
Improved Bayesian Network
Structure Learning in the Model

Averaging Paradigm

by

Zhenyu A. Liao

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Zhenyu A. Liao 2022



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Cory J. Butz
Professor & Associate Dean (Research), Faculty of Science
University of Regina

Supervisor: Peter van Beek
Professor, David R. Cheriton School of Computer Science
University of Waterloo

Internal Member: Pascal Poupart
Professor, David R. Cheriton School of Computer Science
University of Waterloo

Internal Member: Robin Cohen
Professor, David R. Cheriton School of Computer Science
University of Waterloo

Internal-External Member: Krzysztof Czarnecki
Professor, Electrical and Computer Engineering
University of Waterloo

ii



Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of
Contributions included in this thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Statement of Contributions

This thesis is mostly based on the following co-authored published articles. We use
the taxonomy developed and refined by the Consortia Advancing Standards in Research
Administration (CASRAI) and the National Information Standards Organization (NISO)
to specify the individual contributions (see Table 0.1).

1. Zhenyu A. Liao, Charupriya Sharma, James Cussens, and Peter van Beek. Finding
All Bayesian Network Structures within a Factor of Optimal. Proceedings of the 33rd
AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, January, 2019.

Author Roles
Zhenyu A. Liao Writing − original draft; Conceptualization; Investigation;

Software; Visualization;
Charupriya Sharma Conceptualization; Formal analysis; Software; Visualization;

Writing − review/editing;
James Cussens Software; Writing − review/editing;
Peter van Beek Supervision; Funding acquisition; Conceptualization;

Methodology; Writing − review/editing

2. Charupriya Sharma, Zhenyu A. Liao, James Cussens, and Peter van Beek. A Score-
and-Search Approach to Learning Bayesian Networks with Noisy-OR Relations. Pro-
ceedings of the 10th International Conference on Probabilistic Graphical Models, Aal-
borg, Denmark, September, 2020.

Author Roles
Charupriya Sharma Writing − original draft; Conceptualization; Formal analy-

sis; Investigation; Methodology; Software; Validation; Visu-
alization;

Zhenyu A. Liao Software; Writing − review/editing;
James Cussens Software; Writing − review/editing;
Peter van Beek Supervision; Funding acquisition; Conceptualization;

Methodology; Writing − review/editing

3. Zhenyu A. Liao, Charupriya Sharma, Dongshu Luo, and Peter van Beek. An Empir-
ical Study of Scoring Functions for Learning Bayesian Networks in Model Averaging.
Proceedings of the 35th Canadian Conference on Artificial Intelligence, Toronto, On-
tario, May, 2022.

iv



Author Roles
Zhenyu A. Liao Writing − original draft; Conceptualization; Formal analy-

sis; Investigation; Methodology; Software;
Charupriya Sharma Conceptualization; Investigation; Software; Writing − re-

view/editing;
Dongshu Luo Investigation; Software;
Peter van Beek Supervision; Funding acquisition; Validation; Visualization;

Writing − review/editing

4. Zhenyu A. Liao, Junyao Duan, and Peter van Beek. On Identifying Significant Edges
for Structure Learning in Bayesian Networks. Proceedings of the 35th Canadian
Conference on Artificial Intelligence, Toronto, Ontario, May, 2022.

Author Roles
Zhenyu A. Liao Writing − original draft; Conceptualization; Formal analysis;

Investigation; Methodology; Software; Validation;
Junyao Duan Formal analysis; Investigation; Software
Peter van Beek Supervision; Funding acquisition; Conceptualization; Method-

ology; Software; Validation; Visualization; Writing − re-
view/editing

v



Table 0.1: CRediT (Contributor Roles Taxonomy), a high-level taxonomy that can be
used to represent the roles typically played by contributors to research outputs. The roles
describe each contributor’s specific contribution to the scholarly output.

Role Description
Conceptualization Ideas; formulation or evolution of overarching research goals

and aims.
Formal analysis Application of statistical, mathematical, computational, or

other formal techniques to analyse or synthesize study data.
Funding acquisition Acquisition of the financial support for the project leading to

this publication.
Investigation Conducting a research and investigation process, specifically

performing the experiments, or data/evidence collection.
Methodology Development or design of methodology; creation of models.
Software Programming, software development; designing computer

programs; testing of existing code components.
Supervision Oversight and leadership responsibility for the research activ-

ity planning and execution.
Validation Verification, whether as a part of the activity or separate, of

the overall replication/reproducibility of results/experiments
and other research outputs.

Visualization Preparation, creation and/or presentation of the published
work, specifically visualization/data presentation.

Writing − original draft Preparation, creation and/or presentation of the published
work, specifically writing the initial draft.

Writing − review/edit Preparation, creation and/or presentation of the published
work, specifically critical review, commentary or revision.

vi



Abstract

A Bayesian network (BN) is a probabilistic graphical model with applications in knowl-
edge discovery and prediction. Its structure can be learned from data using the well-known
score-and-search approach, where a scoring function is used to evaluate the fit of a pro-
posed BN to the data in an unsupervised manner, and the space of directed acyclic graphs is
searched for the best-scoring BNs. However, selecting a single model (i.e., the best-scoring
BN) is often not the best choice. When one is learning a BN from limited data, selecting a
single model may be misleading as there may be many other BNs that have scores that are
close to optimal, and the posterior probability of even the best-scoring BN is often close
to zero. A more preferred alternative to committing to a single model is to perform some
form of Bayesian or frequentist model averaging. A widely used data analysis methodology
is to: (i) learn a set of plausible networks that fit the data, (ii) perform model averaging to
obtain confidence measure for each edge, and (iii) select a threshold and report all edges
with confidence higher than the threshold. In this manner, a representative network can
be constructed from the edges that are deemed significant that can then be examined for
probabilistic dependencies and possible cause-effect relations.

This thesis presents several improvements to Bayesian network structure learning that
benefit the data analysis methodology. We propose a novel approach to model averaging
inspired by performance guarantees in approximation algorithms. Our approach has two
primary advantages. First, our approach only considers credible models in that they are
optimal or near-optimal in score. Second, our approach is more efficient and scales to
significantly larger Bayesian networks than existing approaches. We empirically study a
selection of widely used and also recently proposed scoring functions. We address design
limitations of previous empirical studies by scaling our experiments to larger BNs, com-
paring on an extensive set of both ground truth BNs and real-world datasets, considering
alternative performance metrics, and comparing scoring functions on two model averaging
frameworks: the bootstrap and the credible set. Contrary to previous recommendations
based on finding a single structure, we find that for model averaging the BDeu scoring
function is the preferred choice in most scenarios for the bootstrap framework and a re-
cent score qNML is the preferred choice for the credible set framework. We identify an
important shortcoming in a widely used threshold selection method. We then propose a
simple transfer learning approach for maximizing target metrics and selecting a threshold
that can be generalized from proxy datasets to the target dataset and show on an exten-
sive set of benchmarks that it can perform significantly better than previous approaches.
We demonstrate via ensemble methods that combining results from multiple scores signif-
icantly improve both the bootstrap and the credible set approach on various metrics, and
that combining all scores from both approaches still yields better results.

vii



Acknowledgements

I would like to thank all the people who made this thesis possible.

viii



Dedication

This is dedicated to the one I love.

ix



Table of Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6

2.1 Probabilistic Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Structure Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Performance Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Structural Hamming Distance . . . . . . . . . . . . . . . . . . . . . 11

2.4.2 The Fβ Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.3 Misclassification Cost . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.4 Borda Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 The Credible Set Approach 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Credible Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Scoring Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

x



3.4 The Bayes Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Pruning Rules for Candidate Parent Sets . . . . . . . . . . . . . . . . . . . 24

3.5.1 Pruning with BIC/MDL Score . . . . . . . . . . . . . . . . . . . . . 24

3.5.2 Pruning with BDeu Score . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6.1 The Bayes Factor Approach . . . . . . . . . . . . . . . . . . . . . . 28

3.6.2 Bayes Factor vs. KBest . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Scoring Function Selection 34

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Scoring Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Model Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6.2 Scoring and Structure Learning . . . . . . . . . . . . . . . . . . . . 43

4.6.3 Performance Evaluation Metrics . . . . . . . . . . . . . . . . . . . . 44

4.7 Experimental Results and Discussion . . . . . . . . . . . . . . . . . . . . . 45

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Threshold Selection 55

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Collect a Set of Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Identify Edges: Distance Measure Approach . . . . . . . . . . . . . . . . . 58

5.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.2 Estimating Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xi



5.4 Identify Edges: Our Learning Approach . . . . . . . . . . . . . . . . . . . . 62

5.5 Meta Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.6.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.6.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6.3 Ensemble Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Conclusions 86

References 89

Abbreviations 99

xii



List of Figures

1.1 The DAG of the CANCER BN [52]. . . . . . . . . . . . . . . . . . . . . . 3

2.1 The DAG of the (augmented) CANCER BN [52] with an extra node (Bron-
chitis): Variables S,C,B, and D have the state space {TRUE, FALSE}.
Variable P has the state space {low, high}, and variable X have state space
{positive, negative}. Thus rP = rS = rC = rB = rX = rD = 2. Consider
the parent set of C, ΠC = {B,C} The state space of ΠC is ΩΠC

= { {low,
True}, {low, False}, {high, True}, {high, False} }, and rΠC

= 4. . . . . . . 7

2.2 Some candidate parent sets for Dyspnoea (D) with illustrative scores. . . . 10

2.3 The CPDAG of the (augmented) CANCER BN [52]. . . . . . . . . . . . . 12

2.4 The two DAGs of the same MEC represented by the CPDAG in Figure 2.3. 12

2.5 The two networks (top) can be represented by the two CPDAGs (bottom),
and the SHD between the two CPDAGs is H = 2 because we need to modify
the orientations of 2 edges, namely X − C and S − C. . . . . . . . . . . . 13

2.6 An example of ground truth network (left) and a predicted network (right).
The two networks (top) can be represented by the two CPDAGs (bottom).
The edge S − B is undirected in both CPDAGs, and is the only correctly
predicted edge. We use superscript u and d to indicate undirected and
directed edges, and so TP u = 1, FP u = 0, FNu = 0, TP d = 0, FP d =
0, FNd = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 An example of ground truth network (left) and a predicted network (right).
The predictions missed the edge S → C but added the edge S → D, and
therefore FN = FP = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

xiii



3.1 The deviation ϵ from the optimal BDeu score by k using results from KBest.
The corresponding values of the BF (ϵ = log(BF), see Equation 3.5) are
presented on the right. For example, if the desired BF value is 20, then all
networks falling below the dash line at 20 are credible. . . . . . . . . . . . 33

4.1 Bootstrapping. Comparison of scoring functions using weighted multi-class
Fβ score on directed edges. At each β, the aggregated Borda count is
shown when comparing the scoring functions on a set of experiments that
consist of three samples from each benchmark and dataset sample sizes
of: (a) N = 50, 100; (b) N = 500, 1000; (c) N = 5000, 10000; (d) N =
50, 100, 500, 1000, 5000, 10000. . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Bootstrapping. Comparison of scoring functions using Fβ score on undirected
edges. At each β, the aggregated Borda count is shown when comparing
the scoring functions on a set of experiments that consist of three samples
from each benchmark and dataset sample sizes of: (a) N = 50, 100; (b)
N = 500, 1000; (c) N = 5000, 10000; (d) N = 50, 100, 500, 1000, 5000, 10000. 50

4.3 Bootstrapping. Comparison of scoring functions using misclassification cost
on undirected edges. At each α, the aggregated Borda count is shown
when comparing the scoring functions on a set of experiments that con-
sist of three samples from each benchmark and dataset sample sizes of:
(a) N = 50, 100; (b) N = 500, 1000; (c) N = 5000, 10000; (d) N =
50, 100, 500, 1000, 5000, 10000. . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Credible sets. Comparison of scoring functions using weighted multi-class
Fβ score on directed edges. At each β, the aggregated Borda count is
shown when comparing the scoring functions on a set of experiments that
consist of three samples from each benchmark and dataset sample sizes
of: (a) N = 50, 100; (b) N = 500, 1000; (c) N = 5000, 10000; (d) N =
50, 100, 500, 1000, 5000, 10000. . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Credible sets. Comparison of scoring functions using Fβ score on undirected
edges. At each β, the aggregated Borda count is shown when comparing
the scoring functions on a set of experiments that consist of three samples
from each benchmark and dataset sample sizes of: (a) N = 50, 100; (b)
N = 500, 1000; (c) N = 5000, 10000; (d) N = 50, 100, 500, 1000, 5000, 10000. 53

xiv



4.6 Credible sets. Comparison of scoring functions using misclassification cost
on undirected edges. At each α, the aggregated Borda count is shown
when comparing the scoring functions on a set of experiments that con-
sist of three samples from each benchmark and dataset sample sizes of:
(a) N = 50, 100; (b) N = 500, 1000; (c) N = 5000, 10000; (d) N =
50, 100, 500, 1000, 5000, 10000. . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Recommended thresholds for model averaging using the bootstrap (lhs) and
credible set (rhs) approaches when the performance measure is the multi-
class Fβ score for predicting directed edges, for various β, dataset sizes N ,
and scoring functions; (top) N = 50, 100; (middle) N = 500, 1000; (bot-
tom) N = 5000, 10000. Note that the four curves in the bottom right plot
perfectly overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Recommended thresholds for model averaging using the bootstrap (lhs)
and credible set (rhs) approaches when the performance measure is the Fβ

score for predicting undirected edges, for various β, dataset sizes N , and
scoring functions; (top) N = 50, 100; (middle) N = 500, 1000; (bottom)
N = 5000, 10000; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Recommended thresholds for model averaging using the bootstrap (lhs) and
credible set (rhs) approaches when the performance measure is the misclassi-
fication cost α×fn+fp for predicting undirected edges, for various α, dataset
sizes N , and scoring functions; (top) N = 50, 100; (middle) N = 500, 1000;
(bottom) N = 5000, 10000. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Comparison of bootstrap and credible set model averaging methods, for var-
ious scoring functions and performance measures for directed edges: Struc-
tural Hamming distance (top); multi-class Fβ score (bottom). All methods
used machine learned thresholds. . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Comparison of bootstrap and credible set model averaging methods, for
various scoring functions and performance measures for undirected edges
(skeleton): Misclassification cost (top); Fβ score (bottom). All methods
used machine learned thresholds. . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Comparison of bootstrap meta ensemble with bootstrap model averaging
method, for various scoring functions and performance measures for directed
edges: Structural Hamming distance (top); multi-class Fβ score (bottom).
All methods used machine learned thresholds. . . . . . . . . . . . . . . . . 80

xv



5.7 Comparison of bootstrap meta ensemble with bootstrap model averaging
method, for various scoring functions and performance measures on undi-
rected edges (skeleton): Misclassification cost (top); Fβ score (bottom). All
methods used machine learned thresholds. . . . . . . . . . . . . . . . . . . 81

5.8 Comparison of credible set meta ensemble with credible set model averaging
method, for various scoring functions and performance measures for directed
edges: Structural Hamming distance (top); multi-class Fβ score (bottom).
All methods used machine learned thresholds. . . . . . . . . . . . . . . . . 82

5.9 Comparison of credible set meta ensemble with credible set model averaging
method, for various scoring functions and performance measures on undi-
rected edges (skeleton): Misclassification cost (top); Fβ score (bottom). All
methods used machine learned thresholds. . . . . . . . . . . . . . . . . . . 83

5.10 Comparison of meta ensemble using combined features with bootstrap and
credible set ensemble methods, for various performance measures for di-
rected edges: Structural Hamming distance (top); multi-class Fβ score (bot-
tom). All methods used machine learned thresholds. . . . . . . . . . . . . 84

5.11 Comparison of meta ensemble using combined features with bootstrap and
credible set ensemble methods, for various performance measures on undi-
rected edges (skeleton): Misclassification cost (top); Fβ score (bottom). All
methods used machine learned thresholds. . . . . . . . . . . . . . . . . . . 85

xvi



List of Tables

0.1 CRediT (Contributor Roles Taxonomy), a high-level taxonomy that can
be used to represent the roles typically played by contributors to research
outputs. The roles describe each contributor’s specific contribution to the
scholarly output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1.1 Representative data and causal analyses using BNs, where n is the number
of random variables, and N is the number of instances in the dataset. . . 2

2.1 An example of a dataset gathered from empirical observations. . . . . . . . 10

2.2 An example of using Borda count to evaluate candidates on a set of instances
using a metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 The search time T , the number of collected networks |G| and the number
of MECs |M| in the collected networks at BF = 3, 20 and 150 using BIC,
where n is the number of random variables in the dataset, N is the number
of instances in the dataset and OT = Out of Time. . . . . . . . . . . . . . 27

3.2 The search time T and the number of collected networks k, |Gk| and |G20| for
KBest, KbestEC and GOBNILP dev (BF = 20) using BDeu, where n is the
number of random variables in the dataset, N is the number of instances in
the dataset, OM = Out of Memory, OT = Out of Time and ES = Error in
Scoring. Note that |Gk| is the number of DAGs covered by the k-best MECs
in KBestEC and |M20| is the number of MECs in the networks collected by
GOBNILP dev. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Penalties calculated from various values of sample size (N) and the number
of possible instantiations for parent sets (rΠi) when the child has 2 categories. 38

xvii



4.2 UCI datasets (left, middle) and bnlearn Bayesian networks (right), where n
is the number of variables in the dataset or network, and N is the number
of instances in the original UCI dataset. . . . . . . . . . . . . . . . . . . . 42

4.3 Comparison of scoring functions using structural Hamming distance for the
bootstrap (left) and credible set (right) model averaging approaches. At
each row, the aggregated Borda count is shown when comparing the scoring
functions on a set of experiments that consist of three samples from each
ground truth network and dataset sample sizes of N = 50, 100, 500, 1,000,
5,000, 10,000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Borda score comparison on inference task using the set of credible networks
learned from UCI datasets; e.g., the entry at column (AIC, snml) represents
the Borda score for the combination of AIC as scoring function and snml as
parameter estimation method. . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Representative data and causal analyses using Bayesian networks, where n
is the number of random variables, N is the number of instances in the
dataset, and c is the threshold for determine whether an edge is significant. 56

5.2 Comparison of the cutoff value c and its corresponding fraction of insignif-
icant edges t and the L1 norm. Note that the L1 norm is minimized when
t = 0.75, which corresponds to c ∈ [0.4, 0.8). . . . . . . . . . . . . . . . . . 62

5.3 UCI datasets (left, middle) and bnlearn Bayesian networks (right), where n
is the number of variables in the dataset or network, and N is the number
of instances in the original UCI dataset. . . . . . . . . . . . . . . . . . . . 65

5.4 Comparison of threshold selection methods when the performance metric is
SHD for the bootstrap and credible set model averaging approaches. At each
row, the aggregated Borda count is shown when comparing the selection
methods on a set of experiments that consist of three samples from each
ground truth network and dataset sample sizes of N = 50, 100, 500, 1000,
5000, 10000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Comparison of threshold selection methods when the performance metric is
multi-class Fβ score on directed edges. At each β, the aggregated Borda
count is shown when comparing the selection methods on a set of exper-
iments that consist of three samples from each ground truth network and
dataset sample sizes of N = 50, 100, 500, 1000, 5000, 10000. . . . . . . . . 68

xviii



5.6 Comparison of threshold selection methods when the performance metric is
Fβ score on undirected edges. At each β, the aggregated Borda count is
shown when comparing the selection methods on a set of experiments that
consist of three samples from each ground truth network and dataset sample
sizes of N = 50, 100, 500, 1000, 5000, 10000. . . . . . . . . . . . . . . . . 69

5.7 Comparison of threshold selection methods when the performance metric is
misclassification cost on undirected edges; i.e., α×FN+FP. At each α, the
aggregated Borda count is shown when comparing the selection methods on
a set of experiments that consist of three samples from each ground truth
network and dataset sample sizes of N = 50, 100, 500, 1000, 5000, 10000. 70

5.8 Recommended thresholds for model averaging using the bootstrap and credi-
ble set approaches when the performance measure is the structural Hamming
distance, for various dataset sizes N and scoring functions. . . . . . . . . 71

xix



Chapter 1

Introduction

A Bayesian Network (BN) is a probabilistic graphical model with applications in knowl-
edge discovery, probabilistic density estimation, and prediction [26, 51, 68]. Recently,
neural networks have largely surpassed BNs as a discriminative model for prediction, and
normalizing flows (see, e.g., [74]) have become a more popular choice to model complex
data distributions while allowing both for sampling and exact density estimation. Never-
theless, BN as a data analysis tool in knowledge discovery is still unmatched thanks to its
clear interpretability and human readability.

BN is a generative model that represents conditional independence relationships and a
joint distribution that factorizes over a directed acyclic graph (DAG), a graph consisting
of vertices and directed edges with no cycles. Figure 1.1 shows the famous lung cancer
diagnosis BN [52], and BNs are widely used as a data analysis tool in diverse areas, including
finance, medicine, and sports (Table 1.1). A BN can be learned from data using the well-
known score-and-search approach, where a scoring function is used to evaluate the fit of
a proposed BN to the data in an unsupervised manner, and the space of directed acyclic
graphs is searched for the best-scoring BNs. However, selecting a single model (i.e., the
best-scoring BN) is often not the best choice. When one is learning a BN from limited
data, selecting a single model may be misleading as there may be many other BNs that
have scores that are close to optimal, and the posterior probability of even the best-scoring
BN is often close to zero. A more preferred alternative to committing to a single model is
to perform some form of Bayesian or frequentist model averaging (e.g., [34, 58, 63, 95]).

Our interest here is in BNs as a knowledge discovery or data analysis tool. In the
context of knowledge discovery, model averaging allows one to estimate, for example, the
posterior probability or degree of confidence, denoted P̂ (e | D), that an edge e is present

1



Table 1.1: Representative data and causal analyses using BNs, where n is the number of
random variables, and N is the number of instances in the dataset.

Area n N Description
Banking 18 1,796 Contagion interactions between credit issuers following

a sovereign default [4].
Biology 10 3,500 Semantic relationships between bacterial community

properties in soil datasets [12].
Biology 12 1,900 Factors that directly impact red tide species occur-

rences and concentrations [32].
Medicine 11 79 Biophysical interactions of pneumonitis due to radia-

tion therapy in lung cancer [62].
Medicine 17 120 Pathological interactions between diabetes mellitus

and tuberculosis [73].
Medicine 26 408 Interactions between symptoms of obsessive-

compulsive disorder and depression [64].
Safety 27 3,640 Relationships between interstate motor carrier charac-

teristics and safety performance [45].
Software 21 12,630 Interactions between code review measures and preva-

lence of post-release defects [54].
Sports 22 377 Relationships between psychological features and team

performance in football [35].

in the true network structure describing the dependence structure in the dataset D, rather
than just knowing whether the edge is present in the best-scoring network. A widely used
data analysis methodology is to: (i) learn a set of plausible networks that fit the data D,
(ii) perform model averaging to obtain P̂ (e | D) for each edge e, and (iii) select a threshold
c and report all edges e with P̂ (e | D) > c. In this manner, a representative network can
be constructed from the edges that are deemed significant that can then be examined for
probabilistic dependencies and possible cause-effect relations.

Structure learning algorithms can be generally categorized into one of the following
three types, (i) constraint (statistical test) based, (ii) score-and-search, and (iii) hybrid of
(i) and (ii). The most representative algorithm of (i) is the PC-stable algorithm [22] that
stems from the original PC algorithm [90] after its authors, Peter and Clark. The algorithm
starts by initializing a complete undirected graph spanning all nodes. Then a sequential

2



Pollution (P) Smoker (S)

Xray (X) Dyspnoea (D)

Cancer (C)

Figure 1.1: The DAG of the CANCER BN [52].

series of conditional independence tests is performed on pairs of nodes to determine if they
can be separated by a subset of other nodes in the graph (usually d-separation, see Butz
et al. [11] for recent developments). The next steps put a v-structure (triplets in graph
where two parents point to the same child) on non-separable triplets, and the rest of the
edges are oriented to avoid creating new v-structures. An overview of other heuristics that
identify the separation can be found in Aliferis et al. [3]. The advantage of constraint based
algorithms is that they can often achieve polynomial runtime in practice with reasonable
assumptions (for example, sparsity of the graph), and thus can be applied to large number
of nodes [48]. The drawback is that sequential application of statistical tests (commonly
G-test or χ2 test) has the potential for increased Type I error (false positive).

Hybrid algorithms first use similar statistical tests to identify a reduced set of candidate
parents for all nodes, and then they operate score-and-search on the much reduced search
space. Notable works of this type include Max-Min Hill Climbing algorithm (MMHC)
from Tsamardinos et al. [96], 2-phase Restricted Maximization (RSMAX2) from Scutari
et al. [83] and Hybrid HPC (H2PC) from Gasse et al. [37].

The predominant method for Bayesian network structure learning (BNSL) is the score-
and-search method, which consists of identifying the space of BNs under consideration and
measuring the goodness of fit between each structure. The method used to measure this
fit is a structure scoring function. Let D = {D1 , . . . ,DN} be a dataset where each instance
Di is an n-tuple that is a complete instantiation of the variables in X . A scoring function
σ(D | G) assigns a real value measuring the quality of the learned structureG = (X,E ) from
the dataD. Most optimal algorithms consider the search space of all possible BNs organized
by candidate parent sets for each variable. Since such a search space is O(nmaxi |Πi|),
pruning techniques can be used to reduce the number of candidate parent sets that need
to be considered [28]. Another approach is to limit the maximum in-degree to a small

3



number d < maxi |Πi| so that the search space is reduced to O(nd). It has been shown
that by setting d = 2 and using Bayesian information criterion (BIC), structure learning
can stretch to thousands of variables [78].

Learning unrestricted BNs from data under typical scoring functions is NP-hard [20],
and so local search has long been established as a practical alternative to optimal algo-
rithms. Many local search algorithms have been proposed for different search spaces such
as the space of DAGs, equivalence classes of DAGs [1], and topological orderings over the
variables [44, 70], and for different search methods such as hill-climbing [36], tabu search [5],
genetic algorithms [85], and simulated annealing [71]. In particular, the order-based lo-
cal search (OBS) has consistently shown better performance over network structures in
learning BN structures [94, 57, 79].

The majority of our focus in this thesis, however, is on optimal algorithms that can
find the highest scoring structures. This family of algorithms include the dynamic pro-
gramming approach [86], the A* approach [102], and the constraint programming approach
(CPBayes) [98], all of which operate on the node ordering search space. Dynamic program-
ming (DP) is perhaps the least efficient because it needs to fully evaluate the exponential
search space without pruning or constraints. A* is a few times faster than DP and has
been shown to extend to 30 nodes. Our work builds on the state-of-the-art optimal algo-
rithm behind GOBNILP [24]. GOBNILP extends the SCIP Optimization Suite [38] by adding
a constraint handler for handling the acyclicity constraint for DAGs and formulating the
structure learning problem as a relaxed integer linear programming problem. GOBNILP has
a similar effficiency as the CPBayes, and both of them have been shown to extend to net-
works of 70 nodes. Unlike the previous three algorithms, GOBNILP operates on the space
of all DAGs.

As we have indicated in the beginning of this chapter, selecting a single model (i.e.,
the best-scoring BN) is often not the best choice. Previous work has proposed Bayesian
and frequentist model averaging approaches to network structure learning that enumerate
the space of all possible DAGs based on DP [50], sample from the space of all possible
DAGs [40, 63], consider the space of all DAGs consistent with a given ordering of the
random variables [8, 27], consider the space of tree-structured or other restricted DAGs
[63, 66], and consider only the k-best scoring DAGs for some given value of k [14, 15, 16,
17, 40, 95]. Unfortunately, these existing approaches either severely restrict the structure
of the BN, or have only been shown to scale to small BNs. For model averaging with
structure constraints, Madigan and Raftery [63] and Meilă and Jaakkola [66] only allow
tree-structured networks, and Dash and Cooper [27] only considers BNstructures consistent
with a partial ordering and with bounded in-degree. For optimal model averaging, Koivisto
and Sood [50] and He et al. [40] show that the DP approach and its derivatives can be

4



extended to 25 variables, and the k-best based approaches derived by Tian et al. [95] can
be extended to 20 variables.

1.1 Contributions

The thesis primarily focuses on improvements to the exact algorithm of BNSL in the model
averaging paradigm, and it also includes several improvements to the bootstrap approach,
a commonly used sampling approach in BNSL.

• We propose a novel approach to model averaging inspired by performance guarantees
in approximation algorithms. Our approach has two primary advantages. First, our
approach only considers credible models in that they are optimal or near-optimal in
score. Second, our approach is more efficient and scales to significantly larger BNs
than existing approaches.

• We empirically study a selection of widely used and also recently proposed scoring
functions. We address design limitations of previous empirical studies by scaling our
experiments to larger BNs, comparing on an extensive set of both ground truth BNs
and real-world datasets, considering alternative performance metrics, and comparing
scoring functions on two model averaging frameworks: the bootstrap and the credible
set. Contrary to previous recommendations based on finding a single structure, we
find that for model averaging the likelihood-equivalence Bayesian Dirichlet score with
uniform priors (BDeu) scoring function is the preferred choice in most scenarios for
the bootstrap framework and a recent score called quotient normalized maximum
likelihood (qNML) is the preferred choice for the credible set framework.

• We identify an important shortcoming in a widely used threshold selection method.
We then propose a simple transfer learning approach for maximizing target metrics
and selecting a threshold that can be generalized from proxy datasets to the target
dataset and show on an extensive set of benchmarks that it can perform significantly
better than previous approaches. We demonstrate via ensemble methods that com-
bining results from multiple scores significantly improve both the bootstrap and the
credible set approach on various metrics, and that combining all scores from both
approaches still yields better results.

5



Chapter 2

Background

In this chapter, we review the necessary background in BNSL and the performance eval-
uation metrics used in this thesis. For more background on these topics see, for exam-
ple, Darwiche [26], Koller and Friedman [51].

2.1 Probabilistic Graphical Models

BNs [68] belong to a large family of probabilistic graphical models (PGMs) that are used
to compactly represent joint probability distributions and (in)dependence relations over
a set of random variables. When the probabilistic influences among variables have clear
directions, we can use BNs (DAGs) to formally represent such directions. On the other
hand, when the directions are unclear, we can still use Markov networks (also called Markov
random fields) (see, e.g., [51]) to encode conditional independence relationships.

Recently, a new type of PGM called sum-product network (SPN) [72] has been proposed
to address the intractable inference issue of BNs at the cost of more complex structures. In
particular, any factored probability distributions can be compiled into arithmetic circuits
(equivalent to SPNs) [26] for tractable linear time inference. On the other hand, one can
usually compile SPNs back to BNs for better interpretability and easier understanding of
the underlying conditional independence relationships [10].

BNs have also been used as a tool for causal inference with increasing popularity in
recent years [69]. Random variables in causal BNs are usually modeled by a structural
equation model (SEM), and as a result the loss (scoring) function is continuous (e.g., least
squares in the case of linear SEM) [104]. Such a formulation allows one to apply continuous

6



optimization techniques in learning the structure. However, the continuous formulation of
the BNSL is not guaranteed to find the true graph, and it does not scale to large networks
due to the acyclic constraint. This thesis focuses on the combinatorial formulation of the
BNSL and we discuss it in Section 2.3.

The choice of PGMs and learning techniques in practice usually depends on the domain
of problem, the amount of data, and perhaps most importantly, the intended usage.

2.2 Bayesian Networks

A BN is a probabilistic graphical model that consists of a labeled DAG, G = (X ,E )
in which the vertices X = {X1 , . . . ,Xn} correspond to n random variables, the edges E
represent direct influence of one random variable on another, and each vertex Xi is labeled
with a conditional probability distribution P (Xi | ΠXi ) that specifies the dependence of the
variable Xi on its set of parents ΠXi in the DAG G . A BN can alternatively be viewed as
a factorized representation of the joint probability distribution over the random variables
and as an encoding of the Markov condition on the nodes; i.e., given its parents, every
variable is conditionally independent of its non-descendents.

Pollution (P) Smoker (S)

Xray (X) Dyspnoea (D)

Cancer (C) Bronchitis (B)

Figure 2.1: The DAG of the (augmented) CANCER BN [52] with an extra node (Bron-
chitis): Variables S,C,B, and D have the state space {TRUE, FALSE}. Variable P has
the state space {low, high}, and variable X have state space {positive, negative}. Thus
rP = rS = rC = rB = rX = rD = 2. Consider the parent set of C, ΠC = {B,C} The
state space of ΠC is ΩΠC

= { {low, True}, {low, False}, {high, True}, {high, False} }, and
rΠC

= 4.

Figure 2.1 shows the (augmented) CANCER BN [52] with an extra node (Bronchitis).
Each random variable Xi has state space Ωi = {vi1, . . . , viri}, where ri ≥ 2 is the car-

7



dinality of Ωi and vik is the k-th value for vertex Xi . Each ΠXi has state space ΩΠXi
=

{πi1, . . . , πirΠXi
}, where rΠXi

≥ 2|ΠXi | is the cardinality of ΩΠXi
and πij is the j-th vector of

values for ΠXi (see Figure 2.1). The set Θ = {θijk} for all i = {1, . . . , n}, j = {1, . . . , rΠXi
}

and k = {1, . . . , ri} represents parameters in G where θijk = P (vik | πij). Given a uni-

form prior over the parameters, the expected value of θijk =
Nijk+1∑ri

k=1 Nijk+ri
[23], which is

generalized to the m-estimate [67] defined as θ̂ijk =
Nijk+

m
ri∑ri

k=1 Nijk+m
.

The Markov blanket [68] of a node in a BN consists of its parents, children, and chil-
dren’s parents. For example in Figure 2.1, the Markov blanket for node C includes node
P, S, X, D, and B. Given the Markov blanket of a node, then that node is independent of
all other nodes in the BN.

2.3 Structure Learning

If the independence relations among random variables are unknown, an appropriate struc-
ture must be inferred from observable data. Such a process is referred to as BNSL [42] and
is known to be NP-hard [19]. The predominant method for BNSL is the score-and-search
method, which consists of identifying the space of BNs under consideration and measur-
ing the goodness of fit between each structure. The method used to measure this fit is a
structure scoring function. Let D = {D1 , . . . ,DN} be a dataset where each instance Di

is an n-tuple that is a complete instantiation of the variables in X . A scoring function
σ(D | G) assigns a real value measuring the quality of the learned structure G = (X ,E )
from the data D. Without loss of generality, we assume that a higher score represents a
better quality network structure and omit D when the data is clear from context.

Definition 2.1 (The score-and-search objective). Suppose we have a scoring function
σ(D | G) that assigns a real value measuring the quality of the learned structure G = (X ,E )
from the data D, and a higher score represents a better quality network structure. The
objective for the score-and-search method of BNSL is defined as,

argmax
G∈G

σ(D | G), (2.1)

where G is the set of all DAGs over X .

Common scoring functions include BIC [55, 80] and BDeu [8, 42]. An important prop-
erty of these (and most) scoring functions is decomposability, where the score of the entire

8



network σ(G) can be aggregated as the sum of local scores associated to each vertex∑n
i=1 σ(Πi) that only depends on Xi and its parent set Πi in G . The full score-and-search

procedure using a decomposable scoring function is summarized in Algorithm 2.1.

Optimal algorithms in BNSL consider the search space of all possible BNs defined over
observed random variables that are categorized by candidate parent sets for each variable.
Such algorithms will be able to identify the optimal BN given the observed random variables
and a specific score. Since such a search space is O(nmaxi |Πi|), pruning techniques can be
used to reduce the number of candidate parent sets that need to be considered on line 2 of
Algorithm 2.1 [28]. Another approach is to limit the maximum in-degree to a small number
d < maxi |Πi| so that the search space is reduced to O(nd). It has been shown that by
setting d = 2 and using BIC, structure learning can stretch to thousands of variables [78].

Algorithm 2.1: The score-and-search method for BNSL.

Input: A dataset D = {D1 , . . . ,DN}, where each instance Di is an n-tuple that is
a complete instantiation of the variables in X .

Input: A scoring function σ(D | G) that assigns a higher score to a better DAG
and can be decomposed to σ(D | Πi).

Output: G∗ with the highest score.

1 for i ∈ {1, 2, · · · , n} do
2 Identify πij ∈ Πi, the candidate parent sets for Xi ;
3 end
4 Find π∗

i := argmaxπij∈Πi

∑n
i=1 σ(D | πij) subject to the acyclic constraint;

5 Construct DAG G∗ defined by Π := {π∗
1, π

∗
2, · · · , π∗

n}.

Most BNSL algorithms use BIC and BDeu scoring functions. Both functions optimize
the log likelihood of the training data being generated by the BN defined as,

LL(D | G) =
N∑
i=1

logPG(Di) =
n∑

i=1

rΠi∑
j=1

ri∑
k=1

log θ
nijk

ijk . (2.2)

BIC applies the metric on training data but avoids overfitting by adding a structure
regularizing term,

σBIC(G) = −max
Θ

LL(D | G) +
k(G) logN

2N
, (2.3)

where k(G) =
∑n

i=1(|Xi | − 1)
∏

Xj∈ΠXi
|Xj | represents the complexity of G as the number

of free parameters in the network.

9



BDeu directly calculates the log likelihood by assuming a uniform structure prior over
the parameters,

σBDeu(G) = −
n∑

i=1

rΠi∑
j=1

log
Γ(α)

Γ(α + nij)
−

n∑
i=1

rΠi∑
j=1

ri∑
k=1

log
Γ( α

ri
+ nijk)

Γ( α
ri
)

, (2.4)

where α is the equivalent sample size and nij =
∑ri

k=1 nijk.

We can use a suitable scoring function to identify candidate parent sets for each node in
the DAG and then search globally for the optimal parents-child pairs. The full procedure
is summarized in Algorithm 2.1, and we provide an example in Example 2.1.

Example 2.1 (The score-and-search method for BNSL). We use the (augmented) CAN-
CER BN [52] (Figure 2.1) as an example to illustrate the process of learning the parents for
the node Dyspnoea. Suppose we have gathered N empirical observations to form a dataset
D as shown in Table 2.1. Using a scoring function (e.g., BIC, BDeu), we can generate a
score for each candidate structure as shown in Figure 2.2. Finally, we need to choose a par-
ent set (which can be empty) for each node in the network, and all such parents-child local
structures form the final DAG. The score of the DAG is the summation of all local scores.
The search for the desired combination of local structures is the underlying combinatorial
optimization problem behind BNSL.

Pollution (P) Smoker (S) Cancer (C) Xray (X) Dyspnoea (D) Bronchitis (B)
low TRUE TRUE positive FALSE FALSE
low FALSE FALSE negative FALSE FALSE
... ... ... ... ... ...

Table 2.1: An example of a dataset gathered from empirical observations.

D

−10.5

P

D

−17.5

S

D

−20.2

C

D

−5.2

P S . . . B

D

−15.2

. . .

Figure 2.2: Some candidate parent sets for Dyspnoea (D) with illustrative scores.

10



2.4 Performance Evaluation Metrics

Scoring functions used by the score-and-search algorithms are often used as direct quality
measures for BNSL with heuristic methods, i.e., one heuristic method is superior if it can
find a structure with higher values for a specific score. However, if the search algorithm
is exact (can identify the structures with the optimal value for every score), we cannot
use them directly to assess performance. To evaluate the quality of the learned structures,
we employ the following four metrics that operate on the edges, with considerations for
directions and trade-offs regarding misidentified edges.

2.4.1 Structural Hamming Distance

To evaluate scoring functions on knowledge discovery, we use the structural Hamming
distance (SHD). We need to define a few structural concepts to introduce the definition
for SHD. The skeleton of a DAG G is the undirected graph with the same vertices and
edges as G , and the v-structures are triplets in G where two parents point to the same
child, e.g., X1 → X2 ← X3 . A Markov equivalence class (MEC) is a set of DAGs that
encode the same set of conditional independence relationships.

Theorem 2.1 (Verma and Pearl [99]). Two DAGs belong to the same MEC if they have
the same skeleton and v-structures.

All DAGs in the same MEC can be uniquely represented by a completed partially
directed acyclic graph (CPDAG) [65]. A directed edge X1 → X2 in a CPDAG indicates
the edge is present in every DAG in the MEC represented by this CPDAG. Such edges
are also called compelled edges since it is irreversible in a MEC. For any undirected
edge X3 − X4 in a CPDAG, the MEC contains a DAG with X3 ← X4 and a DAG with
X3 → X4 . Such edges are not compelled because there exist two DAGs from the same
MEC in which the edge has opposite orientation.

Example 2.2 (CPDAG and MEC). The CPDAG of the (augmented) CANCER BN [52]
(Figure 2.1) is shown in Figure 2.3.

In particular, the v-structures P → C ← S and C → D ← B are present in the
CPDAG; C → X cannot be reversed since it would otherwise form new v-structures with
P and S. Note that this CPDAG represents the MEC for the two DAGs in Figure 2.4.

Given a ground truth network (predetermined target BN) and a learned network, the
SHD measures the distance between the CPDAG representations of the networks, where a
CPDAG captures the equivalence class to which a network belongs (see [96]).

11



Pollution (P) Smoker (S)

Xray (X) Dyspnoea (D)

Cancer (C) Bronchitis (B)

Figure 2.3: The CPDAG of the (augmented) CANCER BN [52].

P

X

C

S

D

B

P

X

C

S

D

B

Figure 2.4: The two DAGs of the same MEC represented by the CPDAG in Figure 2.3.

Definition 2.2 (SHD [96]). The SHD (H) between two CPDAGs, e.g., GCD1 and GCD2,
is the number of the following operations required for GCD1 = GCD2,

• add or delete an undirected edge;

• add, remove, or reverse the orientation of an edge.

Example 2.3 (SHD). We show that the SHD between the two networks (left and right) in
Figure 2.5 is 2. The two networks (top) can be represented by the two CPDAGs (bottom),
and the SHD between the two CPDAGs is H = 2 because we need to modify the orientations
of 2 edges, namely X − C and S − C.

Although the SHD has been widely used in evaluating structure learning, it has a
number of significant limitations. First, it gives equal weight in case of a missing edge (FN),
an extra edge (FP), and an edge in the wrong direction. However, in many applications
of knowledge discovery, one does not wish to treat FP and FN as being of equal weight
but rather wishes to specify an application-specific tradeoff. Second, adding an edge can

12



P

X

C

S

D

B

P

X

C

S

D

B

P

X

C

S

D

B

P

X

C

S

D

B

Figure 2.5: The two networks (top) can be represented by the two CPDAGs (bottom), and
the SHD between the two CPDAGs is H = 2 because we need to modify the orientations
of 2 edges, namely X − C and S − C.

increase the SHD by more than 1 if it makes other edges not compelled anymore, and
thus SHD tends to penalize FP more than FN. To address the limitations of SHD we will
introduce two additional cost sensitive metrics: the Fβ score and misclassification cost (see,
e.g., [46]).

2.4.2 The Fβ Score

Fβ score is a generalization of the F1 score, the harmonic mean of precision and recall. We
use TP, FP, and FN to represent true positive, false positive, and false negative. Recall
that precision = TP / (TP + FP) and recall = TP / (TP + FN).

Definition 2.3. The Fβ score is defined as,

Fβ = (1 + β2)× precision × recall

(β2 × precision) + recall
.

Note that the F1 score is a special case when β = 1. When β < 1, the Fβ measure gives
more weight to precision and vice versa. These metrics are particularly useful for BNSL

13



since there is a large number of true negatives, i.e., both the ground truth BN and the
learned BN are sparse with very few edges. We use two versions of the Fβ score with one
defined on the skeleton and the other on the CPDAG of the BN.

Binary Fβ Score

Suppose we denote E as the set of true labels for the skeleton of the network, and Ê as
the predictions. The precision and recall of the binary Fβ score are defined as,

precision =
|E ∩ Ê |
|Ê |

, recall =
|E ∩ Ê |
|E |

.

Follow Definition 2.3, we can calculate the binary Fβ score that operates on the skeletons
and produce a score for each network.

Multi-class Fβ Score

The multi-class Fβ score generalizes the binary Fβ score to account for orientations in
CPDAGs. Suppose that we denote Ed as the set of true labels for directed edges and Eu

for undirected edges in a CPDAG and Êd and Êu for the corresponding predictions. The
precision and recall of each class can be calculated in a similar way as the single class case
above, and as a result we have a binary Fβ score for each class, denoted F d

β and F u
β . The

multi-class Fβ score is the average of the Fβ score of each class with weighting depending
on the average parameter. The two most widely used averaging methods are “macro”

(
F d
β+Fu

β

2
) and “weighted” (

F d
β ·|Ed|+Fu

β ·|Eu|
|Ed|+|Eu| ). If all of the edges in the ground truth network

are undirected and the predicted CPDAG is identical then the Fβ score should be 1. Since
the macro approach does not consider the distribution of labels and produces undesirable
results when all edges belong to one class, we decide to use the weighted variant in this
thesis.

Definition 2.4. The weighted multi-class Fβ score is defined as,

FCPDAG
β =

F d
β · |Ed|+ F u

β · |Eu|
|Ed|+ |Eu|

.

Example 2.4 (Fβ Score). Suppose we have the ground truth BN and a predicted BN shown
in Figure 2.6.

14



The binary Fβ score can be determined with a precision of 1 and a recall of 1/6 since
the only predicted edge is present in the ground truth and we successfully predicted 1 out
of 6 edges, and it follows that Fβ = (1 + β2)× 1/6

β2+1/6
.

For directed edges of the CPDAG, we have a precision and recall of 0 because we fail
to predict any directed edges, whereas for undirected edges both precision and recall are 1
because we successfully predicted the only undrected edge (S − B). This results in F d

β = 0

and F u
β = 1, and it follows that FCPDAG

β = 1
6
.

If we were to adopt the “macro” version of the multi-class Fβ score, we would arrive
at a score of 0.5 since it does not account for class distributions. This would be too high
given that 5 out of 6 edges are missing from the learned network.

P

X

C

S

D

B

P

X

C

S

D

B

Ground truth

P

X

C

S

D

B

P

X

C

S

D

B

Predictions

Figure 2.6: An example of ground truth network (left) and a predicted network (right).
The two networks (top) can be represented by the two CPDAGs (bottom). The edge
S − B is undirected in both CPDAGs, and is the only correctly predicted edge. We use
superscript u and d to indicate undirected and directed edges, and so TP u = 1, FP u =
0, FNu = 0, TP d = 0, FP d = 0, FNd = 5.

15



2.4.3 Misclassification Cost

Definition 2.5. The cost sensitive weighted misclassification cost [59] is defined as,

Cα = α× FN+ FP,

where FN is the number of false negatives and FP is the number of false positives.

When α > 1, the misclassification cost gives more weight to FN and thus penalizes
missing edges over extra edges. The Fβ score and the weighted misclassification cost allow
us to evaluate the performance on a spectrum with different tradeoffs between precision
and recall and between FP and FN. As we will show in our results, the rankings of scoring
functions will fluctuate as different weights are place on FP and FN.

Example 2.5. (Misclassification Cost) Suppose we have the ground truth BN and a pre-
dicted BN shown in Figure 2.7. We can observe that FN = FP = 1 since we missed the
edge S → C but added the edge S → D, and the misclassification cost is Cα = 1 + α.

P

X

C

S

D

B

Ground truth

P

X

C

S

D

B

Predictions

Figure 2.7: An example of ground truth network (left) and a predicted network (right).
The predictions missed the edge S → C but added the edge S → D, and therefore
FN = FP = 1.

2.4.4 Borda Count

The experimental results are aggregated using the Borda count. Suppose we have k can-
didates to evaluate on a set of m instances using a chosen performance metric. For each
instance (e.g., a fixed dataset) the candidates are ranked according to the performance
metric with ties allowed, and each candidate is awarded points corresponding to the num-
ber of opponents strictly lower in the ranking. Thus, the lowest ranked candidate always

16



gets 0 points and the highest ranked candidate gets at most k − 1 points (exactly k − 1 if
there are no ties for highest ranked). Points from each instance are added together in the
end and the highest possible points would be m · (k − 1). The Borda count was chosen to
aggregate the results as it is known to select broadly acceptable options.

Example 2.6 (Borda Count). Suppose we want to compare three approaches A1, A2,
and A3 using a metric, and that we can get a metric value using each approach on three
instances I1, I2 and I3. In Table 2.2, we can observe that on I1, A3 is awarded 2 points
for beating A1 and A2, and A2 is awarded 1 point for beating A1; on I2, both A2 and A3

are awarded 1 point for beating A1; on I3 no approach gets any points. Finally, A1 has 0
points, A2 has 2 points, and A3 has 3 points, and therefore A3 is the winner.

Instance I1 I2 I3
Candidate A1 A2 A3 A1 A2 A3 A1 A2 A3

Metric value 0.0 0.5 0.8 0.2 0.4 0.4 0.5 0.5 0.5
Points 0 1 2 0 1 1 0 0 0

Table 2.2: An example of using Borda count to evaluate candidates on a set of instances
using a metric.

17



Chapter 3

The Credible Set Approach

A Bayesian network is a widely used probabilistic graphical model with applications in
knowledge discovery, density estimation, and prediction [26, 51]. Learning a BN from data
can be cast as an optimization problem using the well-known score-and-search approach.
However, selecting a single model (i.e., the best scoring BN) can be misleading or may not
achieve the best possible accuracy. An alternative to committing to a single model is to
perform some form of Bayesian or frequentist model averaging, where the space of possible
BNs is sampled or enumerated in some fashion. Unfortunately, existing approaches for
model averaging either severely restrict the structure of the Bayesian network or have only
been shown to scale to networks with fewer than 30 random variables. In this chapter,
we propose a novel approach to model averaging inspired by performance guarantees in
approximation algorithms. Our approach has two primary advantages. First, our approach
only considers credible models in that they are optimal or near-optimal in score. Second,
our approach is more efficient and scales to significantly larger Bayesian networks than
existing approaches. We note that boostrapping is a commonly used sampling approach
in BNSL and we compare it with the credible set in Chapter 5.

3.1 Introduction

A BN can be learned from data using the well-known score-and-search approach, where a
scoring function is used to evaluate the fit of a proposed BN to the data, and the space
of DAGs is searched for the best-scoring BN. However, selecting a single model (i.e., the
best-scoring BN) may not always be the best choice. When one is using BNs for knowledge
discovery and explanation with limited data, selecting a single model may be misleading

18



as there may be many other BNs that have scores that are very close to optimal and the
posterior probability of even the best-scoring BN is often close to zero. As well, when
one is using BNs for prediction, selecting a single model may not achieve the best possible
accuracy.

An alternative to committing to a single model is to perform some form of Bayesian or
frequentist model averaging [21, 43, 51]. In the context of knowledge discovery, Bayesian
model averaging allows one to estimate, for example, the posterior probability that an
edge is present, rather than just knowing whether the edge is present in the best-scoring
network. Previous work has proposed Bayesian and frequentist model averaging approaches
to network structure learning that enumerate the space of all possible DAGs [50], sample
from the space of all possible DAGs [40, 63], resample the data and learn a collection of
DAGs [34, 81], consider the space of all DAGs consistent with a given ordering of the
random variables [8, 27], consider the space of tree-structured or other restricted DAGs
[63, 66], and consider only the k-best scoring DAGs for some given value of k [14, 15, 16,
17, 40, 95]. Unfortunately, these existing approaches either severely restrict the structure
of the Bayesian network, such as only allowing tree-structured networks or only considering
a single ordering, or have only been shown to scale to small Bayesian networks with fewer
than 30 random variables.

In the remainder of this chapter, we propose a novel approach to model averaging
for BN structure learning that is inspired by performance guarantees in approximation
algorithms. Let OPT be the score of the optimal BN and assume without loss of generality
that the optimization problem is to find the minimum-score BNInstead of finding the k-
best networks for some fixed value of k, we propose to find all Bayesian networks G that
are within a factor ρ of optimal; i.e.,

OPT ≤ score(G) ≤ ρ ·OPT , (3.1)

for some given value of ρ ≥ 1, or equivalently,

OPT ≤ score(G) ≤ OPT + ϵ, (3.2)

for ϵ = (ρ − 1) · OPT . Instead of choosing arbitrary values for ϵ, ϵ ≥ 0, we show that
for the two scoring functions BIC/MDL and BDeu, a good choice for the value of ϵ is
closely related to the Bayes factor (BF), a model selection criterion summarized by Kass
and Raftery [49].

Our approach has two primary advantages. First, our approach only considers credible
models in that they are optimal or near-optimal in score. Approaches that enumerate or
sample from the space of all possible models consider DAGs with scores that can be far from

19



optimal; for example, for the BIC/MDL scoring function the ratio of worst-scoring to best-
scoring network can be four or five orders of magnitude1. A similar but more restricted case
can be made against the approach which finds the k-best networks since there is no a priori
way to know how to set the parameter k such that only credible networks are considered.
Second, and perhaps most importantly, our approach is significantly more efficient and
scales to Bayesian networks with almost 60 random variables. Existing methods for finding
the optimal Bayesian network structure, e.g., [6, 98] rely heavily for their success on a
significant body of pruning rules that remove from consideration many candidate parent
sets both before and during the search. We show that many of these pruning rules can be
naturally generalized to preserve the Bayesian networks that are within a factor of optimal.
We modify GOBNILP [6], a state-of-the-art method for finding an optimal Bayesian network,
to implement our generalized pruning rules and to find all near -optimal networks. We
show in an experimental evaluation that the modified GOBNILP scales to significantly larger
networks without resorting to restricting the structure of the Bayesian networks that are
learned.

3.2 Credible Bayesian Networks

The predominant method for BNSL from data is the score-and-search method. Let D =
{D1 , . . . ,DN} be a dataset where each instance Di is an n-tuple that is a complete instan-
tiation of the variables in X . A scoring function σ(G | D) assigns a real value measuring
the quality of G = (X,E ) given the data D. Without loss of generality, we assume that
a lower score represents a better quality network structure and omit D when the data is
clear from context.

Definition 3.1 (Credible Bayesian networks). Given a non-negative constant ϵ and a
dataset D = {D1 , . . . ,DN}, a credible Bayesian network G is a network that has a score
σ(G) such that OPT ≤ σ(G) ≤ OPT + ϵ, where OPT is the score of the optimal Bayesian
network.

In this chapter, we focus on finding all credible networks given ϵ, and we call it ϵ
— Bayesian network structure learning (ϵBNSL). Note that the BNSL for the optimal
network(s) is a special case of ϵBNSL where ϵ = 0.

1Madigan and Raftery [63] deem such models discredited when they make a similar argument for not
considering models whose probability is greater than a factor from the most probable.

20



Definition 3.2 (ϵBNSL). Given a non-negative constant ϵ, a dataset D = {D1 , . . . ,DN}
over random variables X = {X1 , . . . , Xn} and a scoring function σ(), the ϵBNSL problem
is to find all credible Bayesian networks defined in Definition 3.1.

3.3 Scoring Functions

Scoring functions usually balance goodness of fit to the data with a penalty term for
model complexity to avoid overfitting. Common scoring functions include BIC/MDL [56,
80] and BDeu [8, 42]. An important property of these (and most) scoring functions is
decomposability, where the score of the entire network σ(G) can be rewritten as the sum
of local scores associated to each vertex

∑n
i=1 σ(Xi ,Πi) that only depends on Xi and its

parent set Πi in G . The local score is abbreviated below as σ(Πi) when the local node Xi

is clear from context. Pruning techniques can be used to reduce the number of candidate
parent sets that need to be considered, but in the worst-case the number of candidate
parent sets for each variable Xi is exponential in n, where n is the number of vertices in
the DAG.

In this chapter, we only focus on the two commonly used scoring functions in BNSL,
BIC and BDeu. The BIC scoring function in this chapter is defined as,

σBIC(G) = max
Θ

LL(D | G ; Θ)− penBIC(G). (3.3)

Here, penBIC(G) =
∑n

i=1 rΠi
(ri − 1) logN

2
is a penalty term, and LL(D | G ; Θ) is the log

likelihood, given by,

LL(D | G ; Θ) = log
N∏
i=1

P (Di | G ; Θ) =
n∑

i=1

rΠi∑
j=1

ri∑
k=1

nijk log θijk,

where nijk is the number of instances in D where vik and πij co-occur. As the BIC function
is decomposable, we can associate a score to Πi, a candidate parent set of Xi as follows,

σBIC(Πi) = max
θi

LL(D | Πi; θi)− penBIC(Πi).

Here, LL(D | Πi; θi) =
∑rΠi

j=1

∑ri
k=1 nijk log θijk and penBIC(Πi) = rΠi

(ri − 1) logN
2

. The
BDeu scoring function in this chapter is defined as,

σBDeu(G) =
n∑

i=1

rΠi∑
j=1

∑ri
k=1 log Γ(

α
rirΠi

+ nijk)

log Γ( α
rΠi

+ nij∗)
−

∑ri
k=1 log Γ(

α
rirΠi

)

log Γ( α
rΠi

)
, (3.4)

21



where α is the equivalent sample size and nij∗ =
∑

k nijk. As the BDeu function is decom-
posable, we can associate a score to Πi, a candidate parent set of Xi as follows,

σBDeu(Πi) =

rΠi∑
j=1

∑ri
k=1 log Γ(

α
rirΠi

+ nijk)

log Γ( α
rΠi

+ nij∗)
−

∑ri
k=1 log Γ(

α
rirΠi

)

log Γ( α
rΠi

)
.

3.4 The Bayes Factor

In this section, we show that a good choice for the value of ϵ for the ϵBNSL problem is
closely related to the BF, a model selection criterion summarized by Kass and Raftery [49].

The BF was proposed by Jeffreys as an alternative to significance test [47]. It was
thoroughly examined as a practical model selection tool in [49].

Definition 3.3. Let G0 and G1 be two DAGs in the set of all DAGs G defined over a set
of variables X. The BF in the context of DAG is defined as,

BF(G0,G1) =
P (D | G0)

P (D | G1)
,

namely the odds of the probability of the data predicted by network G0 and G1.

The actual calculation of the BF often relies on Bayes’ Theorem as follows,

P (G0 | D)
P (G1 | D)

=
P (D | G0)

P (D | G1)
· P (G0)

P (G1)
=

P (D,G0)

P (D,G1)
.

Since it is typical to assume the prior over models is uniform in BNSL, the BF can then
be obtained using either P (G | D) or P (D,G)∀G ∈ G. We use those two representations
to show how BIC and BDeu scores relate to the BF.

Using Laplace approximation and other simplifications in [75], Ripley derived the fol-
lowing approximation to the logarithm of the marginal likelihood for network G (a similar
derivation is given in [21]),

logP (D | G) =LL(D | G ; θ̂)− rΠi
(ri − 1)

logN

2
+ rΠi

(ri − 1)
log 2π

2

− 1

2
log |JG,I(θ̂)|+ logP (θ̂ | G),

22



where θ̂ is the maximum likelihood estimate of model parameters and JG,I(θ̂) is the Hessian

matrix evaluated at θ̂. It follows that,

logP (D | G) = BIC(D,G) +O(1).

The above equation shows that the BIC score was designed to approximate the log marginal
likelihood. If we drop the lower-order term, we can then obtain the following equation,

BIC(D,G1)− BIC(D,G0) = log
P (D | G0)

P (D | G1)
= log BF(G0,G1).

It has been indicated in [49] that as N → ∞, the difference of the two BIC scores,
dubbed the Schwarz criterion, approaches the true value of log BF such that,

BIC(D,G1)− BIC(D,G0)− log BF(G0,G1)

log BF(G0,G1)
→ 0.

Therefore, the difference of two BIC scores can be used as a rough approximation to log BF.
Note that some papers define BIC to be twice as large as the BIC defined in this chapter,
but the above relationship still holds albeit with twice the logarithm of the BF.

Similarly, the difference of the BDeu scores can be expressed in terms of the BF. In
fact, the BDeu score is the log marginal likelihood where there are Dirichlet distributions
over the parameters [8, 42]; i.e.,

logP (D,G) = BDeu(D,G),

and thus,

BDeu(D,G1)− BDeu(D,G0) = log
P (D,G0)

P (D,G1)
= log (G0,G1).

The above results are consistent with the observation by Kass and Raftery [49] that the
log BF can be interpreted as a measure for the relative success of two models at predicting
data, sometimes referred to as the “weight of evidence”, without assuming either model is
true. The desired value of BF, however, is often specific to a study and determined with
domain knowledge, e.g., a BF of 1000 is more appropriate in forensic science. Heckerman
et al. [42] proposed the following interpreting scale for the BF: a BF of 1 to 3 bears only
anecdotal evidence, a BF of 3 to 20 suggests some positive evidence that G0 is better, a BF
of 20 to 150 suggests strong evidence in favor of G0, and a BF greater than 150 indicates
very strong evidence. If we deem 20 to be the desired BF in ϵBNSL, i.e., G0 = G∗

23



and ϵ = log(20), then any network with a score less than log(20) away from the optimal
score would be credible, otherwise it would be discredited. Note that the ratio of posterior
probabilities was defined as λ by Tian et al. [95], Chen and Tian [17] and was used as a
metric to assess arbitrary values of k in finding the k-best networks.

Finally, the ϵBNSL problem using the BIC or BDeu scoring function given a desired
BF can be written as,

OPT ≤ score(G) ≤ OPT + log BF. (3.5)

3.5 Pruning Rules for Candidate Parent Sets

To find all near-optimal BNs given a BF, the local score σ(Πi) for each candidate parent
set Πi ⊆ 2X−{Xi} and each random variable Xi must be computed. As this is very cost
prohibitive, the search space of candidate parent sets can be pruned, provided that global
optimality constraints are not violated.

A candidate parent set Πi can be safely pruned given a non-negative constant ϵ ∈ R+ if
Πi cannot be the parent set of Vi in any network in the set of credible networks. Note that
for ϵ = 0, the set of credible networks just contains the optimal network(s). We discuss
the original rules and their generalization below and proofs for them can be found in the
extended version.

Teyssier and Koller [94] gave a pruning rule for all decomposable scoring functions.
This rule compares the score of a candidate parent set to those of its subsets. We give a
relaxed version of the rule.

Lemma 3.1. Given a vertex variable Xj , candidate parent sets Πj and Π′
j, and some

ϵ ∈ R+, if Πj ⊂ Π′
j and σ(Πj) + ϵ ≥ σ(Π′

j), Π
′
j can be safely pruned.

3.5.1 Pruning with BIC/MDL Score

A pruning rule comparing the BIC score and penalty associated to a candidate parent set
to those of its subsets was introduced in [28]. The following theorem gives a relaxed version
of that rule.

Theorem 3.1. Given a vertex variable Xj , candidate parent sets Πj and Π′
j, and some

ϵ ∈ R+, if Πj ⊂ Π′
j and σ(Πj)− pen(Π′

j) + ϵ < 0, Π′
j and all supersets of Π′

j can be safely
pruned if σ is the BIC function.

24



Another pruning rule for BIC appears in [28]. This provides a bound on the number of
possible instantiations of subsets of a candidate parent set. The following theorem relaxes
that rule.

Theorem 3.2. Given a vertex variable Vi, and a candidate parent set Πi such that rΠi
>

N
w

log ri
ri−1

+ ϵ for some ϵ ∈ R+, if Πi ⊊ Π′
i , then Π′

i can be safely pruned if σ is the BIC
scoring function.

The following corollary of Theorem 3.2 gives a useful upper bound on the size of a
candidate parent set.

Corollary 3.1. Given a vertex variable Xi and candidate parent set Πi, if Πi has more
than ⌈log2N + ϵ⌉ elements, for some ϵ ∈ R+, Πi can be safely pruned if σ is the BIC
scoring function.

Corollary 3.1 provides an upper-bound on the size of parent sets based solely on the
sample size. The following table summarizes such an upper-bound given different amounts
of data N and a BF of 20.

N 100 500 103 5× 103 104 5× 104 105

|Π| 10 12 13 16 17 19 20

The entropy of a candidate parent set is also a useful measure for pruning. A pruning
rule, given by [29], provides an upper bound on conditional entropy of candidate parent
sets and their subsets. We give a relaxed version of their rule. First, we note that entropy
for a vertex variable Xi is given by,

H(Xi) = −
ri∑

k=1

nik

N
log

nik

N
,

where nik represents how many instances in the dataset contain vik, where vik is an element
in the state space Ωi of Xi . Similarly, entropy for a candidate parent set Πi is given by,

H(Πi) = −
rΠi∑
j=1

nij

N
log

nij

N
.

Conditional information is given by,

H(X | Y ) = H(X ∪ Y )−H(Y ).

25



Theorem 3.3. Given a vertex variable Vi, and candidate parent set Πi, let Vj /∈ Πi such
that N · min{H(Vi | Πi), H(Vj | Πi)} ≥ (1 − rj) · t(Πi) + ϵ for some ϵ ∈ R+. Then the
candidate parent set Π′

i = Πi ∪ {Vj} and all its supersets can be safely pruned if σ is the
BIC scoring function.

3.5.2 Pruning with BDeu Score

A pruning rule for the BDeu scoring function appears in [29] and a more general version
is included in [25]. Here, we present a relaxed version of the rule in [25].

Theorem 3.4. Given a vertex variable Vi and candidate parent sets Πi and Π′
i such that

Πi ⊂ Π′
i and Πi ̸= Π′

i, let r
+
i (Π

′
i) be the number of positive counts in the contingency table

for Π′
i. If σ(Πi) + ϵ < r+i (Π

′
i) log ri, for some ϵ ∈ R+ then Π′

i and the supersets of Π′
i can

be safely pruned if σ is the BDeu scoring function..

26



D
at
a

n
N

T
3
(s
)

|G
3
|

|M
3
|

T
2
0
(s
)

|G
2
0
|
|M

2
0
|

T
1
5
0
(s
)

|G
1
5
0
|
|M

1
5
0
|

ti
c
ta
c
to
e

10
95
8

1.
9

19
2

64
2.
0

19
2

64
3.
3

54
4

16
0

w
in
e

14
17
8

4.
1

30
8

51
24
.9

3,
44
9

57
6

14
3.
7

26
,1
97

4,
49
7

ad
u
lt

14
32
,5
61

17
.5

32
4

16
2

45
.1

1,
14
0

57
0

55
.7

2,
28
1

1,
13
7

n
lt
cs

16
3,
23
6

53
.8

24
0

12
0

20
1.
7

1,
20
0

60
0

1,
00
5.
1

4,
60
6

2,
30
3

m
sn
b
c

17
58
,2
65

3,
48
3.
0

24
24

7,
14
6.
9

96
0

50
4

8,
82
1.
4

1,
93
8

1,
02
6

le
tt
er

17
20
,0
00

O
T

—
—

O
T

—
—

O
T

—
—

vo
ti
n
g

17
43
5

1.
3

27
2

4.
0

44
1

33
14
.3

2,
22
2

17
0

zo
o

17
10
1

8.
1

49
13

21
.9

1,
11
1

27
0

29
9.
3

21
,6
83

5,
39
2

h
ep
at
it
is

20
15
5

7.
1

58
0

10
5

51
3.
3

87
,1
69

15
,3
58

1,
45
2.
8

15
0,
00
0

49
,2
69

p
ar
k
in
so
n
s

23
19
5

30
.7

1,
08
8

33
6

3,
16
5.
9

15
0,
00
0

39
,7
20

4,
53
4.
3

15
0,
00
0

11
6,
20
6

se
n
so
rs

25
54
56

O
T

—
—

O
T

—
—

O
T

—
—

au
to
s

26
15
9

95
.0

56
0

20
0

2,
38
2.
8

50
,3
74

17
,7
90

6,
66
6.
9

15
0,
00
0

54
,5
79

in
su
ra
n
ce

27
1,
00
0

49
.8

8,
22
6

2,
06
2

24
4.
9

10
4,
87
0

25
,5
80

41
4.
5

14
8,
92
5

36
,0
72

h
or
se

28
30
0

18
.8

1,
64
3

24
6

1,
35
8.
8

15
0,
00
0

28
,1
86

1,
96
2.
5

15
0,
00
0

69
,3
09

fl
ag

29
19
4

16
.1

77
3

16
9

4,
05
1.
9

15
0,
00
0

39
,4
28

5,
56
0.
9

15
0,
00
0

12
2,
18
5

w
d
b
c

31
56
9

39
6.
1

39
8

10
7

10
,1
44
.2

28
,4
24

8,
18
2

45
,9
38
.2

15
0,
00
0

54
,8
46

m
il
d
ew

35
10
00

1.
2

1,
02
6

2
1.
2

1,
02
6

2
2.
1

2,
05
2

4
so
y
b
ea
n

36
26
6

7,
72
9.
4

15
0,
00
0

15
0,
00
0

16
,0
96
.8

15
0,
00
0

62
,7
04

8,
89
3.
5

15
0,
00
0

11
8,
36
8

al
ar
m

37
10
00

6.
3

1,
50
8

12
2

68
4.
2

12
3,
35
2

9,
32
3

2,
25
8.
4

15
0,
00
0

8,
48
4

b
an

d
s

39
27
7

10
0.
9

7,
09
2

81
0

2,
03
2.
6

15
0,
00
0

44
,8
99

16
,9
74
.8

15
0,
00
0

95
,7
74

sp
ec
tf

45
26
7

43
2.
4

27
,7
70

4,
51
0

7,
42
5.
2

15
0,
00
0

51
,8
71

19
,6
64
.8

15
0,
00
0

63
,9
65

sp
on

ge
45

76
16
.8

1,
10
2

65
1,
30
1.
0

14
6,
09
7

7,
90
5

1,
25
4.
4

15
0,
00
0

90
,0
05

b
ar
le
y

48
10
00

0.
8

18
2

1
0.
8

36
4

2
1.
3

1,
27
4

5
h
ai
lfi
n
d
er

56
10
0

17
1.
5

15
0,
00
0

20
14
9.
4

15
0,
00
0

74
8

21
4.
6

15
0,
00
0

29
4

h
ai
lfi
n
d
er

56
50
0

28
6.
1

15
0,
00
0

30
,7
20

31
4.
1

15
0,
00
0

18
,4
32

21
7.
3

15
0,
00
0

24
,5
76

lu
n
g
ca
n
ce
r

57
32

58
4.
3

15
0,
00
0

40
,6
21

96
6.
6

15
0,
00
0

79
,6
80

2,
73
9.
7

15
0,
00
0

48
,2
36

T
ab

le
3.
1:

T
h
e
se
ar
ch

ti
m
e
T
,
th
e
n
u
m
b
er

of
co
ll
ec
te
d
n
et
w
or
k
s
|G
|a

n
d
th
e
n
u
m
b
er

of
M
E
C
s
|M
|i
n
th
e

co
ll
ec
te
d
n
et
w
or
k
s
at

B
F

=
3,

20
an

d
15
0
u
si
n
g
B
IC

,
w
h
er
e
n
is

th
e
n
u
m
b
er

of
ra
n
d
om

va
ri
ab

le
s
in

th
e

d
at
as
et
,
N

is
th
e
n
u
m
b
er

of
in
st
an

ce
s
in

th
e
d
at
as
et

an
d
O
T

=
O
u
t
of

T
im

e.

27



3.6 Experimental Evaluation

In this section, we evaluate the proposed BF-based method and compare its performance
with published k-best solvers.

Our proposed method is more memory efficient comparing to the k-best based solvers
in BDeu scoring and often collects more networks in a shorter period of time. With the
pruning rules generalized above, our method can scale up to datasets with 57 variables in
BIC scoring, whereas the previous best results are reported on a network of 29 variables
using the k-best approach with score pruning [16].

The datasets are obtained from the UCI Machine Learning Repository [30] and the
Bayesian Network Repository2. Some of the complete local scoring files are downloaded
from the GOBNILP website3 and are used for the k-best related experiments only. Since
not all solvers in the k-best experiments can take in scoring files, we exclude the time to
compute local scores from the comparison. Both BIC [80, 56] and BDeu [8, 42] scoring
functions are used where applicable. All experiments are conducted on computers with 2.2
GHz Intel E7-4850V3 processors. Each experiment is limited to 64 GB of memory and 24
hours of CPU time.

3.6.1 The Bayes Factor Approach

We modified the development version (Version denoted 9c9f3e6) of GOBNILP, referred to
below as GOBNILP dev, to apply pruning rules presented above during scoring and supplied
appropriate parameter settings for collecting near-optimal networks4. The code is compiled
with SCIP 6.0.0 and CPLEX 12.8.0. GOBNILP extends the SCIP Optimization Suite [38]
by adding a constraint handler for handling the acyclicity constraint for DAGs. If multiple
BNs are required GOBNILP dev just calls SCIP to ask it to collect feasible solutions. In
this mode, when SCIP finds a solution, the solution is stored, a constraint is added to
render that solution infeasible and the search continues. This differs from (and is much
more efficient than) GOBNILP’s current method for finding k-best BNs where an entirely
new search is started each time a new BN is found. A recent version of SCIP has a separate
“reoptimization” method which might allow better k-best performance for GOBNILP but we
do not explore that here. By default when SCIP is asked to collect solutions it turns off all
cutting plane algorithms. This led to very poor GOBNILP performance since GOBNILP relies

2http://www.bnlearn.com/bnrepository/
3https://www.cs.york.ac.uk/aig/sw/gobnilp/#benchmarks
4The modified code is available at: https://www.cs.york.ac.uk/aig/sw/gobnilp/

28

http://www.bnlearn.com/bnrepository/
https://www.cs.york.ac.uk/aig/sw/gobnilp/#benchmarks
https://www.cs.york.ac.uk/aig/sw/gobnilp/


on cutting plane generation. Therefore, this default setting is overridden in GOBNILP dev
to allow cutting planes when collecting solutions. To find only solutions with objective no
worse than (OPT + ϵ), SCIP’s SCIPsetObjlimit function is used. Note that, for efficiency
reasons, this is not effected by adding a linear constraint.

We first use GOBNILP dev to find the optimal scores since GOBNILP dev takes objective
limit (OPT + ϵ) for enumerating feasible networks. Then all networks falling into the limit
are collected with a counting limit of 150,000. Finally the collected networks are categorized
into MEC, where two networks belong to the same MEC if they have the same skeleton
and v-structures [99]. The proposed approach is tested on datasets with up to 57 variables.
The search time T , the number of collected networks |G| and the number of MECsM in
the collected networks at BF = 3, 20 and 150 using BIC are reported in Table 3.1, where
n is the number of random variables in the dataset and N is the number of instances in
the dataset. The three thresholds are chosen according to the interpreting scale suggested
by [42] where 3 marks the difference between anecdotal and positive evidence, 20 marks
positive and strong evidence and 150 marks strong and very strong evidence. The search
time mostly depends on a combined effect of the size of the network, the sample size and
the number of MECs at a given BF. Some fairly large networks such as alarm, sponge and
barley are solved much faster than smaller networks with a large sample size, e.g., msnbc
and letter.

The results also indicate that the number of collected networks and the number of
MECs at three BF levels varies substantially across different datasets. In general, datasets
with smaller sample sizes tend to have more networks collected at a given BF since near-
optimal networks have similar posterior probabilities to the best network. Although the
desired level of BF for a study, like the p-value, is often determined with domain knowledge,
the proposed approach, given sufficient samples, will produce meaningful results that can
be used for further analysis.

3.6.2 Bayes Factor vs. KBest

In this section, we compare our approach with published solvers that are able to find a
subset of top-scoring networks with the given parameter k. The solvers under consideration
are KBest 12b5 from [95], KBestEC6 from [17], and GOBNILP 1.6.3 [6], referred to as KBest,
KBestEC and GOBNILP below. The first two solvers are based on the dynamic programming

5http://web.cs.iastate.edu/~jtian/Software/UAI-10/KBest.htm
6http://web.cs.iastate.edu/~jtian/Software/AAAI-14-yetian/KBestEC.htm

29

http://web.cs.iastate.edu/~jtian/Software/UAI-10/KBest.htm
http://web.cs.iastate.edu/~jtian/Software/AAAI-14-yetian/KBestEC.htm


approach introduced in [86]. Due to the lack of support for BIC in KBest and KBestEC,
only BDeu with a equivalent sample size of one is used in corresponding experiments.

The most recent stable version of GOBNILP is 1.6.3 that works with SCIP 3.2.1. The
default configuration is used and experiments are conducted for both BIC and BDeu scoring
functions. However, the k-best results are omitted here due to its poor performance.
Despite that GOBNILP can iteratively find the k-best networks in descending order by
adding linear constraints, the pruning rules designed to find the best network are turned
off to preserve sub-optimal networks. In fact, the memory usage often exceeded 64 GB
during the initial ILP formulation, indicating that the lack of pruning rules posed serious
challenge for GOBNILP. GOBNILP dev, on the other hand, can take advantage of the pruning
rules presented above in the proposed BF approach and its results compare favorably to
KBest and KBestEC.

The experimental results of KBest, KBestEC and GOBNILP dev are reported in Ta-
ble 3.2, where n is the number of random variables in the dataset, N is the number of
instances in the dataset, and k is the number of top scoring networks. The search time
T is reported for KBest, KBestEC and GOBNILP dev (BF = 20). The number of DAGs
covered by the k MECs |Gk| is reported for KBestEC. In comparison, the last two columns
are the number of found networks |G20| and the number of MECs |M20| using the BF
approach with a given BF of 20 and BDeu scoring function.

As the number of requested networks k increases, the search time for both KBest and
KBestEC grows exponentially. The KBest and KBestEC are designed to solve problems
of size fewer than 207, and so they have some difficulty with larger datasets. They also
fail to generate correct scoring files for msnbc. KBestEC seems to successfully expand the
coverage of DAGs with some overhead for checking equivalence classes. However, KBestEC
took much longer than KBest for some instances, e.g., nltcs and letter, and the number of
DAGs covered by the found MECs is inconsistent for nltcs, letter and zoo. The search time
for the BF approach is improved over the k-best approach except for datasets with very
large sample sizes. The generalized pruning rules are very effective in reducing the search
space, which then allows GOBNILP dev to solve the ILP problem subsequently. Comparing
to the improved results in (Chen et al. [14], 2015; 2016), our approach can scale to larger
networks if the scoring file can be generated.8

Now we show that different datasets have distinct score patterns in the top scoring
networks. The scores of the 1,000-best networks for some datasets in the KBest experiment
are plotted in Figure 3.1. A specific line for a dataset indicates the deviation ϵ from the

7Obtained through correspondence with the author.
8BDeu cannot be scored for larger instances without imposing a limit on the parent set size.

30



optimal BDeu score by the kth-best network. For reference, the red dash lines represent
different levels of BFs calculated by ϵ = log BF (see Equation 3.5). The figure shows that
it is difficult to pick a value for k a priori to capture the appropriate set of top scoring
networks. For a few datasets such as adult and letter, it only takes fewer than 50 networks
to reach a BF of 20, whereas zoo needs more than 10,000 networks. The sample size has a
significant effect on the number of networks at a given BF since the lack of data leads to
many BNs with similar probabilities. It would be reasonable to choose a large value for k
in model averaging when data is scarce and vice versa, but only the BF approach is able
to automatically find the appropriate and credible set of networks for further analysis.

3.7 Summary

Existing approaches for model averaging for BNSL either severely restrict the structure of
the Bayesian network or have only been shown to scale to networks with fewer than 30
random variables. In this chapter, we proposed a novel approach to model averaging in-
spired by performance guarantees in approximation algorithms that considers all networks
within a factor of optimal. Our approach has two primary advantages. First, our approach
only considers credible models in that they are optimal or near-optimal in score. Second,
our approach is significantly more efficient and scales to much larger Bayesian networks
than existing approaches. We modified GOBNILP [6], a state-of-the-art method for finding
an optimal Bayesian network, to implement our generalized pruning rules and to find all
near -optimal networks. Our experimental results demonstrate that the modified GOBNILP

scales to significantly larger networks without resorting to restricting the structure of the
Bayesian networks that are learned.

31



Data n N Tk (s) k TEC (s) |Gk| T20 (s) |G20| |M20|

tic tac toe 10 958
0.2 10 0.5 67

0.6 152 242.8 100 6.0 673
70.7 1,000 78.5 7,604

wine 14 178
3.4 10 12.0 60

35.9 8,734 6,26285.0 100 168.4 448
3,420.4 1,000 3,064.4 4,142

adult 14 32,561
3.3 10 633.5 68

9.3 792 1973.6 100 63,328.9 1,340
2,122.8 1,000 OT —

nltcs 16 3,236
11.8 10 47,338.4 552

125.5 652 326406.6 100 OT —
13,224.6 1,000 OT —

msnbc 17 58,265 ES — ES — 4,018.9 24 24

letter 17 20,000
26.0 10 18,788.0 200

56,344.8 20 10909.8 100 OT —
41,503.9 1,000 OT —

voting 17 435
34.1 10 101.9 30

6.0 621 2071,125.7 100 1,829.2 3,392
38,516.2 1,000 42,415.3 3,665

zoo 17 101
33.5 10 99.8 52

8,418.8 29,073 6,7611,041.7 100 1,843.4 100
41,412.1 1,000 OT —

hepatitis 20 155
351.2 10 872.3 89

441.4 28,024 3,53413,560.3 100 20,244.7 842
OT 1,000 OT —

parkinsons 23 195
3,908.2 10 OT —

1,515.9 150,000 42,448OT 100 OT —
OT 1,000 OT —

autos 26 159 OM 1 OM — OT — —
insurance 27 1,000 OM 1 OM — 8.3 1,081 133

Table 3.2: The search time T and the number of collected networks k, |Gk| and |G20| for
KBest, KbestEC and GOBNILP dev (BF = 20) using BDeu, where n is the number of
random variables in the dataset, N is the number of instances in the dataset, OM = Out
of Memory, OT = Out of Time and ES = Error in Scoring. Note that |Gk| is the number
of DAGs covered by the k-best MECs in KBestEC and |M20| is the number of MECs in
the networks collected by GOBNILP dev.

32



Figure 3.1: The deviation ϵ from the optimal BDeu score by k using results from KBest.
The corresponding values of the BF (ϵ = log(BF), see Equation 3.5) are presented on the
right. For example, if the desired BF value is 20, then all networks falling below the dash
line at 20 are credible.

33



Chapter 4

Scoring Function Selection

Scoring functions for Bayesian network (BN) structure learning can conflict in their rank-
ings and previous work has empirically studied their effectiveness with an aim to provide
recommendations on their use. However, previous studies on scoring functions are limited
by the small number and scale of the instances used in the evaluation and by a focus on
learning a single network. Often, a better alternative to committing to a single network
is to learn multiple networks and perform model averaging as this method provides confi-
dence measures for knowledge discovery and improved accuracy for density estimation. In
this chapter, we empirically study a selection of widely used and also recently proposed
scoring functions. We address design limitations of previous empirical studies by scaling
our experiments to larger BNs, comparing on an extensive set of both ground truth BNs
and real-world datasets, considering alternative performance metrics, and comparing scor-
ing functions on two model averaging frameworks: the bootstrap and the credible set.
Contrary to previous recommendations based on finding a single structure, we find that
for model averaging the BDeu scoring function is the preferred choice in most scenarios for
the bootstrap framework and a recent score called qNML is the preferred choice for the
credible set framework.

4.1 Introduction

As previously discussed, a BN can be learned from data using the well-known score-and-
search approach, where a scoring function is used to evaluate the fit of a proposed BN
to the data, and the space of directed acyclic graphs is searched for the best-scoring BN.
Scoring functions commonly balance goodness of fit to the data with a penalty term for

34



model complexity to avoid overfitting. Common scoring functions for discrete data include
Akaike information criterion (AIC) [2], BIC [80, 55, 76], and BDeu [8, 42]. More recently,
the quotient Bayesian Dirichlet score based on Jeffreys’ prior (qBDJ) [93] and qNML [89]
scoring functions have been proposed.

There are three main aims for learning a Bayesian network [51, Ch. 16.2]: probability
density estimation, classification, and knowledge discovery. BNs are still widely used for
density estimation, especially in low dimension and data scarce regimes. Its knowledge dis-
covery capability, e.g., representing causal effects and conditional independence relations,
is still unmatched. Previous work has empirically studied the best scoring function to use
for each of these aims. However, previous studies are limited by the small number and
scale of the instances used in the evaluation, and by a focus on learning a single network
as opposed to the widely used methodology of learning multiple networks and performing
model averaging.

In early work, Van Allen and Greiner [97] compared AIC and BIC for density estimation.
Their work learned a single network and only studied randomly generated instances up to 10
variables and two real-world networks: Alarm and Insurance. Carvalho [13] compared AIC,
BDeu, and BIC for classification. However, the experimental evaluation was restricted to
learning a single tree BN. Yang and Chang [100] compared BIC, BDe (a variant of BDeu),
and several other scoring functions on density estimation and knowledge discovery. The
evaluation focused on small instances with five or fewer variables and learned a single
network.

More recently, Silander et al. [88] proposed a new scoring function called fNML and
compared AIC, BDeu, BIC, and fNML on density estimation and knowledge discovery. Liu
et al. [61] performed an extensive empirical comparison of AIC, BIC, BDeu, and fNML for
knowledge discovery and concluded that BIC was overall the preferred choice. However,
the evaluation used instances limited to at most 20 variables and did not consider model
averaging.

Silander et al. [89] proposed a new scoring function called qNML and compared it
against BDeu, BIC, and fNML on density estimation and knowledge discovery. The eval-
uation used small instances: 11 variables or fewer for evaluating knowledge discovery and
15 variables or fewer for evaluating density estimation. On the dimension of learning al-
gorithms as opposed to scores, Scutari et al., [84] compared constraint-based, score-based,
and hybrid learning algorithms. They found that the choice of statistical criteria (scores
and their matching criteria) strongly affect the quality of the learned network, and that
score-based algorithms and hybrid ones have similar performance with constraint-based
ones slightly falling behind. They also used both BIC and BDeu as the scoring functions

35



and found no apparent difference. Broom et al. [7] is, to the best of our knowledge, the
only empirical study of scoring functions that considers model averaging, as opposed to
learning a single network. Their study uses the bootstrap framework but only performs
experiments over two networks: Alarm and Insurance. By using such a limited testbed,
they were not able to make any recommendations on which scoring function to prefer in
general.

In this chapter, we fill the gap in previous empirical studies on scoring functions by
scaling up the experiments to cover larger sized networks, by using a much more extensive
testbed of instances, and by experimenting with two different model averaging frameworks:
the bootstrap framework [34, 81] and the credible set framework [58]. We study five
discrete scoring functions for ϵBNSL, namely AIC, BDeu, BIC, qBDJ, and qNML, and
evaluate their performance on knowledge discovery and density estimation using both the
ground truth BNs from bnlearn [81] and real-world datasets from the UCI repository.
In addition to SHD for evaluating knowledge discovery, we also use the Fβ-measure and
the misclassification cost, which allows us to study tradeoffs between false positives and
false negatives on discovering edges in the network. We use the negative log likelihood
as an approximation to the KL divergence in density estimation. We find that the ideal
score under the model averaging scheme is very different from previous recommendations
resulting from learning a single structure. Based on our empirical evaluation, we conclude
that BDeu is the clear preferred choice in most scenarios for the bootstrap framework. For
the credible set model averaging framework, we conclude that qNML is the best choice
for knowledge discovery, and that AIC is best suited for density estimation with qNML
trailing slightly behind.

4.2 Scoring Functions

Scoring functions provide the model selection criteria in BNSL. Ideally a scoring function
should have the following properties.

• Consistency [51, Def. 18.1]. The probability of the true graph P (G∗ | D) → 1 as
N → ∞. In terms of BNSL, the scoring function should choose the true graph G∗

given a sufficiently large amount of data.

• Decomposability [51, Ch. 17.2.2]. The score of the entire network σ(D | G ; Θ) can
be decomposed as the sum of local scores associated to each vertex

∑n
i=1 σ(Xi | Πi; Θ).

36



• Normality [93] (score equivalence [18]). BNs of the same equivalence class have
identical scores. Two BNs are equivalent if they impose identical conditional in-
dependence relations and can be structurally identified using the skeleton and v-
structure [99].

• Regularity [92]. For two candidate parent sets Πij ⊂ Πik of the child Xi , if both
of them have identical empirical conditional entropy H(Xi | Πi∗), the smaller parent
set Πij should have a better score.

Most scoring functions for BNSL are based on either log likelihood or Bayesian Dirichlet
marginal likelihood. The log likelihood is the log probability of data D given a structure
G and is often rearranged by vertices X with their parent sets Π,

LL(D | G ; Θ) = log
N∏
i=1

P (Di | G ; Θ) =
n∑

i=1

rΠi∑
j=1

ri∑
k=1

nijk log θijk,

where nijk is the count for Xi = xik and Πi = πij in D. It is well-known that using the log
likelihood alone in BNSL yields the complete network since the likelihood never decreases
when an edge is added. Various forms of penalties have been proposed to address the
problem and several scoring functions have been derived that hold the desired properties
above, including AIC [2], BIC [80], and qNML [89]. The scores can be defined generally as
σ(∗) = LL(D | G ; Θ)−pen(∗) for some penalty pen(∗), and we present different penalties
below. The penalty for the AIC scoring function in this work is defined as,

pen(AIC) =
n∑

i=1

rΠi
(ri − 1).

AIC is traditionally used for supervised tasks as it minimizes mean squared error of pre-
dictions [9] and is asymptotically equivalent to leave-one-out cross validation [91]. A lower
AIC score means a model is considered to be closer to the truth. The penalty for the BIC
scoring function in this work is defined as,

pen(BIC) =
n∑

i=1

rΠi
(ri − 1)

logN

2
.

BIC estimates the posterior probability of a model being true. It penalizes models more
heavily than AIC and requires a sample size much larger than the number of parameters
in the model [61]. This definition of BIC is also equivalent to minimum descriptive length

37



(MDL) [76] scoring function under the assumption that N →∞ and D1 , . . . ,DN are i.i.d.
The qNML score is derived from factorized normalized maximum likelihood (fNML) [88]
that uses the vertex partitions in the normalizing factor. fNML is another log likelihood
based score with the penalty defined as the regret, where a possible approximation is

reg(N, r) ≈ N
(
log(β) + (β + 2) log(Cβ)− 1

Cβ

)
− 1

2
log

(
Cβ +

2
β

)
, β = r

N
, and Cβ = 1

2
+

1
2

√
1 + 4

β
. However, fNML is not score equivalent in order to maintain decomposability.

This drawback is recently addressed by the quotient version dubbed qNML. The penalty
for the qNML scoring function in this work is defined as,

pen(qNML) =
n∑

i=1

reg(N, rΠi
ri)− reg(N, rΠi

).

Analytically qNML is similar to both AIC and BIC since they are all maximum likelihood
based scores, though it has a more forgiving penalty. We show how the penalty differs
across the log likelihood based scores in Table 4.1 and note that qNML has a more forgiving
penalty than AIC and BIC.

Table 4.1: Penalties calculated from various values of sample size (N) and the number of
possible instantiations for parent sets (rΠi) when the child has 2 categories.

N rΠi pen(AIC) pen(BIC) pen(qNML) pen(qBDJ)

50

10 10 19.6 9.1 10.6
100 100 195.6 24.1 26.3

1,000 1,000 1,956.0 33.0 33.5
10,000 10,000 19,560.1 34.5 34.5

500

10 10 31.1 18.8 21.5
100 100 310.7 88.4 103.1

1,000 1,000 3,107.3 239.4 261.8
10,000 10,000 31,073.0 329.3 334.7

5,000

10 10 42.6 29.8 33.0
100 100 425.9 185.2 212.0

1,000 1,000 4,258.6 881.1 1028.2
10,000 10,000 42,586.0 2,392.7 2616.4

From the Bayesian perspective, we can assume that the model parameters θijk are
independent Dirichlet variables with the priors A = {αijk}. Because the Dirichlet distri-
bution is the conjugate prior distribution of the multinomial distribution, the posteriors

38



θijk | Dijk ;αijk ∼ Dir(αijk + nijk). It follows that,

LL(D | G ,Θ;A) = logP (D | G ,Θ)P (Θ;A)

=
n∑

i=1

rΠi∑
j=1

∑ri
k=1 log Γ(αijk + nijk)

log Γ(αij∗ + nij∗)
−

∑ri
k=1 log Γ(αijk)

log Γ(αij∗)
,

where αij∗ =
∑ri

k=1 αijk and nij∗ =
∑ri

k=1 nijk. We consider two scores from the Bayesian
Dirichlet (BD) family that have different priors. BDeu [8, 41] assigns αijk = α

rirΠi
for

some equivalent sample size α, whereas Bayesian Dirichlet score based on Jeffreys’ prior
(BDJ) [92] assigns αijk = 0.5. The BDeu scoring function has an associated hyperparameter
α that must be properly set prior to scoring. Previous work has shown empirically (e.g.,
[61, 87]) the importance of choosing a suitable value for α. Unfortunately, there is little
guidance available for setting α. Recently, Suzuki [92] proves that BDeu is not regular,
often yielding unnecessarily complex structures. On the other hand, the BDJ scoring
function is regular yet not normal [92]. Therefore, it is not desirable to use BDJ directly in
BNSL. Switching the conditional scores σBDJ(Xi | Πi,Θ;A) in BDJ to the quotient version
σBDJ(Xi ,Πi|Θ;A)
σBDJ(Πi|Θ;A)

yields qBDJ [93] that is both regular and normal. The qBDJ scoring function
in this work is defined as,

σ(qBDJ) =
n∑

i=1

rΠi∑
j=1

log

∑ri
k=1 Γ(nijk + 0.5)

Γ(nij∗ + 0.5)
−

n∑
i=1

log
Γ(0.5rirΠi

+N)Γ(0.5rΠi
)

Γ(0.5rΠi
+N)Γ(0.5rirΠi

)
.

By Stirling’s approximation, σ(qBDJ) = LL(D | G ; Θ) + O(1) − pen(qBDJ), where
pen(qBDJ) is exactly the second term in the definition.

Notably BDeu is the only irregular score in our study due to its broad application in
BNSL. Other scores in the following experiments hold all four desirable properties.

4.3 Parameters

The parameters in log likelihood based scores are derived from maximum likelihood esti-
mates, i.e., θ̂ijk =

nijk

nij∗
. Although they are the closed form solutions to maxΘ LL(D | G ; Θ),

it is often desirable to apply smoothing to model parameters, especially when some nijk = 0.
In this work we use the m-estimate [67] defined as,

θ̂mijk =
nijk +

m
rirΠi

nij∗ +
m
rΠi

.

39



Recall that for the BD family, the posteriors θijk | Dijk ;αijk ∼ Dir(αijk + nijk). Then

the expected value of the posterior θ̂BD
ijk is,

θ̂BD
ijk =

nijk + αijk

nij∗ + αij∗
.

Coincidentally the m-estimate is the same as the expected value of the posterior parameters
for BDeu when m = α, where m is also called the equivalent sample size but stems from
the idea of additive smoothing.

From the NML principle, we have yet another estimation called conditional NML pre-
dictive probability [77] (sequential NML [89]),

θ̂sNML
ijk =

(nijk + 1)e(nijk)∑ri
k=1(nijk + 1)e(nijk)

,

where e(n) = (1 + 1/n)n and e(0) = 1. It has been shown [77] that sNML parameter
converges to Krichevsky-Trofimov predictive probability, a special cases of the m-estimate
when m = rΠi

. Nevertheless, sNML provides an optimality guarantee in terms of re-
gret [88], whereas the m-estimate has no known optimality property.

4.4 Model Averaging

We consider two model averaging frameworks for BNSL — the bootstrap and the credible
set frameworks — as these two methods have been shown to scale the best among all
available model averaging methods.

Bootstrapping is regarded as a general, flexible tool to provide confidence measures to
statistics estimates. In the context of structure learning in Bayesian networks, Friedman
et al. [34] proposed bootstrapping with thresholds to determine the existence of edges and
other features. In particular, the non-parametric approach samples the original dataset
with replacement and then heuristically learns a structure using the re-sampled data. After
repeating such procedure many times, we can get the empirical probabilities of all edges
by averaging on the learned structures. A threshold is finally applied to get the averaged
structure.

In the credible set approach, all networks that are optimal or near-optimal in score
are learned [58]. Note that the optimization problem defined by a scoring function and a

40



dataset is to find the maximum-score BN. Let OPT be the score of the optimal BN. The
set of networks learned from a dataset, denoted the credible set, is given by,

{G | score(G) ≥ OPT − log BF},

where the difference between the optimal score and the score of a network under considera-
tion is proportional to the logarithm of the BF, a well-known criteria for selecting between
two models. Each network in the credible set can then be aggregated to form a combined
structure weighted by their score, where the scores of the networks in the credible set are
normalized to sum to 1 and the best model has the highest weight. Alternatively, the
networks can be equally weighted when averaged.

4.5 Pruning

Applying a scoring function to a dataset is a computationally intensive task, as many
candidate parent sets need to be considered and scored. Fortunately, effective pruning rules
have been developed for some scoring functions that preserve optimality but significantly
reduce the candidate parents sets that need to be considered.

One of the most effective pruning rules for AIC and BIC is an upper-bound ⌈log2(N)⌉
on the size of parent sets based on the sample size N . The rule is originally proposed in [28]
for the optimal BNSL problem and generalized in [58] for the credible set approach. This
rule enables AIC and BIC to scale much better than other scores under consideration.
As we will show in our experiments, in scores other than AIC and BIC we often need
to manually restrict the allowable maximum number of parents in order to score larger
datasets within reasonable resource limits. Another effective family of pruning rules can
eliminate certain parent sets and their supersets. Such rules for AIC, BIC and BDeu are
originally proposed in [28] for the optimal BNSL problem and generalized to credible sets
in [58].

4.6 Experimental Methodology

In this section, we describe the methodology we followed to experimentally study and
compare scoring functions for BNSL in model averaging. We explain construction of the
datasets (Section 4.6.1), scoring the datasets and learning the Bayesian network structures

41



(Section 4.6.2), and the performance evaluation metrics (Section 4.6.3). The scoring com-
putations were conducted on SHARCNET1 and the structure learning experiments were
conducted on a shared server with 346 GB RAM and Intel Xeon Gold 6148 at 2.4 GHz.
For scoring the datasets memory usage was limited to 64 GB and for structure learning a
limit of 128 GB was imposed. For both scoring and learning, a computation time limit of
24 hours was imposed for each instance.

Table 4.2: UCI datasets (left, middle) and bnlearn Bayesian networks (right), where n is
the number of variables in the dataset or network, and N is the number of instances in the
original UCI dataset.

UCI dataset n N

shuttle 10 58,000
census income 14 48,842
letter 17 20,000
online shopping 18 12,330

lymphography 19 148
hepatitis 20 155
parkinsons 23 195
credit card 24 30,000

UCI dataset n N

robot navigation 25 5,456
horse colic 27 368
steel 28 1,941
flags 29 194

breast cancer 31 569
soybean 36 683
biodeg 42 1,055
spectf heart 45 267

network n

sachs 11
child 20
insurance 27
water 32
mildew 35

alarm 37
barley 48
hailfinder 56
heparII 70
win95pts 76

4.6.1 Datasets

To empirically study the scoring functions, we considered a wide selection of datasets from
the UCI repository2 and networks from the bnlearn Bayesian network repository3 (see
Table 4.2). We preprocessed the UCI datasets using a k-nearest neighbor imputation al-
gorithm, with k = 5, to fill in missing values and a supervised discretization method [31]
based on the MDL principle to discretize continuous variables. For evaluating the scoring
functions on the task of density estimation, each UCI dataset was then randomly parti-
tioned to a training set and a test set by a 70% to 30% ratio.

1https://www.sharcnet.ca
2https://archive.ics.uci.edu/ml
3https://www.bnlearn.com/bnrepository/

42

https://www.sharcnet.ca
https://archive.ics.uci.edu/ml
https://www.bnlearn.com/bnrepository/


For evaluating the scoring functions on the task of structure learning, we used a total
of 90 ground truth BNs: 10 ground truth BNs came from the bnlearn repository and a
further 80 ground truth BNs were constructed following a similar approach to Liu et al. [61]
by (i) scoring each of the 16 UCI datasets using each of the five scoring functions AIC,
BDeu, BIC, qBDJ, and qNML in turn, (ii) learning an optimal network structure from
each scored dataset, and (iii) and fitting the parameters to each structure to give a final
Bayesian network. Given the 90 ground truth BNs, we used the logic sampling function
rbn from the bnlearn R package [81] to generate random samples of sizes N = 50, 100, 500,
1,000, 5,000, and 10,000 from the bif files. We collected three samples for each dataset size
N , for a total of 18 samples for each ground truth BN. The number of variables n used in
our experiments, ranging from 11 to 76, pushes the limits of both the bootstrap and the
credible set model averaging approaches, especially when using scoring functions such as
BDeu and qNML that have less effective pruning rules.

4.6.2 Scoring and Structure Learning

To evaluate the scoring functions within the bootstrap model averaging framework, we used
the implementation available as the function boot.strength from the bnlearn R package
[81]. We used the default replication factor of 200 and the tabu search algorithm, as in
preliminary experiments it performed better than the alternative hill climbing algorithm.
Due to score availability in bnlearn, we only consider AIC, BDeu, and BIC in the bootstrap
experiments. A total of 4,320 bootstrap experiments were performed.

To evaluate the scoring functions within the credible set model averaging framework,
we implemented the scoring functions AIC, BDeu, BIC, qBDJ, and qNML in Python to
ensure a fair comparison4. The code takes a CSV file as input and generates a pruned
score file iteratively for each parent set size. Saving the intermediate scoring files that
guarantee optimality up to some parent set size is important since we do not limit the size
a priori. As we stated above, the pruning rules for AIC and BIC are far more effective
than those for other scores since an upper bound on the number of parents can be placed
without losing optimality. For other scores, we have to abort the scoring generation at the
end of the 24-hour limit. We note that similar experiments in [89, 61] have 20 variables
as a computational limit for exact algorithms using scores other than AIC and BIC. Once
the score files were generated, we used the eBNSL package [58], an extended version of
GOBNILP [6], for collecting the credible networks. All networks falling within a Bayes factor
(BF) of 150 were collected with a counting limit of 100,000. We also set the equivalent

4https://github.com/alisterl/hipss/releases/tag/v0.1.0

43

https://github.com/alisterl/hipss/releases/tag/v0.1.0


sample size α = 1 for BDeu while the other scores do not have hyperparameters. We use
a constant threshold 0.6 to determine whether an edge is present, and we have verified
that the score ranking does not change with other reasonable thresholds. A total of 5,940
credible set experiments were performed.

4.6.3 Performance Evaluation Metrics

We evaluated the scoring functions based on their performance on knowledge discovery and
density estimation. The former compares the learned structure with the ground truth BN
in terms of directed and undirected edges and the latter compares the inference ability of
the learned BNs. Each BN is weighted by its scores when the evaluation is conducted on a
credible set using model averaging. For scoring functions based on posterior probabilities
such as those in our experiments, the difference between two scores is proportional to the
logarithm of the BF for the underlying models. The choice of the BF also has implications
in model averaging since the worst model in the credible set will have a weight of 1

BF
when

the best model has a weight of 1.

Table 4.3: Comparison of scoring functions using structural Hamming distance for the
bootstrap (left) and credible set (right) model averaging approaches. At each row, the
aggregated Borda count is shown when comparing the scoring functions on a set of exper-
iments that consist of three samples from each ground truth network and dataset sample
sizes of N = 50, 100, 500, 1,000, 5,000, 10,000.

Ground Scoring function
truth AIC BDeu BIC
bnlearn 259 145 85
UCI-AIC 225 266 96
UCI-BDeu 168 335 102
UCI-BIC 172 248 121
UCI-qBDJ 222 226 121
UCI-qNML 214 246 94
Total 1,260 1,466 619

Ground Scoring function
truth AIC BDeu BIC qNML
bnlearn 249 209 270 235
UCI-AIC 354 234 234 378
UCI-BDeu 306 330 249 376
UCI-BIC 258 240 300 339
UCI-qBDJ 370 188 270 430
UCI-qNML 344 184 267 410
Total 1,881 1,385 1,590 2168

44



4.7 Experimental Results and Discussion

In this section, we present the results of our experimental study and discuss their implica-
tions. The experimental results are aggregated using the Borda count. In the Borda count,
in each trial (for a fixed dataset and model averaging method) the scoring functions are
ranked according to the performance metric with ties allowed and each scoring function
is awarded points corresponding to the number of scoring functions strictly lower in the
ranking. Thus, the lowest ranked scoring function always gets 0 points and the highest
ranked scoring function gets at most k points (exactly k if there are no ties for highest
ranked), where k is the number of scoring functions under consideration. The Borda count
was chosen to aggregate the results as it is known to select broadly acceptable options.

We present the results of knowledge discovery using the bootstrap approach in Table 4.3
(left) for SHD, in Figure 4.1 for directed multi-class F score, in Figure 4.2 for undirected
F score, and in Figure 4.3 for undirected misclassification cost. The figures clearly show
that BIC is a high precision low recall score since its Borda count is much higher as β or α
decreases from 1. This is consistent with the fact that BIC imposes the most strict penalty
on the number of parameters in the network.

In Table 4.3 (left), UCI-AIC, for example, refers to the ground truth set of networks
that were constructed by using the AIC scoring function to find the optimal structure for
each UCI dataset and then fitting the parameters to the structure to obtain a Bayesian
network. We can conclude from the table that BDeu dominates both AIC and BIC except
for the ground truth BNs from bnlearn. A finer-grained analysis of the SHD results for
the bootstrap approach reveals that the values are dominated by missing edges in bnlearn
experiments, and thus AIC, with its lower penalty on complexity, produced structures with
fewer missing edges.

In Figure 4.1, we show the directed multi-class F score both broken down by sample
sizes (a, b, and c) and aggregated across all sample sizes (d). Recall that the β value
indicates the tradeoff between recall and precision. We can observe that BDeu dominates
both AIC and BIC when the sample size is small (a), AIC tends to perform better given
sufficient data (b), and AIC also overfits (with many false positives leading to a terrible
precision) given too much data (c). Finally, the aggregated plot (d) shows that BDeu is the
best score with varying values of β. We note that observations in Figure 4.2 and Figure 4.3
are similar to those of Figure 4.1.

We present the results of knowledge discovery using the credible set approach in Ta-
ble 4.3 (right) for SHD, in Figure 4.4 for directed multi-class F score, in Figure 4.5 for
undirected F score, and in Figure 4.6 for undirected misclassification cost.

45



The scoring function qBDJ is omitted from the presented results, as in extensive pre-
liminary experiments it was dominated by qNML. In Table 4.3 (right), we observe that
qNML is the best score on UCI datasets with ground truth generated using all 5 scores,
whereas BIC is the best score on the ground truth BNs from bnlearn. A finer-grained
analysis of the SHD results for the credible set approach reveals that the values here are
dominated by extra edges, and thus BIC comes out ahead due to its heavy penalty on
complexity.

In Figure 4.4, we show the directed multi-class F score both broken down by sample
sizes (a, b, and c) and aggregated across all sample sizes (d). Recall that the β value
indicates the tradeoff between recall and precision. We can observe that qNML dominates
all other scores except for the largest sample sizes (c), where BDeu shows similar superior
performance. Finally, the aggregated plot (d) shows that qNML is the best score with
varying values of β, and that BDeu is better than AIC or BIC which has been shown in
the bootstrap approach (Figure 4.1) as well. We note that observations in Figure 4.5 are
similar to those of Figure 4.4.

In Figure 4.6, we show undirected misclassification cost both broken down by sample
sizes (a, b, and c) and aggregated across all sample sizes (d). Recall that α value indicates
the tradeoff between FP and FN. We can observe that the performance is mixed when the
data is scarce (a). In particular, BIC tends to perform better when α < 1 due to heavier
penalty on FP, whereas qNML tends to perform better when α > 1 due to heavier penalty
on FN. When we bring in more data (b and c) or when we aggregate all sample sizes, we
can observe that qNML is the clear winner among all scores.

In both the bootstrap and credible set approaches, our observations are different from
those in Liu et al. [61] where the conclusion using only the optimal network leads to
BIC being the dominant score. This difference can be attributed to (i) our evaluation is
conducted with model averaging and (ii) we use a much more extensive set of datasets
both in network sizes and in sample sizes in our experiments.

The results of density estimation are summarized in Table 4.4. Again, we use Borda
count to aggregate the results on all datasets from the UCI repository. For the log likelihood
based scores (AIC, BIC, and qNML), we learn their parameters using both the sNML
method and the smoothed maximum likelihood method with m = 1, though the two
methods have similar performance on the test data. The credible sets learned by BDeu
and qBDJ are parameterized by their assumed Dirichlet distributions with α = 1 and
αijk = 0.5. Note that the BDeu parameters are equivalent to the smoothed maximum
likelihood ones since m = α = 1. The negative log likelihood is calculated on a held-out
test set from a 70%-30% train-test split ratio and the results indicate that AIC is the clear

46



winner in inference with qNML trailing slightly behind. AIC’s advantage in inference is less
apparent when we only consider large BNs or large datasets, but BIC remains the worst
performer for inference in almost all cases. This observation suggests that BIC should not
be used when density estimation is the intended usage of the learned BN.

Table 4.4: Borda score comparison on inference task using the set of credible networks
learned from UCI datasets; e.g., the entry at column (AIC, snml) represents the Borda
score for the combination of AIC as scoring function and snml as parameter estimation
method.

AIC BDeu BIC qBDJ qNML
m snml bdeu m snml bdj m snml
85 73 49 29 22 66 68 56

The runtime of the structure learning task for each score is reflective of the pruning
rules available to each score. In particular, AIC and BIC can complete the scoring task
with almost all datasets while the other scoring functions require limits to be set on the
maximum number of parents for n ≥ 20 variables. The advantage of pruning rules for
AIC and BIC, however, does not show up in the metrics used for both tasks in our study.
When we put a limit on the size of the parent set, all scoring functions have similar runtime,
suggesting that such a limit is the defining factor in efficiency. The scale of our experiments
push the limits of model averaging approaches for BNSL. Although approximation methods
that find a single high-quality network have been extended to thousands of variables [78],
in contrast to model averaging approaches, such single-network methods cannot provide
confidence measures for knowledge discovery and improved accuracy for density estimation.

4.8 Summary

Scoring functions can conflict in their rankings and previous work has empirically studied
their effectiveness with an aim to provide recommendations on their use. However, previous
studies on scoring functions are limited by the small number and scale of the instances
used in the evaluation and by a focus on learning a single network. We have studied five
discrete scoring functions for BNSL, namely AIC, BIC, qNML, BDeu, and qBDJ, scaled our
experiments to large BNs using an extension to GOBNILP, and evaluated the scores with
confidence measures on structure discovery and density estimation. We have addressed
previous design limits by considering multiple metrics for structure discovery including the
SHD, the Fβ-measure, and the misclassification cost. The cost sensitive metrics present a

47



full picture with varying tradeoffs between precision vs. recall and FP vs. FN. We also
evaluated scores on negative log likelihood in density estimation. We used both the ground
truth BNs from bnlearn and real world UCI datasets in our structure learning tasks, and
we are the first to provide an extensive experimental study of scoring functions in a model
averaging framework.

Contrary to previous recommendations in [61], we find that qNML is the best con-
tender for knowledge discovery using the exact credible set approach, and BDeu using
bootstrapping, in most real world scenarios. We also find that AIC is best suited for
density estimation with qNML trailing slightly behind. Our empirical study provides an
insightful look at discrete score functions for BNSL and closes the gap in evaluating BN
structures with confidence measures.

48



(a) (b)

(c) (d)

Figure 4.1: Bootstrapping. Comparison of scoring functions using weighted multi-class Fβ

score on directed edges. At each β, the aggregated Borda count is shown when comparing
the scoring functions on a set of experiments that consist of three samples from each
benchmark and dataset sample sizes of: (a) N = 50, 100; (b) N = 500, 1000; (c) N =
5000, 10000; (d) N = 50, 100, 500, 1000, 5000, 10000.

49



(a) (b)

(c) (d)

Figure 4.2: Bootstrapping. Comparison of scoring functions using Fβ score on undirected
edges. At each β, the aggregated Borda count is shown when comparing the scoring
functions on a set of experiments that consist of three samples from each benchmark and
dataset sample sizes of: (a) N = 50, 100; (b) N = 500, 1000; (c) N = 5000, 10000; (d)
N = 50, 100, 500, 1000, 5000, 10000.

50



(a) (b)

(c) (d)

Figure 4.3: Bootstrapping. Comparison of scoring functions using misclassification cost
on undirected edges. At each α, the aggregated Borda count is shown when comparing the
scoring functions on a set of experiments that consist of three samples from each benchmark
and dataset sample sizes of: (a) N = 50, 100; (b) N = 500, 1000; (c) N = 5000, 10000; (d)
N = 50, 100, 500, 1000, 5000, 10000.

51



(a) (b)

(c) (d)

Figure 4.4: Credible sets. Comparison of scoring functions using weighted multi-class Fβ

score on directed edges. At each β, the aggregated Borda count is shown when comparing
the scoring functions on a set of experiments that consist of three samples from each
benchmark and dataset sample sizes of: (a) N = 50, 100; (b) N = 500, 1000; (c) N =
5000, 10000; (d) N = 50, 100, 500, 1000, 5000, 10000.

52



(a) (b)

(c) (d)

Figure 4.5: Credible sets. Comparison of scoring functions using Fβ score on undirected
edges. At each β, the aggregated Borda count is shown when comparing the scoring
functions on a set of experiments that consist of three samples from each benchmark and
dataset sample sizes of: (a) N = 50, 100; (b) N = 500, 1000; (c) N = 5000, 10000; (d)
N = 50, 100, 500, 1000, 5000, 10000.

53



(a) (b)

(c) (d)

Figure 4.6: Credible sets. Comparison of scoring functions using misclassification cost on
undirected edges. At each α, the aggregated Borda count is shown when comparing the
scoring functions on a set of experiments that consist of three samples from each benchmark
and dataset sample sizes of: (a) N = 50, 100; (b) N = 500, 1000; (c) N = 5000, 10000; (d)
N = 50, 100, 500, 1000, 5000, 10000.

54



Chapter 5

Threshold Selection

Bayesian networks (BNs) are widely used as a data analysis tool in diverse areas, including
finance, medicine, and sports. A standard data analysis methodology is to use the well-
known score-and-search approach to learn a set of possible Bayesian networks and then
to perform model averaging with thresholding to identify features such as edges between
variables with high confidence. A fundamental step in the methodology is to select the
threshold, as the value selected has broad implications for the success of the analysis.
However, the problem of selecting a good threshold in BNSL has received limited attention
in the literature. In this chapter, we identify an important shortcoming in a widely used
threshold selection method. We then propose a simple transfer learning approach for
maximizing target metrics and selecting a threshold that can be generalized from proxy
datasets to the target dataset and show on an extensive set of benchmarks that it can
perform significantly better than previous approaches.

5.1 Introduction

As already noted, a BN can be learned from data using the well-known score-and-search
approach. However, selecting a single model (i.e., the best-scoring BN) is often not the
best choice. When one is learning a BN from limited data, selecting a single model may
be misleading as there may be many other BNs that have scores that are close to optimal,
and the posterior probability of even the best-scoring BN is often close to zero. A more
preferred alternative to committing to a single model is to perform some form of Bayesian
or frequentist model averaging (e.g., [34, 58, 63, 95]).

55



Our interest here is in Bayesian networks as a knowledge discovery or data analysis tool.
In the context of knowledge discovery, model averaging allows one to estimate, for example,
the posterior probability or degree of confidence P̂ (e | D) that an edge e is present in the
true network structure describing the dependence structure in the dataset D, rather than
just knowing whether the edge is present in the best-scoring network. A widely used data
analysis methodology is to: (i) learn a set of plausible networks that fit the data D, (ii)
perform model averaging to obtain P̂ (e | D) for each edge e, and (iii) select a threshold c
and report all edges e with P̂ (e | D) > c. In this manner, a representative network can
be constructed from the edges that are deemed significant that can then be examined for
probabilistic dependencies and possible cause-effect relations.

Table 5.1: Representative data and causal analyses using Bayesian networks, where n is
the number of random variables, N is the number of instances in the dataset, and c is the
threshold for determine whether an edge is significant.

Area n N c Description
Banking 18 1,796 0.50 Contagion interactions between credit issuers following

a sovereign default [4].
Biology 12 1,900 0.50† Factors that directly impact red tide species occur-

rences and concentrations [32].
Medicine 11 79 0.65 Biophysical interactions of pneumonitis due to radia-

tion therapy in lung cancer [62].
Medicine 17 120 0.30 Pathological interactions between diabetes mellitus

and tuberculosis [73].
Medicine 26 408 0.85‡ Interactions between symptoms of obsessive-

compulsive disorder and depression [64].
Safety 27 3,640 0.50† Relationships between interstate motor carrier charac-

teristics and safety performance [45].
Software 21 12,630 0.65 Interactions between code review measures and preva-

lence of post-release defects [54].
Sports 22 377 0.85 Relationships between psychological features and team

performance in football [35].
† Unspecified and assumed to be the default value of the software package used in the analysis.

‡ Also used the threshold from Scutari and Nagarajan [82], which we will show to be equivalent
to c = 0.5.

However, the problem of selecting a good threshold c for determining the significant

56



edges has received limited attention in the BNSL literature, in spite of the importance
and widespread use of Bayesian networks for data analysis. Most data analyses use an
ad hoc threshold, with little explicit discussion of the rationale for the value selected
(e.g., see Table 5.1). Broom et al. [7] provide an algorithmic approach for identifying the
significant edges in an instance-specific manner based on permutation testing. Scutari and
Nagarajan [82] provide an optimization method for selecting a threshold in an instance-
specific manner based on minimizing an L1 distance. The method is the default threshold
selection method in the widely used bnlearn package [81]. Gross et al. [39] analytically
derive an instance-independent threshold for identifying the significant directed edges by
modeling edge occurrences as a stochastic process. Little is known about the relative
performance of these methods as previous empirical studies are limited by the small number
and scale of the instances used in the evaluation (at most four networks were used in each
study).

In this chapter, we make the following three contributions.

• We prove that the optimization method of Scutari and Nagarajan [82] is in fact
equivalent to a fixed threshold of c = 0.5 for all instances; i.e., although their method
selects different thresholds depending on the instance under consideration, the signif-
icant edges identified upon thresholding are exactly the same as if a cutoff of c = 0.5
was used.

• We propose a simple machine learning approach based on transfer learning for se-
lecting a threshold. The thresholds learned apply to all instances and can be readily
applied in practice. Existing methods for automatically selecting a threshold implic-
itly or explicitly assume that the cost of a false positive (an extra edge) and of a
false negative (a missing edge) are equal. However, the relative costs are application
dependent and in many domains (e.g., see Table 5.1) this assumption does not hold.
We address the imbalance in costs by considering as loss functions in our machine
learning framework (i) the cost-sensitive Fβ measure with varying tradeoffs between
precision and recall, (ii) the misclassification cost with varying tradeoffs between false
positives and false negatives, as well as (iii) the cost-insensitive structural Hamming
distance.

• We perform an extensive empirical evaluation of our proposed method against pre-
viously proposed methods. On a broad set of ground truth Bayesian networks and
real-world datasets, our approach gave significantly better performance in almost all
scenarios and competitive performance on the others.

57



5.2 Collect a Set of Networks

In BNSL using model averaging, the goal of the structure learning is to estimate the
posterior probability or degree of confidence P̂ (ej | D) that an edge ej is present in the
true network structure. Among the model averaging methods available to collect a set of
BNs to estimate the empirical probabilities, two have been shown to scale the best: the
bootstrap method [34] and the credible set method [58]. Both methods use the well-known
score-and-search approach, where a scoring function such as BIC [80, 55], BDeu [8, 42],
or qNML [89] is used to evaluate the fit of a proposed BN to the data, and the space of
directed acyclic graphs is searched for the best-scoring BN.

The bootstrap method [34] collects M samples Dm of the same length as the original
dataset D via random sampling with replacement, for some given M . For each sample Dm,
it uses search to find a locally optimal BN Gm = (X ,Em). The empirical probability of
some edge P (ej) is then approximated by simply counting its occurrence in theM BNs, i.e.,

P̂ (ej) =
1
M

∑M
m=1 ejm, where ejm = 1 if the edge ej is present in Em. Due to its simplicity,

this method has been a popular choice in the application literature (see Table 5.1), and
most use the bnlearn package [81] to estimate the empirical probability of the edges.

The credible set method [58] collects all networks that are optimal or near-optimal in
score using exact search. Note that the optimization problem defined by a scoring function
and a dataset is to find the maximum-score BN. Let OPT be the score of the optimal BN.
The set of networks learned from a dataset, denoted the credible set, is given by,

G = {G | score(G) ≥ OPT − log BF},

where the difference between the optimal score and the score of a network under consider-
ation is proportional to the logarithm of some given BF, a well-known criteria for selecting
between two models. Each network in the credible set can then be aggregated to form a
combined structure weighted by its score, where the scores of the networks in the credible
set are normalized to sum to 1 and the best model has the highest weight. Alternatively, as
with the bootstrap method, the networks can be equally weighted when averaged, yielding
P̂ (ej) =

1
M

∑M
m=1 ejm, where M = |G| is the number of optimal and near-optimal networks

learned from the dataset and ejm = 1 if the edge ej is present in Em.

5.3 Identify Edges: Distance Measure Approach

In this section, we perform a theoretical evaluation of the instance-specific optimization
method of Scutari and Nagarajan [82]. The method is the default threshold selection

58



method in the widely used bnlearn package [81]. In particular, we prove that their opti-
mization method is in fact equivalent to a fixed threshold of c = 0.5 for all instances.

5.3.1 Setup

We begin by presenting Scutari and Nagarajan’s method (Algorithm 5.1 [82, Section 2]).
Recall that the empirical probability of an edge over a set of M BNs is defined as P̂ (ej) =
1
M

∑M
m=1 ejm, where ejm = 1 if the edge ej is present in Em. Denote the vector of all such

empirical probabilities as p̂ = {p̂1, p̂2, . . . , p̂k}, where k =
(|V |

2

)
, and consider the order

statistic p̂(·) (line 8 of Algorithm 5.1) derived from p̂:

p̂(·) =
(
p̂(1), · · · , p̂(k)

)
, p̂(1) ≤ · · · ≤ p̂(k).

Intuitively, the first elements of p̂(·) are more likely to be associated with non-significant
edges while the last elements are more likely to be associated with significant edges.

Let G0 = (V,E0) be the (unknown) true network structure. The ideal configuration
p̃(·) of p̂(·) is of the form {0, . . . , 0, 1, . . . , 1} where

p̃(i) =

{
1 e(i) ∈ E0

0 e(i) ̸∈ E0

.

This configuration characterizes every edge as either significant or non-significant without
any uncertainty. The empirical CDFs of p̂(·) and p̃(·) are given by1

Fp̂(·)(x) =
1

k

k∑
i=1

1{p̂(i)≤x}, x ∈ [0, 1];

Fp̃(·)(x) =


0 x ∈ (−∞, 0)

t x ∈ [0, 1)

1 x ∈ [1,∞)

.

Note the scalar t ∈ [0, 1] corresponds to the fraction of elements of p̃(·) equal to zero
and is a measure of the fraction of non-significant edges in the true structure G0. This
provides a threshold for separating the elements of p̃(·), namely:

e(i) ∈ E0 ⇐⇒ p̃(i) > F−1
p̃(·)

(t), (5.1)

where F−1
p̃(·)

(t) = infx∈R{Fp̃(·)(x) ≥ t} is the quantile function.

1The indicator function in Fp̂(·) should be 1{pi≤x} instead of 1{pi<x}. This was a typo in the original
paper.

59



5.3.2 Estimating Threshold

The threshold t can be estimated by approximating the ideal, asymptotic empirical CDF
Fp̃(·) with its finite sample estimate Fp̂(·) . Scutari and Nagarajan [82] proposed to use the
L1 norm given by,

L1(t; p̂(·)) =

∫ ∣∣∣Fp̂(·)(x)− Fp̃(·)(x; t)
∣∣∣ dx.

Since Fp̂(·) is piecewise constant, changing value only at p̂(i)’s, we can write

L1(t; p̂(·)) =
∑

xi∈{{0}∪p̂(·)∪{1}}

|Fp̂(·)(xi)− t|(xi+1 − xi).

Scutari and Nagarajan [82] propose to use linear programming to find the t̂ ∈ [0, 1] that
minimizes L1(t; p̂(·)) (line 9 of Algorithm 5.1). The full procedure of Scutari and Nagara-
jan [82] is summarized in Algorithm 5.1. The threshold t̂ can then be used as in rule
(5.1) to identify significant edges. We now present our main result (Theorem 5.1) on the
deterministic value of t̂ below.

Algorithm 5.1: The threshold selection method from Scutari and Nagarajan [82].

Input: ej ∈ {0, 1} indicating whether edge ej is present in the ground truth
network.

Input: êjm ∈ {0, 1} indicating whether edge ej is present in the collected m-th
network.

Output: The threshold t̂.

1 for j ∈ {1, 2, · · · , n(n− 1)/2} do
2 Oej = 0 ; /* Initialize the occurrences of edge ej. */

3 for m ∈ {1, 2, · · · ,M} do
4 Oej = Oej + êjm;
5 end

6 P̂ (ej) =
Oej

M
;

7 end

8 Sort P̂ (ej) s.t. p̂(·) =
(
p̂(1), · · · , p̂(j)

)
, p̂(1) ≤ · · · ≤ p̂(j);

9 Find t̂ ∈ [0, 1] that minimizes L1(t; p̂(·)).

Theorem 5.1. L1(t; p̂(·)) attains its global minimum at t̂ = Fp̂(·)(x = 0.5).

60



Proof. Let Q := {0}∪ p̂(·)∪{1} and ∆xi := xi+1−xi for i ∈ {0, 1, . . . , k}. By the definition
of L1(t; p̂(·)),

L1(Fp̂(·)(0.5); p̂(·)) =
∑
xi∈Q

| Fp̂(·)(xi)− Fp̂(·)(0.5) | ∆xi

=
∑

xi∈{qi|qi<0.5}

(−Fp̂(·)(xi) + Fp̂(·)(0.5))∆xi

+
∑

xi∈{qi|qi>0.5}

(Fp̂(·)(xi)− Fp̂(·)(0.5))∆xi.

For any δ ∈ R+, observe that

L1(Fp̂(·)(0.5 + δ); p̂(·))− L1(Fp̂(·)(0.5); p̂(·))

= (Fp̂(·)(0.5 + δ)− Fp̂(·)(0.5))

·

 ∑
xi∈{qi|qi<0.5+δ}

∆xi −
∑

xi∈{qi|qi>0.5+δ}

∆xi


= (Fp̂(·)(0.5 + δ)− Fp̂(·)(0.5))

·
(
sup
Q
{qi | qi < 0.5 + δ} − (1− inf

Q
{qi | qi > 0.5 + δ})

)
.

If Fp̂(·)(0.5 + δ) = Fp̂(·)(0.5), then the difference is zero. If Fp̂(·)(0.5 + δ) > Fp̂(·)(0.5),
i.e., {qi | 0.5 < qi ≤ 0.5 + δ} ̸= ∅, it follows that supQ{qi | qi < 0.5 + δ} > 0.5 and
1 − infQ{qi | qi > 0.5 + δ} < 0.5, and the difference is positive. Therefore, L1(Fp̂(·)(0.5 +
δ); p̂(·)) ≥ L1(Fp̂(·)(0.5); p̂(·)). A mirror argument proves that L1(Fp̂(·)(0.5 − δ); p̂(·)) ≥
L1(Fp̂(·)(0.5); p̂(·)). Combining the two inequalities, we conclude that L1(Fp̂(·)(0.5); p̂(·)) is
the global minimum.

Following Theorem 5.1, the optimal cutoff value for empirical edge probabilities in terms
of the L1 norm is 0.5, formally e(i) ∈ E0 ⇐⇒ p̂(i) > 0.5. This suggests that using linear
programming to find the t̂ ∈ [0, 1] that minimizes L1(t; p̂(·)) would yield results equivalent
to t̂ = Fp̂(·)(x = 0.5). See Example 5.1 for a demonstration.

Example 5.1 (Threshold selection from Scutari and Nagarajan [82]). Suppose we have a
probability vector p̂(·) = {0.1, 0.2, 0.4, 0.8}. Following Scutari and Nagarajan [82], we want

61



to optimize the fraction of insignificant edges t s.t. L1(t; p̂(·)) is minimized, i.e.,

argmin
t

L1(t; p̂(·)) =
∑

xi∈{0,0.1,0.2,0.4,0.8,1}

|Fp̂(·)(xi)− t|(xi+1 − xi)

We can calculate the values for L1(t; p̂(·)) at each cutoff value c that alters t (See Table 5.2).
As we have proven in Theorem 5.1, the global minimum of L1(t; p̂(·)) is attained at t̂ =
Fp̂(·)(x = 0.5) = 0.75, which corresponds to any c ∈ [0.4, 0.8). This is why the optimization
method would yield a cutoff value that is equivalent to the constant cS = 0.5.

Table 5.2: Comparison of the cutoff value c and its corresponding fraction of insignificant
edges t and the L1 norm. Note that the L1 norm is minimized when t = 0.75, which
corresponds to c ∈ [0.4, 0.8).

c t = Fp̂(·)(x = c) L1(t; p̂(·))

0 0 0.625
0.1 0.25 0.545
0.2 0.5 0.425
0.4 0.75 0.225
0.5 0.75 0.225
0.8 1 0.315

5.4 Identify Edges: Our Learning Approach

In this section, we present our simple transfer learning approach for selecting a threshold
that directly optimizes a desired metric.

The result of learning a set of plausible networks from a dataset and performing model
averaging is an estimate P̂ (ej), for each possible edge ej, representing the probability
or the confidence that the edge ej is present in the true network structure. Note that in
contrast to the more standard methodology of supervised learning where a dataset contains
a distinguished class variable, BNSL with model averaging builds this predictive model
in an unsupervised manner. However, the key to our learning approach for determining
effective thresholds is to setup threshold selection as a supervised machine learning task.
To do this we need to specify how to obtain labeled data and which loss function is to be
used in learning.

62



To obtain labeled data for our supervised approach, we start with ground truth Bayesian
networks that are either existing human-constructed BNs or learned using a scoring func-
tion on a dataset. These ground truth networks are then sampled to generate datasets of
various sizes from which sets of plausible networks are learned using a variety of scoring
functions and model averaging methods. Model averaging is then used to obtain the es-
timates P̂ (ej) and the ground truth networks are used to determine whether the edge is
present. We refer to a particular combination of ground truth network, dataset, scoring
function, and model averaging method as an instance.

Algorithm 5.2: Determine the optimal threshold from proxy instances.

Input: {ej}i indicating whether edge ej ∈ {0, 1} is present in the ground truth
network of instance i.

Input: {êjm}i indicating whether edge ej ∈ {0, 1} is present in the collected m-th
network of instance i.

Output: The optimal threshold c∗.

1 c∗ ← 0.0;
2 metric∗ ← 0.0 ; /* To maximize the metric. */

3 for c ∈ {0.05, 0.10, · · · , 0.95} do
4 for i ∈ {1, 2, · · · , N} do
5 for j ∈ {1, 2, · · · , n(n− 1)/2} do
6 Oej = 0 ; /* Initialize the occurrences of edge ej. */

7 for m ∈ {1, 2, · · · ,M} do
8 Oej = Oej + êjm;
9 end

10 êj =
Oej

M
> c;

11 end
12 metrici = Metric({ej}i, {êj}i);
13 if metrici > metric∗ then
14 metric∗ = metrici;
15 c∗ = c;

16 end

17 end

18 end

As loss functions or performance metrics for the effectiveness of a threshold on an
instance, we use both the cost-insensitive SHD (H), and cost-sensitive Fβ scores and mis-

63



classification cost Cα, and all of them are defined in Section 2.4.

For each instance, the value of the metrics can be determined by a threshold c that
defines the set of significant edges, i.e., êj = 1 ⇐⇒ p̂j > c. We cast the threshold
learning problem as a transfer learning problem that aims to provide a threshold value for
any target dataset using the value learned from a wide range of proxy datasets. Denote
our threshold as c∗(β) that determines the set of significant edges for all proxy instances
at a given value of β. Let F ∗

β = maxc Fβ(c) be the optimal Fβ value for each instance from
the proxy datasets. The value of c∗(β) can then be determined by minimizing the mean
absolute error as follows,

c∗(β) = argmin
c

1

K

K∑
i=1

| [F ∗
β ]i − [Fβ(c)]i |,

where K is the number of proxy instances. Similarly, the value of c∗(α) and c∗(H) for
misclassification cost and SHD, respectively, can be determined by minimizing the mean
relative error,

c∗(α) = argmin
c

1

K

K∑
i=1

| [C∗
α]i − [Cα(c)]i |
ni(ni − 1)

,

c∗(H) = argmin
c

1

K

K∑
i=1

| [H∗]i − [H(c)]i |
ni(ni − 1)

,

where ni is the number of variables. We minimize over c ∈ {0.0, 0.05, ..., 0.95} to avoid
making finer distinctions that are not justified by the data and to make our recommen-
dations for suitable thresholds more applicable in practice. We found that the values of
c∗(β), c∗(α), and c∗(H) stay the same or almost the same if we minimize mean squared
error instead of the mean absolute error, suggesting that the thresholds we learned are
robust.

Finally, we evaluate the learned threshold values on a target dataset. The key to
learning an effective threshold is to minimize over all proxy instances—combinations of
ground truth network, dataset, scoring function, and search algorithm—rather than over
individual edges to avoid having the contributions of larger networks in the training set
overwhelm the contributions of smaller networks. We learned thresholds that are dependent
on dataset size N , scoring function, and model averaging method as it was found that these
additional features significantly altered the values of the threshold. The number of variables
n in the dataset did not significantly alter the values of the threshold and was not included
as an additional feature.

64



Table 5.3: UCI datasets (left, middle) and bnlearn Bayesian networks (right), where n is
the number of variables in the dataset or network, and N is the number of instances in the
original UCI dataset.

UCI dataset n N
shuttle 10 58,000
census income 14 48,842
letter 17 20,000
online shopping 18 12,330
lymphography 19 148
hepatitis 20 155
parkinsons 23 195
credit card 24 30,000

UCI dataset n N
robot navigation 25 5,456
horse colic 27 368
steel 28 1,941
flags 29 194
breast cancer 31 569
soybean 36 683
biodeg 42 1,055
spectf heart 45 267

network n
sachs 11
child 20
insurance 27
water 32
mildew 35
alarm 37
barley 48
hailfinder 56
heparII 70
win95pts 76

In the next section, we experimentally compare our approach to other approaches.
In the remainder of this chapter, we cast previous approaches into a common notation.
Recall that the threshold in Broom et al. [7] uses a permutation test to determine the
number of false positives. For the i-th instance, let [Gp]i = (X , [Ep(c)]i) be the learned
BN in the permutation test and [Gb]i = (X , [Eb(c)]i) from the original dataset, where the
significant edges in both networks are identified by the threshold c. The threshold seeks to
maximize the gap between [Ep(c)]i and [Eb(c)]i, formally [cB]i = argmaxc{

∑
ej∈[Eb(c)]i

ej −∑
ej∈[Ep(c)]i

ej}. Similarly, the threshold in Gross et al. [39] can be defined as [cG]i =

1/3 +
√
2/Mi, where Mi is the size of the set of BNs collected for instance i. Since

we proved that the optimization method in Scutari and Nagarajan [82] yields a fixed
probability threshold for all instances, we can define such a threshold as cS = 0.5.

As a baseline point of comparison, we also consider the special threshold values cFβ
=

1/(1 + β2). Let F ∗
β be the optimal Fβ score achievable by a model. Then the optimal

threshold c∗Fβ
is given by c∗Fβ

= F ∗
β/(1 + β2) assuming that the probabilities are perfectly

calibrated (see [60, 53, 101, 103]). Of course, in practice one does know F ∗
β . However, for

any instance we know that F ∗
β ≤ 1. Thus, the optimal threshold is always less than or

equal to 1/(1 + β2) (but can be much less than 1/(1 + β2)). In contrast to cost-sensitive
classification (where the decision rule is directly derivable from the costs), the decision
rule (i.e., the threshold) for Fβ is not directly derivable and only bounds are known so far.

65



The threshold in the Fβ case will be some function of training set size, as in general the
maximum attainable Fβ value increases as the amount of data increases. Besides cFβ

, we
also use cCα = 1/(1 + α) as the optimal threshold for Cα assuming that the probabilities
are perfectly calibrated (see, e.g., [33] and references therein). Note that cB and cG are
unique for each instance whereas cS, c

∗(β), c∗(α), cFβ
, cCα and c∗(H) are applicable to all

instances.

5.5 Meta Ensembles

In Chapter 4, we compared a broad range of scoring functions and examined which one
is the best single scoring function to use under two ensemble frameworks, namely boot-
strap (bagging) and (Bayesian) model averaging using the credible set. Although we find
that qNML is the best contender for knowledge discovery using the exact credible set ap-
proach, and BDeu using bootstrapping, in most real world scenarios, there still exist many
instances where the recommended score is outperformed by others. Since the threshold
selection task is aimed at producing a prediction on whether the edge exists or not, we
can use another layer of ensemble methods in the supervised learning scenario to boost
the performance over using a single scoring function, and we call this layers of ensemble
methods meta ensembles. Many ensemble generation techniques are applicable in com-
bining information from different scores/network sets, and we consider two approaches to
demonstrate the effectiveness of meta ensembles — majority/weighted voting over the re-
sults from all scoring functions, and gradient boosted trees for algorithmic combination of
predictions (also called stacking).

As the name suggests, majority voting would consider each score as an equal party,
and the prediction would be that the edge exists if more than half of the scores predicted
its existence. Weighted voting goes a step further and allow us to give more credit to the
scores that are more reliable than others. Despite our effort at trying out different weights,
we are unable to produce better results than using a single score (qNML for the credible set
and BDeu for bootstrap). Upon further examination, we note that unlike normal ensemble
settings, we have a rather dominant learner (score) comparing to all learners, and so a
linear combination of predictions without considering the context does not really work.
We omit the voting results below and only focus on the non-linear gradient boosted tree.

To utilize predictions from each score with extra information about the context, we use
the sample sizes and β or α values as the score invariant information, and the probability
of the edge, the deviation from the threshold, and the predictions as the score specific

66



information in the final ensemble model. Then we feed all information to sklearn’s Gradi-
entBoostingClassifier with default hyperparameters as an illustrative combiner algorithm.
The final model also builds the training data using stratified sampling to prevent larger
networks from dominating the learning process.

5.6 Experimental Evaluation

The structure learning and threshold selection experiments were conducted on a shared
server with 346 GB RAM and Intel Xeon Gold 6148 at 2.4 GHz. For scoring the datasets
memory usage was limited to 64 GB and for structure learning a limit of 128 GB was
imposed. For both scoring and learning, a computation time limit of 24 hours was imposed
for each instance. Properties of the datasets are summarized in Table 5.3.

Table 5.4: Comparison of threshold selection methods when the performance metric
is SHD for the bootstrap and credible set model averaging approaches. At each row,
the aggregated Borda count is shown when comparing the selection methods on a set of
experiments that consist of three samples from each ground truth network and dataset
sample sizes of N = 50, 100, 500, 1000, 5000, 10000.

Method Scutari Broom Gross ML
Bootstrap 5,568 2,275 5,864 6,166
Credible set 6,468 3,210 4,336 6,853

5.6.1 Setup

To empirically study the threshold selection methods, we considered a wide selection of
datasets from the UCI repository2 and networks from the bnlearn Bayesian network repos-
itory3 (see Table 5.3). We preprocessed the UCI datasets using a k-nearest neighbor
imputation algorithm, with k = 5, to fill in missing values and a supervised discretiza-
tion method based on the MDL principle to discretize continuous variables. We used a
total of 90 ground truth BNs: 10 ground truth BNs came from the bnlearn repository and

2https://archive.ics.uci.edu/ml
3https://www.bnlearn.com/bnrepository/

67

https://archive.ics.uci.edu/ml
https://www.bnlearn.com/bnrepository/


Table 5.5: Comparison of threshold selection methods when the performance metric is
multi-class Fβ score on directed edges. At each β, the aggregated Borda count is shown
when comparing the selection methods on a set of experiments that consist of three samples
from each ground truth network and dataset sample sizes of N = 50, 100, 500, 1000, 5000,
10000.

β Scutari Broom Gross cFβ
ML

Bootstrap

1/4 8,777 5,526 8,532 4,698 9,034
1/2 8,169 6,201 8,612 4,614 9,516
1 4,634 7,316 7,427 4,634 9,117
2 5,071 8,092 6,447 8,347 9,193
4 4,479 9,204 5,966 9,288 8,815

Credible set

1/4 11,196 7,034 8,513 6,336 10,728
1/2 10,130 7,243 8,225 7,119 9,897
1 5,932 7,114 6,307 5,932 6,460
2 7,946 7,178 7,158 7,664 8,841
4 7,684 7,540 6,883 8,552 9,667

a further 80 ground truth BNs were constructed following a similar approach to Liu et
al. [61] by (i) scoring each of the 16 UCI datasets using each of the five scoring functions
AIC [2], BIC/MDL [80, 55], BDeu [8, 42], qBDJ [93], and qNML [89] in turn, (ii) learning
an optimal network structure from each scored dataset, and (iii) and fitting the parameters
to each structure to give a final Bayesian network. Given the 90 ground truth BNs, we
used the logic sampling function rbn from the bnlearn R package [81] to generate random
samples of sizes N = 50, 100, 500, 1,000, 5,000, and 10,000 from the bif files. We collected
three samples for each dataset size N , for a total of 18 samples for each ground truth BN.

To evaluate the threshold selection methods within the bootstrap approach to model
averaging, we used the implementation available as the function boot.strength from the
bnlearn R package [81]. We used the default replication factor of 200, the default equivalent
sample size for BDeu of 1, and the tabu search algorithm, as in preliminary experiments
the tabu algorithm performed better than the alternative hill climbing algorithm. Due
to score availability in bnlearn, we only consider AIC, BDeu, and BIC in the bootstrap
experiments. A total of 4,320 bootstrap experiments were performed.

To evaluate the scoring functions within the credible set model averaging framework,
we implemented the scoring functions AIC, BDeu, BIC, and qNML in Python and used the

68



Table 5.6: Comparison of threshold selection methods when the performance metric is
Fβ score on undirected edges. At each β, the aggregated Borda count is shown when
comparing the selection methods on a set of experiments that consist of three samples
from each ground truth network and dataset sample sizes of N = 50, 100, 500, 1000, 5000,
10000.

β Scutari Broom Gross cFβ
ML

Bootstrap

1/4 8,328 2,265 6,855 8,474 10,306
1/2 7,969 3,596 7,316 7,234 9,060
1 4,583 5,883 6,629 4,583 7,950
2 4,790 7,910 5,903 8,226 8,944
4 4,134 8,942 5,218 9,356 9,030

Credible set

1/4 7,027 3,866 4,546 8,823 8,684
1/2 6,981 4,760 5,068 7,814 7,763
1 4,321 5,719 5,500 4,321 7,031
2 5,394 6,261 6,322 7,535 8,618
4 5,038 6,298 5,849 8,924 9,753

eBNSL package [58], an extended version of GOBNILP [6], for collecting the credible networks.
For AIC and BIC, eBNSL sets the limit on the size of the parent set based on the pruning
rule that guarantees optimality, whereas for other scores there is no known explicit limit.
Then all networks falling into a Bayes factor (BF) of 150 were collected with a counting
limit of 100,000. Since the scores under consideration are all score equivalent [18], i.e., BNs
of the same equivalence class have the same score, the choice of exact structure learning
algorithm does not affect the learned set of credible networks. We also set the equivalent
sample size for BDeu to 1, while other scores do not have hyperparameters. A total of
5,940 credible set experiments were performed.

The values for cG, cS, c
∗(β), c∗(α), and c∗(H) can be determined directly from the

empirical probabilities. The values for cFβ
and cCα can be determined for specific β or

α. For the method of Broom et al. [7], the threshold cB requires a separate permutation
test, where all columns of the dataset are randomized to create permuted datasets. The
process is repeated 60 times as in the original paper since we want to replicate the original
results. The threshold is then determined by the optimization step mentioned above. The
method of Gross et al. [39] is a threshold for identifying directed edges. However, in their
evaluation they adapt it to identify undirected edges and for Cα and Fβ, we used their
adaptation as well.

69



Table 5.7: Comparison of threshold selection methods when the performance metric is
misclassification cost on undirected edges; i.e., α × FN + FP. At each α, the aggregated
Borda count is shown when comparing the selection methods on a set of experiments
that consist of three samples from each ground truth network and dataset sample sizes of
N = 50, 100, 500, 1000, 5000, 10000.

α Scutari Broom Gross cCα ML

Bootstrap

1/4 7,785 1,925 6,307 9,144 9,746
1/2 7,250 2,630 6,254 7,858 8,335
1 5,277 3,433 5,931 5,277 7,273
2 6,364 4,927 6,805 7,064 7,774
4 5,503 6,777 6,504 8,119 8,584

Credible set

1/4 6,878 3,468 4,182 8,982 9,540
1/2 6,403 3,613 4,056 7,587 8,399
1 4,688 3,906 4,027 4,688 6,798
2 6,098 5,158 4,843 5,112 6,750
4 5,904 5,992 6,503 7,193 7,808

5.6.2 Results and Discussion

Comparison of Thresholds

The results from comparison of the threshold selection methods are summarized in Table 5.4
for SHD, Table 5.5 for multi-class FCPDAG

β , Table 5.6 for binary Fβ, and Table 5.7 for
misclassification cost Cα. The experimental results are aggregated using the Borda count.
For the SHD and misclassification cost Cα performance metrics, our proposed threshold is
the clear winner. Recall that when β < 1, the Fβ measure gives more weight to precision
and vice versa. In Table 5.6 (Fβ), the special threshold cFβ

has some advantages in a
high recall case (β = 8) when the networks come from bootstrap, and in a high precision
scenarios (β < 1) when the networks are collected using the credible set. In Table 5.5
(FCPDAG

β ), the special threshold cFβ
also maintains a slight lead in a high recall case (β = 8)

when the networks come from bootstrap. The winners on the credible set are less clear
with the constant threshold (Scutari) taking the high precision scenarios (β < 1), the
permutation test (Broom) taking the F1, and our approach (ML) taking the high recall
scenarios (β > 1).

We present the values of the recommended thresholds for SHD in Table 5.8, for multi-

70



Table 5.8: Recommended thresholds for model averaging using the bootstrap and credible
set approaches when the performance measure is the structural Hamming distance, for
various dataset sizes N and scoring functions.

Bootstrap Credible set
N AIC BDeu BIC AIC BDeu BIC qNML
50, 100 0.35 0.50 0.25 0.60 0.95 0.50 0.75
500, 1000 0.45 0.30 0.25 0.50 0.50 0.50 0.50
5000, 10000 0.45 0.40 0.45 0.50 0.50 0.50 0.50

class FCPDAG
β in Figure 5.1, for binary Fβ score in Figure 5.2, and for misclassification cost

Cα in Figure 5.3. In Table 5.8, the preferred thresholds using bootstrap are always below
0.5, regardless of the scoring functions. On the other hand, using credible set we can often
leave the threshold at 0.5 given a moderate amount of data. Recall that when β < 1, the
Fβ measure gives more weight to precision and vice versa. As expected, the threshold shifts
lower as we give more weight to recall and less to precision, i.e., from β = 1/8 to β = 8. As
the dataset size grows, the threshold curve tends to shift higher, indicating the presence of
more spurious edges. Note that with sufficient data and when the networks are collected
using credible set (bottom right, Figure 5.1), the preferred threshold stays at 0.5 for all
values of β under consideration. This is consistent with our observations on SHD because
both metrics operate on CPDAG. On misclassification cost (Figure 5.3), we can observe
the same trends as when α < 1, the Cα puts more pressure on reducing FP (which leads
to better precision), and vice versa. Given a data analysis scenario, an application-specific
tradeoff between precision and recall can be used to determine the recommended threshold
from the given plots.

As is standard, our final recommended thresholds were learned using all of the in-
stances. However, when evaluating and comparing to previous proposals, we used leave-
one-benchmark-out cross-validation. For example, if we want to get the Fβ values on alarm,
we use all other benchmarks such as insurance and barley to learn the threshold c∗(β) and
then identify significant edges in alarm with such a threshold.

Our examination of the application literature (see Table 5.1) indicates a strong prefer-
ence for precision over recall; i.e., β < 1. For example, the thresholds in the two medicine
studies [62, 64] are consistent with our recommended values for β = 1/8, whereas the other
medicine study [73] used a threshold corresponding to β = 1/2. Our approach allows one
to explicitly incorporate domain knowledge and target metrics in setting the threshold,

71



and thus removes a potentially confounding factor from a data analysis.

Bootstrap vs. Credible Set

The results from comparison of bootstrap vs. the credible set are summarized in Figure 5.4
for SHD and multi-class FCPDAG

β , and in Figure 5.5 for binary Fβ and misclassification cost
Cα. The curves in the plot represents the cumulative metrics values, possibly on log scale.
The SHD plot (top, Figure 5.4) shows that credible set with the qNML score has a clear
advantage over all other combinations (lower is better). The same conclusion can be drawn
from the multi-class FCPDAG

β plot (bottom, Figure 5.4) where higher is better, and from the
misclassification cost Cα plot (top, Figure 5.5) where lower is better. The binary Fβ plot
(bottom, Figure 5.5), however, shows some mixed results with bootstrap with the BDeu
score taking the lead for a third of the instances, and credible set with the qNML score
picking up with more instances.

The results suggest that the credible set approach produces better structure reconstruc-
tion results than the bootstrap approach in most cases, and that the qNML score works
very well with the credible set to achieve great network reconstruction quality in the model
averaging paradigm.

5.6.3 Ensemble Results

In this context, ensemble generation relies heavily on being able to score efficiently, so the
two problems work together.

The results from comparison of bootstrap meta ensemble with bootstrap model av-
eraging method are summarized in Figure 5.6 for SHD and multi-class FCPDAG

β , and in
Figure 5.7 for binary Fβ and misclassification cost Cα. The curves in the plot represents
the cumulative metrics values, possibly on log scale. The SHD plot (top, Figure 5.6) shows
that bootstrap meta ensemble is on par with the bootstrap model averaging method with
BDeu (lower is better), and the same can be observed also in the misclassification cost
Cα plot (top, Figure 5.7) where lower is better. On the other hand, both the multi-class
FCPDAG
β plot (bottom, Figure 5.6) and the binary Fβ plot (bottom, Figure 5.7) show that

the ensemble outperforms other scores.

The results from comparison of credible set meta ensemble with credible set model
averaging method are summarized in Figure 5.8 for SHD and multi-class FCPDAG

β , and in
Figure 5.9 for binary Fβ and misclassification cost Cα. The curves in the plot represents

72



the cumulative metrics values, possibly on log scale. The SHD plot (top, Figure 5.8)
shows that credible set meta ensemble has mixed results with the credible model averaging
method with the best scores (qNML and BDeu) (lower is better), and the same can be
observed also the multi-class FCPDAG

β plot (bottom, Figure 5.8), where higher is better. The
misclassification cost Cα plot (top, Figure 5.9) where lower is better, and the binary Fβ plot
(bottom, Figure 5.9), where higher is better, show that the ensemble clearly outperforms
other scores.

When we combine multiple scores in a specific network collection approach, the binary
Fβ always reflects superior performance over results from using a single score, whereas the
SHD has more mixed results that are on par with the best choice of scores within each
framework. Since there is an uneven improvement brought by combining scores within
each framework, by further combining results from both frameworks, we expect that all
four metrics should have some improvements over the previous best results using a single
score in each framework.

The results from comparison of meta ensemble using combined features with bootstrap
and credible set ensemble methods are summarized in Figure 5.10 for SHD and multi-class
FCPDAG
β , and in Figure 5.11 for binary Fβ and misclassification cost Cα. The curves in the

plot represents the cumulative metrics values, possibly on log scale. The SHD plot (top,
Figure 5.8) shows perhaps the least amount of improvement over bootstrap or credible set
model averaging method with the best scores (qNML and BDeu) (lower is better), which
is consistent with the earlier observation that SHD is on par with the best score within
each framework. The other 3 metrics show that the meta ensemble combining both scores
and frameworks clearly outperforms other approaches using a single score.

We also explored whether building separate models based on the dataset size would
improve the results, and we note that building three separate models based on the sample
size groups (50, 100), (500, 1,000), and (5,000, 10,000) does not make a difference over
building a single model with sample size as a feature.

5.7 Summary

A fundamental step in the data analysis methodology using BNs is to identify significant
edges from a set of BNs learned with the well-known score-and-search approach. Selecting
a reasonable threshold has broad implications for the success of the analysis. However, the
problem of selecting a good threshold has received limited attention in the literature. In
this chapter, we identified an important shortcoming in a widely used threshold selection

73



method. In particular, we proved that the optimization method of Scutari and Nagarajan
[82] is in fact equivalent to a fixed threshold of c = 0.5 for all instances. We then proposed a
simple transfer learning approach for maximizing a target metric and selecting a threshold
that can be generalized from proxy datasets to the target dataset. We addressed the imbal-
ance classification problem of edges by considering both the structural Hamming distance
and the cost-sensitive Fβ and Cα measures with varying tradeoffs between precision/FP
and recall/FN. We also pushed the boundaries of performance by using meta ensembles on
top of the existing model averaging methods. In our experimental evaluation on a broad
set of benchmarks from bnlearn and UCI datasets, the proposed threshold performs signif-
icantly better than previous approaches in almost all scenarios and performs competitively
on the others. We also demonstrated that the credible set approach produces better struc-
ture reconstruction results than the bootstrap approach in most cases, and that the qNML
score works very well with the credible set to achieve great network reconstruction quality
in the model averaging paradigm. In addition, the meta ensembles combining across scores
and model averaging frameworks further improve all metrics over using a single score in a
framework. Considering the bootstrap, credible set, and the meta ensembles, we conclude
that performance wise the ranking would be meta ensembles > credible set > bootstrap,
whereas resource wise it would be the reverse. Our results suggest that one needs to make
a more intricate and informed decision of the threshold on edges no matter which sampling
methods or scores are used in learning the structures.

74



Figure 5.1: Recommended thresholds for model averaging using the bootstrap (lhs) and
credible set (rhs) approaches when the performance measure is the multi-class Fβ score
for predicting directed edges, for various β, dataset sizes N , and scoring functions; (top)
N = 50, 100; (middle) N = 500, 1000; (bottom) N = 5000, 10000. Note that the four
curves in the bottom right plot perfectly overlap.

75



Figure 5.2: Recommended thresholds for model averaging using the bootstrap (lhs) and
credible set (rhs) approaches when the performance measure is the Fβ score for predicting
undirected edges, for various β, dataset sizes N , and scoring functions; (top) N = 50, 100;
(middle) N = 500, 1000; (bottom) N = 5000, 10000;

76



Figure 5.3: Recommended thresholds for model averaging using the bootstrap (lhs) and
credible set (rhs) approaches when the performance measure is the misclassification cost
α × fn + fp for predicting undirected edges, for various α, dataset sizes N , and scoring
functions; (top) N = 50, 100; (middle) N = 500, 1000; (bottom) N = 5000, 10000.

77



Figure 5.4: Comparison of bootstrap and credible set model averaging methods, for var-
ious scoring functions and performance measures for directed edges: Structural Hamming
distance (top); multi-class Fβ score (bottom). All methods used machine learned thresh-
olds.

78



Figure 5.5: Comparison of bootstrap and credible set model averaging methods, for
various scoring functions and performance measures for undirected edges (skeleton): Mis-
classification cost (top); Fβ score (bottom). All methods used machine learned thresholds.

79



Figure 5.6: Comparison of bootstrap meta ensemble with bootstrap model averaging
method, for various scoring functions and performance measures for directed edges: Struc-
tural Hamming distance (top); multi-class Fβ score (bottom). All methods used machine
learned thresholds.

80



Figure 5.7: Comparison of bootstrap meta ensemble with bootstrap model averaging
method, for various scoring functions and performance measures on undirected edges (skele-
ton): Misclassification cost (top); Fβ score (bottom). All methods used machine learned
thresholds.

81



Figure 5.8: Comparison of credible set meta ensemble with credible set model averaging
method, for various scoring functions and performance measures for directed edges: Struc-
tural Hamming distance (top); multi-class Fβ score (bottom). All methods used machine
learned thresholds.

82



Figure 5.9: Comparison of credible set meta ensemble with credible set model averag-
ing method, for various scoring functions and performance measures on undirected edges
(skeleton): Misclassification cost (top); Fβ score (bottom). All methods used machine
learned thresholds.

83



Figure 5.10: Comparison of meta ensemble using combined features with bootstrap and
credible set ensemble methods, for various performance measures for directed edges: Struc-
tural Hamming distance (top); multi-class Fβ score (bottom). All methods used machine
learned thresholds.

84



Figure 5.11: Comparison of meta ensemble using combined features with bootstrap and
credible set ensemble methods, for various performance measures on undirected edges
(skeleton): Misclassification cost (top); Fβ score (bottom). All methods used machine
learned thresholds.

85



Chapter 6

Conclusions

This thesis presents a few improvements to BNSL in the model averaging paradigm. Ex-
isting exact approaches for model averaging for BNSL either severely restrict the structure
of the Bayesian network or have only been shown to scale to networks with fewer than
30 random variables. In Chapter 3, we proposed the credible set approach to model aver-
aging inspired by performance guarantees in approximation algorithms that considers all
networks within a factor of optimal. Our approach has two primary advantages. First, our
approach only considers credible models in that they are optimal or near-optimal in score.
Second, our approach is significantly more efficient and scales to much larger Bayesian net-
works than existing exact approaches. We modified GOBNILP [6], a state-of-the-art method
for finding an optimal Bayesian network, to implement our generalized pruning rules and
to find all near -optimal networks. Our experimental results demonstrate that the mod-
ified GOBNILP scales to significantly larger networks without resorting to restricting the
structure of the Bayesian networks that are learned.

Although the credible set approach is score agnostic, scoring functions can conflict in
their rankings and previous work has empirically studied their effectiveness with an aim
to provide recommendations on their use. However, previous studies on scoring functions
are limited by the small number and scale of the instances used in the evaluation and
by a focus on learning a single network. To provide more practical insights about the
scores, we studied five discrete scoring functions for BNSL in Chapter 4, namely AIC,
BIC, qNML, BDeu, and qBDJ. The credible set approach allow us to scale our experiments
to large BNs using an extension to GOBNILP, and to evaluate the scores with confidence
measures on structure discovery. We have addressed previous design limits by considering
multiple metrics for structure discovery including the SHD, the F-beta-measure, and the
misclassification cost. These cost sensitive metrics present a full picture with varying

86



tradeoffs between precision vs. recall and FP vs. FN. We used both the ground truth BNs
from bnlearn and real world UCI datasets in our structure learning tasks, and we are the
first to provide an extensive experimental study of scoring functions in a model averaging
framework. Contrary to previous recommendations in [61], we find that qNML is the best
contender for knowledge discovery using the exact credible set approach, and BDeu using
bootstrapping, in most real world scenarios. Our empirical study provides an insightful
look at discrete score functions for BNSL and closes the gap in evaluating BN structures
with confidence measures.

With the desired scoring function and the model averaging framework, one can obtain
strength measures on all potential edges in a BN. A fundamental step in the data analysis
methodology using BNs is to identify significant edges from a set of BNs learned with
the well-known score-and-search approach. Selecting a reasonable threshold has broad
implications for the success of the analysis. However, the problem of selecting a good
threshold has received limited attention in the literature. In Chapter 5, we identified an
important shortcoming in a widely used threshold selection method. In particular, we
proved that the optimization method of Scutari and Nagarajan [82] is in fact equivalent
to a fixed threshold of c = 0.5 for all instances. We then proposed a simple transfer
learning approach for maximizing a target metric and selecting a threshold that can be
generalized from proxy datasets to the target dataset. We addressed the imbalanced clas-
sification problem of edges by considering both the structural Hamming distance and the
cost-sensitive Fβ and Cα measures with varying tradeoffs between precision/FP and re-
call/FN. We also pushed the boundaries of performance by using meta ensembles on top
of the existing model averaging methods. In our experimental evaluation on a broad set of
benchmarks from bnlearn and UCI datasets, the proposed threshold performs significantly
better than previous approaches in almost all scenarios and performs competitively on the
others. We also demonstrated that the credible set approach produces better structure re-
construction results than the bootstrap approach in most cases, and that the qNML score
works very well with the credible set to achieve great network reconstruction quality in
the model averaging paradigm. In addition, the meta ensembles combining across scores
and model averaging frameworks further improve all metrics over using a single score in a
framework. Considering the bootstrap, credible set, and the meta ensembles, we conclude
that performance wise the ranking would be meta ensembles > credible set > bootstrap,
whereas resource wise it would be the reverse. Our results suggest that one needs to make
a more intricate and informed decision of the threshold on edges no matter which sampling
methods or scores are used in learning the structures.

These results will be of interest to all researchers interested in using BN as a data
analysis tool in practice. We have seen studies using BN in banking [4], biology [12, 32],

87



medicine [62, 64, 73], safety [45], software [54], and sports [35]. Future studies using the
same data analysis framework could benefit from the improvements made in this thesis,
which allows researchers to draw conclusions from their observations in a principled way
with proper confidence measures.

88



References

[1] Silvia Acid, Luis M. de Campos, and Javier G. Castellano. Learning Bayesian net-
work classifiers: Searching in a space of partially directed acyclic graphs. Machine
Learning, 59(3):213–235, 2005.

[2] Hirotugu Akaike. Information theory and the maximum likelihood principle. In
Proceedings of the Second International Symposium on Information Theory, pages
267–281, 1973.

[3] Constantin F. Aliferis, Alexander Statnikov, Ioannis Tsamardinos, Subramani Mani,
and Xenofon D. Koutsoukos. Local causal and Markov blanket induction for causal
discovery and feature selection for classification. Part I: Algorithms and empirical
evaluation. Journal of Machine Learning Research, 11(1), 2010.

[4] Ioannis Anagnostou, Javier Sanchez, Sumit Sourabh, and Drona Kandhai. Conta-
gious defaults in a credit portfolio: A Bayesian network approach. Journal of Credit
Risk, 16:1–26, 2020.

[5] Xue Bai, Rema Padman, Joseph Ramsey, and Peter Spirtes. Tabu search-enhanced
graphical models for classification in high dimensions. INFORMS Journal on Com-
puting, 20(3):423–437, 2008.

[6] Mark Bartlett and James Cussens. Advances in Bayesian network learning using
integer programming. In Proceedings of the Twenty-Ninth Conference on Uncertainty
in Artificial Intelligence, pages 182–191, 2013.

[7] Bradley M. Broom, Kim-Anh Do, and Devika Subramanian. Model averaging strate-
gies for structure learning in Bayesian networks with limited data. BMC Bioinfor-
matics, 13(Suppl 13), 2012.

[8] Wray L. Buntine. Theory refinement of Bayesian networks. In Proceedings of the
Seventh Conference on Uncertainty in Artificial Intelligence, pages 52–60, 1991.

89



[9] Kenneth P. Burnham and David R. Anderson. Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach. Springer, 2nd edition, 2002.

[10] Cory Butz, Jhonatan S Oliveira, and Robert Peharz. Sum-product network decompi-
lation. In International Conference on Probabilistic Graphical Models, pages 53–64.
PMLR, 2020.

[11] Cory J. Butz, André E. dos Santos, Jhonatan S. Oliveira, and Christophe Gonzales.
On a simple method for testing independencies in Bayesian networks. Computational
Intelligence, 34(3):789–801, 2018.

[12] Cory J. Butz, André E. dos Santos, Jhonatan S. Oliveira, and John Stavrinides.
Efficient examination of soil bacteria using probabilistic graphical models. In In-
ternational Conference on Industrial, Engineering and other Applications of Applied
Intelligent Systems, pages 315–326. Springer, 2018.

[13] Alexandra M. Carvalho. Scoring functions for Bayesian networks. INESC-ID Tech.
Rep. 54, 2009.

[14] Eunice Yuh-Jie Chen, Arthur Choi, and Adnan Darwiche. Learning Bayesian net-
works with non-decomposable scores. In Proceedings of the Fourth IJCAI Work-
shop on Graph Structures for Knowledge Representation and Reasoning, pages 50–71,
2015. Available as: LNAI 9501.

[15] Eunice Yuh-Jie Chen, Arthur Choi, and Adnan Darwiche. Enumerating equivalence
classes of Bayesian networks using EC graphs. In Proceedings of the Nineteenth In-
ternational Conference on Artificial Intelligence and Statistics, pages 591–599, 2016.

[16] Eunice Yuh-Jie Chen, Adnan Darwiche, and Arthur Choi. On pruning with the MDL
score. International Journal of Approximate Reasoning, 92:363–375, 2018.

[17] Yetian Chen and Jin Tian. Finding the k-best equivalence classes of Bayesian network
structures for model averaging. In Proceedings of the Twenty-Eighth Conference on
Artificial Intelligence, pages 2431–2438, 2014.

[18] David M. Chickering. Learning equivalence classes of Bayesian network structures.
Journal of Machine Learning Research, 2:445–498, 2002.

[19] David M. Chickering, Christopher Meek, and David Heckerman. Large-sample learn-
ing of Bayesian networks is NP-hard. In Proceedings of the Nineteenth Conference
on Uncertainty in Artificial Intelligence, pages 124–133, 2003.

90



[20] David M. Chickering, David Heckerman, and Christopher Meek. Large-sample learn-
ing of Bayesian networks is NP-hard. Journal of Machine Learning Research, 5:
1287–1330, 2004.

[21] Gerda Claeskens and Nils Lid Hjort. Model Selection and Model Averaging. Cam-
bridge University Press, 2008.

[22] Diego Colombo and Marloes H. Maathuis. Order-independent constraint-based
causal structure learning. Journal of Machine Learning Research, 15(1):3741–3782,
2014.

[23] Gregory F. Cooper and Edward Herskovits. A Bayesian method for the induction of
probabilistic networks from data. Journal of Machine Learning Research, 9:309–347,
1992.

[24] James Cussens. GOBNILP: Learning Bayesian network structure with integer pro-
gramming. In International Conference on Probabilistic Graphical Models, pages
605–608, 2020.

[25] James Cussens and Mark Bartlett. GOBNILP 1.2 user/developer manual. University
of York, York, 2012.

[26] Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge
University Press, 2009.

[27] Denver Dash and Gregory F. Cooper. Model averaging for prediction with discrete
Bayesian networks. Journal of Machine Learning Research, 5:1177–1203, 2004.

[28] Cassio P. de Campos and Qiang Ji. Efficient structure learning of Bayesian networks
using constraints. Journal of Machine Learning Research, 12:663–689, 2011.

[29] Cassio P. de Campos, Mauro Scanagatta, Giorgio Corani, and Marco Zaffalon.
Entropy-based pruning for learning Bayesian networks using BIC. Artificial Intelli-
gence, 260:42–50, 2018.

[30] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017. URL
http://archive.ics.uci.edu/ml.

[31] Usama Fayyad and Keki Irani. Multi-interval discretization of continuous-valued
attributes for classification learning. In Proceedings of the Thirteenth International
Joint Conference on Artificial Intelligence, pages 1022–1029, 1993.

91

http://archive.ics.uci.edu/ml


[32] Wafa Feki-Sahnouna, Asma Hamzaa, Hasna Njahb, Mabrouka Barrajd, Nouha Mah-
foudia, Ahmed Rebaie, and Malika Bel Hassend. A Bayesian network approach
to determine environmental factors controlling Karenia selliformis occurrences and
blooms in the Gulf of Gabès, Tunisia. Harmful Algae, 63:119–132, 2017.

[33] Peter A. Flach. Classifier calibration. In Claude Sammut and Geoffrey I. Webb,
editors, Encyclopedia of Machine Learning and Data Mining. Springer, 2016.

[34] Nir Friedman, Moises Goldszmidt, and AbrahamWyner. Data analysis with Bayesian
networks: A bootstrap approach. In Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence, pages 196–205, 1999.

[35] Pilar Fuster-Parra, Alexandre Garćıa-Mas, Francisco Javier Ponseti Verdaguer, and
Francisco Miguel Leo. Team performance and collective efficacy in the dynamic
psychology of competitive team: A Bayesian network analysis. Human Movement
Science, 40:98–118, 2015.

[36] José A. Gámez, Juan L. Mateo, and José M. Puerta. Learning Bayesian networks by
hill climbing: efficient methods based on progressive restriction of the neighborhood.
Data Mining and Knowledge Discovery, 22(1-2):106–148, 2011.

[37] Maxime Gasse, Alex Aussem, and Haytham Elghazel. A hybrid algorithm for
Bayesian network structure learning with application to multi-label learning. Ex-
pert Systems with Applications, 41(15):6755–6772, 2014.

[38] Ambros Gleixner, Michael Bastubbe, Leon Eifler, Tristan Gally, Gerald Gam-
rath, Robert Lion Gottwald, Gregor Hendel, Christopher Hojny, Thorsten Koch,
Marco E. Lübbecke, Stephen J. Maher, Matthias Miltenberger, Benjamin Müller,
Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt, Franziska Schlösser, Christoph
Schubert, Felipe Serrano, Yuji Shinano, Jan Merlin Viernickel, Matthias Walter,
Fabian Wegscheider, Jonas T. Witt, and Jakob Witzig. The SCIP Optimiza-
tion Suite 6.0. Technical report, Optimization Online, July 2018. URL http:

//www.optimization-online.org/DB_HTML/2018/07/6692.html.

[39] Tadeu Junior Gross, Michel Bessani, Willian Darwin Junior, Renata Bezerra Araújo,
Francisco Assis Carvalho Vale, and Carlos Dias Maciel. An analytical threshold for
combining Bayesian networks. Knowledge-Based Systems, 175:36–49, 2019.

[40] Ru He, Jin Tian, and Huaiqing Wu. Structure learning in Bayesian networks of
moderate size by efficient sampling. Journal of Machine Learning Research, 17:1–54,
2016.

92

http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://www.optimization-online.org/DB_HTML/2018/07/6692.html


[41] David Heckerman. A tutorial on learning Bayesian networks. Technical Report
MSR-TR-95-06, Microsoft Research, 1995.

[42] David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian net-
works: The combination of knowledge and statistical data. Machine Learning, 20:
197–243, 1995.

[43] Jennifer A. Hoeting, David Madigan, Adrian E. Raftery, and Chris T. Volinsky.
Bayesian model averaging: A tutorial. Statistical Science, 14(4):382–401, 1999.

[44] Estevam R. Hruschka Jr. and Nelson F. F. Ebecken. Towards efficient variables
ordering for Bayesian networks classifier. Data & Knowledge Engineering, 63(2):
258–269, 2007.

[45] Steven Hwang, Linda Ng Boyle, and Ashis G. Banerjee. Identifying characteristics
that impact motor carrier safety using Bayesian networks. Accident Analysis and
Prevention, 128:40–45, 2019.

[46] Nathalie Japkowicz and Mohak Shah. Evaluating Learning Algorithms: A Classifi-
cation Perspective. Cambridge University Press, 2011.

[47] Sir Harold Jeffreys. Theory of Probability: 3d Ed. Clarendon Press, 1967.

[48] Markus Kalisch and Peter Bühlman. Estimating high-dimensional directed acyclic
graphs with the pc-algorithm. Journal of Machine Learning Research, 8(3), 2007.

[49] Robert E. Kass and Adrian E. Raftery. Bayes factors. Journal of the American
Statistical Association, 90(430):773–795, 1995.

[50] Mikko Koivisto and Kismat Sood. Exact Bayesian structure discovery in Bayesian
networks. Journal of Machine Learning Research, 5:549–573, 2004.

[51] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and
Techniques. The MIT Press, 2009.

[52] Kevin B. Korb and Ann E. Nicholson. Bayesian Artificial Intelligence. CRC press,
2010.

[53] Oluwasanmi Koyejo, Nagarajan Natarajan, Pradeep Ravikumar, and Inderjit S.
Dhillon. Consistent binary classification with generalized performance metrics. In
Advances in Neural Information Processing Systems, pages 2744–2752, 2014.

93



[54] Andrey Krutauz, Tapajit Dey, Peter C. Rigby, and Audris Mockus. Do code re-
view measures explain the incidence of post-release defects? Empirical Software
Engineering, pages 1–34, 2020.

[55] Wai Lam and Fahiem Bacchus. Learning Bayesian belief networks: An approach
based on the MDL principle. Computational Intelligence, 10:269–293, 1994.

[56] Wai Lam and Fahiem Bacchus. Using new data to refine a Bayesian network. In
Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, pages
383–390, 1994.

[57] Colin Lee and Peter van Beek. Metaheuristics for score-and-search Bayesian network
structure learning. In Canadian Conference on Artificial Intelligence, pages 129–141.
Springer, 2017.

[58] Zhenyu A. Liao, Charupriya Sharma, James Cussens, and Peter van Beek. Finding all
Bayesian network structures within a factor of optimal. In Proceedings of the Thirty-
Third Conference on Artificial Intelligence, volume 33, pages 7892–7899, 2019.

[59] Charles X. Ling and Victor S. Sheng. Cost-sensitive learning. In Claude Sammut
and Geoffrey I. Webb, editors, Encyclopedia of Machine Learning and Data Mining.
Springer, 2016.

[60] Zachary C. Lipton, Charles Elkan, and Balakrishnan Naryanaswamy. Optimal thresh-
olding of classifiers to maximize F1 measure. In Proceedings of Machine Learning
and Knowledge Discovery in Databases, pages 225–239, 2014.

[61] Zhifa Liu, Brandon Malone, and Changhe Yuan. Empirical evaluation of scoring
functions for Bayesian network model selection. BMC Bioinformatics, 13(Suppl 15):
S14, 2012.

[62] Yi Luo, Issam El Naqa, Daniel L. McShan, Dipankar Ray, Ines Lohse, Martha M.
Matuszak, Dawn Owen, Shruti Jolly, Theodore S. Lawrence, Feng-Ming Kong, and
Randall K. Ten Haken. Unraveling biophysical interactions of radiation pneumoni-
tis in non-small-cell lung cancer via Bayesian network analysis. Radiotherapy and
Onconology, 123:85–92, 2017.

[63] David Madigan and Adrian E. Raftery. Model selection and accounting for uncer-
tainty in graphical models using Occam’s window. Journal of the Amercian Statistical
Association, 89:1535–1546, 1994.

94



[64] Richard J. McNally, Patrick Mair, Beth Reeder, and Bradley Riemann. Co-morbid
obsessive-compulsive disorder and depression: A Bayesian network approach. Psy-
chological Medicine, 47:1204–1214, 2017.

[65] Christopher Meek. Causal inference and causal explanation with background knowl-
edge. In Proceedings of the Eleventh conference on Uncertainty in artificial intelli-
gence, pages 403–410, 1995.

[66] Marina Meilă and Tommi Jaakkola. Tractable Bayesian learning of tree belief net-
works. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intel-
ligence, pages 380–388, 2000.

[67] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[68] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

[69] Judea Pearl. Causality. Cambridge university press, 2009.

[70] Franz Pernkopf and Jeff A. Bilmes. Efficient heuristics for discriminative structure
learning of Bayesian network classifiers. Journal of Machine Learning Research, 11
(Aug):2323–2360, 2010.

[71] Franz Pernkopf and Michael Wohlmayr. Stochastic margin-based structure learning
of Bayesian network classifiers. Pattern recognition, 46(2):464–471, 2013.

[72] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architec-
ture. In 2011 IEEE International Conference on Computer Vision Workshops (ICCV
Workshops), pages 689–690. IEEE, 2011.

[73] Cesar A. Prada-Medina, Kiyoshi F. Fukutani, Nathella Pavan Kumar, Leonardo
Gil-Santana, Subash Babu, Flávio Lichtenstein, Kim West, Shanmugam Sivakumar,
Pradeep A. Menon, Vijay Viswanathan, Bruno B. Andrade, Helder I. Nakaya, and
Hardy Kornfeld. Systems immunology of diabetes-tuberculosis comorbidity reveals
signatures of disease complications. Scientific Reports, 7:1–16, 2017.

[74] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows.
In International conference on machine learning, pages 1530–1538. PMLR, 2015.

[75] Brian D. Ripley. Pattern recognition and neural networks. Cambridge University
Press, 1996.

95



[76] Jorma Rissanen. Modeling by shortest data description. Automatica, 14:465–471,
1978.

[77] Jorma Rissanen and Teemu Roos. Conditional NML universal models. In 2007
Information Theory and Applications Workshop, pages 337–341. IEEE, 2007.

[78] Mauro Scanagatta, Cassio P. de Campos, Giorgio Corani, and Marco Zaffalon. Learn-
ing Bayesian networks with thousands of variables. In Advances in Neural Informa-
tion Processing Systems, pages 1864–1872, 2015.

[79] Mauro Scanagatta, Giorgio Corani, and Marco Zaffalon. Improved local search in
Bayesian networks structure learning. In Advanced Methodologies for Bayesian Net-
works, pages 45–56, 2017.

[80] Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:
461–464, 1978.

[81] Marco Scutari. Learning Bayesian networks with the bnlearn R package. Journal of
Statistical Software, 35(3):1–22, 2010.

[82] Marco Scutari and Radhakrishnan Nagarajan. Identifying significant edges in graph-
ical models of molecular networks. Artificial Intelligence in Medicine, 57:207–217,
2013.

[83] Marco Scutari, Phil Howell, David J. Balding, and Ian Mackay. Multiple quantitative
trait analysis using bayesian networks. Genetics, 198(1):129–137, 2014.

[84] Marco Scutari, Catharina Elisabeth Graafland, and José Manuel Gutiérrez. Who
learns better Bayesian network structures: Accuracy and speed of structure learning
algorithms. International Journal of Approximate Reasoning, 115:235–253, 2019.

[85] Basilio Sierra, Nicolas Serrano, Pedro Larrañaga, Eliseo Plasencia, Iñaki Inza, Juan
Jiménez, Pedro Revuelta, and Melfy Mora. Using Bayesian networks in the construc-
tion of a bi-level multi-classifier. a case study using intensive care unit patients data.
Artificial Intelligence in Medicine, 22:233–48, 07 2001.

[86] Tomi Silander and Petri Myllymäki. A simple approach for finding the globally
optimal Bayesian network structure. In Proceedings of the Twenty-Second Conference
on Uncertainty in Artificial Intelligence, pages 445–452, 2006.

96



[87] Tomi Silander, Petri Kontkanen, and Petri Myllymäki. On sensitivity of the MAP
Bayesian network structure to the equivalent sample size parameter. In Proceedings
of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, 2007.

[88] Tomi Silander, Teemu Roos, and Petri Myllymäki. Learning locally minimax optimal
Bayesian networks. International Journal of Approximate Reasoning, 51(5):544–557,
2010.

[89] Tomi Silander, Janne Leppä-aho, Elias Jääsaari, and Teemu Roos. Quotient nor-
malized maximum likelihood criterion for learning Bayesian network structures. In
Proceedings of the Twenty-First Conference on Artificial Intelligence and Statistics,
2018.

[90] Peter Spirtes, Clark N. Glymour, Richard Scheines, and David Heckerman. Causa-
tion, prediction, and search. MIT press, 2000.

[91] M. Stone. An asymptotic equivalence of choice of model by cross-validation and
Akaike’s criterion. Journal of the Royal Statistical Society Series B, 39:44–47, 1977.

[92] Joe Suzuki. A theoretical analysis of the BDeu scores in Bayesian network structure
learning. Behaviormetrika, 44(1):97–116, 2017.

[93] Joe Suzuki and Jun Kawahara. Branch and bound for regular Bayesian network
structure learning. In Proceedings of the Thirty-Third Conference on Uncertainty in
Artificial Intelligence, 2017.

[94] Marc Teyssier and Daphne Koller. Ordering-based search: A simple and effective
algorithm for learning Bayesian networks. In Proceedings of the Twenty-First Con-
ference on Uncertainty in Artificial Intelligence, pages 548–549, 2005.

[95] Jin Tian, Ru He, and Lavanya Ram. Bayesian model averaging using the k-best
Bayesian network structures. In Proceedings of the Twenty-Sixth Conference on Un-
certainty in Artificial Intelligence, pages 589–597, 2010.

[96] Ioannis Tsamardinos, Laura E. Brown, and Constantin F. Aliferis. The max-min
hill-climbing bayesian network structure learning algorithm. Machine learning, 65
(1):31–78, 2006.

[97] Tim Van Allen and Russell Greiner. Model selection criteria for learning belief nets:
An empirical comparison. In Proceedings of the Seventeenth International Conference
on Machine Learning, pages 1047–1054, 2000.

97



[98] Peter van Beek and Hella-Franziska Hoffmann. Machine learning of Bayesian net-
works using constraint programming. In Proceedings of the 21st International Con-
ference on Principles and Practice of Constraint Programming, pages 428–444, 2015.

[99] Thomas Verma and Judea Pearl. Equivalence and synthesis of causal models. In
Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, pages
220–227, 1990.

[100] Shulin Yang and Kuo-Chu Chang. Comparison of score metrics for Bayesian network
learning. IEEE Transactions on Systems, Man and Cybernetics, 32:419–428, 2002.

[101] Nan Ye, Kian Ming A. Chai, Wee Sun Lee, and Hai Leong Chieu. Optimizing F-
measures: A tale of two approaches. In Proceedings of the International Conference
on Machine Learning, 2012.

[102] Changhe Yuan, Brandon Malone, and Xiaojian Wu. Learning optimal Bayesian
networks using A* search. In Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence, pages 2186–2191, 2011.

[103] Ming-Jie Zhao, Narayanan Edakunni, Adam Pocock, and Gavin Brown. Beyond
Fano’s inequality: bounds on the optimal F-score, BER, and cost-sensitive risk and
their implications. Journal of Machine Learning Research, 14:1033–1090, 2013.

[104] Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no
tears: Continuous optimization for structure learning. Advances in Neural Informa-
tion Processing Systems, 31, 2018.

98



Abbreviations

ϵBNSL ϵ — Bayesian network structure learning 20–24, 36

AIC Akaike information criterion 35–38, 41, 43, 45–48, 86

BDJ Bayesian Dirichlet score based on Jeffreys’ prior 39

BDeu likelihood-equivalence Bayesian Dirichlet score with uniform priors 5, 8–10, 19,
21–24, 26, 28, 30–36, 39–41, 43–48, 58, 66, 72, 73, 86, 87

BF Bayes factor 19, 22–25, 27–33, 41, 58

BIC Bayesian information criterion 4, 8–10, 19–25, 27–30, 35–38, 41, 43, 45–47, 58, 86

BNSL Bayesian network structure learning 3, 5–11, 13, 18, 20–22, 31, 36, 37, 39–41, 47,
48, 55, 56, 58, 62, 86, 87

BN Bayesian Network 1–12, 14, 16, 18, 19, 24, 28, 31, 34–37, 41, 43–48, 55, 58, 59, 62,
65, 67, 68, 73, 86, 87

CPDAG completed partially directed acyclic graph 11–15, 70–73

DAG directed acyclic graph 1, 3, 4, 6–12, 18, 19, 21, 22, 28, 30, 32

MEC Markov equivalence class 11, 12, 27, 29, 30, 32

SHD structural Hamming distance 11–13, 36, 45–47, 63, 64, 67, 70–73, 86

fNML factorized normalized maximum likelihood 38

qBDJ quotient Bayesian Dirichlet score based on Jeffreys’ prior 35, 36, 38, 39, 43, 46, 47,
86

99



qNML quotient normalized maximum likelihood 5, 34–38, 43, 46–48, 58, 66, 72–74, 86,
87

100


	List of Figures
	List of Tables
	Introduction
	Contributions

	Background
	Probabilistic Graphical Models
	Bayesian Networks
	Structure Learning
	Performance Evaluation Metrics
	Structural Hamming Distance
	The F-beta Score
	Misclassification Cost
	Borda Count


	The Credible Set Approach
	Introduction
	Credible Bayesian Networks
	Scoring Functions
	The Bayes Factor
	Pruning Rules for Candidate Parent Sets
	Pruning with BIC/MDL Score
	Pruning with BDeu Score

	Experimental Evaluation
	The Bayes Factor Approach
	Bayes Factor vs. KBest

	Summary

	Scoring Function Selection
	Introduction
	Scoring Functions
	Parameters
	Model Averaging
	Pruning
	Experimental Methodology
	Datasets
	Scoring and Structure Learning
	Performance Evaluation Metrics

	Experimental Results and Discussion
	Summary

	Threshold Selection
	Introduction
	Collect a Set of Networks
	Identify Edges: Distance Measure Approach
	Setup
	Estimating Threshold

	Identify Edges: Our Learning Approach
	Meta Ensembles
	Experimental Evaluation
	Setup
	Results and Discussion
	Ensemble Results

	Summary

	Conclusions
	References
	Abbreviations

