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Abstract

Constraint networks are a simple represen�
tation and reasoning framework with diverse
applications� In this paper� we present a new
property called constraint tightness that can
be used for characterizing the di	culty of
problems formulated as constraint networks�
Speci
cally� we show that when the con�
straints are tight they may require less pre�
processing in order to guarantee a backtrack�
free solution� This suggests� for example�
that many instances of crossword puzzles are
relatively easy while scheduling problems in�
volving resource constraints are quite hard�
Formally� we present a relationship between
the tightness or restrictiveness of the con�
straints� and the level of local consistency
su	cient to ensure global consistency� thus
ensuring backtrack�freeness� Two de
nitions
of local consistency are employed� The tradi�
tional variable�based notion leads to a con�
dition involving the tightness of the con�
straints� the level of local consistency� and
the arity of the constraints� while a new
de
nition of relational consistency leads to
a condition expressed in terms of tightness
and local�consistency level� alone� New al�
gorithms for enforcing relational consistency
are introduced and analyzed�

� Introduction

Constraint networks are a simple representation and
reasoning framework� A problem is represented as a
set of variables� a domain of values for each variable�
and a set of constraints between the variables� and
the reasoning task is to 
nd an instantiation of the
variables that satis
es the constraints� In spite of the
simplicity of the framework� many interesting prob�
lems can be formulated as constraint networks� includ�
ing graph coloring �Montanari� ����
� scene labeling

�Waltz� ����
� natural language parsing �Maruyama�
����
� and temporal reasoning �Allen� ����� Dechter et
al�� ����� Meiri� ����� van Beek� ����
�

Constraint networks are often solved using a back�
tracking algorithm� However� backtracking algorithms
are susceptible to �thrashing�� discovering over and
over again the same reason for reaching a dead end in
the search for a solution� To ameliorate this thrash�
ing behavior� algorithms for preprocessing a constraint
network by removing local inconsistencies have been
proposed and studied �e�g�� �Dechter and Meiri� �����
Mackworth� ����� Montanari� ����
�� Sometimes a
certain level of local consistency is enough to guaran�
tee that the network is globally consistent� A network
is globally consistent if any solution for a subnetwork
can always be extended to a solution for the entire
network� Hence� if a network is globally consistent� a
solution can be found in a backtrack�free manner�

In this paper� we present a relationship between the
tightness or restrictiveness of the constraints� the ar�
ity of the constraints� and the level of local consistency
su	cient to ensure global consistency� Speci
cally� in
any constraint network where the constraints have ar�
ity r or less and the constraints have tightness of m
or less� if the network is strongly ��m� ���r� ��� ���
consistent� then the network is globally consistent� In�
formally� a network is strongly k�consistent if any con�
sistent instantiation of any k�� or fewer variables can
be extended consistently to any additional variable�
Also informally� given an r�ary constraint and an in�
stantiation of r� � of the variables that participate in
the constraint� the parameter m is an upper bound on
the number of instantiations of the rth variable that
satisfy the constraint�

We also present a new de
nition of local consistency
called relational m�consistency� The virtue of this def�
inition is that� 
rstly� it allows expressing the relation�
ship between tightness and local consistency in a way
that avoids an explicit reference to the arity of the
constraints� Secondly� it is operational� thus general�
izing the concept of the composition operation de
ned
for binary constraints� and can be incorporated natu�



rally in algorithms for enforcing desired levels of rela�
tional consistency� Thirdly� it uni
es known operators
such as resolution in theorem proving� joins in rela�
tional databases� and variable elimination for solving
equations and inequalities� Finally� it allows identi�
fying those formalisms for which consistency can be
decided by enforcing pairwise consistency� like propo�
sitional databases and linear equalities and inequali�
ties� from general databases requiring higher levels of
local consistency�

The results we present are particularly useful in ap�
plications where a knowledge base will be queried
over and over and we desire that queries be answered
quickly� In such applications the preprocessing time to
enforce local consistency is of less importance� What
is of importance is knowing what level of local con�
sistency will guarantee that queries can be answered
quickly�

� Background

We begin with some needed de
nitions and describe
related work�

De�nition � �binary constraint network� Mon�
tanari �����	
 A binary constraint network consists
of a set X of n variables fx�� x�� � � � � xng� a domain
Di of possible values for each variable� and a set of
binary constraints between variables� A binary con�
straint or relation� Rij� between variables xi and xj�
is any subset of the product of their domains �i�e��
Rij � Di � Dj�� An instantiation of the variables in
X is an n�tuple �X�� X�� � � � � Xn�� representing an as�
signment of Xi � Di to xi� A consistent instantiation
of a network is an instantiation of the variables such
that the constraints between variables are satis�ed� A
consistent instantiation is also called a solution�

Mackworth �����
 de
nes three properties of networks
that characterize local consistency of networks� node�
arc� and path consistency� Freuder �����
 generalizes
this to k�consistency�

De�nition � �k�consistency� Freuder �����	

A network is k�consistent if and only if given any in�
stantiation of any k� � variables satisfying all the di�
rect relations among those variables� there exists an
instantiation of any kth variable such that the k val�
ues taken together satisfy all the relations among the
k variables� A network is strongly k�consistent if and
only if it is j�consistent for all j � k�

Node� arc� and path consistency correspond to strong�
ly one�� two�� and three�consistent� respectively� A
strongly n�consistent network is called globally con�
sistent� Globally consistent networks have the prop�
erty that any consistent instantiation of a subset of
the variables can be extended to a consistent instantia�

tion of all the variables without backtracking �Dechter�
����b
�

Following Montanari �����
� a binary relation Rij be�
tween variables xi and xj is represented as a ������
matrix with jDij rows and jDj j columns by imposing
an ordering on the domains of the variables� A zero
entry at row a� column b means that the pair consist�
ing of the ath element of Di and the bth element of Dj

is not permitted� a one entry means the pair is permit�
ted� A concept central to this paper is the tightness of
constraints�

De�nition 
 �m�tight

A binary constraint is m�tight if every row and every
column of the ������matrix that de�nes the constraint
has at most m ones� where � � m � jDj � �� Rows
and columns with exactly jDj ones are ignored in de�
termining m� A binary constraint network is m�tight
if all its binary constraints are m�tight�

Example �� We illustrate some of the de
nitions us�
ing a variant of n�queens proposed by Nadel �����

called confused n�queens� The problem is to 
nd all
ways to place n�queens on an n � n chess board� one
queen per column� so that each pair of queens does
attack each other� One possible constraint network
formulation of the problem is as follows� there is a
variable for each column of the chess board� x�� � � � � xn�
the domains of the variables are the possible row posi�
tions� Di � f�� � � � � ng� and the binary constraints are
that two queens should attack each other� The ������
matrix representation of the constraints between two
variables xi and xj is given by�

Rij�ab �

�
� if a � b � ja� bj � ji� jj

� otherwise�

for a� b � �� � � � � n� For example� consider the con�
straint R�� between x� and x�� R����� � �� which
states that putting a queen in column �� row � and a
queen in column �� row � is allowed by the constraint
since the queens attack each other�

Q
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Q Q

Q
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Figure �� �a� not ��consistent� �b� not ��consistent

It can be seen that the networks for the confused n�
queens problem are ��consistent since� given that we
have placed a single queen on the board� we can always
place a second queen such that the queens attack each



other� However� the networks are not ��consistent� For
example� for the confused ��queens problem shown in
Fig� �a� there is no way to place a queen in the last
column that is consistent with the previously placed
queens� Similarly the networks are not ��consistent
�see Fig� �b�� Finally� every row and every column of
the ������matrices that de
ne the constraints has at
most � ones� Hence� the networks are ��tight�

��� Related work

Much work has been done on identifying relationships
between properties of constraint networks and the level
of local consistency su	cient to ensure global consis�
tency� This work falls into two classes� identifying
topological properties of the underlying graph of the
network and identifying properties of the constraints�
Here we review only the literature for constraint net�
works with 
nite domains�

For work that falls into the class of identifying topo�
logical properties� Freuder ������ ����
 identi
es a re�
lationship between the width of a constraint graph and
the level of local consistency needed to ensure a solu�
tion can be found without backtracking� As a special
case� if the constraint graph is a tree� arc consistency
is su	cient to ensure a solution can be found with�
out backtracking� Dechter and Pearl �����
 provide an
adaptive scheme where the level of local consistency is
adjusted on a node�by�node basis� Dechter and Pearl
�����
 generalize the results on trees to hyper�trees
which are called acyclic databases in the database com�
munity �Beeri et al�� ����
�

For work that falls into the class of identifying proper�
ties of the constraints �the class into which the present
work falls�� Montanari �����
 shows that path consis�
tency is su	cient to guarantee that a binary network is
globally consistent if the relations are monotone� Van
Beek and Dechter �����
 show that path consistency
is su	cient if the relations are row convex� Dechter
�����b
 identi
es a relationship between the size of the
domains of the variables� the arity of the constraints�
and the level of local consistency su	cient to ensure
the network is globally consistent� She proves the fol�
lowing result�

Theorem � �Dechter �����b	
 Any jDj�valued r�
ary constraint network that is strongly �jDj�r�������
consistent is globally consistent� In particular� any
jDj�valued binary constraint network that is strongly
�jDj� ���consistent is globally consistent�

For some networks� Dechter�s theorem is tight in that
the level of local consistency speci
ed by the theorem
is really required �graph coloring problems formulated
as constraint networks are an example�� For other net�
works� Dechter�s theorem overestimates� Our results
should be viewed as an improvement on Dechter�s the�
orem� In particular� our main theorem� by taking into

account the tightness of the constraints� always spec�
i
es a level of strong consistency that is less than or
equal to the level of strong consistency required by
Dechter�s theorem�

� Binary constraint networks

In this section we restrict our attention to binary con�
straint networks and present a relationship between
the tightness of the constraints and the level of local
consistency su	cient to ensure a network is globally
consistent� The results are generalized to constraint
networks with constraints of arbitrary arity in the next
section�

The following lemma is needed in the proof of the
main result for constraint networks with binary con�
straints and in a later proof of the result generalized
to constraint networks with constraints of arbitrary
arity� The lemma is really about the �tightness� of
constraints and the su	ciency of a certain level of con�
sistency� We state the lemma in more colloquial terms
to make the proof more understandable�

Lemma � Suppose there are fan clubs that like to
meet and talk about famous people� and the following
conditions�

�� There are n fan clubs and d famous people�

�� Each fan club meets and talks about at most m�
m � d� famous people�

	� For every set of m � � or fewer fan clubs� there
exists at least one famous person that every club
in the set talks about�

Then� there must exist at least one famous person that
every fan club talks about�

Proof� The proof is by contradiction and uses a proof
technique discovered by Dechter for Theorem �� As�
sume to the contrary that no such famous person ex�
ists� Then� for each famous person� fi� there must
exist at least one fan club that does not talk about fi�
Let ci denote one of the fan clubs that does not talk
about fi� By construction� the set c � fc�� c�� � � � � cdg
is a set of fan clubs for which there does not exist a
famous person that every club in the set talks about
�every candidate fi is ruled out since ci does not talk
about fi�� For every possible value of m� this leads to
a contradiction�

Case � �m � d� ��� The contradiction is immediate
as c � fc�� c�� � � � � cdg is a set of fan clubs of size m��
for which there does not exist a famous person that
every club in the set talks about� This contradicts
condition ����

Case � �m � d � ��� The nominal size of the set
c � fc�� c�� � � � � cdg is m� �� We claim� however� that



there is a repetition in c and that the true size of the
set is m � �� Assume to the contrary that ci �� cj for
i �� j� Recall ci is a club that does not talk about fi�
i � �� � � � � d and consider fc�� c�� � � � � cd��g� This is a
set of m � � fan clubs so by condition ��� there must
exist an fi that every club in the set talks about� The
only possibility is fd� Now consider fc�� � � � � cd��� cdg�
Again� this is a set ofm�� fan clubs so there must exist
an fi that every club in the set talks about� This time
the only possibility is fd��� Continuing in this manner�
we can show that fan club c� must talk about exactly
m � � famous people� This contradicts condition ����
Therefore� it must be the case that ci � cj for some i ��
j� Thus� the set c is of size m� � and this contradicts
condition ����

Case 
 �m � d� ��� � � � � Case d�� �m � ��� The re�
maining cases are similar� In each case we argue that
�i� there are repetitions in the set c � fc�� c�� � � � � cdg�
�ii� the true size of the set c is m� �� and �iii� a con�
tradiction is derived by appealing to condition ����

Thus� there exists at least one famous person that ev�
ery fan club talks about� �

We now state the theorem for binary constraint net�
works�

Theorem � If a binary constraint network� R� is m�
tight� and if the network is strongly �m����consistent�
then the network is globally consistent�

Proof� We show that any network with � m ones in
every row that is strongly �m � ���consistent is �m �
�� i��consistent for any i � �� Suppose that variables
x�� � � � � xm���i can be consistently instantiated with
values X�� � � � � Xm���i� To show that the network is
�m� �� i��consistent� we must show that there exists
at least one instantiation� Xm���i� of variable xm���i

such that

�Xj � Xm���i� � Rj�m���i j � �� � � � �m� � � i

is satis
ed� Let vj be the ������vector given by row Xj

of the ������matrix Rj�m���i� j � �� � � � �m��� i �see
Figure � for an illustration� the vj are shown boxed��
The one entries in the vj are the allowed instantiations
of xm���i� given the instantiations X�� � � � � Xm���i�
That there exists a consistent instantiation of xm���i

follows from Lemma � where �i� X�� � � � � Xm���i are
the fan clubs� �ii� �� � � � � d� the domain elements of
xm���i� are the famous people� �iii� the one entries
in the vj �s are the famous people that fan club Xj

talks about� and �iv� condition ��� of Lemma � follows
from the assumption of strong �m � �� consistency�
Therefore� from Lemma � it follows that there exists
at least one instantiation of xm���i that satis
es all
the constraints simultaneously� Hence� the network is
�m � � � i��consistent� �

Theorem � always speci
es a level of strong consistency
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Figure �� Instantiating xm���i

that is less than or equal to the level of strong con�
sistency required by Dechter�s theorem �Theorem ���
The level of required consistency is equal only when
m � jDj � � and is less when m � jDj � �� As
well� the theorem can sometimes be usefully applied
if jDj � n� �� whereas Dechter�s theorem cannot�

As the following example illustrates� both r� the ar�
ity of the constraints� and m can change if the level of
consistency required by the theorem is not present and
must be enforced� The parameter r can only increase�
m can decrease� as shown below� but also increase�
The parameter m will increase if all of the following
hold� �i� there previously was no constraint between
a set of variables� �ii� enforcing a certain level of con�
sistency results in a new constraint being recorded be�
tween those variables and� �iii� the new constraint has
a larger m value than the previous constraints�

Example �� Consider again the confused n�queens
problem introduced in Example �� The problem is
worth considering� as Nadel �����
 uses confused n�
queens in an empirical comparison of backtracking al�
gorithms for solving constraint networks� Thus it is
important to analyze the di	culty of the problems to
set the empirical results in context� As well� the prob�
lem is interesting in that it provides an example where
Theorem � can be applied but Dechter�s theorem can
not �since jDj � n� ��� Independently of n� each row
of the constraints has � � ones� Hence� the networks
are ��tight and the theorem guarantees that if the net�
work for the confused n�queens problem is strongly
��consistent� the network is globally consistent�

First� suppose that n is even and we attempt to either
verify or achieve this level of strong consistency by
applying successively stronger local consistency algo�
rithms� Kondrak �����
 has shown that the following
analysis holds for all n� n even�

�� Applying an arc consistency algorithm results in
no changes as the network is already arc consis�
tent�



�� Applying a path consistency algorithm does
tighten the constraints between the variables�
Once the network is made path consistent� each
row has � � ones� Now the theorem guaran�
tees that if the constraint network is strongly ��
consistent� the network is globally consistent�

�� Applying a ��consistency algorithm results in no
changes as the network is already ��consistent�
Thus� the network is strongly ��consistent and
therefore also globally consistent�

Second� suppose that n is odd� This time� after ap�
plying path consistency� the networks are still ��tight
and it can be veri
ed that the networks are not ��
consistent� Enforcing ��consistency would require non�
binary constraints� hence Theorem � no longer applies�
We take this example up again in the next section
where the results are generalized to non�binary con�
straints� There we show that recording ��ary con�
straints is su	cient�

Recall that Nadel �����
 uses confused n�queens prob�
lems to empirically compare backtracking algorithms
for 
nding all solutions to constraint networks� Nadel
states that these problems provide a �non�trivial test�
bed� ������ p����
� We believe the above analysis indi�
cates that these problems are quite easy and that any
empirical results on these problems should be inter�
preted in this light� Easy problems potentially make
even naive algorithms for solving constraint networks
look promising� To avoid this potential pitfall� back�
tracking algorithms should be tested on problems that
range from easy to hard� In general� hard problems are
those that require a high level of local consistency to
ensure global consistency� Note also that these prob�
lems are trivially satis
able�

Example 
� The graph k�colorability problem can be
viewed as a problem on constraint networks� there is
a variable for each node in the graph� the domains of
the variables are the possible colors� D � f�� � � � � kg�
and the binary constraints are that two adjacent nodes
must be assigned di�erent colors� Graph k�colorability
provides examples of networks where both Theorems �
and � give the same bound on the su	cient level of lo�
cal consistency �since jDj � k and m � jDj � ��� Fur�
ther� as Dechter �����b
 shows� the bound is tight� For
example� consider coloring a complete graph on 
ve
nodes with four colors� The network is ��tight and
strongly ��consistent� but not strongly ��consistent
and not globally consistent� Hence� when m � jDj���
the level of local consistency speci
ed by Theorem � is
as strong as possible and cannot be lowered�

We can also construct examples to show that Theo�
rem � is as strong as possible for all m � jDj � ��
This can be done by �embedding� graph coloring con�
straints into the constraints for the new network� For
example� consider the network where the domains are
D � f�� � � � � �g and the constraints between all vari�

ables is given by�

Rij �

�
���

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�
����

The inner � � � matrix is the ��coloring constraint�
The network is ��tight and strongly ��consistent� but
not strongly ��consistent and not globally consistent�

� R�ary constraint networks

In this section we generalize the results of the previous
section to networks with constraints of arbitrary arity�
We will de
ne m�tightness of r�ary relations� namely
relations having r variables� We use the following no�
tations and de
nitions�

De�nition � �Relations

Given a set of variables X � fx�� � � � � xng� each as�
sociated with a domain of discrete values D�� � � � � Dn�
respectively� a relation �or� alternatively� a constraint�
� over X is any subset

� � D� �D� � � � � �Dn�

Given a relation � on a set X of variables and a subset
Y � X� we denote by Y � y or by y an instantiation
of the variables in Y � called a subtuple and by �Y�y���
the selection of those tuples in � that agree with Y � y�
We denote by �Y ��� the projection of relation � on the
subset Y � Namely� a tuple over Y appears in �Y ���
if and only if it can be extended to a full tuple in ��
If Y is not a subset of �
s variables the projection is
over the subset of variables that appear both in Y and
in X� The operator � is the join operator in relational
databases�

De�nition � �Constraint networks

A constraint network R over a set X of variables
fx�� x�� � � � � xng� is a set of relations R�� � � � � Rt� each
de�ned on a subset of variables S�� � � � � St respectively�
A relation in R speci�ed over Y � X is also denoted
RY � The set of subsets S � fS�� � � � � Stg on which
constraints are speci�ed is called the scheme of R� The
network R represents its set of all consistent solutions
over X� denoted ��R� or ��X�� namely�

��R� � fx � �X�� � � � � Xn� j 	Si � S��Si �x� � Rig�

For non�binary networks the notion of consistency of a
subtuple can be de
ned in several ways� We will use the
following de
nition� A subtuple over Y is consistent if
it satis
es all the constraints de
ned over Y including
all R�s constraints obtained by projection over Y �

De�nition � �Consistency of a subtuple

A subtuple Y � y is consistent relative to R i�� for all
Si � S�

�Si�Y �y� � �Si�Y �Ri��



��Y � is the set of all consistent instantiations of the
variables in Y � One can view ��Y � as the set of all
solutions of the subnetwork de�ned by Y �

Informally� an r�ary relation is m�tight if every tuple
of r � � values can be extended in at most m ways�

De�nition � An r�ary relation is m�tight if and only
if all of its binary projections �projections on pairs of
variables� are m�tight�

Example �� We illustrate some of the de
nitions us�
ing the following network� R� over the set of variables�
fx�� x�� x�� x�g� The relations are given by�

RS� � f�������� �������� �������� �������g�
RS� � f�������� �������� �������� ��������

�������� �������� �������� �������g�

where S� � fx�� x�� x�g and S� � fx�� x�� x�g� The
set of all solutions of the network is given by�

��R� � f���������� ���������� ���������� ���������g�

Let Y � fx�� x�g be a subset of the variables and let
the subtuple y � ��� �� be an instantiation of the vari�
ables in Y � Then� �Y�y�RS� � � f�������� �������g and�
�Y �RS�� � f������ ������ ������ ����� g� It can be veri�

ed that the subtuple y � ��� �� is consistent relative
to R and that the subtuple y � ��� �� is not consistent
relative to R �since �S��Y �y� �� �S��Y �RS���� Finally�
the network is ��tight since projecting the relation RS�

onto fx�� x�g results in a binary relation that is ��tight�
and this is the maximum of all the binary projections�

We now state the general theorem�

Theorem 
 If an r�ary network� R� is m�tight� and if
the network is strongly ��m����r�������consistent�
then the network is globally consistent�

Proof� Let k � �m����r� ��� �� We show that any
network with relations that arem�tight that is strongly
k�consistent is �k � i��consistent for any i � ��

Let X� � �X�� X�� � � � � Xk�i��� be a consistent in�
stantiation of k � i � � variables� and let xk�i be
an arbitrary new variable� We will show that there
exists an instantiation Xk�i of xk�i such that the
extended tuple �X�� X�� � � � � Xk�i��� Xk�i� is consis�
tent� This means that any relation RY � R involv�
ing variable xk�i� and a non�empty subset of variables
from fx�� � � � � xk�i��g should be satis
ed� Let X�

Y

be the partial tuple of X � that is restricted to the
set Y over which RY is de
ned� We call this tuple
a constraint�tuple� Since all the constraints and their

�Note that according to the de�nition of consistency
this means that X � satis�es all the constraints de�ned on
its own subset of variables as well as those obtained by
projection�

projections are m�tight� constraint RY will allow X�
Y

to be extended by at mostm values of xk�i� Each such
constraint�tuple� X�

Y can be regarded as a fan club�
with its allowed values in xk�i relative to RY as the
discussed famous people� Therefore� condition ��� of
Lemma � is satis
ed� Also� condition ��� of Lemma �
is satis
ed� since the length of each constraint�tuple is
r�� or less� the requirement of strong �m����r������
consistency� ensures that any set of up to �m � ��
constraint�tuples �overlapping or not�� has a consistent
extension in xk�i� Therefore� from Lemma � it follows
that there is a common value of xk�i that satis
es all
the constraints simultaneously� �

Example �� Consider again the confused n�queens
problem discussed in Example �� There we saw that�
after enforcing path consistency� the networks are ��
tight� for n odd� Enforcing ��consistency requires
��ary constraints� Adding the necessary ��ary con�
straints does not change the value of m� the networks
are still ��tight� Hence� by Theorem �� if the net�
works are strongly ��consistent� the networks are glob�
ally consistent� Kondrak �����
 has shown that record�
ing ��ary constraints is su	cient to guarantee the net�
works are strongly ��consistent for all n� n odd� Hence�
independently of n� the networks are globally consis�
tent once strong ��consistency is enforced�

Example �� Constraint networks have proven fruitful
in representing and reasoning about temporal informa�
tion� We use an example from Allen�s �����
 frame�
work for reasoning about temporal relations between
intervals or events to illustrate the application of The�
orem �� Allen identi
es thirteen basic relations that
can hold between two intervals� In order to represent
inde
nite information� the relation between two inter�
vals is allowed to be a disjunction of the basic relations�
For example� the relation fb�big between events A and
D in Figure � represents the disjunction� �A before D�
� �A after D�� Allen provides a transitivity table for
propagating the temporal information�

Allen�s framework can be formulated as a constraint
network with 
nite domains as follows� there is a vari�
able for each pair of intervals� the domains of the vari�
ables are the possible basic relations� and there are
ternary constraints de
ned by the transitivity table�
For example� consider the temporal information given
by�

A foi�mg B A fb�og Ci A fb�big Di

B fb�dg Ci B fbi�og Di Di fb�oig Ci

for i � �� � � � � �n������ Formulating this temporal in�
formation as a constraint network with 
nite domains�
we can show that enforcing strong ��consistency is suf�

cient to ensure the network is globally consistent� for
all n � �� Below we show the analysis for the simple
case of n � �� The general case is similar� just no�
tationally more complicated� Figure � shows the six
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Figure �� Example temporal network

variables and their associated domains for our exam�
ple� The ternary constraints for our example are given
by�

R��� � f�oi�b�b�� �oi�o�b�� �m�b�b�� �m�o�d�g�
R��� � f�oi�bi�bi�� �m�bi�bi�� �m�b�o�g�
R��� � f�b�b�b�� �b�b�oi�� �b�bi�b�� �o�b�oi�� �o�bi�b�g�
R��� � f�b�bi�b�� �b�o�b�� �d�bi�b�� �d�o�oi�g�

It can be shown that the network is ��tight� Therefore�
by Theorem �� if the network is strongly ��consistent�
then the network is globally consistent� Suppose
that we attempt to either verify or achieve this level
of strong consistency� The network is strongly ��
consistent� but not ��consistent� For example� �b�b�oi�
is a consistent instantiation of �x�� x�� x��� since it sat�
is
es the constraint R��� as well as all the constraints
obtained by projection� However� there is no way to
extend the instantiation to x�� �i� x� 
 b is inconsis�
tent by the constraint R�� obtained by projecting R���

on fx�� x�g� and �ii� x� 
 d is inconsistent by the con�
straint R�� obtained by projecting R��� on fx�� x�g�
The modi
ed constraint R�

��� is given by�

R�

��� � f�b�b�b�� �b�bi�b�� �o�b�oi�� �o�bi�b�g�

As well� some ��ary constraints between previously un�
constrained triples of variables need to be introduced�
For example� �oi�o�oi� is a consistent instantiation of
�x�� x�� x��� since it satis
es all the constraints ob�
tained by projection� However� there is no way to
extend the instantiation to x�� �i� x� 
 b is incon�
sistent by the constraint R�� obtained by projecting
R��� on fx�� x�g� and �ii� x� 
 bi is inconsistent by
the constraint R�

���� Once the following ��ary relations
are added� the network is strongly ��consistent�

R��� � f�oi�b�b�� �oi�o�b�� �m�b�b�� �m�o�b�� �m�o�oi�g�
R��� � f�b�b�b�� �b�bi�b�� �o�b�d�� �o�bi�b�� �o�bi�d�g�
R��� � f�b�bi�b�� �b�o�b�� �o�bi�b�� �o�o�oi�g�
R��� � f�b�b�b�� �b�d�oi�� �bi�b�b�� �bi�d�b�g�

It can now be veri
ed that the network is also strongly
��consistent� Therefore� by Theorem �� the network
is globally consistent� The network is also minimal�
A network of r�ary relations is minimal if each tuple
in the relations participates in at least one consistent
instantiation of the network� These two properties�
global consistency and minimality� ensure that we can
e	ciently answer some important classes of temporal
queries�

��� Relational local consistency

In �van Beek and Dechter� ����
 we extended the no�
tion of path�consistency to non�binary relations� and
used it to specify an alternative condition under which
row�convex non�binary networks of relations are glob�
ally consistent� This de
nition� since it considers the
relations rather than the variables as the primitive en�
tities� does not mention the arity of the constraint ex�
plicitly� We now extend this de
nition even further
and show how it can be used to alternatively describe
Theorem ��

De�nition � �Relational m�consistency

Let R be a network of relations over a set of variables
X� let RS� � � � � � RSm�� be m � �� m � �� relations in
R� where Si � X� We say that RS� � � � � � RSm�� are
relational m�consistent relative to variable x i� any
consistent instantiation of the variables in A� where
A �

Sm��

i��
Si�fxg� has an extension to x that satis�es

RS� � � � � � RSm�� simultaneously� Namely� if and only if

��A� � �A��
m��

i�� RSi��

�Recall that ��A� is the set of all consistent instan�
tiations of the variables in A�� A set of relations
RS� � � � � � RSm�� are relational m�consistent i� they
are relational m�consistent relative to each variable inTm��

i�� Si� A network of relations is said to be relational
m�consistent i� every set of m�� relations is relational
m�consistent� Relational 	�consistency is also called
relational path�consistency� A network is strongly re�
lational m�consistent if it is relational i�consistent for
every i � m�

Note that we do not need to de
ne relational ��
consistency since our de
nition of consistency of a
subtuple� which takes into account all the networks�
projections� guarantees that any notion of relational
��consistency is redundant�

Example �� Consider the following network of re�
lations� The domains of the variables are all D �
f�� �� �g and the relations are given by�

��� Rfxyz � f����� ����� ���������� ����g�

��� Rfzs � f���� ���� ���g�

The constraints are not relational path�consistent� For
example� the instantiation f � �� x � �� y � � satis�

es all the constraints� �namely all the projections of



��� and ��� on ff� x� yg and ffg respectively�� but it
cannot be consistently extended to a legal value of z�
If we add the constraint ���Rfxy � f���g� the 
rst
two constraints will become relational path�consistent
relative to z since constraint ��� will disallow the par�
tial assignments f � �� x � �� y � �� Constraints
��� and ��� are relational path�consistent relative to f
since any consistent instantiation of x� y� z will have to
satisfy the two constraints Rxyz � f���� ���� �������g
and Rz � f�� �g obtained by projecting constraints
��� and ��� over x� y� z� respectively� Remember that
consistency of a subtuple needs to obey all the pro�
jected constraints� Once these constraints are obeyed
there is an extension to f � � that satis
es ��� and ���
simultaneously�

We now show that strong relational �m � ���con�
sistency is su	cient to ensure globally consistency
when the relations are m�tight�

Theorem � Let R be a network of relations that is
strongly relational �m � ���consistent� If the relations
are m�tight� then the network is globally consistent�

Proof� Assume that the network is relational �m����
consistent� Let X� � �X�� X�� � � � � Xi��� be a consis�
tent instantiation of i�� variables� i � m��� We will
show that for any xi� there exists an instantiationXi of
xi such that the extended tuple �X�� X�� � � � � Xi��� Xi�
is consistent� This means that any relevant relation
RY � R or any of its projections� that are de
ned over
xi should be satis
ed by such an extension� Since all
constraints and all their projections are m�tight� all
the values of xi that together with X�

Y are allowed by
RY do not exceed m� Also� strong relational �m � ���
consistency implies that any subset of m � � or fewer
constraints can be consistently extended by xi� Con�
sequently� due to Lemma � there is a value Xi such
that the tuple �X�� X�� � � � � Xi��� Xi� satis
es all the
constraints simultaneously� �

When all the constraints are binary� relational m�
consistency is identical �up to minor preprocessing�
to variable�based m�consistency� Otherwise the con�
ditions are di�erent� In general� the de
nition of re�
lational m�consistency is similar but not identical to
that of m�consistency over the dual representation of
the problem in which the constraints are the variables�
their allowed tuples are their respective domains and
two such constraint�variables are constrained if they
have variables in common� The virtue in this new ex�
plicit de
nition �relative to the one based on the dual
graph� is that it is simpler to work with� it uses known
notations from relational databases� and it immedi�
ately translates to consistency enforcing algorithms�

Relational m�consistency can be enforced on a net�
work that does not possess this level of consistency�
Below we present algorithm RCm� a brute�force algo�

rithm for enforcing strong relational m�consistency on
a network R� The algorithm seems to enforce rela�
tional m�consistency only �joining every set of m � �
relations�� however due to our convention of testing
all projections when verifying consistency� strong m�
consistency results as well�

RCm�R�

�� repeat

�� Q
 R

�� for every m� � relations RS� � � � � � RSm�� � Q

and every x �
Tm��

i�� Si

�� do A

Sm��

i�� Si � fxg

�� RA 
 RA � �A��
m��
i�� RSi�

�� until Q � R

Note that RY stands for the current unique constraint
speci
ed over a subset of variables Y � If no constraint
exists� then RY is the universal relation over Y � The
algorithm takes any m � � relations that may or may
not be relational m�consistent and enforces relational
m�consistency by tightening the relation among the
appropriate subsets of variables� We call the operation
in Step � of the algorithm extended m�composition�
since it generalizes the composition operation de
ned
on binary relations� Algorithm RCm computes the
closure of R with respect to extended m�composition�
We can conclude that�

Theorem � For any network� R� whose closure under
extended i�composition� for i � �� � � � �m� is an �m����
tight network� m � �� algorithm RCm computes an
equivalent globally consistent network�

Proof� Follows immediately from Theorem � and
from the fact that RCm generates a strong relational
m�consistent network� ��

While enforcing variable�based m�consistency can be
done in polynomial time� it is unlikely that relational
m�consistency can be achieved tractably� since� as we
will shortly see� even for m � � it solves the NP�
complete problem of propositional satis
ability� A
more direct argument suggesting an increase in time
and space complexity is the fact that the algorithm
may need to record relations of arbitrary arity and
also that the constraints� tightness may increase�

Example �� Bi�valued relations are ��tight and closed
under extended ��composition� Thus� by Theorem ��
bi�valued networks can be solved by algorithmRC�� In
particular� the satis
ability of propositional CNFs can
be decided by RC�� Here the extended composition
operation �Step � of algorithm RCm� takes the form
of pair�wise resolution �Dechter and Rish� ����
� A
di�erent derivation of the same result is already given
by �Dechter� ����b� van Beek and Dechter� ����
�



As with variable�based local�consistency� we can im�
prove the e	ciency of enforcing relational consistency
by enforcing it only along a certain direction� Be�
low we present algorithm Directional Relational m�
Consistency �DRCm� that enforces strong relational
m�consistency on a network R� relative to a given or�
dering� d� of the variables x�� x�� � � � � xn� We denote
as DRCm�R� d�� a network that is strongly relational
m�consistent relative to an ordering d�

DRCm�R� d�

�� Initialize� generate an ordered partition of the con�
straints� bucket�� ���� bucketn� where bucketi contains
all the constraints whose highest variable is xi�

�� for i
 n downto �

�� do for every set of m � � relations RS� � � � � �
RSm�� in bucketi �if bucketi contains fewer
than m � � relations� then take all the rela�
tions in the bucket��

�� do A

Sm��

i�� Si � fxig

�� RA 
 RA � �A��
m��
i�� RSi�

�� Add RA to its appropriate bucket�

While the algorithm is incomplete for deciding consis�
tency in general� it is complete for �m � ���tight rela�
tions that are closed under extended m�composition�
In fact� it is su	cient to require directional �m � ���
tightness relative to the ordering used� Namely� requir�
ing that if xi appears before xj in the ordering then
any value of xi will be �m� ���tight relative to xj but
not vice�versa� For example� functional relations are
always ��tight from input to outputs but not for any
ordering�

De�nition � �directionally m�tight�
A binary constraint� Rij� is directionally m�tight
with respect to an ordering of the variables� d �
�x�� � � � � xn�� if xi appears before xj in the ordering
and every row of the ������matrix that de�nes the con�
straint has at most m ones� An r�ary relation is di�
rectionally m�tight with respect to an ordering of the
variables if and only if all of its binary projections are
directionally m�tight with respect to the ordering�

The following theorems will be stated without proofs�
Their correctness can be veri
ed using similar theo�
rems on directional consistency algorithms reported
earlier �Dechter and Pearl� ����
�

Theorem � �Completeness

If a network DRCm�R� d� is directionally �m����tight
relative to d� then DRCm�R� d� is backtrack�free along
d�

Like similar algorithms for imposing directional consis�
tency� DRCm�s worst�case complexity can be bounded
as a function of the topological structure of the prob�

lem via parameters like the induced width of the graph
�Dechter and Pearl� ����
�

A network of constraints R can be associated with a
constraint graph� where each node is a variable and
two variables that appear in one constraint are con�
nected� A general graph can be embedded in a clique�
tree namely� in a graph whose cliques form a tree�
structure� The induced width� W�� of such an em�
bedding is its maximal clique size and the induced
width W� of an arbitrary graph is the minimum in�
duced width over all its tree�embeddings� For more
details see �Dechter and Pearl� ����
� The complexity
of DRCm can be bounded as a function of the W� of
its constraint graph�

Theorem � �Complexity
 Given a network of re�
lations R� the complexity of algorithm DRCm along
ordering d is O�exp�mW ��d��� where W ��d� is the in�
duced width of the constraint graph of R along d�

Example �� Crossword puzzles have been used in
experimentally evaluating backtracking algorithms for
solving constraint networks �Ginsberg et al�� ����
� We
use an example puzzle �taken from �Dechter� ����a
�
to illustrate algorithm DRCm �see Figure ���

1 2 3 4 5

6 7

8 9 10 11

12 13

Figure �� A crossword puzzle

We can formulate this problem as a constraint problem
as follows� each possible slot holding a character will be
a variable� and the possible words are relations over the
variables� Therefore� we have x�� � � � � x�� variables as
marked in the 
gure� Their domains are the alphabet
letters and the constraints are the following relations�

R��������� � f�H�O�S�E�S�� �L�A�S�E�R�� �S�H�E�E�T��

�S�N�A�I�L�� �S�T�E�E�R�g

R�������� � f�H�I�K�E�� �A�R�O�N�� �K�E�E�T��

�E�A�R�N�� �S�A�M�E�g

R	����
��� � R��������

R������ � f�R�U�N�� �S�U�N�� �L�E�T�� �Y�E�S��

�E�A�T�� �T�E�N�g

R�
��� � f�N�O�� �B�E�� �U�S�� �I�T�g

R����� � R�
���



We see that constraints R�
��� and R����� are ��tight�
however all the rest have higher tightness� For ex�
ample� the tightness of R������ is � due to words like
RUN� SUN� and TEN� Constraint R��������� is also ��
tight since its binary projection on fx�� x�g contains
the three pairs f�S�L�� �S�T�� �S�R�g� For the order�
ing d � x�� x�� ���� x�� however� the constraint is only
��tight� The tightness of all constraints does not go be�
yond �� According to Theorem �� enforcing relational
��consistency� if not increasing the tightness� will gen�
erate a globally consistent network relative to the or�
dering used�

Applying DRC� to this problem using the ordering
d � x��� x��� x��� x�
� x�� x�� x� �we disregard the rest
of the letters since they appear in just one word�� gives
the following� Initially the bucket for x� contains two
relations R������ and R��� �resulting from projecting
away x� from R�������� and x�� x�� x� from R����������
respectively�� Processing variable x� adds the relation
R������ to the bucket of variable x� that is processed
next� The relation is�

R������ � ��������R������ � R����

� f�S�M�E�� �R�M�E�� �T�R�N��

�R�R�N�� �L�O�N�g�

Next� processing of x� adds the relation R������� to the
bucket of variable x�� The relation is�

R������� � ���������R������ � R�����

� f�M�N�E�� �R�N�R�� �O�T�N�� �R�N�N�g�

Next� processing x� adds the relation R�
������ to the
bucket of variable x�
� The relation is�

R�
������ � ��
�������R���
��� � R��������

� f�O�N�R�g�

Next� processing x�
 adds R�������� to the bucket of
variable x��� The relation is�

R�������� � ����������R�
������ � R�
����

� f g�

Namely� resulting in an empty relation� At this point
the algorithm stops and determines that the problem
is inconsistent�

It turns out� however� that cross�word puzzles have
a special property that makes them solvable by rela�
tional ��consistency only�

Lemma � When processing a crossword problem by
DRCm for any m� the resulting buckets contain at
most two constraints�

Proof� Let us annotate each variable in a constraint
by a � if it appears in a horizontal word and by a

� if it appears in a vertical word� Clearly� in the
initial speci
cation each variable appears in at most
two constraints and each annotated variable appears
in just one constraint �with that annotation�� We show
that this property is maintained throughout the algo�
rithm�s performance� The argument can be proved by
induction on the processed buckets� Assume that after
processing buckets xn� ���� xi all the constraints appear�
ing in the union of all bucketi�� to bucket� satisfy that
each annotated variable appears in at most one con�
straint� When processing bucketi��� since it contains
only two constraints �otherwise it will contain multi�
ple annotations of variable xi���� it generates a single
new constraint� Assume that the constraint is added
to the bucket of xj�

Clearly� if xj is annotated positively in the added con�
straint� bucketj cannot contain already a constraint
with a positive annotation of xj� Otherwise� it means
that before processing bucket i � �� there were two
constraints with positive annotation of xj� one in the
bucket of xi�� and one in the bucket of xj � which con�
tradicts the induction hypothesis� Therefore� the rest
of the buckets still obey the claimed property� �

Consequently� applying DRC� to a cross�word puzzle
along any ordering enforces global consistency along
that ordering�

Theorem � Given a cross�word puzzle of size n� and
for any ordering d� algorithms DRC� enforces direc�
tional global�consistency along d�

Note� that it does not mean that cross�word puzzles
are tractable� The size of the constraints in the bucket
may be exponential� Nevertheless� if the size of the
constraints is bounded somehow�by the width� for
example�the problem becomes tractable�

� Conclusions

In this paper� we have identi
ed a su	cient condition
based on the tightness of the constraints� the arity of
the constraints� and the level of local consistency� that
guarantees that a solution can be found in a backtrack�
free manner� The results will be useful in applica�
tions where a knowledge base will be queried over and
over and the preprocessing costs can be amortized over
many queries� As well� we believe our results may
have signi
cant explanatory value� In recent compu�
tational experiments we discovered that the parame�
ter m� which measures the tightness of the constraints�
is a good predictor of the amount of time needed by
backtracking algorithms to solve particular constraint
networks� A goal in our work is to discover parame�
ters of constraint networks that will allow us to predict
how a backtracking algorithm will perform on a given
problem�
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