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Abstract Compilers perform instruction scheduling to im-
prove the performance of code on modern computer archi-
tectures. Superblocks—a straight-line sequence of code with
a single entry point and multiple possible exit points—are
a commonly used scheduling region within compilers. Su-
perblock scheduling is NP-complete, and is done subopti-
mally in production compilers using a greedy algorithm cou-
pled with a heuristic. Recently, exact schedulers have also
been proposed. In this paper, we perform an extensive com-
putational study of heuristic and exact techniques for sched-
uling superblocks. Our study extends previous work in using
a more realistic architectural model, in not assuming perfect
profile information, and in systematically investigating the
case where profile information is not available. Our exper-
imental results show that heuristics can be brittle and what
looks promising under idealized (but unrealistic) conditions
may not be robust in practice. As well, for the case where
profile information is not available, some methods clearly
dominate. Notably, a much inferior method is deployed in at
least one existing compiler.
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1 Introduction

Modern computer architectures have complex features that
can only be fully taken advantage of if the compiler sched-
ules the compiled code. This instruction scheduling, as it
is called, is one of the most important steps for improving
the performance of object code produced by a compiler as
it can lead to significant speedups [18]. A standard region
of code for scheduling in an optimizing compiler is called
a superblock!. A superblock is a straight-line sequence of
instructions with a single entry point and multiple possible
exit points. A quite unique feature of superblock scheduling
is that each of the exit points has associated with it a proba-
bility that the flow of control will exit the superblock at this
point. In other words, with some probability, the remainder
of the schedule of instructions will not be executed. The cost
function of superblock scheduling includes these exit prob-
abilities and the goal is to minimize the expected number of
instructions executed.

Superblock instruction scheduling for realistic multiple-
issue processors is NP-complete [21] and currently is done
using the well-known list scheduling algorithm coupled with
a priority heuristic in most, if not all, commercial and open-
source research compilers. Recently, however, exact sched-
ulers based on enumeration and on constraint programming
have also been proposed [32,28]. Two classes of methods
are used to determine the exit probabilities that appear in the
cost function of superblock instruction scheduling: dynamic
methods and static methods. In dynamic methods, the exit
probabilities are estimated by executing the instructions on
representative data, a process known as profiling. In static
methods, the exit probabilities are labeled using a heuris-
tic or some fixed policy. Dynamic methods can give better
estimates of the exit probabilities, but it has been noted that

! See Section 2 for detailed definitions and explanations of terms in
computer architecture and instruction scheduling.



application developers are often reluctant to use profiling be-
cause of the engineering effort involved, the often dramatic
increase in compile time—a compilation that can take sec-
onds or minutes when no profiling is performed can take
hours when profiling is performed—and a general lack of
trust in the process [15, p. 339].

In this paper, we perform an extensive computational
study of heuristic and exact techniques for superblock in-
struction scheduling. A notable feature of our experimen-
tal study is that we use realistic architectural models for
scheduling, whereas most previous empirical comparisons
have assumed idealized architectural models?. In particu-
lar, we address the following three experimental questions
regarding the performance of superblock scheduling tech-
niques.

QI. Inthe case where the exit probabilities are estimated dy-
namically, how sensitive are the superblock schedulers
to the accuracy of the profile information?

The best possible case for superblock instruction schedul-

ing is when there is perfect profile information—i.e.,
the exit probabilities used to schedule the superblock
are identical to those that occur when the superblock is
executed. However, perfect profile information is not a
realistic scenario as such accuracy is not attainable in
practice. Surprisingly then, all previous empirical com-
parisons of scheduling techniques for superblocks have
assumed perfect profile information. In our experiments
we develop a realistic error model for profile informa-
tion and examine whether the scheduling techniques are
robust in the presence of the inevitable profiling inaccu-
racies.

Q2. In the case where the exit probabilities are estimated

statically, how sensitive are the superblock schedulers
to the choice of fixed policy?
Previous work has performed empirical comparisons of
only a few methods for statically estimating the exit prob-
abilities and only for a few scheduling techniques. In our
experiments we systematically vary the fixed policy for
labeling the exit probabilities and examine whether there
are policies that dominate others in terms of expected
performance.

Q3. Are dynamic methods for estimating the exit probabil-

ities worth the considerable extra effort or are static
methods sufficient?
As noted above, application developers are often reluc-
tant to use profiling. A question that has not been sys-
tematically addressed in previous work is whether pro-
filing is worth the effort. In our experiments we compare
the expected performance loss of the best fixed policy
versus the case where profiling is performed.

2 See Section 3 for a detailed comparison to previous experimental
studies.

The three most important lessons learned from our study
are the following. First, for the case where profile informa-
tion is available, our experimental results show that heuris-
tics can be brittle for architectures with small issue widths—
a measure of how many instructions can be initiated in each
clock cycle—and what looks promising under idealized (but
unrealistic) conditions may not be robust in practice. An ex-
act scheduler and one of the heuristic schedulers were found
to be the most robust in the presence of (necessarily) inac-
curate profile information. The exact scheduler was always
better but is more costly in terms of scheduling time whereas
the heuristic scheduler is fast and relatively accurate. Sec-
ond, for the case where profile information is not available
and exit probabilities are labeled using a fixed policy, some
methods clearly dominate. Notably, one of the much infe-
rior policies is deployed in at least one existing compiler.
Finally, for architectures with smaller issue widths profiling
can be important and lead to better schedules than the static
methods we examined. However, for larger issue widths this
is no longer true and profiling does not lead to significant
performance improvements over static methods. Given that
profiling can be difficult and time consuming, an important
lesson from our experiments is that the faster and easier-to-
use static methods may be preferred for larger issue archi-
tectures.

2 Background

In this section, we review the necessary background in com-
puter architecture before defining the superblock instruction
scheduling problem (for more background on these topics
see, for example, [18,22,30]).

2.1 Computer architecture

We consider a standard multiple-issue, pipelined processor.
In such a processor, there are multiple functional units and
multiple instructions can be issued (begin execution) in each
clock cycle. Examples of functional units include arithmetic-
logic units (ALUs), floating-point units, memory or load/store
units that perform address computations and accesses to the
memory hierarchy, and branch units that execute branch and
call instructions. The number of instructions that can be is-
sued in each clock cycle is called the issue width of the pro-
cessor. On most architectures, the issue width is less than the
number of available functional units.

Pipelining is a standard hardware technique for overlap-
ping the execution of instructions on a single functional unit.
A helpful analogy is to a vehicle assembly line [22] where
there are many steps to constructing the vehicle and each
step operates in parallel with the other steps. An instruc-
tion is issued on a functional unit (begins execution on the



pipeline) and associated with each instruction is a delay or
latency between when the instruction is issued and when the
instruction has completed (exits the pipeline) and the result
is available for other instructions that use the result. Also as-
sociated with each instruction is an execution time, the num-
ber of cycles between when the instruction is issued on a
functional unit and when any subsequent instruction can be
issued on the same functional unit. An architecture is said to
be fully pipelined if every instruction has an execution time
of 1. However, most architectures are not fully pipelined and
so there may be cycles in which instructions cannot be is-
sued on a particular functional unit, since the unit will still
be executing a previously-issued instruction.

Further, many processors contain serializing instructions,
instructions that require exclusive access to the processor in
the cycle in which they are issued. This can happen when an
architecture has only one of a particular resource, such as a
condition register, and needs to ensure that only one instruc-
tion is accessing that resource at a time. In the cycle in which
such instructions are issued, no other instruction can be ex-
ecuting or can be issued—for that one cycle, the instruction
has sole access to the processor and its resources.

Example 1 Consider an Intel Itanium processor [27,22]. The
processor has nine functional units—two ALUs, two floating-
point units, two load/store units, and three branch units—

and an issue width of six. On this processor a floating-point

addition instruction is fully-pipelined and has an execution

time of 1 cycle and a latency of 4 cycles. Thus, a floating-

point addition instruction can be issued at each cycle on a

floating-point unit, but no other instruction can use the re-

sult of that addition until 4 cycles have elapsed. In contrast,

the floating-point division and square root instructions are

not fully-pipelined (i.e., the execution time is greater than

one cycle) and so execution of these instructions lock up a

floating-point unit and prevent other instructions from be-

ing issued on the same floating point unit. As well, the Intel

Itanium contains serializing instructions (see [27, p.2:15]).

A compiler needs an accurate architectural model of the
target processor that will execute the code in order to sched-
ule the code in the best possible manner. In the rest of the
paper, we refer to an architectural model as idealized if it
assumes that (i) the issue width of the processor is equal
to the number of functional units, (ii) the processor is fully
pipelined, and (iii) the processor contains no serializing in-
structions. An architectural model is referred to as realistic
if it does not make any of these assumptions.

2.2 Instruction scheduling

Instruction scheduling is done on certain regions of a pro-
gram. All compilers schedule basic blocks, where a basic

block is a straight-line sequence of code with a single entry
point and a single exit point. However, basic blocks alone are
considered insufficient for fully utilizing a processor’s re-
sources and most optimizing compilers also schedule a gen-
eralization of basic blocks called superblocks. A superblock
is a collection of basic blocks with a unique entrance but
multiple exit points [24]. We use the standard labeled di-
rected acyclic graph (DAG) representation of a superblock.
Each node corresponds to an instruction and there is an edge
from i to j labeled with a non-negative integer /(i, j) if j
must not be issued until i has executed for [(i, j) cycles. In
particular, if [(i, j) = 1, j can be issued in the next cycle af-
ter i has been issued; and if /(i, j) > 1, there must be some
intervening cycles between when i is issued and when j is
subsequently issued. These cycles can possibly be filled by
other instructions. Each node or instruction i has an associ-
ated execution time. Exit nodes are special nodes in a DAG
representing the branch instructions. Let n be the number of
exit nodes in a superblock. An exit i, 1 <i < n, is called a
side exit and exit n is called the fall through exit. Each exit
node i has an associated weight or exit probability w(i) that
represents the probability that the flow of control will leave
the superblock through this exit point. The probabilities can
be estimated by running the instructions on representative
data, a process known as profiling, or estimated statically
using a heuristic or some fixed policy.

In profiling, an application is compiled a first time and
executed on sample inputs. During this execution, the run-
time behavior of the application, such as the probability that
a branch is taken or how often an instruction is executed,
is recorded. The application is then compiled a second time
and the recorded run-time information is used to optimize
the application. In the case of superblocks, the run-time in-
formation about the probability that a branch is taken and
how often an instruction is executed are both used when
forming the superblocks and the information about the prob-
ability that a branch is taken is used when scheduling the
superblocks. It is also possible to form high-quality super-
blocks and schedule them without profiling information. In-
stead of determining the probability that a branch is taken
using profiling, heuristics are used to predict the most likely
direction of a branch [20]. Then, when scheduling the su-
perblock, a fixed policy is used to assign the probabilities or
weights that are associated with each exit in the superblock.
The fixed policies have the form of assuming that every side
exit is taken with percentage p, for some 0 < p < 100, given
that the flow of control has reached this branch. Given this
percentage p, the w(i) are readily constructed.

Example 2 Suppose p = 50 and consider a superblock with
n = 3; i.e., two side exits w(1) and w(2) and a final fall
through exit w(3). The first side exit will be taken with prob-
ability w(1) = 0.5. The second side exit will be taken with
probability w(2) = 0.5 x 0.5 = 0.25; i.e., half the time the
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Fig. 1 (a) DAG representation of a superblock, where nodes E and K are exit nodes with exit probabilities 0.3 and 0.7 respectively, and (b) two

possible schedules for Example 3.

flow of control reaches the second branch point and given
that the flow of control has reached this branch point, there is
a 50% chance that the flow of control will exit at this branch.
Finally the fall through exit will be taken with probability
w(3) =1-0.50—-0.25=0.25.

Given a labeled dependency DAG for a superblock and a
target architectural model, a schedule for a superblock is an
assignment of a clock cycle to each instruction such that the
latency and resource constraints are satisfied. The resource
constraints are satisfied if, at every time cycle, the resources
needed by all the instructions issued or executing at that cy-
cle do not exceed the limits of the processor.

Definition 1 (Superblock instruction scheduling) The
weighted completion time or cost of a superblock schedule
is Y% w(i)e(i), where n is the number of exit nodes, w(i) is
the weight of exit i, and e(i) is the clock cycle in which exit
i will be issued in the schedule. The superblock instruction
scheduling problem is to construct a schedule with minimum
weighted completion time.

Example 3 Consider the superblock shown in Fig. 1. Nodes
E and K are branch instructions, with exit probability 0.3
and 0.7, respectively. Consider an idealized processor with
two functional units. One functional unit can execute shaded
instructions and the other can execute unshaded instructions.
Figure 1(b) shows two possible schedules, S| and S,. The
weighted completion time for schedule S; is 0.3 x4+ 0.7 X

15 =11.7 cycles and for schedule S, is 0.3 x 54+0.7 x 14 =
11.3 cycles. Schedule S, is an optimal solution.

In most, if not all, commercial and open-source research
compilers, finding a schedule for a superblock is done using
the well-known list scheduling algorithm. The list schedul-
ing algorithm builds up a schedule cycle by cycle, maintain-
ing a queue of instructions that are ready to be scheduled at
a time cycle. The best instruction to schedule next is cho-
sen using a priority heuristic. The heuristics generally con-
sist of a set of features and an order for testing the features
or a method for combining the features into a single value.
Two example features are the critical-path distance from a
node i to a node j in a DAG, which is the maximum sum
of the latencies along any path from i to j, and the earliest
start time of a node i, which is a lower bound on the earli-
est cycle in which the instruction i can be scheduled. Many
hand-crafted heuristics have been proposed including de-
pendence height and speculative yield (DHASY) [14,5], G*
[71, speculative hedge [11], and balance scheduling [13]. As
well, machine learning using decision trees has been applied
to semi-automatically construct a priority heuristic [31]. As
one example, the dependence height and speculative yield
heuristic (DHASY) [14,5] weights the critical-path distances
to each branch while accounting for the maximum delay in
the graph. The priority of an instruction i is calculated as,

priority(i) = Z w(b)(cp(l,n)+1—((cp(1,b) —cp(i,b))
=10



where B(i) is the set of exit nodes that are descendants of
i, w(b) is the exit probability of branch b, cp(1,n) is the
critical-path distance between the root node and the (unique)
fall through exit node, cp(1,b) is the critical-path distance
between the root node and exit node b, cp(i, ) is the critical-
path distance between instruction i and exit node b, and the
difference cp(1,b) — cp(i,b) is the latest cycle that instruc-
tion i can be issued without delaying the branch b. As a sec-
ond example, the G* heuristic [7] uses a profile independent
scheduler and a ranking method to schedule superblocks. In
this heuristic, a superblock is scheduled using the critical-
path heuristic. The rank for each exit point is then calculated
by dividing the cycle in which the exit point is scheduled
by the sum of the exit probabilities for the exit point under
consideration and its preceding exit nodes. The exit nodes
are sorted in ascending order. The final schedule for the su-
perblock is obtained by taking an exit point from the sorted
list one by one and scheduling it as early as possible with its
predecessors.

As well, exact schedulers that find the optimal schedule
(under certain restrictive assumptions) have also been pro-
posed. Shobaki and Wilken [32] present an exact scheduler
based on enumeration and pruning, while Malik et al. [28]
present an exact scheduler based on constraint programming.

3 Related Work

In this section, we review previous experimental studies of
scheduling techniques for superblocks and of profile-directed
optimizations beyond superblocks.

3.1 Scheduling superblocks

Although previous work has generally introduced a new list
scheduling heuristic or exact method and then performed an
experimental comparison to earlier proposals, our focus here
is on just the experimental methodology used in the work.
Table 1 summarizes previous experimental comparisons
in the literature, where we give the heuristic or exact method
introduced in the cited work, and then summarize the exper-
imental methodology along three dimensions: whether the
experiments using profiling assume perfect profile informa-
tion, what experiments were performed for the case where
no profiling information is available, and whether the archi-
tectural model used was idealized or realistic. It can be seen
that all previous empirical comparisons of scheduling tech-
niques for superblocks assume perfect profile information;
i.e., the exit probabilities used in scheduling the superblock
are exactly the same as when evaluating the resulting sched-
ule. The assumption of perfect profile information is unreal-
istic as it assumes that either: (i) the input(s) used when pro-
filing and compiling the software (done by the developer of

Table 1 Summary of previous experimental comparisons of schedul-
ing superblocks using the list scheduling algorithm with a priority
heuristic and using exact methods.

heuristic profiling | no profiling® | architecture
DHASY [5] perfect — idealized
G* [7] perfect — idealized®
Speculative hedge [11] perfect p=0,50 idealized®
Balance scheduling [29] perfect p=1 idealized
Decision tree [31] perfect p=1 idealized®
exact profiling | no profiling | architecture
Enumeration [32] perfc-:ctd — idealized
Constraint prog. [28] perfect — realistic

4 The values represent the percentage of time that a side exit is taken,
given that the flow of control has reached this branch (see Sec-
tion 2.2).

b Idealized architecture but further assumes that the execution time
and latency are equal for each instruction.

¢ Idealized architecture but does not assume that the issue width is
equal to the number of functional units.

4 Strictly speaking, the exit probabilities were not determined here by
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profiling, as the experimental setup used the gcc compiler’s “guess-
branch-probability” flag, which uses a randomized model to guess
branch probabilities. But the effect is the same as the exit probabil-
ities used in scheduling were the same as the probabilities used in
evaluating the schedule.

the software) are the same input(s) used by the eventual user
of the program, or (ii) different inputs are used but they lead
to the same profile information. Neither of these holds. As
well, there has been little work on comparing fixed policies
in the case where no profiling information is available. Pre-
vious work has considered p = 0, 1,50 or schemes that are
quite similar. For example, in the case of no profiling, Tri-
maran [6] sets w(i) = €', 1 <i < n, and w(n) = 100, where
€ is a small, non-zero value. This is effectively the same as
p = 1. However, there has been no systematic experimen-
tal comparison of fixed policies and the only study we are
aware of examined p = 0 versus p = 50 on a small number
of benchmarks. As well, almost all previous experimental
comparisons assume an idealized architectural model. Be-
cause the comparisons are performed on idealized architec-
tures, a heuristic may appear to perform better than it ac-
tually would in practice on real architectures, which have
complex features. In particular, there is a risk that a heuristic
may appear to be near-optimal when tested on a simplified
architecture, but not at all near-optimal when actually exe-
cuted on a real architecture. Our experiments on more real-
istic architectures are designed to test how well the heuris-
tics would perform in practice. Finally, Conte, Menezes, and
Hirsch [9] examine how the accuracy of the resulting pro-
filing information influences the formation and subsequent
scheduling of superblocks. While not an experimental com-
parison of scheduling techniques—they use a fixed but un-
specified heuristic in their experiments—their work is no-
table for not assuming perfect profile information.



3.2 Profile-directed optimizations beyond superblocks

Although all previous experimental comparisons of schedul-
ing techniques for superblocks have made the assumption
of perfect profile information, profile-directed superblock
schedule is just one instance of a general class of profile-
directed compiler optimization (see, e.g., [19] and references
therein). Here we review that broader set of work as it relates
to the assumption of perfect profile information.

Wall [33], in one of the first such studies in the general
area of profile-directed optimizations, examines the ques-
tion of how well a profile from one run on a particular input
predicts the behavior of an application when the applica-
tion is run on different input. The answer is, “disappoint-
ingly badly”. Wall [33] also shows experimentally that as-
suming a perfect profile can lead to inflated expectations of a
profile-driven optimization. Wang and Rubin [34] show that
for some interactive applications, profiles can vary consid-
erably from one user or group to another. Wu [35] discusses
how the profiling information used in optimization can be
inaccurate for several reasons including that programmers
may not update profile information after bug fixes and that
early compiler optimization phases degrade the accuracy of
exit probabilities for later optimizations (e.g., by changing
control flow). Eeckhout, Vandierendonck, and De Bosschere
[12], in their study of selecting representative inputs, show
that different groups of inputs can lead to significantly dif-
ferent branch behavior. Hsu et al. [23] note that application
developers often use reduced (smaller) input sets than would
be used when the application is deployed in order to reduce
profiling time and that for some applications, reduced input
sets lead to significantly different profiles. Berube and Ama-
ral [3,4] propose an evaluation methodology appropriate for
profile-guided optimization based on cross-validation. They
stress the points that (i) the choice of training and testing in-
puts can have a significant impact on measured performance,
(i1) multiple inputs must be used during the training process,
and (iii) the training sets must be different than the testing
set to avoid inflating the performance results.

All of these studies strongly suggest that, in the context
of profile-directed superblock scheduling, the exit probabili-
ties that we assume when scheduling a superblock will often
be quite different from the actual exit probabilities when the
superblock is executed on many different inputs in practice.
Thus, it is important to close the gap in the literature and
compare the performance of the scheduling techniques for
superblocks under this more practical setting.

4 Computational Study

In this section, we present our computational study. We be-
gin by presenting the experimental setup that is common
across the experiments.

Table 2 Target architectural models for scheduling. The issue width is
the number of instructions that can be initiated each cycle. The other
values are the number of functional units of that type. In the case of
the single issue processor, the functional unit can execute all types of
instructions; otherwise, a functional unit is restricted to executing in-
structions of the same type.

functional units
issue | simple | complex | load/ floating
model | width | integer | integer store | branch ‘ point
1-issue 1 1
2-issue 2 1 1 1 1
4-issue 4 2 1 1 1 1
6-issue 6 2 2 3 2

In our study, we used the SPEC 2000 benchmark suite
[http://www.spec.org] as test data. The SPEC 2000 suite is a
collection of 26 diverse software applications and is widely
used to evaluate new CPUs and compiler optimizations. The
benchmarks were compiled with IBM’s Tobey compiler and
the superblocks were captured as they were passed to To-
bey’s instruction scheduler. The superblocks we used were
obtained when instruction scheduling was performed after
register allocation. As well, we only retained the superblocks
which were executed at least 1000 times, as the more infre-
quently executed superblocks have little or no impact on the
expected number of cycles executed by an application. This
resulted in a total of 16,072 superblocks.

The superblocks contain four types of instructions: in-
teger, load/store, branch, and floating point. The range of
the latencies is: 1-37 for integer instructions (the largest
value is for division), 1-12 for load/store instructions (the
largest value is for a store-multiple instruction, which stores
to memory the values in a sequence of registers), all 1 for
branch instructions, and 1-38 for floating point instructions
(the largest value is for square root). Scheduling was done
for four realistic target architectures, summarized in Table 2.

The four target architectures are designed to be represen-
tative of existing architectures. Table 3 shows example pro-
cessors and some of their current uses, for the various issue
widths that we use in our experiments. Single and dual issue
processors are widely used in embedded systems. For ex-
ample, currently most smartphones use single issue proces-
sors, with more sophisticated smartphones now beginning
to use dual-issue processors. As well, notebook and netbook
computers often use dual-issue processors. Wider issue pro-
cessors are used in higher end devices. For example, most
desktop and laptop computers are 4-issue, with some enter-
prise and high performance computers using 6-issue proces-
sors. We note that the embedded market (i.e., smaller issue
width processors) is much larger than the desktop and lap-
top market (i.e., wider issue width processors). For exam-
ple, the ARM 11 processor design, a single issue processor,
is perhaps the most widely used processor design across all
computing devices. As of early 2008, 10 billion ARM 11



Table 3 Example processors, date of initial release, and example uses, for various issue widths, where the issue width is the number of instructions
that can be initiated each cycle. All of these processors are currently still in production and are widely used.

width | example processors release date example uses

1 IBM PowerPC 405 [25] June, 1998 Apple iPhone (original & 3G); Apple iPod (1 & 2); HTC, Nokia,
ARM 11 [10] April, 2002 and Samsung smartphones; Nintendo 3DS; Kindle DX; RIM
Blackberry; GPS devices; smart meters; digital cameras; digital
TV; printers, fax machines, network cards, media devices, storage

devices, automobile controllers, ATMs
2 IBM PowerPC 460 [25] October, 2006 Apple iPhone (3GS & 4); Apple iPod (3 & 4); Apple iPad (1 & 2);
ARM Cortex-A8/A9 [2] September, 2009 | HP, HTC, Nokia, and Samsung smartphones; HP TouchPad; high-

Intel Atom N570 [26, p. 2-17] March, 2011

4 Intel Core 17-2600 [26, p. 2-18] | January, 2011

6 IBM PowerPC Power7 [25] February, 2010
Intel Itanium 9300 [27] February, 2010

processors had been sold and it is estimated that currently 5
billion are sold per year [1].

In contrast to most previous work, we do not assume
an idealized architectural model. In our realistic architec-
tural model the issue width of the processor is not equal
to the number of functional units, the processor is not fully
pipelined, and the processor contains serializing instructions.
The instruction set, execution times, latency times, and seri-
alizing instructions are from the PowerPC architecture (see
Table 3), a processor that is used in embedded systems and
in servers. As an example of a non-pipelined instruction,
the floating point square root instruction has an execution
time of 32 cycles and a latency time of 32 cycles, which
means that no other instructions can be issued on the float-
ing point functional unit until the instruction has completed.
As a second example, unsigned integer division has an ex-
ecution time of 19 cycles and a latency of 20 cycles. Thus,
after 19 cycles another instruction can be issued on the in-
teger functional unit but the result of the division will not
be available for other instructions to use until after 20 cy-
cles. Approximately 15% of the instructions executed in our
benchmark set of superblocks are serializing instructions.

We performed two sets of experiments: one set where the
branch probabilities are estimated dynamically using pro-
filing, and one set where the branch probabilities are set
statically using a fixed policy. In both sets of experiments,
we compare the various scheduling methods against a “gold
standard” that is determined as follows. Each of the 26 bench-
marks in the SPEC 2000 suite was compiled and then pro-
filed using the training data set associated with that bench-
mark. The Tobey compiler then uses the profiling informa-
tion to construct the exit percentage for each branch instruc-
tion and to determine the number of times each instruction
is executed. It is these superblocks where the branches are
labeled with exit probabilities and the instructions are la-
beled with frequency of execution that we capture and use

end storage and networking applications, digital signal processing
(DSP), imaging, industrial control

Desktop & laptop computers

Enterprise servers & high performance computing

in our experiments. For each of the 26 benchmarks, we opti-
mally schedule each superblock in the benchmark using the
constraint programming optimal scheduler [28] and deter-
mine how many cycles would be executed by the applica-
tion when the scheduling is done optimally and the profile
information is perfect. This is the gold standard (see, e.g.,
Table 5). No algorithm can do better than the gold standard
and the question of interest is how far is a method from this
gold standard?

In both sets of experiments, we evaluate a list schedul-
ing algorithm using three heuristics: the dependence height
and speculative yield (DHASY) heuristic [5], the G* heuris-
tic [7], and the decision tree (DT) heuristic constructed us-
ing machine learning techniques [31]. The DHASY and G*
heuristics are considered two of the best available superblock
scheduling heuristics: these are the two heuristics that are
made available in the Trimaran compiler [6] and Russell et
al. [31] report that their experiments indicate these are the
two best hand-crafted heuristics available for superblocks.
We include the decision tree (DT) heuristic as Russell et
al. [31] also report that this heuristic performs well in com-
parison to the DHASY and G* heuristics. We did not com-
pare against the balance scheduling heuristic [29] because of
its high computational cost and we did not compare against
the speculative hedge heuristic [11] because of its quite poor
performance in previous experimental studies [31].

In both sets of experiments, we also evaluate the ex-
act scheduler based on constraint programming proposed
by Malik et al. [28]. We did not compare against the exact
scheduler proposed by Shobaki and Wilken [32] as it is ap-
plicable to idealized architectures only and it does not scale
up to as large or difficult superblocks.

Our experiments were run on the SHARCNET Whale
cluster, which consists of 768 machines running HP Linux
XC 3.0, each with 4 GB of RAM and 4 2.2 GHz processors.
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Fig. 2 Probability distributions for the exit percentages of four example branch instructions.

4.1 Experiment 1: Profiling

In our first set of experiments, we assume that the exit prob-
abilities in the superblocks are determined using profiling.
We study the effect of error in the estimates of the exit prob-
abilities on the overall performance of the schedules.

Ideally, to systematically study the effect of the accuracy
of the estimates of the exit probabilities, we would:

a. determine for many representative inputs or sets of in-
puts and for each superblock in our test suite, the prob-
ability each branch is taken if the superblock were exe-
cuted on those inputs; and

b. schedule the superblocks based on the branch probabili-
ties obtained and evaluate the resulting schedules against
the gold standard: the optimal schedules based on per-
fect profile information.

Unfortunately, Step (a) of the ideal was not attainable in
practice for three reasons. First, many of the applications
in the SPEC 2000 benchmark suite come with only a single
training input and additional inputs are not available. Sec-
ond, our framework for obtaining superblocks and profile
information did not easily allow us to determine the prob-
ability a branch was taken if the superblock were executed
on arbitrary inputs. We used the Tobey compiler to obtain
our testbed of superblocks. However, the Tobey compiler
(as currently written) is constructed to use a given input for
forming the superblocks as well as for obtaining the branch
probabilities. In other words, each new profiling input leads
to potentially different superblocks being constructed. This
would confound our goal of comparing schedulers on fixed
superblocks, where the superblocks scheduled are necessar-
ily the same as the superblocks that are later executed by
the users of an application when the application is invoked
on their input. Finally, what constitutes a representative set
of inputs must depend on actual usage and this could vary
considerably between users of the same application.
Instead, the branch percentages in Step (a) are deter-
mined by sampling from empirical probability distributions.
The empirical distributions were constructed using the gcov
profiling tool and the gcc compiler applied to the MiBench
benchmark suite [17], a collection of 32 application pro-

grams written in the ‘C’ language. Fortunately, for each of
the 32 applications, 1000 inputs have been collected and are
freely available [8]. We compiled and profiled each appli-
cation on each of its inputs. This gave a collection of more
than 8,000 branch instructions where for each branch we had
a sample of up to 1000 percentages (sometimes the number
of samples was less than 1000 as a branch was not always
executed for each input, however the vast majority of the
branches had at least 950 samples each). Interestingly, al-
most precisely a half of the distributions are point distribu-
tions; i.e., every one of the samples resulted in exactly the
same percentage and thus there was no uncertainty associ-
ated with this branch. The remaining distributions ranged
from distributions with small standard deviations to distri-
butions with large standard deviations (see Figure 2).

Given that the empirical distributions have been con-
structed, suppose that in the perfect profile a side exit is
taken p% of the time. Determining a percentage for this side
exit in Step (a) proceeds in two steps. First, one of the 8,000
empirical distributions is selected at random, but proportion-
ally to the probability mass associated with p% (i.e., if none
of the samples had the branch taken p%, the empirical dis-
tribution would never be chosen and if all of the samples
had the branch taken p%, the distribution would be much
more likely to be chosen). Second, a percentage is selected
at random from the chosen empirical distribution. The fall
through exits are determined once the side exits have been
randomly selected. The above process simulates profiling on
a single representative input. Fisher and Freudenberger [16]
show that profiling on a collection of inputs and taking the
average of the exit probabilities to form a single hybrid pro-
file can improve branch prediction accuracy. In our exper-
iments, we simulate profiling on a set of representative in-
puts, by taking the average of 30 samples from the randomly
selected empirical distribution. Our experimental method-
ology allows us to keep the superblocks fixed—as desired,
as this is what would occur in practice—and to systemati-
cally sample from a representative set of branch probability
distributions. Together, the large testbed of superblocks and
empirical branch distributions should capture many of the
different applications and inputs that arise in practice.



Table 4 Average and standard deviation of the percentage from gold standard on superblocks from each SPEC 2000 benchmark for the constraint
programming scheduler (copr), the list scheduler with the decision tree heuristic (hy), the list scheduler with Bringmann’s heuristic (Agpqsy), and
the list scheduler with the G* heuristic (h), for various issue widths, for the case where profiling is performed (without and with error in profiling
information), and for the case where profiling is not performed (instead all side exits are labeled with exit percentage p). The entries for profiling
with error represent profiling on a single randomly chosen input. The entries in grey indicate a percentage increase of 2% or greater.

Profiling No profiling

width  scheduler no error error p=0 p=1 p=25 p=50 p=175 p=90
ave. sd. | ave. sd. | ave. s.d. | ave. s.d. | ave. s.d. | ave. s.d. | ave. sd. | ave. sd.
copt 00 00 02 1.1 88 222 52 15.6 0.7 14 0.8 1.3 09 14 1.0 14
L-issue hgy 04 0.7 1.8 79 | 100 253 9.8 253 48 157 3.8 146 25 74 26 73
Ndhasy 1.2 1.1 25 82 | 11.6 256 | 106 257 70 183 45 147 28 74 31 76
Ngx 0.7 0.8 1.7 60 | 11.6 256 | 11.6 256 33 7.3 24 7.4 28 74 29 74
copt 0.0 0.0 02 0.7 5.6 203 2.9 9.8 0.4 0.6 0.4 0.6 05 0.6 0.5 05
2-issue hay 0.8 09 1.1 2.1 7.0 235 6.6 21.8 1.5 14 1.1 1.1 1.2 1.1 1.1 1.0
Nanhasy 1.0 1.0 14 3.0 7.3 215 6.7 21.6 1.8 1.6 1.3 1.1 1.3 1.1 1.3 1.1
Ngs 1.1 14 1.5 47 73 215 73 215 1.5 1.2 1.2 1.3 1.3 1.2 1.3 1.1
copt 0.0 0.0 0.1 0.2 3.0 103 0.6 1.1 0.2 0.2 0.2 0.3 03 04 03 04
4eissue hay 0.7 09 09 20 34 102 34 10.2 1.0 1.1 0.9 1.1 1.0 1.1 09 1.0
Ranhasy 0.8 09 1.0 20 3.6 103 34 104 1.2 1.1 1.0 1.0 09 1.0 1.0 1.0
Ngx 0.7 09 1.0 27 3.6 103 3.6 103 1.1 1.1 0.9 1.2 1.0 1.1 09 1.0
copt 0.0 00 00 0.1 3.1 113 0.4 0.6 0.3 0.4 0.2 0.3 02 03 04 08
6-issuc hgy 0.7 1.0 0.8 22 34 112 33 112 1.0 1.3 0.8 1.1 0.8 1.2 0.8 1.1
hanasy 0.8 1.1 09 22 36 112 33 112 1.0 1.3 0.9 1.1 08 1.1 09 1.1
hgx 0.6 09 0.8 28 3.6 112 36 112 1.0 1.1 0.8 1.1 0.8 1.2 0.8 1.2

Table 4 (columns under “Profiling”) shows the average
and the standard deviation of the percentage increase in the
number of cycles executed compared to the gold standard on
the superblocks from the SPEC 2000 benchmarks, for the
various superblock schedulers and without and with profil-
ing error. For the experiments with profiling error, we per-
formed a minimum of 10 trials per benchmark application
for the constraint programming scheduler (copt), and a min-
imum of 100 trials per benchmark application for the list
scheduler with the heuristics hg, hdpasy, and hgs. The aver-
age percentage increase is the average over all 26 bench-
marks (equally weighted).

Table 5 shows in detail the results for the 1-issue archi-
tecture and the cases where (i) there is no error in profile
information; (ii) there is error as the branch probabilities are
determined by simulating profiling on a single representa-
tive input; and (iii) there is error but the error is reduced as
the branch probabilities are determined by simulating profil-
ing on a set of 30 representative inputs. For example, for the
case of the 1-issue architecture and no error, the average per-
centage increase for the dependence height and speculative
yield heuristic Agpqsy is 1.2% (over all 26 benchmarks) and
the maximum percentage increase is 3.9% (on the bench-
mark “eon”, a probabilistic ray tracer). As a second exam-
ple, for the case of the 1-issue architecture and error in pro-
filing on a single input, the average percentage increase for
the heuristic /sy is 2.5% (over all 26 benchmarks) and the
maximum percentage increase is 24.0% (on the benchmark
“swim”, a weather prediction program).

4.2 Experiment 2: No profiling

In our second set of experiments, we assume that the exit
probabilities in the superblocks are set statically using a fixed
policy. We study the effect of the method of labeling the exit
probabilities on the overall performance of the schedules.

The fixed policies that we investigate all have the form
of assuming that every side exit is taken with percentage
p, for some 0 < p < 100, given that the flow of control
has reached this branch (see Example 2). Recall that pre-
vious work has considered p = 0, 1,50 or schemes that are
quite similar. An obvious extension is to consider additional
values and in our experiments we tested the percentages
p =0,1,25,50,75,90. Table 4 shows the average and the
standard deviation of the percentage increase in the number
of cycles executed compared to the gold standard on the su-
perblocks from the SPEC 2000 benchmarks, for the various
superblock schedulers and values of p. Once again, the aver-
age and standard deviation of the percentage increase is over
all 26 benchmarks (equally weighted). Table 6 shows in de-
tail the case of the 1-issue architecture and p = 1,50,75. For
example, for the case of the 1-issue architecture and p =1,
the average percentage increase for the constraint program-
ming scheduler copt is 5.2% (over all 26 benchmarks) and
the maximum percentage increase is 81.0% (on the “swim”
application). As a second example, for the case of the 1-issue
architecture and p = 50, the average percentage increase for
the copt scheduler is 0.8% (over all 26 benchmarks) and the
maximum percentage increase is 6.3% (on the “sixtrack” ap-
plication, a particle tracking program).
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Table 5 For the SPEC 2000 benchmarks and the 1-issue architecture, the expected number of cycles executed by the application (x10%) when
scheduling is done optimally using perfect profile information (gold), and the percentage increase in cycles executed when using (a) perfect profile
information (no error), (b) imperfect profile information obtained by profiling on a single representative input (error, I input), and (c) imperfect
profile information obtained by profiling on a set of 30 representative inputs (error, 30 inputs), for the constraint programming scheduler (copt),
the list scheduler with the decision tree heuristic (%), the list scheduler with Bringmann’s heuristic (Ags4sy), and the list scheduler with the G*
heuristic (hg,). The entries in grey indicate a percentage increase of 2% or greater.

Profiling
no error error, 1 input error, 30 inputs
application gold copt hay Ranasy Rgx copt hay Rahasy hgs copt hay Ranasy hgs
ammp 26,847.1 0.0 0.1 0.2 1.2 0.0 0.1 0.3 1.0 0.0 0.1 0.2 0.8
applu 1,226.1 0.0 0.4 0.6 0.4 0.1 0.5 0.7 0.3 0.0 0.6 0.8 0.2
apsi 4,884.2 0.0 1.1 1.2 1.0 0.3 1.7 2.1 1.6 0.1 1.1 1.2 1.0

art 3,659.9 0.0 0.0 0.0 0.0
bzip2 20,471.8 0.0 0.1 0.7 0.3
crafty 8,406.7 0.0 0.2 1.6 0.4
eon 11,898.7 0.0 1.6 39 2.0

equake 4,113.7 0.0 0.5 0.5 0.5
facerec 6,792.4 0.0 0.3 0.6 0.4
fma3d 11,075.7 0.0 0.8 3.2 1.0
galgel 1,335.6 0.0 0.3 0.3 0.3
gap 612,924.7 0.0 0.0 0.0 0.0
gce 6,178.9 0.0 0.1 1.3 0.3
gzip 19,451.0 0.0 0.0 0.3 0.2
lucas 366.7 0.0 0.0 0.0 0.1
mcf 4,844.8 0.0 0.0 1.2 0.1
mesa 15,731.8 0.0 0.2 1.1 0.2
mgrid 365.9 0.0 0.4 0.5 0.5
parser 25,967.8 0.0 0.3 19 1.8
perlbmk 32,491.2 0.0 0.1 0.5 0.1
sixtrack 3,561.5 0.0 3.4 3.5 34

swim 9.0 0.0 0.2 1.3 0.2

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.3 0.9 0.6 0.0 0.1 0.6 0.2
0.2 0.6 2.1 1.1 0.0 0.2 1.6 0.4
0.3 24 4.2 2.8 0.0 1.3 3.6 1.8
0.0 0.4 0.4 0.4 0.0 0.4 0.4 0.5
0.1 0.4 0.6 0.5 0.0 0.4 0.5 0.4
0.3 1.3 4.0 2.8 0.0 0.7 3.0 1.0
0.2 3.8 4.8 2.7 0.0 0.8 2.6 0.3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.3 1.3 0.7 0.0 0.1 1.2 0.3
0.2 0.3 0.6 0.6 0.0 0.1 0.4 0.2
0.0 0.2 0.2 0.2 0.0 0.0 0.0 0.1
0.1 0.2 1.2 0.5 0.0 0.0 1.2 0.1
0.0 0.3 1.0 0.5 0.0 0.2 0.8 0.2
0.2 2.6 2.7 1.6 0.0 0.5 0.7 0.5
0.2 0.5 1.6 1.7 0.0 0.3 1.4 1.2
0.1 0.4 1.0 0.7 0.0 0.1 0.5 0.1
0.4 4.8 4.8 52 0.0 3.4 35 34
1.1 227 240 142 00 17.1 4.8 0.2

twolf 22,997.0 0.0 0.2 32 0.3 0.5 1.1 33 1.3 0.0 0.2 2.3 0.3
vortex 10,684.6 0.0 0.2 0.4 1.4 0.0 0.3 0.6 1.2 0.0 0.1 0.4 1.4
vpr 13,891.6 0.0 0.2 0.8 0.3 0.0 0.4 0.9 0.7 0.0 0.2 0.7 0.3
wupwise 9,849.5 0.0 0.8 1.8 0.9 0.2 1.6 2.4 1.9 0.1 0.8 1.6 0.9
average 0.0 0.4 1.2 0.7 0.2 1.8 2.5 1.7 0.0 1.1 1.3 0.6
std. dev. 0.0 0.7 1.1 0.8 1.1 79 8.2 6.0 0.1 4.9 2.5 0.7

5 Discussion

The discussion of the experimental results are divided ac-
cording to the three questions we addressed in our study. In
Tables 46, entries in grey indicate a percentage increase of
2% or greater, as speedups of 2-3% or better are considered
significant in profile-directed compiler optimizations?.

Q1. Inthe case where the exit probabilities are estimated dy-
namically, how sensitive are the superblock schedulers
to the accuracy of the profile information?

Our experimental results show that the sensitivity of the
schedulers to the accuracy of the profile information de-

3 This is especially true in the case of instruction scheduling which
rarely or never leads to decreased performance. Of course, in isolation
a small improvement of 2-3% would not be worthwhile. However, in-
struction scheduling is just one of many optimizations that a compiler
performs. Individually, most or all such optimizations will each lead to
small improvements—inconsequential in themselves, but cumulatively
offering a significant impact on performance.

pends on the width of the architectures, ranging from poten-
tially very sensitive for the 1-issue architecture to insensitive
for the 6-issue architecture (see the columns under “Profil-
ing” in Table 4 for a high level summary for all issue widths
and see Table 5 for detailed statistics for the 1-issue archi-
tecture). For example, consider the list scheduler with the
heuristic Aigp4y on the 1-issue architecture (Table 5). Given
perfect profile information, the average percentage increase
from the gold standard across all 26 applications is 1.2%
(i.e., nearly optimal) and only four applications exceed the
threshold of 2.0% increase or greater. If we profile on a sin-
gle input, the average percentage increase is 2.5% and, more
importantly, the standard deviation is significantly larger and
ten of the applications exceed the 2.0% threshold. Finally, if
we profile on a representative set of 30 inputs, the perfor-
mance of the heuristic very nearly approximates the perfect
profile case. Hence, the scheduler is sensitive to the accu-
racy of the profile information and investing more effort into
gathering more accurate profiles pays off. Similar, but less
dramatic observations hold for the heuristics hg and hgs.
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Table 6 For the SPEC 2000 benchmarks and the 1-issue architecture, the expected number of cycles executed by the application (x10%) when
scheduling is done optimally using perfect profile information (gold), and the percentage increase in cycles executed when using (a) the Trimaran
fixed policy p = 1, (b) the fixed policy p = 50, and (c) the fixed policy p = 75, for the constraint programming scheduler (copt), the list scheduler
with the decision tree heuristic (hy;), the list scheduler with Bringmann’s heuristic (A4pqsy), and the list scheduler with the G* heuristic (). The

entries in grey indicate a percentage increase of 2% or greater.

Profiling No profiling
p=1 p=150 p=175
application gold copt har hdhasy hs copt ha:  hdnasy hgs copt har  hanasy hs
ammp 26,847.1 0.1 0.6 0.7 1.8 0.2 0.0 0.1 0.1 0.1 0.0 0.2 0.2
applu 1,226.1 1.0 1.9 33 3.6 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0
apsi 4,884.2 5.6 8.1 12.8 13.6 0.4 1.2 1.5 1.2 0.3 0.9 1.2 1.2
art 3,659.9 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
bzip2 20,471.8 1.0 1.5 1.8 2.6 0.5 0.5 1.0 0.5 0.6 0.6 0.6 0.6
crafty 8,406.7 3.5 4.4 6.3 7.1 0.1 0.3 1.7 0.4 0.3 0.5 0.7 0.6
eon 11,898.7 4.9 7.9 8.6 10.8 1.9 2.4 4.1 24 24 2.8 3.1 2.9
equake 4,113.7 0.0 0.6 0.6 0.6 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
facerec 6,792.4 0.4 0.7 1.1 1.4 0.3 0.4 0.6 0.4 0.4 0.4 0.5 0.5
fma3d 11,075.7 6.1 6.4 7.5 15.8 0.2 0.8 3.6 0.8 2.4 2.0 7.6 7.6
galgel 1,335.6 3.2 25.2 25.3 25.5 2.2 3.5 6.7 2.5 2.2 2.5 2.5 2.5
gap 612,924.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
gce 6,178.9 1.2 1.7 2.0 3.7 0.1 0.2 14 0.2 0.6 0.7 1.2 0.7
gzip 19,451.0 1.3 1.4 1.7 2.5 0.4 0.4 0.7 0.4 0.5 0.5 0.5 0.5
lucas 366.7 0.1 1.3 1.3 1.4 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
mcf 4,844.8 1.3 1.5 2.0 2.1 0.5 0.5 1.2 0.5 0.5 0.5 0.5 0.5
mesa 15,731.8 1.1 14 24 2.9 0.0 0.2 1.3 0.2 0.6 0.9 1.5 1.0
mgrid 365.9 1.7 234 234 23.5 0.7 0.6 0.8 0.6 0.6 0.6 0.6 0.6
parser 25,967.8 1.3 1.9 3.0 5.0 04 04 0.9 0.4 04 0.4 04 0.4
perlbmk 32,491.2 1.6 2.2 34 4.1 0.2 0.8 1.2 0.8 0.8 0.9 0.9 0.9
sixtrack 3,561.5 8.1 18.8 19.5 19.9 6.3 9.6 6.6 9.6 6.5 9.8 9.8 9.8
swim 9.0 81.0 129.0 131.6 131.8 1.2 74.6 75.8 373 1.2 373 373 373
twolf 22,997.0 6.8 8.3 9.3 10.1 0.2 0.4 2.7 0.4 04 0.5 0.8 0.6
vortex 10,684.6 0.3 0.6 1.0 2.1 0.5 0.6 0.7 0.6 0.2 0.3 0.4 0.3
vpr 13,891.6 0.9 1.2 1.8 2.7 0.1 04 0.8 0.4 0.9 1.0 1.1 1.0
wupwise 9,849.5 3.6 4.7 4.9 7.5 2.6 1.9 3.1 2.1 2.2 2.5 2.7 2.7
average 5.2 9.8 10.6 11.6 0.8 3.8 4.5 24 0.9 2.5 2.8 2.8
std. dev. 15.6 253 25.7 25.6 1.3 146 14.7 74 14 7.4 74 74

The above discussion was for the 1-issue architecture. As
the issue width increases the sensitivity decreases until for
the 6-issue architecture there is no practical difference be-
tween the perfect profile information, profiling on a single
input, and profiling on a representative set of 30 inputs (not
shown). This is important, as it means that for larger issue
width architectures putting effort into increasing the profile
accuracy, such as by profiling on multiple inputs and com-
bining the profiles into a single hybrid profile, is unneces-
sary as it does not pay off in terms of better or more robust
schedules.

In our discussion of related work (Section 3), we noted
that all previous experimental comparisons have made the
assumption of perfect profile information and we claimed
there that this potentially gives misleading results. If we com-
pare the schedulers using perfect profile information (col-
umn “Profiling, no error” in Table 4), it can be seen that the
exact scheduler copt is only slightly better and that there
is little to distinguish the three heuristics hy, hgpasy, and
hg«. However, once realistic profiling error is introduced, it

can be seen the heuristic /14545, could be brittle, whereas the
other schedulers were more robust to inaccuracies in the es-
timates. The exact scheduler copt was always better than the
list scheduler with various heuristics and was almost com-
pletely insensitive to inaccuracies in profiling information.
Although the improvements obtained by the exact scheduler
do come at a computational price as the time to schedule
can be considerably higher (see [28] for details), the exact
scheduler is applicable when longer compile times are toler-
able, such as when compiling for software libraries, digital
signal processing, or embedded applications [18], Alterna-
tively, heuristic approaches have the advantage that they are
fast, albeit with some loss of performance in the resulting
schedules. Here, the heuristic /g, has much to recommend
it as it is fast, relatively accurate, and robust across all ar-
chitectures. This contradicts current practice as Agpqgy is the
default heuristic in the Trimaran compiler [6].
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Q2. In the case where the exit probabilities are estimated
statically, how sensitive are the superblock schedulers
to the choice of fixed policy?

In the case where profiling information is not available
and the exit probabilities are set statically using a fixed pol-
icy, our experimental results show that the performance of
the list scheduling algorithm and the exact scheduler are sen-
sitive to the fixed policy. The best policies were to use either
p =50 o0r p =75, where p is the percentage of time that
the exit is taken, given that the flow of control has reached
this branch. In our experiments, particularly poor choices
were p = 0 and p = 1 (see the columns under “No profil-
ing” in Table 4 for a high level summary for all issue widths
and see Table 6 for detailed statistics for the 1-issue archi-
tecture). For example, for the heuristic /14545, On the 1-issue
architecture, the average percentage increase from the gold
standard across all 26 applications is 10.6% when using the
static method p = 1 and only 2.8% when using the static
method p = 75 (see Table 4) and the improvements offered
by using p = 75 range from more modest improvements for
the applications applu, parser, and perlbmk to very signifi-
cant improvements for the applications apsi, galgel, mgrid,
sixtrack, swim, and twolf (see Table 6). Similar observations
hold for the other issue widths and for the other scheduling
techniques for superblocks (copt, hg;, and hgy). Our conclu-
sions contradict a previous study where it was found that
p = 0 performed better than p = 50 [11], although in that
study only six integer benchmarks and an idealized archi-
tecture were used. Our conclusions also contradict current
practice as p = 1 is effectively the fixed policy used in the
Trimaran compiler [6].

In terms of comparing the heuristic and the exact sched-
ulers under the best fixed policy, the experimental results
show that the exact scheduler copr was always better, but
rarely considerably so, than the list scheduler with various
heuristics for the single issue architecture. For example, for
p = 50, the scheduler copt was modestly better on the ap-
plications eon and galgel and significantly better on six-
track and swim (see Table 6). For the larger issue width ar-
chitectures, the advantage of the exact scheduler copt over
the list scheduler with a heuristic diminished and it is un-
clear that the extra cost of the exact scheduler is repaid in
terms of sufficiently better performance for these architec-
tures. The choice of best heuristic switched back-and-forth
depending on the architecture with the heuristic A, being
somewhat more consistently better, but the differences be-
tween the heuristics was small.

Q3. Are dynamic methods for estimating the exit probabil-
ities worth the considerable extra effort or are static
methods sufficient?

For the question of whether the extra effort required for
dynamic methods (profiling) is paid back in sufficiently bet-

ter performance, the answer once again depends on the is-
sue width of the architecture. Our experimental results show
that for architectures that are single issue, profiling can lead
to better schedules than static methods for the list sched-
uler with the heuristics A, hapasy, and hg, (to see this, com-
pare the column “Profiling, error (30 inputs)” in Table 5
with the column “No profiling, p = 50 in Table 6; both of
these tables show the detailed data for the 1-issue architec-
ture). Across the three heuristics, the improvements offered
by profiling range from more modest improvements for the
applications eon, galgel, and wupwise to quite significant
improvements for the applications sixtrack and swim. For
example, for the heuristic Agyqsy the average percentage in-
crease from the gold standard across all 26 applications is
1.3% (i.e., nearly optimal) when profiling using 30 inputs
and is 4.5% when using the static method p = 50. Since
speedups of only 2—3% are considered significant, profiling
would be worth the effort for the single issue architecture.

However, for architectures with larger issue widths the
extra effort required for dynamic methods does not pay off in
noticeably better performance. In our experiments, as long
as one of the better static policies was chosen (e.g., p =
50), there was no practical difference in performance be-
tween dynamic methods and static methods for either the
constraint programming scheduler (copt) or the list sched-
uler with the heuristics Ag;, hanasy, and hgy (to see this, com-
pare the columns “Profiling, error” and “No profiling, p =
50” for 2-, 4-, and 6-issue in Table 4). Given that profil-
ing can be much more difficult and time consuming than
static methods, an important lesson from our experiments is
that using static methods does not noticeably degrade per-
formance on larger issue architectures.
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