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Abstract

Constraint networks are a simple represen-
tation and reasoning framework with diverse
applications. In this paper, we present a new
property called constraint tightness that can
be used for characterizing the difficulty of
problems formulated as constraint networks.
Specifically, we show that when the con-
straints are tight they may require less pre-
processing in order to guarantee a backtrack-
free solution. This suggests, for example,
that many instances of crossword puzzles are
relatively easy while scheduling problems in-
volving resource constraints are quite hard.
Formally, we present a relationship between
the tightness or restrictiveness of the con-
straints, and the level of local consistency
sufficient to ensure global consistency, thus
ensuring backtrack-freeness. Two definitions
of local consistency are employed. The tradi-
tional variable-based notion leads to a con-
dition involving the tightness of the con-
straints, the level of local consistency, and
the arity of the constraints, while a new
definition of relational consistency leads to
a condition expressed in terms of tightness
and local-consistency level, alone. New al-
gorithms for enforcing relational consistency
are introduced and analyzed.

1 Introduction

Constraint networks are a simple representation and
reasoning framework. A problem is represented as a
set of variables, a domain of values for each variable,
and a set of constraints between the variables, and
the reasoning task is to find an instantiation of the
variables that satisfies the constraints. In spite of the
simplicity of the framework, many interesting prob-
lems can be formulated as constraint networks, includ-
ing graph coloring [Montanari, 1974], scene labeling
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[Waltz, 1975], natural language parsing [Maruyama,
1990], and temporal reasoning [Allen, 1983; Dechter et
al., 1991; Meiri, 1991; van Beek, 1992].

Constraint networks are often solved using a back-
tracking algorithm. However, backtracking algorithms
are susceptible to “thrashing:” discovering over and
over again the same reason for reaching a dead end in
the search for a solution. To ameliorate this thrash-
ing behavior, algorithms for preprocessing a constraint
network by removing local inconsistencies have been
proposed and studied (e.g., [Dechter and Meiri, 1989;
Mackworth, 1977; Montanari, 1974]). Sometimes a
certain level of local consistency is enough to guaran-
tee that the network is globally consistent. A network
is globally consistent if any solution for a subnetwork
can always be extended to a solution for the entire
network. Hence, if a network is globally consistent, a
solution can be found in a backtrack-free manner.

In this paper, we present a relationship between the
tightness or restrictiveness of the constraints, the ar-
ity of the constraints, and the level of local consistency
sufficient to ensure global consistency. Specifically, in
any constraint network where the constraints have ar-
ity 7 or less and the constraints have tightness of m
or less, if the network is strongly ((m + 1)(r — 1)+ 1)-
consistent, then the network 1s globally consistent. In-
formally, a network is strongly k-consistent if any con-
sistent instantiation of any k£ — 1 or fewer variables can
be extended consistently to any additional variable.
Also informally, given an r-ary constraint and an in-
stantiation of » — 1 of the variables that participate in
the constraint, the parameter m i1s an upper bound on
the number of instantiations of the rth variable that
satisfy the constraint.

We also present a new definition of local consistency
called relational m-consistency. The virtue of this def-
inition 1s that, firstly, it allows expressing the relation-
ship between tightness and local consistency in a way
that avoids an explicit reference to the arity of the
constraints. Secondly, it is operational, thus general-
izing the concept of the composition operation defined
for binary constraints, and can be incorporated natu-



rally in algorithms for enforcing desired levels of rela-
tional consistency. Thirdly, it unifies known operators
such as resolution in theorem proving, joins in rela-
tional databases, and variable elimination for solving
equations and inequalities. Finally, it allows identi-
fying those formalisms for which consistency can be
decided by enforcing pairwise consistency, like propo-
sitional databases and linear equalities and inequali-
ties, from general databases requiring higher levels of
local consistency.

The results we present are particularly useful in ap-
plications where a knowledge base will be queried
over and over and we desire that queries be answered
quickly. In such applications the preprocessing time to
enforce local consistency is of less importance. What
i1s of importance is knowing what level of local con-
sistency will guarantee that queries can be answered
quickly.

2 Background

We begin with some needed definitions and describe
related work.

Definition 1 (binary constraint network; Mon-
tanari [1974]) A binary constraint network consists
of a set X of n variables {x1,2s,...,¢,}, a domain
D; of possible values for each variable, and a set of
binary constraints between variables. A binary con-
straint or relation, R;;, between variables x; and x;,
is any subset of the product of their domains (i.e.,
R;; C D; x D;). An instantiation of the variables in
X is an n-tuple (X1, Xa, ..., Xp), representing an as-
signment of X; € D; to x;. A consistent instantiation
of a network is an instantiation of the variables such
that the constraints between variables are satisfied. A
consistent instantiation 1s also called a solution.

Mackworth [1977] defines three properties of networks
that characterize local consistency of networks: node,
arc, and path consistency. Freuder [1978] generalizes
this to k-consistency.

Definition 2 (k-consistency; Freuder [1978])

A network s k-consistent if and only if given any in-
stantiation of any k — 1 variables satisfying all the di-
rect relations among those variables, there exists an
nstantiation of any kth variable such that the k wval-
ues taken together satisfy all the relations among the
k variables. A network is strongly k-consistent ¢f and
only if it is j-consistent for all j < k.

Node, arc, and path consistency correspond to strong-
ly one-, two-, and three-consistent, respectively. A
strongly n-consistent network is called globally con-
sistent. Globally consistent networks have the prop-
erty that any consistent instantiation of a subset of
the variables can be extended to a consistent instantia-

tion of all the variables without backtracking [Dechter,
1992b].

Following Montanari [1974], a binary relation R;; be-
tween variables #; and x; is represented as a (0,1)-
matrix with |D;| rows and |D;| columns by imposing
an ordering on the domains of the variables. A zero
entry at row a, column b means that the pair consist-
ing of the ath element of D; and the bth element of D;
is not permitted; a one entry means the pair is permit-
ted. A concept central to this paper is the tightness of
constraints.

Definition 3 (m-tight)

A binary constraint 1s m-tight if every row and every
column of the (0,1)-matriz that defines the constraint
has at most m ones, where 0 < m < |D| — 1. Rows
and columns with exactly |D| ones are ignored in de-
termining m. A binary constraint network is m-tight
of all 1ts binary constraints are m-tight.

Example 1. We illustrate some of the definitions us-
ing a variant of n-queens proposed by Nadel [1989]
called confused n-queens. The problem is to find all
ways to place n-queens on an n x n chess board, one
queen per column, so that each pair of queens does
attack each other. Ome possible constraint network
formulation of the problem is as follows: there is a
variable for each column of the chess board, x1,. .., x,;
the domains of the variables are the possible row posi-
tions, D; = {1,...,n}; and the binary constraints are
that two queens should attack each other. The (0,1)-
matrix representation of the constraints between two
variables z; and z; is given by,

1 ifa=bVi]a—bl=|i—j
Rijap = .
0  otherwise,
for a,b = 1,...,n. For example, consider the con-

straint Ri2 between z; and xs: Ri234 = 1, which
states that putting a queen in column 1, row 3 and a
queen in column 2, row 4 is allowed by the constraint
since the queens attack each other.

Q

(a) (b)

Figure 1: (a) not 3-consistent; (b) not 4-consistent

It can be seen that the networks for the confused n-
queens problem are 2-consistent since, given that we
have placed a single queen on the board, we can always
place a second queen such that the queens attack each



other. However, the networks are not 3-consistent. For
example, for the confused 4-queens problem shown in
Fig. la, there 1s no way to place a queen in the last
column that is consistent with the previously placed
queens. Similarly the networks are not 4-consistent
(see Fig. 1b). Finally, every row and every column of
the (0,1)-matrices that define the constraints has at
most 3 ones. Hence, the networks are 3-tight.

2.1 Related work

Much work has been done on identifying relationships
between properties of constraint networks and the level
of local consistency sufficient to ensure global consis-
tency. This work falls into two classes: identifying
topological properties of the underlying graph of the
network and identifying properties of the constraints.
Here we review only the literature for constraint net-
works with finite domains.

For work that falls into the class of identifying topo-
logical properties, Freuder [1982; 1985] identifies a re-
lationship between the widih of a constraint graph and
the level of local consistency needed to ensure a solu-
tion can be found without backtracking. As a special
case, if the constraint graph is a tree, arc consistency
is sufficient to ensure a solution can be found with-
out backtracking. Dechter and Pearl [1988] provide an
adaptive scheme where the level of local consistency is
adjusted on a node-by-node basis. Dechter and Pearl
[1989] generalize the results on trees to hyper-trees
which are called acyclic databases in the database com-
munity [Beeri et al., 1983].

For work that falls into the class of identifying proper-
ties of the constraints (the class into which the present
work falls), Montanari [1974] shows that path consis-
tency is sufficient to guarantee that a binary network is
globally consistent if the relations are monotone. Van
Beek and Dechter [1994] show that path consistency
1s sufficient if the relations are row convex. Dechter
[1992b] identifies a relationship between the size of the
domains of the variables, the arity of the constraints,
and the level of local consistency sufficient to ensure
the network is globally consistent. She proves the fol-
lowing result.

Theorem 1 (Dechter [1992b]) Any |D|-valued r-
ary constraint network that is strongly (|D|(r—1)+1)-
consistent is globally consistent. In particular, any
| D|-valued binary constraint network thatl is strongly
(| D] + 1)-consistent is globally consistent.

For some networks, Dechter’s theorem is tight in that
the level of local consistency specified by the theorem
is really required (graph coloring problems formulated
as constraint networks are an example). For other net-
works, Dechter’s theorem overestimates. Our results
should be viewed as an improvement on Dechter’s the-
orem. In particular, our main theorem, by taking into

account the tightness of the constraints, always spec-
ifies a level of strong consistency that is less than or
equal to the level of strong consistency required by
Dechter’s theorem.

3 Binary constraint networks

In this section we restrict our attention to binary con-
straint networks and present a relationship between
the tightness of the constraints and the level of local
consistency sufficient to ensure a network is globally
consistent. The results are generalized to constraint
networks with constraints of arbitrary arity in the next
section.

The following lemma is needed in the proof of the
main result for constraint networks with binary con-
straints and in a later proof of the result generalized
to constraint networks with constraints of arbitrary
arity. The lemma is really about the “tightness” of
constraints and the sufficiency of a certain level of con-
sistency. We state the lemma in more colloquial terms
to make the proof more understandable.

Lemma 1 Suppose there are fan clubs that like to
meet and talk about famous people, and the following
conditions.

1. There are n fan clubs and d famous people.

2. EBach fan club meets and talks about at most m,
m < d, famous people.

3. For every set of m + 1 or fewer fan clubs, there
exrists at least one famous person that every club
i the set talks about.

Then, there must exist at least one famous person that
every fan club talks about.

Proof. The proof is by contradiction and uses a proof
technique discovered by Dechter for Theorem 1. As-
sume to the contrary that no such famous person ex-
ists. Then, for each famous person, f;, there must
exist at least one fan club that does not talk about f;.
Let ¢; denote one of the fan clubs that does not talk
about f;. By construction, the set ¢ = {¢1,¢a,...,cq}
is a set of fan clubs for which there does not exist a
famous person that every club in the set talks about
(every candidate f; is ruled out since ¢; does not talk
about f;). For every possible value of m, this leads to
a contradiction.

Case 1 (m = d — 1): The contradiction is immediate
as ¢ = {c1,¢9,...,cq} is a set of fan clubs of size m+ 1
for which there does not exist a famous person that
every club in the set talks about. This contradicts
condition (3).

Case 2 (m = d — 2): The nominal size of the set
c={ci,e9,...,¢cq} is m+ 2. We claim, however, that



there 1s a repetition in ¢ and that the true size of the
set is m + 1. Assume to the contrary that ¢; # ¢; for
? # j- Recall ¢; 18 a club that does not talk about f;,
i=1,...,d and consider {e1,¢2,...,¢4—1}. This is a
set of m —|— 1 fan clubs so by condltlon (3) there must
exist an f; that every club in the set talks about. The
only possibility is f;. Now consider {ci,...,e4-2,¢4}.
Again, this is a set of m~+1 fan clubs so there must exist
an f; that every club in the set talks about. This time
the only possibility is f;—1. Continuingin this manner,
we can show that fan club ¢; must talk about exactly
m + 1 famous people. This contradicts condition (2).
Therefore, it must be the case that ¢; = ¢; for some ¢ #
j. Thus, the set ¢ 1s of size m + 1 and this contradicts
condition (3).

Case 3 (m=d—3),..., Case d-1 (m = 1): The re-
maining cases are 51m11ar In each case we argue that
(i) there are repetitions in the set ¢ = {e1,¢a,...,¢4},
(i1) the true size of the set ¢ is m+ 1, and (iii) a con-
tradiction is derived by appealing to condition (3).

Thus, there exists at least one famous person that ev-
ery fan club talks about. O

We now state the theorem for binary constraint net-
works.

Theorem 2 If a binary constraint network, R, is m-
tight, and if the network is strongly (m+2)-consistent,
then the network is globally consistent.

Proof. We show that any network with < m ones in
every row that is strongly (m + 2)-consistent is (m +
2+ ¢)-consistent for any ¢ > 1. Suppose that variables
Z1,...,Tm414s can be consistently instantiated with
values X1,..., Xjny14:. To show that the network is
(m+ 2+ i)-consistent, we must show that there exists
at least one instantiation, X244, of variable &y, 4244
such that

(Xj, Xomto+4i) € Rj mayoyi m+ 141

is satisfied. Let v; be the (0,1)-vector given by row X;

of the (0,1)-matrix RBj miots, j=1,...,m+141 (see
Figure 2 for an illustration; the v; are shown boxed).
The one entries in the v; are the allowed instantiations
of 4244, given the instantiations Xq, ..., Ximy144.
That there exists a consistent instantiation of ;4244
follows from Lemma 1 where (i) X1,..., X144 are
the fan clubs, (ii) 1,...,d, the domain elements of
Zmyati, are the famous people, (iii) the one entries
in the v;’s are the famous people that fan club X;
talks about, and (iv) condition (3) of Lemma 1 follows
from the assumption of strong (m + 2) consistency.
Therefore, from Lemma 1 it follows that there exists
at least one instantiation of z,,424,; that satisfies all
the constraints simultaneously. Hence, the network 1is
(m + 2 + 4)-consistent. O

j=1 ...,

Theorem 2 always specifies a level of strong consistency

Ty

Tm4244

Tm4144

Figure 2: Instantiating 4244

that is less than or equal to the level of strong con-
sistency required by Dechter’s theorem (Theorem 1).
The level of required consistency is equal only when
m = |D| — 1 and is less when m < |D| — 1. As
well, the theorem can sometimes be usefully applied
if |[D| > n — 1, whereas Dechter’s theorem cannot.

As the following example illustrates, both r, the ar-
ity of the constraints, and m can change if the level of
consistency required by the theorem is not present and
must be enforced. The parameter r can only increase;
m can decrease, as shown below, but also increase.
The parameter m will increase if all of the following
hold: (i) there previously was no constraint between
a set of variables, (ii) enforcing a certain level of con-
sistency results in a new constraint being recorded be-
tween those variables and, (iii) the new constraint has
a larger m value than the previous constraints.

Example 2. Consider again the confused n-queens
problem introduced in Example 1. The problem 1is
worth considering, as Nadel [1989] uses confused n-
queens in an empirical comparison of backtracking al-
gorithms for solving constraint networks. Thus it is
important to analyze the difficulty of the problems to
set the empirical results in context. As well, the prob-
lem is interesting in that it provides an example where
Theorem 2 can be applied but Dechter’s theorem can
not (since |D| > n —1). Independently of n, each row
of the constraints has < 3 ones. Hence, the networks
are 3-tight and the theorem guarantees that if the net-
work for the confused n-queens problem is strongly
b-consistent, the network is globally consistent.

First, suppose that n is even and we attempt to either
verify or achieve this level of strong consistency by
applying successively stronger local consistency algo-
rithms. Kondrak [1993] has shown that the following
analysis holds for all n, n even.

1. Applying an arc consistency algorithm results in
no changes as the network is already arc consis-
tent.



2. Applying a path consistency algorithm does
tighten the constraints between the variables.
Once the network is made path consistent, each
row has < 2 ones. Now the theorem guaran-
tees that if the constraint network is strongly 4-
consistent, the network is globally consistent.

3. Applying a 4-consistency algorithm results in no
changes as the network is already 4-consistent.
Thus, the network is strongly 4-consistent and
therefore also globally consistent.

Second, suppose that n 1s odd. This time, after ap-
plying path consistency, the networks are still 3-tight
and it can be verified that the networks are not 4-
consistent. Enforcing 4-consistency would require non-
binary constraints, hence Theorem 2 no longer applies.
We take this example up again in the next section
where the results are generalized to non-binary con-
straints. There we show that recording 3-ary con-
straints is sufficient.

Recall that Nadel [1989] uses confused n-queens prob-
lems to empirically compare backtracking algorithms
for finding all solutions to constraint networks. Nadel
states that these problems provide a “non-trivial test-
bed” [1989, p.190]. We believe the above analysis indi-
cates that these problems are quite easy and that any
empirical results on these problems should be inter-
preted in this light. Easy problems potentially make
even naive algorithms for solving constraint networks
look promising. To avoid this potential pitfall, back-
tracking algorithms should be tested on problems that
range from easy to hard. In general, hard problems are
those that require a high level of local consistency to
ensure global consistency. Note also that these prob-
lems are trivially satisfiable.

Example 3. The graph k-colorability problem can be
viewed as a problem on constraint networks: there is
a variable for each node in the graph; the domains of
the variables are the possible colors, D = {1,... k};
and the binary constraints are that two adjacent nodes
must be assigned different colors. Graph k-colorability
provides examples of networks where both Theorems 1
and 2 give the same bound on the sufficient level of lo-
cal consistency (since |D| =k and m = |D|—1). Fur-
ther, as Dechter [1992b] shows, the bound is tight. For
example, consider coloring a complete graph on five
nodes with four colors. The network is 3-tight and
strongly 4-consistent, but not strongly b5-consistent
and not globally consistent. Hence, when m = |D|—1,
the level of local consistency specified by Theorem 2 1s
as strong as possible and cannot be lowered.

We can also construct examples to show that Theo-
rem 2 is as strong as possible for all m < |D| — 1.
This can be done by “embedding” graph coloring con-
straints into the constraints for the new network. For
example, consider the network where the domains are
D ={1,...,5} and the constraints between all vari-

ables is given by,

10001
00110
Rij=|01010
01100
10001

The inner 3 x 3 matrix is the 3-coloring constraint.
The network is 2-tight and strongly 3-consistent, but
not strongly 4-consistent and not globally consistent.

4 R-ary constraint networks

In this section we generalize the results of the previous
section to networks with constraints of arbitrary arity.
We will define m-tightness of r-ary relations, namely
relations having r variables. We use the following no-
tations and definitions.

Definition 4 (Relations)

Given a sel of variables X = {x1,...,x,}, each as-
soctated with a domain of discrete values D1,..., Dy,
respectively, a relation (or, alternatively, a constraint)
p over X s any subset

pC DL XDy x---xDy.

Grven a relation p on a sel X of variables and a subsel
Y C X, we denote by Y = y or by y an instantiation
of the variables in Y, called a subtuple and by oy —y(p)
the selection of those tuples in p that agree withY = y.
We denote by Ty (p) the projection of relation p on the
subset Y. Namely, a tuple over Y appears in Iy (p)
if and only if it can be extended to a full tuple in p.
If Y s not a subset of p’s variables the projection is
over the subset of vartables that appear both in'Y and
m X. The operator ™M is the join operator in relational
databases.

Definition 5 (Constraint networks)

A constraint network R over a set X of wvariables
{@1,29,.. ., 2.}, is a sel of relations Ry, ..., Ry, each
defined on a subset of variables Sy, ..., S; respectively.
A relation in R specified over Y C X s also denoted
Ry. The sel of subsels S = {S1,...,5:} on which
constraints are specified is called the scheme of R. The
network R represents its set of all consistent solutions
over X, denoted p(R) or p(X), namely,

p(R) ={z = (Xl,...,Xn) | VS; € S,HS,(l‘) € R;}.

For non-binary networks the notion of consistency of a
subtuple can be defined in several ways. We will use the
following definition. A subtuple over Y is consistent if
it satisfies all the constraints defined over Y including
all R’s constraints obtained by projection over Y.

Definition 6 (Consistency of a subtuple)
A subtuple Y = y is consistent relative to R iff, for all
Si S S;

Mg,y (y) € Mg,y (R;).



p(Y) is the set of all consistent instantiations of the
variables in Y. One can view p(Y) as the set of all
solutions of the subnetwork defined by Y.

Informally, an r-ary relation i1s m-tight if every tuple
of r — 1 values can be extended in at most m ways.

Definition 7 An r-ary relation s m-tight if and only
if all of its binary projections (projections on pairs of
variables) are m-tight.

Example 4. We illustrate some of the definitions us-
ing the following network, R, over the set of variables,
{@1, 29, 23, 24}. The relations are given by,

Rg, = {(1,4,2), (2,4,1), (3,1,4), (4,1,3)},
Rs, = {(1,4,2), (2,1,3), (2,1,4), (2,3,1),
(3.2,4), (3,4,1), (3,4,2), (4,1,3)},

where S; = {21, 29,23} and Se = {x1, 23, 24}. The
set of all solutions of the network 1s given by,

p(R) = {(2,4,1,3), (2,4,1,4), (3,1,4,1), (3,1,4,2)}.

Let Y = {x1,23} be a subset of the variables and let
the subtuple y = (2, 1) be an instantiation of the vari-
ablesin Y. Then, ov=y(Rs,) = {(2,1,3), (2,1,4)} and,
My (Rs,) = {(1,2), (2,1), (3,4), (4,3) }. Tt can be veri-
fied that the subtuple y = (2, 1) is consistent relative
to R and that the subtuple y = (1, 2) is not consistent
relative to R (since Hg,ny (y) & Mg,ny (Rs,)). Finally,
the network is 3-tight since projecting the relation Eg,
onto {x1, z4} results in a binary relation that is 3-tight,
and this is the maximum of all the binary projections.

We now state the general theorem.

Theorem 3 If an r-ary network, R, 1s m-tight, and if
the network is strongly ((m+1)(r — 1)+ 1)-consistent,
then the network is globally consistent.

Proof. Let k = (m+1)(r — 1)+ 1. We show that any
network with relations that are m-tight that is strongly
k-consistent is (k + 7)-consistent for any ¢ > 1.

Let X' = (X1,Xa,...,Xk4i—1) be a consistent in-
stantiation of & + ¢ — 1 variables! and let Zr4i be
an arbitrary new variable. We will show that there
exists an instantiation Xjiy; of xpy; such that the
extended tuple (X1, Xo, ..., Xp4i-1, Xj44) 1S consis-
tent. This means that any relation Ry € R involv-
ing variable z4;, and a non-empty subset of variables
from {x1,...,2pyi—1} should be satisfied. TLet X'y
be the partial tuple of X’ that is restricted to the
set Y over which Ry is defined. We call this tuple
a constraini-tuple. Since all the constraints and their

!Note that according to the definition of consistency
this means that X' satisfies all the constraints defined on
its own subset of variables as well as those obtained by
projection.

projections are m-tight, constraint Ry will allow X’y
to be extended by at most m values of #14;. Each such
constraint-tuple, X’y can be regarded as a fan club,
with its allowed values in x4, relative to Ry as the
discussed famous people. Therefore, condition (2) of
Lemma 1 is satisfied. Also, condition (3) of Lemma 1
1s satisfied, since the length of each constraint-tuple is
r—1 or less, the requirement of strong (m+1)(r—1)+1-
consistency, ensures that any set of up to (m + 1)
constraint-tuples (overlapping or not), has a consistent
extension in z4;. Therefore, from Lemma 1 it follows
that there is a common value of zjy; that satisfies all
the constraints simultaneously. O

Example 5. Consider again the confused n-queens
problem discussed in Example 2. There we saw that,
after enforcing path consistency, the networks are 3-
tight, for n odd. Enforcing 4-consistency requires
3-ary constraints. Adding the necessary 3-ary con-
straints does not change the value of m; the networks
are still 3-tight. Hence, by Theorem 3, if the net-
works are strongly 9-consistent, the networks are glob-
ally consistent. Kondrak [1993] has shown that record-
ing 3-ary constraints is sufficient to guarantee the net-
works are strongly 9-consistent for all n, n odd. Hence,
independently of n, the networks are globally consis-
tent once strong 4-consistency is enforced.

Example 6. Constraint networks have proven fruitful
in representing and reasoning about temporal informa-
tion. We use an example from Allen’s [1983] frame-
work for reasoning about temporal relations between
intervals or events to illustrate the application of The-
orem 3. Allen identifies thirteen basic relations that
can hold between two intervals. In order to represent
indefinite information, the relation between two inter-
vals is allowed to be a disjunction of the basic relations.
For example, the relation {b,bi} between events A and
D in Figure 3 represents the disjunction, (A before D)
V (A after D). Allen provides a transitivity table for
propagating the temporal information.

Allen’s framework can be formulated as a constraint
network with finite domains as follows: there is a vari-
able for each pair of intervals, the domains of the vari-
ables are the possible basic relations, and there are
ternary constraints defined by the transitivity table.
For example, consider the temporal information given

by,

A {oim} B A {bo} C; A {bbi} D;
fori=1,...,(n—2)/2. Formulating this temporal in-

formation as a constraint network with finite domains,
we can show that enforcing strong 4-consistency is suf-
ficient to ensure the network is globally consistent, for
all n > 4. Below we show the analysis for the simple
case of n = 4. The general case is similar, just no-
tationally more complicated. Figure 3 shows the six



Figure 3: Example temporal network

variables and their associated domains for our exam-
ple. The ternary constraints for our example are given

Ri24 = {(oi,b,b), (0i,0,b), (m,b,b), (m,0,d)},

Ri35 = {(oi,bi,bi), (m,bi,bi), (m,b,0)},

Rase = {(b,b,b), (b,b,0i), (b,bi,b), (0,b,01), (0,bi,b)},
Rys6 = {(b,bi,b), (b,o,b), (d,bi,b), (d,0,01)}.

It can be shown that the network is 1-tight. Therefore,
by Theorem 3, if the network 1s strongly 5-consistent,
then the network is globally consistent. Suppose
that we attempt to either verify or achieve this level
of strong consistency. The network is strongly 3-
consistent, but not 4-consistent. For example, (b,b,oi)
is a consistent instantiation of (#2, 23, ¥e), since it sat-
isfies the constraint Roszg as well as all the constraints
obtained by projection. However, there is no way to
extend the instantiation to x4: (i) #4 < b is inconsis-
tent by the constraint R4s obtained by projecting Ras6
on {x4, 6}, and (ii) x4 < d is inconsistent by the con-
straint Rss obtained by projecting Rio4 on {as, 24}
The modified constraint Rig is given by,

/236 = {(babab)a (bablab)a (OabaOi)a (Oablab)}

As well, some 3-ary constraints between previously un-
constrained triples of variables need to be introduced.
For example, (0i,0,01) is a consistent instantiation of
(21, ®2,46), since it satisfies all the constraints ob-
tained by projection. However, there is no way to
extend the instantiation to x3: (i) #3 < b is incon-
sistent by the constraint R;3 obtained by projecting
Riss on {x1, 23}, and (ii) x3 < bi is inconsistent by
the constraint Rf44. Once the following 3-ary relations
are added, the network is strongly 4-consistent:

Ri26 = {(oi,b,b), (oi,(?,b), (m,b,b), (m,.o,b), (m,.o,oi)},
Razqa = {(b,b,b), (b,bi,b), (0,b,d), (0,bi,b), (0,bi,d)},
Rase = {(b,bi,b), (b,o,b), (0,bi,b), (o ,.o,oi)},

R34 = {(b,b,b), (b,d,o1), (bi,b,b), (bi,d,b)}.

It can now be verified that the network is also strongly
b-consistent. Therefore, by Theorem 3, the network
is globally consistent. The network is also minimal.
A network of r-ary relations is minimal if each tuple
in the relations participates in at least one consistent
instantiation of the network. These two properties,
global consistency and minimality, ensure that we can
efficiently answer some important classes of temporal
queries.

4.1 Relational local consistency

In [van Beek and Dechter, 1994] we extended the no-
tion of path-consistency to non-binary relations, and
used 1t to specify an alternative condition under which
row-convex non-binary networks of relations are glob-
ally consistent. This definition, since it considers the
relations rather than the variables as the primitive en-
tities, does not mention the arity of the constraint ex-
plicitly. We now extend this definition even further
and show how it can be used to alternatively describe
Theorem 3.

Definition 8 (Relational m-consistency)

Let R be a network of relations over a set of variables
X, let Rg,,...,Rs,,_, be m—1, m > 3, relations in
R, where S; C X. We say that Rs,,...,Rs, _, are
relational m-consistent relative to variable x iff any
consistent instantiation of the variables in A, where
A= Uzn:_ll S;—{x}, has an extension to x that satisfies
Rs,,...,Rg stmultaneously. Namely, «f and only of

p(A) C HA(M2T! Rg,).

(Recall that p(A) is the set of all consistent instan-
tiations of the variables in A). A set of relations
Rs,,...,Rs, _, are relational m-consistent iff they
are relational m-consistent relative to each variable in
N, Si. A network of relations is said to be relational
m-consistent iff every set of m—1 relations is relational
m-consistent. Relational 3-consistency s also called
relational path-consistency. A network is strongly re-
lational m-consistent if it is relational i-consistent for
every t < m.

m—1

Note that we do not need to define relational 2-
consistency since our definition of consistency of a
subtuple, which takes into account all the networks’
projections, guarantees that any notion of relational
2-consistency is redundant.

Example 7. Consider the following network of re-
lations. The domains of the variables are all D =
{0,1,2} and the relations are given by,

(1) Rfey- = {0000, 1000,0100,0010, 0001},
(2) Ry.s = {011,122,021}.
The constraints are not relational path-consistent. For
example, the instantiation f = 0,z = 1,y = 0 satis-
fies all the constraints, (namely all the projections of



(1) and (2) on {f,#,y} and {f} respectively), but it
cannot be consistently extended to a legal value of z.
If we add the constraint (3)Rf., = {000}, the first
two constraints will become relational path-consistent
relative to z since constraint (3) will disallow the par-
tial assignments f = 0,2 = 1,y = 0. Constraints
(1) and (2) are relational path-consistent relative to f
since any consistent instantiation of x, y, z will have to
satisfy the two constraints R.,. = {000,100,010,001}
and R, = {l1,2} obtained by projecting constraints
(1) and (2) over z,y, z, respectively. Remember that
consistency of a subtuple needs to obey all the pro-
jected constraints. Once these constraints are obeyed
there is an extension to f = 0 that satisfies (1) and (2)
simultaneously.

We now show that strong relational (m + 2)-con-
sistency 1s sufficient to ensure globally consistency
when the relations are m-tight.

Theorem 4 Let R be a network of relations that is
strongly relational (m + 2)-consistent. If the relations
are m-tight, then the network is globally consistent.

Proof. Assume that the network is relational (m+2)-
consistent. Let X' = (X, Xs,...,X;_1) be a consis-
tent instantiation of i — 1 variables, i > m+2. We will
show that for any «x;, there exists an instantiation X; of
z; such that the extended tuple (X1, Xa,..., X;-1, X))
is consistent. This means that any relevant relation
Ry € R or any of its projections, that are defined over
z; should be satisfied by such an extension. Since all
constraints and all their projections are m-tight, all
the values of z; that together with X’y are allowed by
Ry do not exceed m. Also, strong relational (m + 2)-
consistency implies that any subset of m + 1 or fewer
constraints can be consistently extended by z;. Con-
sequently, due to Lemma 1 there is a value X; such
that the tuple (X1, Xa, ..., X;_1, X;) satisfies all the
constraints simultaneously. O

When all the constraints are binary, relational m-
consistency is identical (up to minor preprocessing)
to variable-based m-consistency. Otherwise the con-
ditions are different. In general, the definition of re-
lational m-consistency is similar but not identical to
that of m-consistency over the dual representation of
the problem in which the constraints are the variables,
their allowed tuples are their respective domains and
two such constraint-variables are constrained if they
have variables in common. The virtue in this new ex-
plicit definition (relative to the one based on the dual
graph) is that it is simpler to work with, it uses known
notations from relational databases, and it immedi-
ately translates to consistency enforcing algorithms.

Relational m-consistency can be enforced on a net-
work that does not possess this level of consistency.
Below we present algorithm EC,,, a brute-force algo-

rithm for enforcing strong relational m-consistency on
a network K. The algorithm seems to enforce rela-
tional m-consistency only (joining every set of m — 1
relations), however due to our convention of testing
all projections when verifying consistency, strong m-
consistency results as well.

RCy(R)

1. repeat

2. Q—R

3. for every m — 1 relations Rg,,..., Rs,_, € Q
and every « € ﬂzn:_ll S;

4. do A—m7" S — {«}

. Rqa— RanN HA([XI?;_ll RS,)
6. untilQ = R

Note that Ry stands for the current unique constraint
specified over a subset of variables Y. If no constraint
exists, then Ry is the universal relation over Y. The
algorithm takes any m — 1 relations that may or may
not be relational m-consistent and enforces relational
m-consistency by tightening the relation among the
appropriate subsets of variables. We call the operation
in Step 5 of the algorithm eztended m-composition,
since it generalizes the composition operation defined
on binary relations. Algorithm RC), computes the
closure of R with respect to extended m-composition.
We can conclude that:

Theorem 5 For any network, R, whose closure under
extended i-composition, fori =3,...,m, is an (m—2)-
tight network, m > 3, algorithm RC,, computes an
equivalent globally consistent network.

Proof. Follows immediately from Theorem 4 and
from the fact that RC), generates a strong relational
m-consistent network. O.

While enforcing wvariable-based m-consistency can be
done in polynomial time, 1t is unlikely that relational
m-consistency can be achieved tractably, since, as we
will shortly see, even for m = 3 it solves the NP-
complete problem of propositional satisfiability. A
more direct argument suggesting an increase in time
and space complexity is the fact that the algorithm
may need to record relations of arbitrary arity and
also that the constraints’ tightness may increase.

Example 8. Bi-valued relations are 1-tight and closed
under extended 3-composition. Thus; by Theorem 5,
bi-valued networks can be solved by algorithm RC5. In
particular, the satisfiability of propositional CNF's can
be decided by RC5. Here the extended composition
operation (Step 5 of algorithm RC),) takes the form
of pair-wise resolution [Dechter and Rish, 1994]. A
different derivation of the same result is already given

by [Dechter, 1992b; van Beek and Dechter, 1994].



As with variable-based local-consistency, we can im-
prove the efficiency of enforcing relational consistency
by enforcing it only along a certain direction. Be-
low we present algorithm Directional Relational m-
Consistency (DRC,y, ) that enforces strong relational
m-consistency on a network R, relative to a given or-
dering, d, of the variables z1,2s,...,2,. We denote
as DRCp, (R, d), a network that is strongly relational
m-consistent relative to an ordering d.

DRCy (R, d)

1. Initialize: generate an ordered partition of the con-
straints, buckety, ..., bucket,,, where bucket; contains
all the constraints whose highest variable is z;.

2. for 7 — n downto 1

o

do for every set of m — 1 relations Rg,, ...,
Rs,._, in bucket; (if bucket; contains fewer
than m — 1 relations, then take all the rela-
tions in the bucket).

4. do A — U S — {:}
Rqa— RanN HA([XI?;_ll RS,)
Add R4 to its appropriate bucket.

While the algorithm is incomplete for deciding consis-
tency in general, it is complete for (m — 2)-tight rela-
tions that are closed under extended m-composition.
In fact, it is sufficient to require directional (m — 2)-
tightness relative to the ordering used. Namely, requir-
ing that if z; appears before z; in the ordering then
any value of z; will be (m — 2)-tight relative to z; but
not vice-versa. For example, functional relations are
always 1-tight from input to outputs but not for any
ordering.

Definition 9 (directionally m-tight)

A binary constraint, R;;, is directionally m-tight
with respect to an ordering of the wvariables, d =
(21,...,25), if x; appears before x; in the ordering
and every row of the (0,1)-matriz that defines the con-
straint has at most m ones. An r-ary relation is di-
rectionally m-tight with respect to an ordering of the
variables if and only if all of its binary projections are
directionally m-tight with respect to the ordering.

The following theorems will be stated without proofs.
Their correctness can be verified using similar theo-
rems on directional consistency algorithms reported
earlier [Dechter and Pearl, 1989)].

Theorem 6 (Completeness)

If a network DRCy, (R, d) is directionally (m—2)-tight
relative to d, then DRCy, (R, d) is backtrack-free along
d.

Like similar algorithms for imposing directional consis-
tency, DRC',’s worst-case complexity can be bounded
as a function of the topological structure of the prob-

lem via parameters like the induced width of the graph
[Dechter and Pearl, 1988].

A network of constraints R can be associated with a
constraint graph, where each node is a variable and
two variables that appear in one constraint are con-
nected. A general graph can be embedded in a clique-
tree namely, in a graph whose cliques form a tree-
structure. The induced width, W, of such an em-
bedding is its maximal clique size and the induced
width Wk of an arbitrary graph is the minimum in-
duced width over all its tree-embeddings. For more
details see [Dechter and Pearl, 1989]. The complexity
of DRC,, can be bounded as a function of the Wk of
its constraint graph.

Theorem 7 (Complexity) Given a network of re-
lations R, the complexity of algorithm DRC,, along
ordering d is O(exp(mW*(d))) where W*(d) is the in-
duced width of the constraint graph of R along d.

Example 9. Crossword puzzles have been used in
experimentally evaluating backtracking algorithms for
solving constraint networks [Ginsberg et al., 1990]. We
use an example puzzle (taken from [Dechter, 1992a])
to illustrate algorithm DRC,, (see Figure 4).

Figure 4: A crossword puzzle

We can formulate this problem as a constraint problem
as follows, each possible slot holding a character will be
a variable, and the possible words are relations over the
variables. Therefore, we have xq,...,x13 variables as
marked in the figure. Their domains are the alphabet
letters and the constraints are the following relations:

R1,2,3,4,5 = {(HaOaSaEaS)a (LaAaSaEaR)a (SaHaEaEaT)a
(SNALL), (S,T,EER)}

R3,6,9,12 = {(HaIaKaE)a (AaRaOaN)a (KaEaEaT)a
(E,AR,N), (S,A,M,E)}

Rg 91011 = R3 6,912

1097y

Rsz11 = {(R,U,N), (S,U,N), (L,E,T), (Y,E,S),
(E,AT), (T,E,N)}

Rions = {(N,0), (B,E), (U)SS), (I,T)}

Ri213 = Rios



We see that constraints Ri,13 and Rj2 13 are 1-tight,
however all the rest have higher tightness. For ex-
ample, the tightness of R5 711 is 3 due to words like
RUN, SUN, and TEN. Constraint R; 2345 is also 3-
tight since its binary projection on {z, x5} contains
the three pairs {(S,L), (S,T), (S,R)}. For the order-
ing d = @5, x4, ..., x1, however, the constraint i1s only
2-tight. The tightness of all constraints does not go be-
yond 3. According to Theorem 6, enforcing relational
5-consistency, if not increasing the tightness, will gen-
erate a globally consistent network relative to the or-
dering used.

Applying DRC5 to this problem using the ordering
d = »13,%12, %11, 10, X9, 5, 3 (we disregard the rest
of the letters since they appear in just one word), gives
the following: Initially the bucket for z3 contains two
relations R3 12 and Rs s (resulting from projecting
away s from Rz 912 and z1, 22,24 from Ry 2345,
respectively). Processing variable z3 adds the relation
R5 9,12 to the bucket of variable x5 that is processed
next. The relation 1s:

=1II5912(R3,012 X R35)
= {(S’M’E)’ (R’M’E)a (T’RaN)a
(R,R,N), (L,ON)}.

5912

Next, processing of x5 adds the relation Rg 11,12 to the
bucket of variable 9. The relation is:

Ro1,02 = Mo 11,12(Rs,0,12 X Rs11)
={(M,NE), (R,N,R), (O,T,N), (R,N,N)}.

Next, processing zg adds the relation Rig,11,12 to the
bucket of variable x15. The relation is:

Rio11,12 = M1o,11,12(Re 10,11 W Ro 11.12)

= {(O,N,R)}.

Next, processing x1g adds f211,12,13 to the bucket of
variable x1;. The relation is:

Ri1,12,13 = 11,12,13(R10,11,12 X Rao,13)
={}

Namely, resulting in an empty relation. At this point
the algorithm stops and determines that the problem
is inconsistent.

It turns out, however, that cross-word puzzles have
a special property that makes them solvable by rela-
tional 3-consistency only.

Lemma 2 When processing a crossword problem by
DRCy, for any m, the resulting buckets contain at
most two constraints.

Proof: Let us annotate each variable in a constraint
by a + if it appears in a horizontal word and by a

— if it appears in a vertical word. Clearly, in the
initial specification each variable appears in at most
two constraints and each annotated variable appears
in just one constraint (with that annotation). We show
that this property is maintained throughout the algo-
rithm’s performance. The argument can be proved by
induction on the processed buckets. Assume that after
processing buckets @, ..., #; all the constraints appear-
ing in the union of all bucket;_; to bucket; satisfy that
each annotated variable appears in at most one con-
straint. When processing bucket;_q, since it contains
only two constraints (otherwise it will contain multi-
ple annotations of variable x;_1), it generates a single
new constraint. Assume that the constraint is added
to the bucket of z;.

Clearly, if z; is annotated positively in the added con-
straint, bucket; cannot contain already a constraint
with a positive annotation of z;. Otherwise, it means
that before processing bucket ¢ — 1, there were two
constraints with positive annotation of z;, one in the
bucket of z;_; and one in the bucket of x;, which con-
tradicts the induction hypothesis. Therefore, the rest
of the buckets still obey the claimed property. O

Consequently, applying DRC's to a cross-word puzzle
along any ordering enforces global consistency along
that ordering.

Theorem 8 Given a cross-word puzzle of size n, and
for any ordering d, algorithms DRC'3 enforces direc-
tional global-consistency along d.

Note, that it does not mean that cross-word puzzles
are tractable. The size of the constraints in the bucket
may be exponential. Nevertheless, if the size of the
constraints is bounded somehow—by the width, for
example—the problem becomes tractable.

5 Conclusions

In this paper, we have identified a sufficient condition
based on the tightness of the constraints, the arity of
the constraints, and the level of local consistency, that
guarantees that a solution can be found in a backtrack-
free manner. The results will be useful in applica-
tions where a knowledge base will be queried over and
over and the preprocessing costs can be amortized over
many queries. As well, we believe our results may
have significant explanatory value. In recent compu-
tational experiments we discovered that the parame-
ter m, which measures the tightness of the constraints,
is a good predictor of the amount of time needed by
backtracking algorithms to solve particular constraint
networks. A goal in our work is to discover parame-
ters of constraint networks that will allow us to predict
how a backtracking algorithm will perform on a given
problem.
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