58.1 5.7 43.2 4.3 22.2

11–15 7.2 417.4 6.7 59.4 5.8 49.1 5.1 37.6

16–20 6.3 101.0 5.5 84.0 5.8 51.5 5.9 51.5

21–30 6.1 282.4 5.1 141.9 5.8 141.9 5.5 51.4

31–50 6.9 137.3 4.6 89.6 5.7 88.2 5.7 61.9

51–100 6.0 341.7 4.0 155.0 4.6 154.5 4.5 77.6

101–250 6.2 127.6 3.3 92.1 3.4 91.0 3.5 91.0

251–2750 6.8 87.7 4.0 93.6 2.4 88.2 3.7 88.2

Overall 6.5 417.4 5.0 155.0 5.3 154.5 5.2 91.0
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I also evaluated my optimal scheduler with respect to the number of cycles saved against the

two heuristic schedulers. Table 4.15 gives the number of cycles saved by the optimal scheduler

over the list scheduler using the dependence height and speculative yield heuristic (×109), and

the percentage reduction (%), for various realistic architectural models after register allocation.

Table 4.16 gives the number of cycles saved by the optimal scheduler over the list scheduler

using the critical path heuristic (×109), and the percentage reduction (%), for various realistic

architectural models after register allocation. However, this may not translate into time saved

because of cache misses and unlimited registers. I compiled the SPEC 2000 benchmark with the

training data set associated with the benchmark using the Tobey compiler. The compiler uses the

training data to construct a profile for each branch instruction. The profile is used to calculate

the information regarding the number of times each basic block is executed in the benchmark.

Example 4.6 explains how I calculate the number of cycles saved in Table 4.16 and Table 4.15.
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Figure 4.8: Superblock for Example 4.6.

Example 4.6 Consider the superblock in Figure 4.8. The superblock consists of two basic blocks,

B1 and B2. Basic block B1 consists of nodes A, B, C, D and E. Basic block B2 consists of nodes

F, G, H, I, J and K. Nodes E and K are branch instructions. Assume a fully pipelined processor

with two functional units which are capable of issuing any type of instruction. The processor can

issue two instructions in each cycle. Let B1 be executed 100 times. The numbers beside node
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Cycle S1 S2

0 A C A B

1 B D C D

2 E F

3 E G G

4 F I I

5

6 H

7 J

8 H K

9 J

10 K

Table 4.14: Two possible schedules for the DAG in Figure 4.8. Empty slots represent NOPs. S1

is a non-optimal schedule. S2 is an optimal schedule.

E, (70, 30), give the information that the branch is taken—i.e., the flow of control exits at node

E—30 times and is not taken—i.e., the flow of control falls through—70 times. Similarly, the

numbers beside node K tell how many times this branch is taken and not taken. Basic block B2 is

executed only when the branch instruction at node E is not taken. Hence, B2 is executed 70 times.

Table 4.14 shows an optimal and a non-optimal schedule for the given superblock. The schedule

length of B1 in S2, an optimal schedule, is 1 cycle shorter than in S1, a non-optimal schedule. As

B1 is executed 100 times, the saving in B1 is 100 cycles with S2 . Similarly, the schedule length

of B2 in S2 is 1 cycle shorter than in S1. As B2 is executed 70 times, the saving in this basic

block is 70 cycles with S2. In total 170 cycles are being saved with S2.

Figure 4.9 and Figure 4.10 show performance guarantees for the list scheduler using the depen-

dence height and speculative yield (DHASY) heuristic in terms of worst-case factors from optimal,

for various architectures. For example, consider the 1r-issue architecture. The list scheduler finds

an optimal schedule (i.e. is within 0% of optimal) for approximately 84% of all superblocks before

register allocation and approximately 88% of all superblocks after register allocation. Further, the

list scheduler is within 10% of optimal for approximately 95% of all superblocks before register

allocation and approximately 97% of all superblocks after register allocation, for this architecture.

Figure 4.11 and Figure 4.12 show performance guarantees for the list scheduler using the critical

path heuristic in terms of worst-case factors from optimal, for various architectures. Consider once

again the 1r-issue architecture. The list scheduler finds an optimal schedule (i.e. is within 0% of

optimal) for approximately 54% of all superblocks before register allocation and approximately

65% of all superblocks after register allocation. Further, the list scheduler is within 10% of optimal

for approximately 70% of all superblocks before register allocation and approximately 80% of all
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superblocks after register allocation, for this architecture.
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Table 4.15: Superblock scheduling after register allocation. For the SPEC 2000 benchmark suite,

number of cycles saved by the optimal scheduler over the list scheduler using the dependence height

and speculative yield heuristic (×109), and the percentage reduction (%), for various realistic

architectural models.

1r-issue ppc603e ppc604 6r-issue

×109 % ×109 % ×109 % ×109 %

ammp 56.3 0.2 669.1 3.2 227.1 1.1 375.7 2.2

applu 5.2 0.4 0.9 0.1 0.6 0.1 3.5 0.6

apsi 52.4 1.1 56.0 1.3 50.2 1.2 45.2 1.4

art 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

bzip2 51.8 0.3 282.1 1.8 281.6 1.9 137.5 0.9

crafty 50.9 0.7 63.2 1.1 31.3 0.6 32.5 0.6

eon 303.1 2.7 96.9 1.0 53.0 0.6 188.2 2.2

equake 22.4 0.5 12.2 0.3 11.8 0.3 0.2 0.0

facerec 19.4 0.3 27.1 0.5 3.6 0.1 1.6 0.0

fma3d 36.4 0.4 52.7 0.7 88.9 1.2 29.9 0.5

galgel 1.4 0.1 0.7 0.1 0.5 0.1 0.1 0.0

gap 18.9 0.0 124.2 0.0 48.7 0.0 31.6 0.0

gcc 28.7 0.6 33.7 0.8 20.9 0.5 17.6 0.4

gzip 5.9 0.0 37.3 0.3 22.6 0.2 30.5 0.2

lucas 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0

mcf 54.1 1.5 43.9 1.4 38.9 1.2 34.3 1.1

mesa 34.0 0.2 65.2 0.5 32.2 0.3 13.9 0.1

mgrid 1.7 0.5 0.3 0.1 0.0 0.0 0.0 0.0

parser 483.1 1.9 577.7 2.8 507.9 2.6 326.3 1.8

perlbmk 67.8 0.2 391.1 1.5 117.2 0.5 79.1 0.3

sixtrack 122.6 3.5 6.3 0.2 4.0 0.1 1.3 0.0

swim 0.0 0.2 0.1 1.7 0.1 1.9 0.0 0.0

twolf 288.5 1.5 56.9 0.3 88.6 0.6 76.6 0.5

vortex 40.4 0.4 275.4 3.4 286.5 3.8 227.9 3.4

vpr 57.4 0.5 30.1 0.3 41.1 0.5 6.1 0.1

wupwise 23.8 0.3 30.3 0.4 20.8 0.3 14.2 0.2
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Table 4.16: Superblock scheduling after register allocation. For the SPEC 2000 benchmark suite,

number of cycles saved by the optimal scheduler over the list scheduler using the critical path

heuristic (×109), and the percentage reduction (%), for various realistic architectural models.

1r-issue ppc603e ppc604 6r-issue

×109 % ×109 % ×109 % ×109 %

ammp 467.4 1.8 953.2 4.5 243.6 1.2 401.5 2.4

applu 23.7 1.9 8.3 0.7 0.5 0.0 3.8 0.6

apsi 341.5 7.1 95.7 2.2 88.1 2.1 74.5 2.2

art 2.7 0.1 1.1 0.0 1.1 0.0 1.1 0.0

bzip2 300.1 1.5 405.0 2.5 356.7 2.3 167.2 1.1

crafty 162.1 2.3 120.5 2.1 55.5 1.0 50.0 1.0

eon 610.6 5.5 329.1 3.4 271.2 2.9 286.7 3.4

equake 20.6 0.5 1.6 0.0 1.2 0.0 0.3 0.0

facerec 28.7 0.5 33.4 0.7 3.6 0.1 2.1 0.0

fma3d 51.8 0.5 94.7 1.2 108.8 1.4 34.9 0.6

galgel 4.8 0.4 2.2 0.2 1.3 0.1 0.7 0.1

gap 99.9 0.0 131.2 0.0 49.8 0.0 29.1 0.0

gcc 65.9 1.3 52.3 1.2 28.9 0.7 23.4 0.6

gzip 151.8 1.0 51.2 0.4 22.7 0.2 18.5 0.1

lucas 4.5 1.2 0.5 0.2 0.0 0.0 0.0 0.0

mcf 89.0 2.5 93.7 2.9 94.9 3.0 58.1 1.9

mesa 85.3 0.6 40.2 0.3 31.0 0.3 12.6 0.1

mgrid 3.1 0.9 0.5 0.2 0.0 0.0 0.0 0.0

parser 956.8 3.8 855.9 4.1 526.0 2.7 388.9 2.1

perlbmk 181.7 0.6 448.0 1.8 142.0 0.6 109.2 0.5

sixtrack 655.4 18.6 19.8 0.6 7.1 0.2 5.2 0.2

swim 8.5 99.8 6.6 102.3 3.2 58.1 3.1 62.7

twolf 689.0 3.5 390.3 2.3 199.8 1.3 25.7 0.2

vortex 211.1 2.0 398.7 4.9 330.2 4.4 230.0 3.4

vpr 224.2 2.1 114.8 1.3 74.1 0.8 46.1 0.5

wupwise 463.8 5.5 211.0 2.9 69.3 1.0 15.0 0.2
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Figure 4.9: Superblock scheduling before register allocation. Performance guarantees for the list

scheduler using the dependence height and speculative yield heuristic in terms of worst-case factors

from optimal, for various realistic architectures.
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Figure 4.10: Superblock scheduling after register allocation. Performance guarantees for the list

scheduler using the dependence height and speculative yield heuristic in terms of worst-case factors

from optimal, for various realistic architectures.
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Figure 4.11: Superblock scheduling before register allocation. Performance guarantees for the list

scheduler using the critical path heuristic in terms of worst-case factors from optimal, for various

realistic architectures.
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Figure 4.12: Superblock scheduling after register allocation. Performance guarantees for the list

scheduler using the critical path heuristic in terms of worst-case factors from optimal, for various

realistic architectures.
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4.5 Summary

I presented a constraint programming approach to superblock instruction scheduling for multiple-

issue processors for both idealized and realistic architectures. The problem is considered in-

tractable, yet my approach is optimal and robust on large, real problems. The key to scaling up

to large, real problems was in the development of an improved constraint model and the applica-

tion of more powerful constraint propagation techniques. I experimentally evaluated my optimal

scheduler on the SPEC2000 integer and floating point benchmarks. On this benchmark suite, the

optimal scheduler was very robust and scaled to the largest basic blocks. Depending on the ar-

chitectural model, between 99.991% to 99.999% of all superblocks were solved to optimality. The

scheduler was able to routinely solve the largest superblocks, including blocks with up to 2600

instructions. This compares favorably to the best previous approach by Shobaki [61]. Shobaki’s

work considered idealized architectures with latency from 1 cycle to 9 cycles with maximum ba-

sic block size of 1200 instructions. For the global instruction scheduling problem, the critical

path heuristic and the DHASY heuristic were used for comparison against the optimal scheduler.

When scheduling for the idealized architectural model, the list scheduler solved 91.2%-97.5% of

superblocks optimally. However, the list scheduler was only optimal for 54%-96% of superblocks

when scheduling for a realistic architectural model. The schedules produced by the optimal sched-

ule showed an improvement of 0%-3.8% on average over DHASY heuristic and an improvement of

0%-102% on average over the critical path heuristic. As expected, the heuristic DHASY yielded

better schedules than the critical path heuristic. In the next chapter, I will present my constraint

programming model for basic block scheduling without spilling.
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Chapter 5

Basic Block Scheduling without

Spilling for Multi-Issue Processors

In this chapter, I present an approach to finding an optimal schedule for a basic block with

register pressure less than or equal to the available physical registers. The approach builds on

the constraint programming model for basic block scheduling given in Chapter 3 and is for both

idealized and realistic architectures.

5.1 Introduction

The goals of an instruction scheduler and a register allocator are orthogonal to each other. An

instruction scheduler attempts to increase the instruction level parallelism by re-ordering the given

instruction sequence. However, packing the given instructions into the shortest possible schedule

may increase the register pressure. On the other hand, a register allocator attempts to separate

the live ranges of data variables—the time interval within which the variable is used—in order

to decrease the register pressure which may have the side effect of reducing the instruction level

parallelism. Which phase should be done first? This is an important question in high performance

computing. The question is commonly known as the phase ordering problem. No matter which

optimization is done first, the earlier phase has to make decisions without knowing what the

later phase will do. The combined instruction scheduling and register allocation approach is an

answer to this problem. In a combined instruction scheduling and register allocation approach,

instruction scheduling and register allocation are done side by side. The goal is to have a schedule

of instructions with the minimum length that will introduce the minimum spill code1.

1The movement of data from registers to memory is called spilling.
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Figure 5.1: Basic block scheduling without spilling.

Definition 5.1 (Minimum register requirement) Given a labeled dependency DAG for a ba-

sic block, the minimum register requirement is the minimum register pressure over all schedules

for the block.

Consider Figure 5.1. For a given basic block, let Lop be the minimum schedule length and Popt

be the minimum register requirement for a schedule with length Lop. Point Pmin on the register

pressure axis gives the minimum register requirement over all schedules for the given basic block.

Let Pr be the available number of physical registers. There are two cases.

• Case 1: Pr < Pmin. The number of available physical registers is less than the minimum

register requirement. The difference Sp gives the register pressure that has to be eliminated

in order to get a legal schedule for a given basic block.

• Case 2: Pr ≥ Pmin. The number of available physical registers is greater than or equal to

the minimum register requirement. In this case, one has to find a schedule which has the

minimum schedule length with register pressure less than or equal to Pr. Point 2 represents

this situation.

For my work, I consider the second case only. I define the basic block scheduling without

spilling problem as follows.

Definition 5.2 (Basic block scheduling without spilling) Given a labeled dependency DAG

for a basic block and the number of available physical registers, the basic block scheduling without
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spilling problem is to find a schedule with minimum length over all schedules with register pressure

less than or equal to the available physical registers, if such a schedule exists.

My interest in the problem is motivated by the challenges being faced in compilers for modern

processors. Although modern processors have many registers which can be used to break false

dependencies, sometimes instruction level parallelism must be sacrificed to avoid spilling. Re-

ducing spilling reduces the number of loads and stores executed, which in turn is important for

architectures that either have a small cache or a large cache miss penalty; for minimizing memory

bandwidth usage; for instruction level parallelism, as the elimination of some spill instructions

frees instruction slots to issue other useful instructions; for power dissipation, as load and store

instructions contribute to a significant portion of the power consumed; and for multi-threading

for some architectures (e.g., IA-64) as minimal register usage lowers the cost of context switching.

In this chapter, I solve the basic block scheduling without spilling problem by combining the

concept of lineage developed by Govindarajan et al. [28] and the constraint programming model for

basic block scheduling developed in Chapter 3. The experimental results show that the approach

is good enough to solve basic blocks as large as 50 instructions within a time bound of 10 minutes

for both idealized and realistic architectures. This compares favorably to the recent work by

Bednarski and Kessler [5, 6] on optimal integrated code generation using integer programming.

The work by Bednarski and Kessler is targeted only towards an idealized multi-issue VLIW

processor and can solve basic blocks as large as 50 instructions within 20 minutes for unit latency

and basic blocks as large as 20 instructions with arbitrary latencies. In my work, I consider both

idealized and realistic multi-issue processors with arbitrary latencies ranging from 0 cycles to 36

cycles and am able to solve basic blocks as large as 50 instructions within 10 minutes.

5.2 Related work

The ordering of the instruction scheduling and register allocation phases has been studied ex-

tensively for both in-order (VLIW) and out-of-order (superscalar) architectures. The combined

instruction scheduling and register allocation problem is NP-complete [50]. Little work has been

done on solving it optimally because of the complexity of the problem. Previous work has mostly

focused on heuristic or sub-optimal approaches. Integrated techniques that attempt to minimize

register pressure while exposing instruction level parallelism have also been proposed. First, I will

discuss the heuristic approaches and then the work related to finding optimal solutions.

Goodman and Hsu [26] propose solving the phase ordering problem by maintaining register

pressure within a certain limit. Their algorithm consists of two modes. One mode does the

instruction scheduling and increases the instruction level parallelism as long as the register pressure

is below the limit. When the register pressure crosses the limit, the scheduler switches to the

second mode which does the instruction scheduling in favor of the register allocation phase; i.e,
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it prefers instructions that reduce the register pressure. This mode is continued until the register

pressure is less than or equal to the limit. Usually, the limit is equal to the number of available

physical registers. This approach has been widely adopted in commercial compilers, including the

IBM Tobey compiler [9]. However, Touati [64] has shown in experiments that this method can

result in much spilling.

Bradlee, Eggers, and Henry [10] introduce a three pass system called RASE (register allocation

with schedule estimate). The first pass of the RASE system computes schedule lengths for each

basic block for a range of register pressure limits. This information is then used by a global

register allocator (the second phase) in deciding what register pressure limit to impose on each

basic block. The final phase schedules each basic block and performs the register assignment.

However, the implementation cost of the approach is high [64].

Norris and Pollock [52] introduce a global allocator based on coloring an interference graph.

The constructed interference graph is more conservative as they assume that a variable which is

alive at entry and exit points of basic block is alive throughout the basic block. This is not the

case if this variable is redefined inside. This assumption produces false interference and hence

the graph has more edges which slows down the coloring algorithm. They propose to add serial

arcs into the DAG to reduce the interferences; for instance, arcs induced by resource constraints.

When no legal coloring is found, the node with the greatest number of neighbors is selected to

add false dependences. If there does not exist enough possibilities to eliminate interferences so

that the node is colorable, no arcs are added and a minimal-cost node is selected for spilling. The

main short coming of this method is its conservative assumptions. Extra interference edges result

in over-estimating register requirement.

Pinter [55] combines information from a DAG and a register interference graph to create a

parallel interference graph. First, the transitive closure of the given DAG is taken, and all edges

become undirected. Then edges are added between operations that have resource constraints

imposed by the architecture. Edges in the complement of this graph represent operations that

could be run in parallel. This new interference graph takes into account all possible parallelism in

the program. By using this graph, register allocation is carried out which is then followed by an

instruction scheduling phase. An optimal coloring of this graph ensures that no false dependence

can be introduced. While coloring the graph, if it is found that spill code has to be added,

the scheduling edges in the graph are removed one at a time to avoid spilling, thus reducing

instruction parallelism. Unfortunately, coloring algorithms are costly, especially in this method

since the number of edges in the parallel interference graph may be very high. No experiments

have been provided to support the technique.

Berson, Gupta, and Soffa [8] present a URSA (unified resource allocator) approach for VLIW

processors. The approach deals with the instruction scheduling phase and the register allocation

phase simultaneously. The method uses three phases: measure phase, reduce phase, and allocation

phase. In the first phase the allocator measures register requirement at each point of a given
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program. In the second phase, effort is made to reduce these requirements. In the third phase

the allocation is done. URSA was extended to global scheduling with code motion in CFGs.

Motwani et al. [50] give an algorithm known as alpha-beta combined heuristics. They define

a value called the register rank for each operation. This value is similar to the list scheduling

priority function, except it is used to reduce the register pressure. The register rank and the

traditional list scheduling priority function are added together (weighted by the coefficients) to

create a new list scheduling priority value. The list scheduling algorithm is then performed in

the usual way using these new priority values. The register allocation is then performed on the

given block. Experiments on randomly generated DAGs show that this technique is better than

a strictly late or prior register allocation.

Govindarajan et al. [28] propose a heuristic approach based on the concept of lineages and

propose a solution to the minimum register instruction scheduling problem. I use this heuristic

approach to compare against my model.

Definition 5.3 (Minimum register instruction scheduling [28]) Given a labeled dependency

DAG for a basic block, the minimum register instruction scheduling problem is to find a schedule

with minimum register requirement.

Definition 5.4 (Lineage [28]) An instruction lineage Lv = [v1, . . . , vn] is a set of nodes such

that there exist edges (v1, v2), (v2, v3), . . . , (vn−1, vn) in the DAG.

I discuss this approach in more detail in the next section. A lineage is a collection of nodes

in a DAG which is allocated to one register. The approach attempts to minimize the register

pressure by first sequencing the lineages and then performing instruction scheduling.

Definition 5.5 (Anti-chain [64]) Let G = (V, E) be a labeled dependency DAG, where V is the

set of nodes and E is the set of edges. A subset of the nodes A ⊆ V is an anti-chain iff all nodes

in A are parallel. An anti-chain is called a maximal anti-chain iff its size in terms of number of

nodes is maximal.

Touati [64] proposes an approach for performing register allocation and instruction scheduling

in a single phase by generating a schedule that maximizes the number of values alive at the same

time. His reasoning is that when more values are simultaneously alive the scheduler will find

more opportunities to find instruction level parallelism. Thus, instead of forming long lineages

like Govindarajan [28], he creates anti-chains. When an anti-chain results in register pressure that

is more than the available physical registers, Touati uses heuristics to serialize the anti-chain and

reduce the requirement.

Efforts have been made to solve the register allocation problem optimally. Recently, Fu and

Wilken [24] and Appel and George [1] use integer programming (IP) to solve the register allocation
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problem optimally. Fu and Wilken target a RISC architecture with 24 real registers and are able

to solve blocks as large as 1000 instructions using the SPEC92 integer benchmark. Their work

introduces new techniques which identify and reduce redundant constraints from the IP model

while preserving an optimal solution. Appel and George [1] target a CISC architecture and their

approach is able to solve regions as large as 1500 instructions. But, the work does not use any

standard SPEC benchmarks. Their approach reduces the IP model complexity by decomposing the

register allocation problem into two sub-problems: spill code placement and register assignment,

and solves each subproblem using IP. Although the IP based allocator is faster, the decomposition

results in an allocation which may not be optimal. Work by Bednarski and Kessler [5, 6], using

dynamic programming and integer programming, is the only noticeable work in this area which

is targeted towards DSP and VLIW processors. The work is optimal for basic blocks as large

as 50 instructions but with the restriction of unit latencies. Generalizing to arbitrary latencies

makes the problem harder and their approach finds optimal solution for smaller DAGs (up to 25

nodes). Chang, Chen, and King [11] present a model using integer programming for the basic

block scheduling without spilling problem. However, the model is not efficient and robust. In

their work they tested it on two examples and did not use any real benchmark data set.

My approach for basic block scheduling without spilling is good enough to solve 97.496% of all

basic blocks in the SPEC2000 benchmark. The approach is able to solve basic blocks as large as 50

instructions for both idealized and realistic architectures within 10 minutes with available physical

registers from 8 to 32. This compares favorably to the work by Bednarski and Kessler [5, 6] on

optimal integrated code generation using integer programming. In my experiments I also perform

a detailed analysis of Govindarajan et al.’s [28] work in comparison to the optimal scheduler for

basic block scheduling without spilling.

5.3 Minimum register instruction sequencing

I selected Govindarajan et al.’s [28] work on the minimum register instruction sequencing problem

to build upon and to compare against my approach. The reason for its selection is that if no spilling

condition is added in Definition 5.3 then it becomes the basic block scheduling without spilling

problem. Also, their experimental results show that it is near-optimal for most of the basic blocks

in their test suite. Govindarajan et al.’s [28] method is based on the following two steps:

1. Instruction lineage formation: The concept of an instruction lineage is based on a chain of

instructions which allows the sharing of a register among instructions. A lineage is a set of

nodes in the DAG that can reuse the same destination register.

2. Lineage interference graph: The concept of a lineage interference graph captures the definite

overlap relationship (see the next section for the definition) between the live ranges of
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Figure 5.2: Invalid lineage formation.

lineages. It is used to facilitate sharing of registers across lineages that do not intersect with

each other.

5.3.1 Properties of a lineage

A lineage has the following properties. Interested readers can consult [28] for more details and

proofs on these properties.

1. A lineage has a unique starting instruction.

2. No two lineages can cross each other. Consider Figure 5.2. Lineage formation L1 = [A, E,

G] and L2 = [B, E, F] are not possible because they cross each other at node E.

3. An instruction can be an end point for more than one lineage.

4. The live ranges of two lineages Lu = [u1, . . . , um] and Lv = [v1, . . . , vn] overlap if u1 reaches

vn and v1 reaches um.

5. Two lineages Lu = [u1, . . . , um] and Lv = [v1, . . . , vn] can be fused into a single lineage if u1

reaches vn and v1 does not reach um. Fused lineages share the same register.

6. The fusion of lineages does not introduce any cycle.

7. Two lineages Lu = [u1, . . . , um] and Lv = [v1, . . . , vn] cannot be fused if u1 reaches vn and

v1 reaches um.
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Algorithm 5.1: Lineage Formation for a given DAG (from [28]).

input : DAG G = (V, E)

output: DAG G′ = (V, E′) with each vi ∈ V in a lineage and additional sequencing edges

added to E
mark all nodes in the DAG as not in any lineage;

compute the height of every node in the DAG;

while ( there is a node not in any lineage ) do

recompute height ← false;

vi ← highest node not in lineage;

start a new lineage containing vi;

mark vi as in a lineage;

while ( vi has a descendant ) do

vj ← lowest descendant of vi;

if ( vi has multiple descendants ) then

recompute height ← true;

for each descendant vk 6= vj of vi do

add sequencing edge from vk to vj ;

if ( vj is already marked as in a lineage or vj has different type from vi ) /* the

second test condition is added by me to take care of different types of lineages */

then

end lineage with vj as the last node;

break;

mark vj as in a lineage;

vi ← vj ;

if ( recompute height = true ) then

recompute the height of every node in the DAG;

5.3.2 Heuristic for lineage formation

Algorithm 5.1 gives pseudo-code for a heuristic method for lineage formation. Govindarajan et

al. [28] (hereafter, just Govindarajan) target a single-issue processor and assume only one type of

lineage. I consider both fixed point and floating point types of lineages for my work. The type of

target register in an instruction defines the type of lineage. In Govindarajan’s approach, if a node

is already in a lineage then it is the end point for the lineage under consideration and the node

is marked as a node with a lineage. For considering both types of lineages, the heuristic has to

be modified. One possible modification is to consider the next node of same type with the lowest

height. Let us call this modification M1. The second possible modification is, if the type of node
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is different from the type of lineage under consideration then it is the end point for the lineage

under consideration. In this case, the end point is not marked as a node with a lineage. Let us

call this modification M2. I use M2 for my work. Example 5.1 compares M1 and M2.

Definition 5.6 (Height of a node) The height of a node in a DAG is the number of edges in

the longest path from that node to the sink node of the DAG.

 

  A 

  B   C   D 

Figure 5.3: Comparison of M1 and M2.

Example 5.1 Consider the DAG shown in Figure 5.3. Assume nodes A, B and C are of fixed

point type and node D is of floating point type. Nodes D, C, B and A have height 1, 2, 3 and

4, respectively. Assuming unit latency with each edge, the only possible schedule for the given

DAG is S = A→ B → C → D. According to M1, A and C will share the same registers. Node D

needs data from A, B and C for its data computation. If A and C are sharing the same registers,

then data from A will be over written by the data from C. With this situation, schedule S will not

preserve the correctness of the program represented by the DAG. With M2, data from each node

will initiate a new lineage. This will preserve the semantics of the program with schedule S.

Lineage formation in Algorithm 5.1 depends upon potential killer nodes, unique killer nodes,

the height of nodes and the height of siblings in the given DAG. I next define the relevant concepts2.

Definition 5.7 (Potential killer node) Let S be the set of successor nodes for a given node

N . A node x ∈ S is a potential killer of the value generated by N iff for every y ∈ S − {x} there

is no path from x to y.

Definition 5.8 (Unique killer node) Let S be the set of successor nodes for a given node N .

A node x ∈ S is the unique killer of the value generated by N iff for every y ∈ S − {x} there is a

path from y to x.

2The terms potential killer and unique killer node also appear in the work by Touati [64]. Here they are being

defined independently.
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Figure 5.4: Lineage formation and lineage interference graph: (a) original DAG (from [28]); (b)

transformed DAG; (c) lineage interference graph.

Example 5.2 Consider the DAG in Figure 5.4(a). Nodes B, C, D and E are the potential killer

nodes for node A. Node F is the unique killer node for both B and C. Similarly, node G is the

unique killer node for both D and E. The height of node A is 3. Nodes B, C, D and E have height

2. Both nodes D and E have height 1 and the sink node H has height 0.

5.3.3 Lineage interference graph

The lineage interference graph is similar to the interference graph used in register allocation.

However, in the lineage interference graph, each node represents a lineage. There will be an

edge between two lineages if they overlap each other. Two lineages that do not have an edge

between them or do not overlap can share the same registers; i.e, they can be fused. The lineage

interference graph can be colored using a heuristic graph coloring algorithm. The number of

colors required to color a lineage interference graph is called the heuristic register bound (HRB).

Example 5.3 illustrates Algorithm 5.1 and the formation of the lineage interference graph.

Example 5.3 Consider the DAG in Figure 5.4(a). For simplicity assume all nodes are of the

same type. Starting from node H, calculate the height of each node in the DAG. Algorithm 5.1

selects node A as the starting node for Lineage L1. For the next node in L1, there is more than

one potential killer node with the same height. The algorithm selects the next node arbitrarily.

Let node B be selected. As a sole killer of the value generated by A, the siblings of B have to see

the value generated by A before it is killed by B. To ensure this, a scheduling constraint is added

by inserting edges (broken edges in Figure 5.4(b)) from each sibling node C, D and E to B. Next

F and H are added in L1 (L1 = {A, B, F, H}). The height of the nodes is recomputed. With the

added edges, the heights of C, D and E become 4. The algorithm selects the highest node not in
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Figure 5.5: The heuristic method by Govindarajan et al. [28] is not optimal: (a) original DAG;

(b) transformed DAG with five lineages; (c) transformed DAG with four lineages.

any lineage as the starting node for a new Lineage L2. Let it select E. The algorithm then picks

G and finally H for L2 (L2 = {E, G, H}). Similarly lineages L3 = {C, F} and L4 = {D, G} are

created. Keeping in view the properties of lineages in Section 5.3.1, L1, L2 and L3 interfere with

each other and hence cannot share the same register. Similarly, L1 and L4, L4 and L2 interfere

with each other. Figure 5.4(c) gives the lineage interference graph for the given DAG. Lineages

L3 and L4 can be fused as there is no edge between them. To do so, an edge is introduced from the

last node of L4 to the first node of L3. The HRB value for the given lineage interference graph is

three.

Algorithm 5.1 does not guarantee the minimum register requirement for a given basic block.

This can be shown using Example 5.4.

Example 5.4 Consider Figure 5.5. The numbers beside each node are the heights. One possible

lineage formation from Algorithm 5.1 consists of five lineages; i.e, L1 = {A, E, I}, L2 = {B, F, I},

L3 = {C, G, I}, L4 = {D, G}, and L5 = {H, I} as shown in Figure 5.5(b). However, lineage

formation with four lineages is possible; i.e., L1 = {A, E, I}, L2 = {B, F, I}, L3 = {C, G, I}, and

L4 = {D, H, I} as shown in Figure 5.5(c).

5.3.4 Instruction scheduling

Govindarajan adopt the traditional list scheduling approach to schedule the modified DAG (the

DAG with added edges to take care of lineages). The only change to the list scheduling algorithm

is the addition of a ready list of registers. Like the ready list of instructions, it is a list of available

registers that can be assigned to lineages. The ready list of registers is initialized equal to the

HRB value calculated using the lineage interference graph. A register is allocated to a lineage
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when the starting instruction of the lineage is scheduled. The register is given back to the list

when the last instruction of the lineage is scheduled. If during scheduling no legal schedule is

found then the value of HRH is incremented and the scheduling is done again. The process is

repeated until the scheduler finds a legal schedule for the modified DAG.

5.4 My solution for the problem

In this section, I discuss my approach for the problem. The approach uses the concept of lineage

and the constraint programming (CP) approach for basic block scheduling given in Chapter 3.

Through out this section, I assume the following:

Assumption 5.1 Each basic block has a unique entrance and a unique exit point. If a given basic

block does not have a unique entrance and exit point then I am inserting them in the DAG of the

given basic block. The edges from or to the inserted nodes in the DAG are treated as dependency

edges and are considered in the lineage formation.

Govindarajan in his work also inserts unique entrance and exit points in the DAG of a given

basic block if it does not have one. However, Govindarajan does not treat the edges from or to the

inserted nodes as dependency edges and does not consider them in the lineage formation heuristic.

There might be instructions inside a basic block that are data dependent on the variables defined

outside of the block. Similarly, variables defined inside a basic block might be alive outside of the

block. Considering the edges to the source and sink nodes as dependency edges takes care of this

situation. Example 5.5 explains in more detail.

Example 5.5 . Figure 5.6(a) gives a DAG for a basic block with no unique entrance and exit

points. Unique entrance node R and unique exit node S are added to the DAG. According to

Govindarajan’s assumption, edges from R to A and B and from C and D to S are not dependency

edges and will not be considered in the lineage formation heuristic. Figure 5.6(b) gives a lineage

formation using Govindarajan’s assumption. Lineage L1 = {A, C} and L2 = {B, D} can be fused

as they do not interfere with each other. Hence, with Govindarajan’s assumption the minimum

register requirement for the give basic block is one. According to Assumption 5.1, edges from R

to A and B and from C to D and S are dependency edges and are be considered in the lineage

formation heuristic. Figure 5.6(c) gives one possible lineage formation with this assumption.

There are two lineages; L1 = {R, A, C, S} and L2 = {B, D, S} and both cannot be fused as they

interfere with each other. The minimum register requirement using Assumption 5.1 is two.

Now, I present the characteristics of lineages that are used in my approach.

Lemma 5.1 Any legal lineage formation for a DAG of a given basic block, with unique entrance

and exit points, is a valid register assignment.
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Figure 5.6: The difference in the assumption made by Govindarajan and the assumption made in

this work. (a) original DAG; (b) lineage formation using Govindarajan’s assumption; (c) lineage

formation using Assumption 5.1.

Proof. The proof is by contradiction. Suppose there exists a lineage formation which does not

give a valid register assignment. In the register allocation problem, a register assignment is not

valid if two data variables that are alive simultaneously are assigned to the same register. In a

lineage formation if two data variables are alive side by side in any instruction schedule then they

belong to different lineages. Two different lineages that overlap cannot be assigned to the same

register. Hence, this is not possible. �

Lemma 5.2 The minimum register requirement for a given basic block, with unique entrance and

exit points, is equal to the minimum number of lineages for the DAG.

Proof. Let S be a set of all possible lineage formations for the DAG of a given basic block. Let

Ni be the number of lineages in a lineage formation Ti ∈ S. Let Nmin be the minimum number

of lineages in S given by a lineage formation Tmin ∈ S. Let Rmin be the minimum register

requirement for the given basic block.

The proof is by contradiction. There are two possibilities:

• Case 1 (Nmin < Rmin): This is not possible. According to Lemma 5.1, Tmin is a valid

register assignment. This means Rmin is not the minimum register requirement of the DAG

for a given basic block.

• Case 2 (Nmin > Rmin): Each lineage represents the flow of a data value in the DAG. Set

S represents all possible flow patterns for all data values in the DAG. This means Nmin is

the minimum register requirement. Again, this is not true.
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Hence, Nmin = Rmin. �

Lemma 5.3 If each node in a DAG of a given basic block, with unique entrance and exit points,

has a unique killer node then the DAG has a unique lineage formation.

Proof. The proof is by contradiction. Suppose there exists a lineage formation other than the

unique lineage formation which has a node in a lineage which is not the unique killer node of

its parent. This is not possible, as this will create a cycle between the unique successor and the

selected node. �

Heffernan and Wilken [31] present a set of graph transformations for dependency DAGs for

basic blocks and show that optimally scheduling the transformed DAGs using branch-and-bound

enumeration is faster and more robust. The DAG transformations reduce the search space while

preserving optimality and hence are safe. I am reproducing the transformations given by Heffernan

and Wilken here. For more detail see Section 2.3 or the work [31].

Theorem 5.1 (Heffernan and Wilken [31]) Let A and B be isomorphic subgraphs with node

sets V (A) = {a1, . . . , ar} and V (B) = {b1, . . . , br}. If,

(i) ai is neither a predecessor or a successor of bi, 1 ≤ i ≤ r,

(ii) for all k ∈ pred(ai) such that k 6∈ V (A), l(k, ai) ≤ cp(k, bi), 1 ≤ i ≤ r,

(iii) for all k ∈ succ(bi) such that k 6∈ V (B), l(bi, k) ≤ cp(ai, k), 1 ≤ i ≤ r,

(iv) for any edge (bi, aj), l(bi, aj) ≤ cp(ai, bj),

then adding the constraints ai ≤ bi, 1 ≤ i ≤ r is safe.

Theorem 5.2 shows that the transformations also preserve the minimum register requirements.

The transformations can be used to add extra edges among the siblings and hence reduce the

number of potential killer nodes in a given DAG. The edges added by the transformations are

sequential edges and are not considered in the lineage formations.

Theorem 5.2 The transformations introduced by Heffernan and Wilken [31] when applied to a

DAG G of a basic block do not change the minimum register pressure of G.

Proof. Consider Figure 5.7. Node D and node E satisfy the conditions of Heffernan’s transfor-

mation and node D is superior to node E. Thus, one can have an edge with zero latency from node

D to node E. What I wish to prove is that this does not change the minimum register requirement

of G. The proof is by contradiction. Suppose to the contrary that when a zero latency edge is

introduced from node E to node D, the minimum register pressure with this transformation is

less than the minimum register pressure due to the transformation when a zero latency edge is

introduced from node D to node E. There are two possible cases for this to happen:
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Figure 5.7: Heffernan and Wilken [31] transformation. Node D is superior to node E.

• Case 1: Let IPredD and ISuccE be the immediate predecessors and immediate successors

of node D and node E, respectively. In Figure 5.7, A ∈ IPredD and G ∈ ISuccE form a

region RA,G. One possibility is that the register requirement for RA,G, when there is an

edge from D to E, is more than the register requirement when there is an edge from E to

D. This is not possible. Node D and node E are independent of each other; i.e, no path

exists between the two nodes. Thus, they belong to two different lineages. The question

is whether these two lineages can be fused together when an edge from D to E or E to D

is inserted. The lineage containing node D will contain a node x ∈ IPredD and a node

y ∈ ISuccD. Similarly, the lineage containing node E will contain a node w ∈ IPredE

and a node z ∈ ISuccE. According to the transformation introduced by Heffernan and

Wilken [31], if D is superior to E then there is a path from any x ∈ IPredD to E and there

is a path from D to any z ∈ ISuccE. Thus, there is always a path from the starting node

of the lineage containing D to the end node of the lineage containing E. The same is true

for the lineage containing node E; i.e., there is always a path from the starting node of the

lineage containing E to the end node of the lineage containing D. According to Property 7

in Section 5.3.1, the two lineages cannot be fused. Hence, the register requirement for RA,G

remains constant. This is true for all regions Ri,j such that i ∈ IPredD, j ∈ ISuccE.

• Case 2: The other possibility is when an edge from E to D is inserted, there is a lineage,

say from node H to node I in G that can be fused with a lineage containing D or E. However,

this fusion is not possible when an edge is introduced from D to E. As already mentioned
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in Case 1, if D dominates E then there is a path from any x ∈ IPredD to E and there is a

path from D to any z ∈ ISuccE. Thus, the addition of an edge between D and E does not

change the reachability of both nodes to any node in the given DAG. Let VD be the set of

vertices that can be reached from D and VE be the set of vertices that can be reached from

E before adding an edge between D and E. Then, VD and VE do not change after inserting

an edge between D and E. Thus, the fusion is independent of the situation whether node E

is scheduled before or after node D.

Hence, the transformation preserves the minimum register pressure. �

Govindarajan does not consider the optimal lineage fusion problem.

Definition 5.9 (Optimal lineage fusion) Let S be a set of lineages in a DAG for a given basic

block and let n be the number of lineages; i.e., n = |S|. Let r be the number of physical registers

and suppose that n > r. An optimal lineage fusion is a fusion of at least n− r pairs of lineages,

if there is a possibility to do so, such that the minimal schedule length is preserved.

Example 5.6 explains the concept of optimal lineage fusion.
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Figure 5.8: Optimal lineage fusion.

Example 5.6 Consider Figure 5.8. Let Algorithm 5.1 give the four lineages: L1 = {A, B, F, H},

L2 = {C, F}, L3 = {D, G, H} and L4 = {E, G}. Consider a fully pipelined single-issue processor

110



with three physical registers. The minimal schedule length for the DAG is eight cycles. In order

to reduce the register requirement, lineage fusion, if possible, must be done. Lineage L2 and L4

can be fused. However, fusing L4 with L2 by adding an edge with zero latency from node G to

node C will increase the minimal schedule length to nine cycles as the best possible schedule that

can be achieved under this fusion is (A, D, E, G, C, B, NOP, F, H). However, fusing L2 with

L4 by adding an edge with zero latency from node F to node E will not increase the schedule

length. The fusion of L2 with L4 is optimal as it preserves the minimal schedule length of eight

cycles—one such schedule is given by (A, C, B, D, F, E, G, H)—and has a register requirement

of three registers.

5.5 Searching for a solution

I reformulate the basic block scheduling without spilling problem into finding a lineage formation

for the DAG of the given basic block that will give the minimum schedule length and number of

lineages less than or equal to the number of available physical registers. Thus, finding a solution

for the problem consists of two parts: (i) a DAG transformation for a given basic block that

ensures the register requirement is less than or equal to the available physical registers, and (ii) a

schedule of the transformed DAG from that gives the minimum schedule length. The constraints

for part (i) are the following.

• Each node should have a unique killer node.

• All successors of a node N should be scheduled before the unique killer node of N; i.e., there

should be a dependency edge with zero latency between the successor nodes and the unique

killer node.

• All immediate predecessors of a node should belong to different lineages.

• The number of lineages should be less than or equal to the available physical registers.

Chang et al. [11] use the same constraints to limit the register requirement. In order to find

a lineage formation with the number of lineages less than or equal to the available registers, one

has to check every possible lineage formation by considering every possible DAG transformation;

i.e., one has to permute every possible DAG transformation using each node using all of its

potential killers. The search space is exponential and is a function of the number of potential

killers in a given DAG. Reducing the number of potential killers reduces the search space. Using

the transformations of Theorem 5.2, one can add extra edges among siblings and can reduce the

number of potential killer for a given DAG. I applied these transformations to a given DAG before

starting the search process for an optimal solution for the problem.
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Figure 5.9: Reducing the number of potential killers.

Example 5.7 Consider Figure 5.9. Node A has two successors, B and C. According to Theo-

rem 5.2, adding an edge makes C the unique killer of A but will not increase the register pressure.

To find an optimal solution, the optimal scheduler in Chapter 3 starts with a lower bound

value on the cost function. At each cost function value, the scheduler attempts to find a solution.

If there is a solution then it is returned; otherwise the value of the cost function is incremented.

For basic block scheduling, there is one criteria to minimize via the cost function, i.e., the schedule

length. For the basic block without spilling problem, there are two criteria to minimize via the

cost function: the number of lineages and the schedule length. The upper bound on the number

of lineages is the number of available physical registers and the lower bound is the minimum

register requirement for a given basic block. Finding the minimum register requirement is a hard

problem. I use the maximum number of immediate predecessors of a node in the DAG as a lower

bound. If the lower bound on the register pressure of a given DAG is more than the available

physical registers then there does not exist a solution. An upper bound on the schedule length is

the length given by Govindarajan’s modified list scheduling heuristic and the lower bound is the

optimal schedule length under no register pressure constraint; i.e., the schedule length given by

the optimal scheduler given in Chapter 3. One way to find a solution to this problem is to start

with the lower bound on schedule length and see whether there exists a DAG transformation with

number of lineages less than or equal to the available physical registers. If no lineage formation

is found then increment the schedule length and repeat the process till a solution is found. This

would be an expensive process. The other way is to check all transformations and pick the best

solution, i.e., a transformation DAG which has the minimum schedule length with number of

lineages less than or equal to the available physical registers. I followed this latter approach.
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Algorithm 5.2: Generate( G, Pkiller, N , R )

input : DAG G = (V, E), array Pkiller, node N , number of physical registers R

output: True if a solution is found; otherwise false

if (N is the sink node of G ) then

/* DAG transformation is completed with each node having a unique killer node */;

Algorithm 5.1 is called to give the number of lineages;

if (number of lineages > R) then

generate all possible fusion combination for a given set of lineages ;

select the combinations which are possible and give number of lineages ≤ R;

if (no combination exists) then

return false;

for each combination do

apply the CP approach from Chapter 3;

if (schedule length = lower bound) then

return true;

else

update the record regarding the minimum schedule length;

else

apply the CP approach from Chapter 3;

if (schedule length = lower bound) then

return true;

else

update the record regarding the minimum schedule length;

else

for each vi ∈ Pkiller[N ] do

make vi the unique killer of N by adding edges from vj ∈ Pkiller[N ]− vi to vi;

update Pkiller because of the new edges added;

if (Generate( G, Pkiller, N + 1, R ) then

return true;

else

remove the edges from vj ∈ Pkiller[N ]− vi to vi;

update Pkiller ;

return false;
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If the schedule length from the heuristic is equal to the lower bound and number of lineages

is less than or equal to the physical registers then the solution given by the heuristic is optimal.

If not then I use Algorithm 5.2 to generate all possible lineage formations for the given DAG. A

transformation of DAG is completed by recursively calling the function Generate on each node

until the sink node is called. This give each node in the graph a unique killer. Algorithm 5.1 is

applied to find the number of lineages in the transformation. According to Lemma 5.3, if each

node has a unique killer node, then the number of lineages given by Algorithm 5.1 is the minimum

for the given DAG. If number of lineages is more than the available physical registers then I use

a brute force approach to find an optimal lineage fusion. I generate every possible lineage fusion

combination. The constraint programming approach for basic block scheduling given in Chapter 3

is used to determine the minimum schedule length for the given DAG transformation with every

possible lineage fusion that reduces the register requirement to less than or equal to the available

physical registers. A data structure is maintained to keep the current minimum number of lineages

during the search phase and the optimal schedule length associated with it. It is initialized to

the number of lineages and schedule length determined by the heuristic. This record is updated

if during the search phase there is a DAG transformation with number of lineages less than

or equal to the recorded minimum number of lineages and the optimal schedule length for the

transformation less than or equal to the recorded schedule length. If no DAG transformation with

number of lineages less than or equal to the available physical registers is found after the search

ends then according to Lemma 5.2 the minimum register requirement of given DAG is more than

the available registers. The time limit to find a solution is 10 minutes. If a solution could not be

found within this limit then the best solution found so far is returned. Example 5.8 explains the

implementation of Algorithm 5.2.

Example 5.8 Consider again Figure 5.8. Assume a single-issue processor with three physical

registers. The optimal schedule length assuming no register constraints for the given DAG is eight

cycles. This is the lower bound on the schedule length. The maximum number of immediate

predecessors for a node in the DAG is two. This is a lower bound on register pressure. Let

the heuristic give three lineages after fusion: L1 = {A, B, F, H}, L3 = {D, G, H} and L4 fused to

L2 = {E, G, C, F}. With this fusion a schedule (A, B, D, E, C, NOP, NOP, F, G, H) with schedule

length of 10 cycles is found using Govindarajan’s modified list scheduling heuristic. This is an

upper bound on the schedule length. The function Generate is first called with the root node A.

The array Pkiller maintains the list of potential killers for each node. At this level, node A has

four potential killers; i.e., Pkiller[A] = {B, C, D, E}. Similarly, Pkiller[B] = Pkiller[C] = {F},

Pkiller[D] = Pkiller[E] = {G}, Pkiller[F ] = Pkiller[G] = {H} and Pkiller[H] = {}. Node B is

selected as the unique killer node for node A and sequential edges are added from C, D and E to B.

The information in Pkiller is updated to be Pkiller[A] = {B}, Pkiller[B] = Pkiller[C] = {F},

Pkiller[D] = Pkiller[E] = {G}, Pkiller[F ] = Pkiller[G] = {H}, Pkiller[H] = {}. The function

Generate is called with node B. As node B has a unique killer node, nothing happens. The

same is true when Generate is called with C, D, E, F and G. With node H, which is the sink
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node of the DAG, the transformation is completed. Algorithm 5.1 is called and it gives four

lineages: L1 = {A, B, F, H}, L2 = {C, F}, L3 = {D, G, H} and L4 = {E, G}. As there are

three registers, lineage fusion is required. With the available DAG transformation only two fusion

combinations are possible; i.e., L2 fused to L4 and L4 fused to L2. Both combinations are tried

and the transformed DAG is given to the CP scheduler for basic blocks to determine the optimal

schedule length. The fusion of L2 to L4 gives a DAG transformation for which there exists a

schedule (A, C, B, D, F, E, G, H), which has a schedule length of eight cycles. As this is equal

to the lower bound, this is an optimal solution. In case the schedule length is not equal to the

lower bound, the record keeping the minimum schedule length and number of lineages is updated.

Backtracking is done and the sequential edges which were added would be removed. A new potential

killer node would be selected and the process repeated until an optimal solution was found, if one

exists.

5.6 Experimental evaluation

In this section, I present experimental results gained from scheduling 343,295 basic blocks from the

SPEC 2000 benchmark. The data contains basic blocks both before and after register allocation.

Each basic block was scheduled on several different architectures using both the idealized and

realistic architectural models. The same set of architectures that were used for basic block and

superblock scheduling, were used again for basic block instruction scheduling without spilling

problem. Bednarski and Kessler [5, 6] were the first to present integrated optimal code generation

using integer and dynamic programming. Their model was targeted toward a VLIW processor.

They used a theoretical VLIW target platform with issue width of three instructions per clock

cycle. The architecture has two ALUs, two multiply-and-accumulate and two load/store units and

eight general purpose registers. They were able to solve basic block as large as 50 instructions

with unit latency and as large as 25 instructions with arbitrary latencies. This work cannot be

used as a reference work to compare my model as it considers instruction selection in the model

along with instruction scheduling and register allocation. This makes the model very complex.

However, this work can be used as a reference to compare the robustness of my model. For my

model I consider the PowerPC architecture, which is a realistic architecture, with issue width from

zero to six instructions per clock cycle. The latency for various operations in my model varies

from zero to 36 cycles. I tested my approach on a difficult test suite.

I used Govindarajan’s work to compare against my work. They presented the result from

two sets of experiments. In the first set of experiments, they compared the register requirement

calculated by their approach with the minimum register requirement calculated by an integer

programming (IP) approach. Because of the time complexity of an IP algorithm, instead of using

whole SPEC benchmarks, they used a set of 675 DAGs extracted from the benchmark (all from

the SPEC92 integer benchmark). The DAGs considered varied widely in size with a median of
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10 nodes, a geometric mean of 12 nodes, and an arithmetic mean of 19 nodes per DAG. For

650 out of the 675 DAGs, Algorithm 5.1 found an instruction sequence that used the minimum

number of registers. In the second set of experiments, they implemented their approach in the

SGI MIPSpro compiler. They presented the performance results for a machine with 32 integer

and 32 floating-point registers and for a machine with 32 integer and 16 floating-point registers.

The fusion of lineages reduced the number of spill operations in the code by 63.1% and 55.9%

respectively for 32 integer and 16 floating-point registers and without lineage fusion by 52.6% and

42.9% respectively.

5.6.1 Experiments for realistic architectural models

I did extensive experimentation for both idealized and realistic architectures. Here, I present

only the results for the realistic architectures. Similar results were obtained for the idealized

architectures.

Tables 5.1 to 5.3 give the performance of the approach for realistic architectures. The first

column contains the applications in the SPEC 2000 benchmark and number of basic blocks with

size from 2 to 50 instructions in each application. Column (a) gives the number of basic blocks

where my approach was able to find register requirement less than the register requirement found

by the heuristic and Column (b) gives the number of basic blocks where my approach is able

to improve the schedule length over the heuristic with register requirement less than or equal

to the register requirement. As the issue width increases, the gain in schedule length decreases.

Depending upon the architecture and register requirement, the approach was able to improve at

most 502 basic blocks in terms of register requirement which is less than 1% of the total blocks.

The maximum gain was 2 registers per basic block over the heuristic. The approach was able to

improve schedule length of at least 7% of basic blocks with register requirement less than or equal

to the register requirement determined by the heuristic where the maximum gain was 3 cycles

per basic block. The results show that Govindarajan’s work is almost optimal for the basic block

scheduling without spilling problem on our data set. I speculate that the reason my approach

is not more successful is partly due to the extra non-data dependency edges introduced by the

TOBEY compiler to control the register pressure during the instruction scheduling phase. These

extra edges reduce the search space for the heuristic and restrict the improvements that can be

made.

Tables 5.4 to 5.6 give the gain broken down by different ranges of basic block. The maximum

gain is for basic blocks in the range of 16 to 30 instructions. Tables 5.7 to 5.9 give the percentage

of all basic blocks in the SPEC 2000 benchmark suite which were solved to optimality, for various

realistic architectural models and time limits for solving each basic block using 8 to 32 physical

registers. Table 5.10 gives total time (hh:mm:ss) to schedule basic blocks in the SPEC 2000

benchmark suite, for various realistic architectural models within a 10 minute time limit.
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Table 5.1: Basic block scheduling without spilling for realistic architecture with 8 integer and 8

floating-point registers. Number of basic blocks in the SPEC 2000 benchmark suite with 2 to

50 instructions where (a) the approach found a schedule with register requirement less than the

heuristic, and (b) the approach found a schedule with better schedule length than the heuristic

with the minimum register requirement within a 10-minute time limit, for various architectures.

1r-Issue ppc603e ppc604 6r-issue

# blocks (a) (b) (a) (b) (a) (b) (a) (b)

ammp 6,466 3 363 3 363 3 300 3 299

applu 1,173 31 28 31 15

apsi 4,416 6 271 6 271 6 228 6 143

art 830 2 57 2 52 2 50 2 48

bzip2 1,986 3 153 3 153 3 150 3 137

crafty 9,886 2 418 2 518 2 600 2 656

eon 8,937 6 636 6 768 6 747 6 551

equake 947 117 148 45 43

facerec 2,461 14 203 14 210 14 222 14 76

fma3d 19,259 13 376 13 376 13 501 13 307

galgel 10,939 4 721 4 721 4 770 4 460

gap 40,063 47 792 47 792 47 780 47 689

gcc 87,925 42 3,333 42 3,300 42 3,300 42 3,000

gzip 3,309 261 261 240 239

lucas 1,805 4 100 4 200 4 162 4 60

mcf 763 50 50 50 50

mesa 30,719 44 948 44 900 44 890 44 890

mgrid 383 1 14 1 14 1 14 1 11

parser 7,478 11 604 11 614 11 600 11 486

perlbmk 33,848 29 532 29 500 29 501 29 500

sixtrack 21,393 11 644 11 609 11 748 11 579

swim 677 11 11 8 5

twolf 14,957 21 253 21 653 21 700 21 700

vortex 24,621 3 379 3 470 3 400 6 300

vpr 6,904 7 304 7 400 7 400 7 3

wupwise 1,166 126 75 65 126

Totals 343,295 273 11,647 273 12,472 273 12,802 273 10,373
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Table 5.2: Basic block scheduling without spilling for realistic architecture with 16 integer and 16

floating-point registers. Number of basic blocks in the SPEC 2000 benchmark suite with 2 to

50 instructions where (a) the approach found a schedule with register requirement less than the

heuristic, and (b) the approach found a schedule with better schedule length than the heuristic

with the minimum register requirement within a 10-minute time limit, for various architectures.

1r-Issue ppc603e ppc604 6r-issue

# blocks (a) (b) (a) (b) (a) (b) (a) (b)

ammp 6,466 11 500 11 441 11 366 11 307

applu 1,173 5 58 5 50 5 69 5 50

apsi 4,416 13 390 13 313 13 304 13 254

art 830 11 85 11 85 11 102 11 83

bzip2 1,986 5 212 5 187 5 150 5 191

crafty 9,886 7 1,080 7 929 7 900 7 910

eon 8,937 14 1,036 14 968 14 957 14 1,051

equake 947 127 148 56 61

facerec 2,461 16 253 16 210 16 188 16 119

fma3d 19,259 27 1,958 27 1,150 27 1,431 27 1,150

galgel 10,939 48 907 48 728 48 700 48 660

gap 40,063 47 2,430 47 1,179 47 3,232 47 2,732

gcc 87,925 48 5,852 48 5,078 48 7,067 48 5,100

gzip 3,309 7 308 7 282 7 389 7 304

lucas 1,805 4 125 4 212 4 169 4 69

mcf 763 60 50 71 50

mesa 30,719 48 2,582 48 2,239 48 2,000 48 1,998

mgrid 383 2 25 2 18 2 17 2 17

parser 7,478 13 751 13 687 13 650 13 557

perlbmk 33,848 21 3,050 21 2,765 21 1,201 21 2,000

sixtrack 21,393 27 1,604 27 1,220 27 1,101 27 1,100

swim 677 17 32 17 18 17 13 17 11

twolf 14,957 27 991 27 819 27 712 27 700

vortex 24,620 6 1,890 6 1,791 6 968 6 900

vpr 6,904 7 543 7 540 7 385 7 377

wupwise 1,166 6 150 6 100 6 100 6 126

Totals 343,295 407 26,999 407 23,304 407 23,298 407 20,877
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Table 5.3: Basic block scheduling without spilling for realistic architecture with 32 integer and 32

floating-point registers. Number of basic blocks in the SPEC 2000 benchmark suite with 2 to

50 instructions where (a) the approach found a schedule with register requirement less than the

heuristic, and (b) the approach found a schedule with better schedule length than the heuristic

with the minimum register requirement within a 10-minute time limit, for various architectures.

1r-Issue ppc603e ppc604 6r-issue

# blocks (a) (b) (a) (b) (a) (b) (a) (b)

ammp 6,466 11 500 11 480 11 366 11 307

applu 1,173 5 58 5 58 5 69 5 50

apsi 4,416 13 390 13 323 13 304 13 254

art 830 11 85 11 85 11 102 11 83

bzip2 1,986 5 212 5 197 5 150 5 191

crafty 9,886 7 1,100 7 959 7 900 7 910

eon 8,937 14 1,056 14 978 14 957 14 951

equake 947 127 148 56 61

facerec 2,461 16 253 16 210 16 188 16 119

fma3d 19,259 32 1,998 32 1,950 32 1,431 32 1,150

galgel 10,939 58 907 58 928 58 700 58 660

gap 40,063 57 2,530 57 2,479 57 2,373 57 2,032

gcc 87,925 58 6,852 58 6,678 58 6,067 58 5,007

gzip 3,309 7 308 7 282 7 389 7 304

lucas 1,805 4 125 4 212 4 169 4 69

mcf 763 60 50 71 50

mesa 30,719 58 2,682 58 2,639 58 2,000 58 1,498

mgrid 383 2 25 2 18 2 17 2 17

parser 7,478 13 751 13 687 13 650 13 557

perlbmk 33,848 31 3,150 21 2,865 21 1,201 21 2,000

sixtrack 21,393 67 1,704 67 1,720 67 1,101 67 1,100

swim 677 17 32 17 18 17 13 17 11

twolf 14,957 27 991 27 819 27 712 27 700

vortex 24,620 6 1,990 6 1,991 6 968 6 900

vpr 6,904 7 543 7 540 7 385 7 377

wupwise 1,166 6 150 6 112 6 100 6 126

Totals 343,295 502 28,579 502 27,426 502 25,157 502 22,270
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Table 5.4: Using 8 integer and 8 floating-point registers. Number of basic blocks in the SPEC 2000

benchmark suite where the optimal scheduler found an improved register requirement (imp1.),

and number of basic blocks with improved schedule length (imp2.), for ranges of basic block sizes

and various realistic architectural models.

1r-issue ppc603e ppc604 6r-issue

range #blocks imp1. imp2. imp1. imp2. imp1. imp2. imp1. imp2.

3–5 182,113 0 200 0 175 0 179 0 180

6–10 91,807 3 338 3 308 3 299 3 298

11–15 31,610 16 1,127 16 1,201 16 1,198 16 1,007

16–20 14,323 119 8,799 119 8,900 119 8,997 119 7,779

21–30 13,767 125 1,019 125 1,768 125 1,976 125 1,009

31–50 9,703 10 164 10 120 10 153 10 100

Total 343,295 273 11,647 273 12,472 273 12,802 273 10,373

Table 5.5: Using 16 integer and 16 floating-point registers. Number of basic blocks in the

SPEC 2000 benchmark suite where the optimal scheduler found an improved register require-

ment (imp1.), and number of basic blocks with improved schedule length (imp2.), for ranges of

basic block sizes and various realistic architectural models.

1r-issue ppc603e ppc604 6r-issue

range #blocks imp1. imp2. imp1. imp2. imp1. imp2. imp1. imp2.

3–5 182,113 0 200 0 175 0 179 0 180

6–10 91,807 3 338 3 308 3 299 3 298

11–15 31,610 16 1,211 16 1,201 16 1,098 16 1,007

16–20 14,323 170 12,700 170 11,001 170 11,000 170 9,789

21–30 13,767 180 11,991 180 9,999 180 10,000 180 9,099

31–50 9,703 38 643 38 680 38 622 38 504

Total 343,295 407 26,999 407 23,304 407 23,298 407 20,877
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Table 5.6: Using 32 integer and 32 floating-point registers. Number of basic blocks in the

SPEC 2000 benchmark suite where the optimal scheduler found an improved register require-

ment (imp1.), and number of basic blocks with improved schedule length (imp2.), for ranges of

basic block sizes and various realistic architectural models.

1r-issue ppc603e ppc604 6r-issue

range #blocks imp1. imp2. imp1. imp2. imp1. imp2. imp1. imp2.

3–5 182,113 0 200 0 175 0 179 0 180

6–10 91,807 3 338 3 308 3 299 3 298

11–15 31,610 16 1,127 16 1,201 16 1,198 16 1,007

16–20 14,323 211 12,567 211 11,990 211 11,780 211 10,990

21–30 13,767 220 13,561 220 12,990 220 10,990 220 9,111

31–50 9,703 52 786 52 762 52 711 52 684

Total 343,295 502 28,579 502 27,426 502 25,157 502 22,270

Table 5.7: Percentage of all basic blocks in the SPEC 2000 benchmark suite which were solved to

optimality, for various realistic architectural models and time limits for solving each basic block

using 8 registers.

1 sec. 10 sec. 1 min. 10 min.

1r-issue 90.479 90.727 90.905 97.496

ppc603e 90.822 90.847 90.866 97.496

ppc604 90.831 90.856 90.979 97.496

6r-issue 90.321 90.643 90.742 97.496

Table 5.8: Percentage of all basic blocks in the SPEC 2000 benchmark suite which were solved to

optimality, for various realistic architectural models and time limits for solving each basic block

using 16 registers.

1 sec. 10 sec. 1 min. 10 min.

1r-issue 90.179 90.701 90.905 97.496

ppc603e 90.722 90.747 90.766 97.496

ppc604 90.731 90.756 90.779 97.496

6r-issue 90.121 90.543 90.642 97.496
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Table 5.9: Percentage of all basic blocks in the SPEC 2000 benchmark suite which were solved to

optimality, for various realistic architectural models and time limits for solving each basic block

using 32 registers.

1 sec. 10 sec. 1 min. 10 min.

1r-issue 90.123 90.133 90.321 97.496

ppc603e 90.522 90.647 90.666 97.496

ppc604 90.731 90.756 90.779 97.496

6r-issue 90.321 90.343 90.342 97.496

Table 5.10: Total time (hh:mm:ss) to schedule basic blocks in the SPEC 2000 benchmark suite,

for various realistic architectural models within a 10 minute time limit.

with 8 registers with 16 registers with 32 registers

1r-issue 59:45:52 70:26:46 87:28:21

ppc603e 91:55:58 98:53:35 130:58:17

ppc604 100:04:20 120:05:36 140:37:33

6r-issue 110:58:42 130:34:06 180:44:03
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5.7 Summary

I presented a constraint programming approach for solving the basic block scheduling without

spilling problem for multiple-issue processors. I performed an extensive experimental evaluation

using the SPEC2000 benchmark for both the realistic and idealized architectures. My model was

able to solve basic blocks as large as 50 instructions within a 10 minute time limit per basic block.

I was able to solve 97.496% of all basic blocks to optimality. This compares favorably to the

recent work by Bednarski and Kessler [5, 6] on optimal integrated code generation using integer

programming. Bednarski’s work, targeted towards idealized architecture, was able to solve basic

blocks as large as 50 instructions within 20 minutes with the latency ranging from unit cycle to

9 cycles. I also compared my optimal approach against the heuristic approach of Govindarajan.

Depending upon the architecture and register requirement, my approach was able to show an

improvement of 0.0%-7.8% over the heuristic.
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Chapter 6

Conclusion and Future Work

In this chapter, I summarize my contributions. I describe the potential applications of the pro-

posed optimal schedulers. At the end, I outline some possible extensions of my work.

6.1 Conclusion

This thesis gives an optimal instruction scheduler for multi-issue processors for both simplistic

and realistic architectural models using constraint programming techniques. Both local and global

instruction scheduling problems are considered. Global instruction scheduling is done using su-

perblocks. Combined instruction scheduling and register allocation using basic block with out

spilling is also considered. Previous work on optimal instruction scheduling is mainly targeted to-

wards idealized architectures. Also, the previous work in this area are not fast and robust enough

to be incorporated in commercial compilers. The main contribution of this work is a presentation

of an optimal scheduler which is fast and robust for both idealized and realistic architectures.

For the local instruction scheduling problem, basic blocks were collected before and after

register allocation phase using the IBM TOBEY compiler using the SPEC 2000 benchmark. I

experimentally evaluated my optimal scheduler on the SPEC 2000 integer and floating point

benchmarks. On this benchmark suite, the optimal scheduler was very robust and scaled to the

largest basic blocks. Depending on the architectural model, between 99.991% to 99.999% of all

basic blocks were solved to optimality. The scheduler was able to solve the largest basic blocks,

including blocks with up to 2600 instructions. This compares favorably to the best previous

approach due to Heffernan and Wilken [31]. I also compare the performance of a list scheduler

for the basic block scheduling using the critical path heuristic. When scheduling for the idealized

architectural model, the list scheduler solved 98.6%-99.9% of the basic blocks in the benchmark
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suite optimally. For the realistic architectural model, the list scheduler produced optimal schedules

for 94.2%-97.8% of the basic blocks.

For the global instruction scheduling problem, superblocks were collected before and after

register allocation phase using the IBM TOBEY compiler. I experimentally evaluated my optimal

scheduler on the SPEC 2000 integer and floating point benchmarks. On this benchmark suite,

the optimal scheduler was very robust and scaled to the largest basic blocks. Depending on the

architectural model, between 99.991% to 99.999% of all superblocks were solved to optimality.

The schedulers were able to routinely solve the largest superblocks, including blocks with up to

2600 instructions. This compares favorably to the best previous approach by Shobaki [61]. For the

global instruction scheduling problem, the critical path heuristic and the DHASY heuristic were

used for comparison against the optimal scheduler. When scheduling for the idealized architectural

model, the list scheduler solved 91.2%-97.5% of superblocks optimally. However, the list scheduler

was only optimal for 54%-96% of superblocks when scheduling for a realistic architectural model.

The schedules produced by the optimal schedule showed an improvement of 0%-3.8% on average

over DHASY heuristic and an improvement of 0%-102% on average over the critical path heuristic.

As expected, the heuristic DHASY yielded better schedules than the critical path heuristic.

For the basic block scheduling with out spilling problem, I tested my model on basic blocks

from the SPEC 2000 benchmarks collected before and after register allocation phase using the

IBM TOBEY compiler. The model was able to solve basic block as large as 50 instructions within

a 10 minute time limit. I was able to solve 97.496% of all basic blocks to optimality. This compares

favorably to the recent work by Bednarski and Kessler [5, 6] on optimal integrated code generation

using integer programming. I also compared my optimal approach against the heuristic approach

of Govindarajan. Depending upon the architecture and register requirement, my approach was

able to show an improvement of 0.001%-7.8% over the heuristic.

The most significant conclusion of this thesis is that list scheduling is sufficiently close to

optimality in practice for local instruction scheduling but not for global instruction scheduling.

There is almost no need for optimal schedulers of any kind when scheduling basic blocks, as the cost

of invoking an optimal scheduler will generally outweigh the cost of list scheduling, and there will

only be benefits for a small number of blocks which may not even be significant to the execution

time of a particular application. This is not the case for global instruction scheduling, and other

superblock scheduling algorithms must be investigated in order to produce lower-cost schedules

for superblocks being scheduled on realistic architectures. The other significant conclusion of this

work is that constraint programming methodology can be a fruitful approach for solving NP-hard

compiler optimization problems.
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6.2 Applications

Although heuristic approaches have the advantage that they are fast, a scheduler which finds

provably optimal schedules may still be useful in practice. The optimal approaches given in this

thesis can be used in the following areas.

1. An optimal scheduler may be useful when longer compiling times are tolerable. With the

appropriate setting of the time limit, the optimal model could be used at advanced levels of

optimizations to schedule performance-critical regions of a program, or when compiling for

software libraries, digital signal processing or embedded applications.

2. An optimal scheduler can be used to evaluate the performance of heuristic approaches. Such

an evaluation can tell whether there is a room for improvement in a heuristic or not.

3. An optimal scheduler can be used to automatically create new list scheduling heuristics

using techniques from supervised machine learning. In this approach the optimal scheduler

provides the correct answer from which a heuristic approach can be learned.

4. An optimal scheduler can be used by computer architects to study the limits of instruction-

level parallelism. An optimal instruction scheduler measures the maximum amount of ILP

that a compiler can exploit with the scope of a given scheduling region.

6.3 Future Work

There are several interesting extensions of this work, including:

1. Extending the model to optimally schedule non-linear regions: In this work, I consider only

acyclic regions. Software pipelining is a technique to extract instruction level parallelism

within cyclic regions. A common example of a cyclic region is a nested loop. In software

pipelining, iterations of a loop in a source program are continuously initiated at constant

intervals without having to wait for preceding iterations to complete. That is, multiple

iterations, in different stages of their computations, are in progress simultaneously. Software

pipelining is NP-complete. Work can be done to develop a model to solve the software

pipelining problem optimally.

2. Extending the model to combined instruction and register allocation problem with spilling

allowed: In this work I presented a very basic model. The model is able to solve basic

block as large as 50 instructions. Work can be done to improve this model. The model

can be extended to solve the combined instruction and register allocation problem with

spilling allowed using constraint programming techniques. The model can be extended for

superblocks as well.
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3. Optimal instruction selection: Instruction selection is a compiler optimization that trans-

forms an intermediate representation of a program into the final compiled code, either in

binary or assembly format. Instruction scheduling combined with instruction selection is

an important problem for embedded processors where the emphasis is to produce compact

code.

4. Using traces and hyperblock for global instruction scheduling: My model can be extended to

solve the global instruction scheduling problem using traces and hyperblocks.

5. Optimal power consumption problem: Reducing energy consumption has become an impor-

tant issue in designing hardware and software systems in recent years. Although low power

hardware components are critical for reducing energy consumption, the switching activity,

which is the main source of dynamic power dissipation in electronic systems, is largely de-

termined by the software running on these systems. Instruction scheduling algorithms can

take into account energy considerations [54]. The current models could be extended to find

a schedule for a given scheduling region that requires minimum power consumption.
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