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Backtracking search is often the method of choice for solving constraint satisfaction and propositional
satisfiability problems. Previous studies have shown that portfolios of backtracking algorithms—a se-
lection of one or more algorithms plus a schedule for executing the algorithms—can dramatically
improve performance on some instances. In this paper, we consider a setting that often arises in prac-
tice where the instances to be solved arise over time, the instances all belong to some class of problem
instances, and a limit or deadline is placed on the computational resources that can be consumed in
solving any instance. For such a scenario, we present a simple scheme for learning a good portfolio of
backtracking algorithms from a small sample of instances. We demonstrate the effectiveness of our ap-
proach through an extensive empirical evaluation using two testbeds: real-world instruction scheduling
problems and the widely used quasigroup completion problems.
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1. Introduction

Constraint programming is a methodology for solving difficult combinatorial problems
such as scheduling, sequencing, and planning. The basic notion of a constraint program-
ming approach is a constraint satisfaction problem (CSP), which is defined by a set of
variables, a domain of values for each variable, and a set of constraints over the variables.
The propositional satisfiability problem is a CSP where the domains of the variables are
the Boolean values and the constraints are Boolean formulas.

In this paper, we consider a setting where the CSP instances to be solved arise over
time, the instances all belong to some class of problem instances, and a limit or deadline
is placed on the computational resources that can be consumed in solving any instance.
Such a setting often arises in practice. For example, a common scenario in scheduling and
rostering is that at regular intervals on the calendar a similar scheduling problem must
be solved and a schedule is useful only if it is found within some deadline. For a further
example, in our evaluation testbed of instruction scheduling, thousands of instances arise
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each time a compiler is invoked on some software project and a limit needs to be placed
on the time given for solving each instance to keep the total compile time to an acceptable
level.

To solve a CSP is to find an assignment of values to the variables so that all constraints
are satisfied. In practice, constraint satisfaction and propositional satisfiability problems are
often solved using backtracking search. Since the first formal statements of backtracking
algorithms over 40 years ago 5,10, many techniques for improving the efficiency of a back-
tracking search algorithm have been suggested and evaluated (see, e.g., 36). Unfortunately,
even with these improvements, any given backtracking algorithm can still be quite brittle,
performing well on some instances but poorly on other seemingly similar instances. To
reduce the brittleness or variability in performance of any single algorithm, portfolios of
multiple algorithms have been proposed and shown to dramatically improve performance
on some instances (e.g., 15,19,22,30).

Given a set of possible backtracking algorithms {A1, A2, . . .} and a time deadline d, a
portfolio P for a single processor is a finite sequence of pairs,

P = [(Ak1 , t1), (Ak2 , t2), . . . , (Akm , tm)] ,

where each Aki is a backtracking algorithm, each ti is a positive integer, and Σm
i=1ti = d.

To apply a portfolio to an instance, algorithmAk1 is run for t1 steps. If no solution is found
within t1 steps, algorithm Ak1 is terminated and algorithm Ak2 is run for t2 steps, and
so on until either a solution is found or the sequence is exhausted as the time deadline d

has been reached. A fixed cutoff portfolio is a portfolio where all of the t i’s are equal. An
algorithm selection portfolio is a portfolio where,

P = [(A, d)] ;

i.e., a single algorithm is selected and run until either a solution is found or the deadline is
reached. A restart strategy portfolio is a portfolio where,

P = [(A, t1), (A, t2), . . . , (A, tm)] ;

i.e., the same algorithm is continually restarted until either a solution is found or the dead-
line is reached 15,19,30. Of course, for a restart strategy to make sense, A must be a non-
deterministic algorithm. The usual method for randomizing a backtracking algorithm is to
randomize the variable or value ordering heuristic (e.g., 16,19).

A portfolio can be either instance-based in that it is intended or tailored to be used on
a specific instance, or it can be class-based in that the same portfolio is intended to be used
on any instance from a problem class. The question that we address in this paper is, given
a class of problem instances and a deadline d, can we learn a good class-based portfolio
from a small representative sample of instances?

We present a simple scheme for learning a good portfolio of backtracking algorithms in
the presence of deadlines. In contrast to previous work, where the differences in the possible
backtracking algorithms {A1, A2, . . .} often involves the variable ordering heuristic, we
create variability in solving performance by increasing levels of constraint propagation
from light-weight to heavy-weight.
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The learning is done in an offline manner from a training set and the portfolio that is
learned is then used on unknown instances in the future when the application is deployed.
The portfolios that we learn only allow the sequential application of algorithms rather than
running algorithms concurrently and they do not allow the execution of an algorithm to
be suspended and later resumed; i.e., in our portfolios an algorithm is terminated if it fails
to find a solution within the specified number of time steps. Because of the presence of a
deadline and because we focus on simpler portfolios, we can systematically and efficiently
search for a portfolio that has a low cost on the training set. One key to the success of our
approach is that we find a portfolio which is robust on the training set in that it gives the
lowest cost and is furthest away from any portfolio which leads to poorer results.

We demonstrate the effectiveness of our approach through an extensive empirical eval-
uation on the widely used quasigroup completion problem testbed 13 and on a real-world
instruction scheduling testbed 31. The portfolio is learned from a small training set and then
evaluated on a test set to estimate its performance on unknown instances in the future. We
show that on both of our testbeds, the class-based portfolio that is learned can significantly
outperform a restart strategy portfolio which uses an oracle to always select the best restart
cutoff for each instance, and can approach the performance of an algorithm selection port-
folio which uses an oracle to always select the best algorithm for each instance. In practice,
any algorithm selection method at the instance-level cannot be perfect. Once an algorithm
selection method makes even a very small percentage of mistakes, the portfolio learned by
our methodology exceeds the performance of the algorithm selection method.

2. Background

In this section, we briefly review the needed background from constraint programming.
In a constraint programming approach, a problem is modeled in terms of variables,

values, and constraints. Such a model is often called a constraint satisfaction problem (CSP)
or a CSP model.

Definition 2.1. A constraint satisfaction problem (CSP) consists of a set of n variables,
{x1, . . . , xn}; a finite domain dom(xi) of possible values for each variable xi, 1 ≤ i ≤
n; and a collection of r constraints, {C1, . . . , Cr}. Each constraint Ci, 1 ≤ i ≤ r, is
a constraint over some set of variables, denoted by vars(C i), that specifies the allowed
combinations of values for the variables in vars(C i). Given a constraint C, the notation
t ∈ C denotes a tuple t—an assignment of a value to each of the variables in vars(C)—
that satisfies the constraint C. The notation t[x] denotes the value assigned to variable x by
the tuple t. A solution to a CSP is an assignment of a value to each variable that satisfies
all of the constraints.

The propositional satisfiability problem is a CSP where the domains of the variables
are the Boolean values and the constraints are Boolean formulas. Here we assume that the
formula is in conjunctive normal form (CNF). A formula is in CNF if it is a conjunction of
clauses, where each clause is a disjunction of literals and a literal is a Boolean variable or
the negation of a Boolean variable.
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CSPs are often solved using a backtracking algorithm. At every stage of the backtrack-
ing search, there is some current partial solution that the algorithm attempts to extend to
a full solution by assigning a value to an uninstantiated variable. One of the keys behind
the success of constraint programming is the idea of constraint propagation. During the
backtracking search when a variable is assigned a value, the constraints are used to reduce
the domains of the uninstantiated variables by ensuring that the values in their domains are
consistent with the constraints.

One form of constraint propagation that is applicable when the domains of the variables
are integers is called bounds consistency propagation. The minimum and maximum values
in the domain dom(x) of a variable x are denoted by min(dom(x)) and max(dom(x)),
and the interval notation [a, b] is used as a shorthand for the set of values {a, a + 1, . . . , b}.
Definition 2.2. Given a constraint C, a value a ∈ dom(x) for a variable x ∈ vars(C)
is said to have a support in C iff there exists a t ∈ C such that a = t[x] and t[y] ∈
[min(dom(y)), max(dom(y)], for every y ∈ vars(C). A constraint C is said to be bounds
consistent iff for each x ∈ vars(C), each of the values min(dom(x)) and max(dom(x))
has a support in C.

A CSP can be made bounds consistent by repeatedly removing unsupported values from
the domains of its variables.

Example 2.1. Consider the CSP model of a small scheduling problem which has variables
A, . . . , E, each with domain {1, . . . , 6}, and the constraints,

C1: D ≥ A + 3, C3: E ≥ C + 3,
C2: D ≥ B + 3, C4: E ≥ D + 1, C5: all-different(A, B, C, D, E),

where constraint C5 enforces that its arguments are pair-wise different. The constraints are
not bounds consistent. For example, the minimum value 1 in the domain of D does not
have a support in C1 as there is no corresponding value for A that satisfies the constraint.
Enforcing bounds consistency using constraints C1 through C4 reduces the domains as
follows: dom(A) = {1, 2}, dom(B) = {1, 2}, dom(C) = {1, 2, 3}, dom(D) = {4, 5},
and dom(E) = {5, 6}. Subsequently enforcing bounds consistency using constraint C 5

further reduces the domain of C to be dom(C) = {3}. Now constraint C3 is no longer
bounds consistent. Re-establishing bounds consistency causes dom(E) = {6}.

A second form of constraint propagation that is applicable to propositional satisfiability
problems in conjunctive normal form is called unit propagation.

Example 2.2. Consider the small propositional satisfiability instance which has Boolean
variables x1, x2, and x3, and the three clauses (constraints),

C1: x1, C2: ¬x1 ∨ ¬x2, C3: x2 ∨ ¬x3

Clause C1 is called a unit clause as it consists of a single literal. The unit clause C1 forces
variable x1 to be true. As a result, clause C2 can be simplified to be just ¬x2. The simplified
clause C2 can now be propagated to clause C3 which is simplified to be just ¬x3.
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Given a base level of constraint propagation, such as bounds consistency or unit prop-
agation, a general technique called singleton consistency exists for enforcing higher levels
of constraint propagation 6,32. The idea is to, in turn, assign a value to a variable and test
whether the assignment is consistent by performing constraint propagation on the subprob-
lem. If the assignment is not consistent, the value cannot be part of any solution and can
be removed. To define this more formally, we first introduce some notation. Given a CSP
P and an assignment x = a, where a ∈ dom(x), the CSP induced by the assignment, de-
noted P |x=a, is obtained from P by reducing dom(x) to be the singleton set {a}. A CSP
is said to be bounds inconsistent if a domain of a variable is empty after enforcing bounds
consistency; i.e., enforcing bounds consistency detects that the CSP has no solution.

Definition 2.3. A CSP P is said to be singleton bounds consistent iff for each x and each
a ∈ dom(x), P |x=min(dom(x)) is not bounds inconsistent and P |x=max(dom(x)) is not
bounds inconsistent.

A CSP can be made singleton bounds consistent by assigning each value in turn and
testing whether the CSP induced by the assignment is bounds inconsistent. If the CSP is
bounds inconsistent, the value can be removed from the domain of the variable.

Example 2.3. Consider the CSP P for a small graph coloring problem which has three
variables x1, x2, and x3, each with domain {red, green}, and the constraints x1 �= x2, x1 �=
x3, and x2 �= x3. The CSP is bounds consistent; i.e., enforcing bounds consistency does
not change the domains. However, the CSP is not singleton bounds consistent. Consider
the assignment x1 = red. Enforcing bounds consistency on P |x1=red results in x2 and x3

having empty domains indicating the induced CSP is bounds inconsistent. Thus, the color
red can be removed from the domain of x1. In a similar manner, the color green can be
removed and we have discovered that the original CSP does not have a solution.

The above defined singleton consistency using bounds consistency as the base level of
constraint propagation. Other singleton consistencies can similarly be defined by replacing
bounds consistency by some other form of constraint propagation 3. In particular, in our
experiments we make use of singleton bounds consistency to a depth of two. A CSP is
singleton bounds consistent to a depth of two if each minimum and maximum value in the
domain of a variable is not singleton bounds inconsistent; i.e., we test each value in turn and
check that no domain of a variable is empty after enforcing singleton bounds consistency.

3. Related work

In this section, we discuss related work on portfolios. We categorize previous work into
general portfolios, algorithm selection portfolios, and restart strategy portfolios. Our focus
is on single processor portfolios of backtracking algorithms.

3.1. General portfolios

Huberman, Lukose, and Hogg 22 may have been the first to coin the term portfolios of
algorithms, drawing an analogy to financial portfolios. They consider portfolios of multiple
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copies of a single backtracking algorithm with a randomized variable ordering and show
that one can tradeoff performance and risk on a given instance. Their work is important
for introducing and giving a preliminary demonstration of the effectiveness of the portfolio
approach.

Gomes and Selman 12,14 perform an extensive empirical validation of the portfolio
approach for portfolios of multiple backtracking algorithms that differ in their random-
ized variable ordering. Their work clearly demonstrates that a portfolio approach can give
important performance gains in the (usual) case where no single backtracking algorithm
dominates across all instances. Gomes and Selman provide several general guidelines for
designing portfolios, but a more practical approach for doing so is left as an open ques-
tion 14.

Lagoudakis and Littman 24 present a method for constructing a portfolio of backtrack-
ing algorithms (each with a different variable ordering heuristic) using techniques from re-
inforcement learning. However, in an empirical evaluation, the performance of the learned
portfolio was often not better than the best algorithms by themselves.

Finkelstein, Markovitch, and Rivlin 7 present a procedure for constructing class-based
single processor portfolios. Their method requires a performance profile for each possible
algorithm which specifies the probability that a solution will be found by the algorithm
as a function of time. Given these performance profiles, the construction of a portfolio
is formulated as an optimization problem and solved by branch-and-bound search. Their
method is elegant but suffers from a high computational cost. As well, the method has
only been evaluated under the assumption that the instances are homogeneous and it is
unclear how their method would perform under heterogeneous instances. For example,
in their experiments on Latin square completion, profiles were constructed from 50,000
instances and all instances were of the same size and contained the same number of pre-
assigned squares. In contrast, our approach has a relatively low computational cost and we
demonstrate its applicability in scenarios where the problem class contains heterogeneous
instances.

Gagliolo and Schmidhuber 8 also consider class-based single processor portfolios. In
their method, all algorithms are run in a time-sharing fashion and the allocation of time
to each algorithm is dynamically updated as instances are solved. However, their proposal
relies on estimates of the time still needed by a backtracking algorithm to complete—a
difficult task as the performance of backtracking algorithms can be very unpredictable.

3.2. Algorithm selection portfolios

Lobjois and Lemaı̂tre 29 examine instance-based algorithm selection in the setting of
branch-and-bound algorithms for optimization problems. Carchrae and Beck 4 argue for
a “low-knowledge” approach that does not require expertise in the problem structure and in
the algorithms in order to devise features for building predictive models. They show good
success with features that are common to all optimization problems. The techniques de-
veloped in these papers are specific to optimization problems and do not carry over in any
straight-forward manner to our context of constraint and propositional satisfiability.
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Leyton-Brown et al. 25,26,39 propose a methodology for instance-based algorithm se-
lection in the setting of backtracking algorithms. Their methodology requires gathering
performance profiles for each algorithm in the set of possible backtracking algorithms by
applying the algorithm to a large collection of instances. Features of the problem struc-
ture and of algorithm performance are then identified and regression techniques are used
to learn a function of the features to predict the running time (see also 21). Once one can
predict the running time of each algorithm on an instance, one can then choose the best
algorithm for that instance. Guerri and Milano 18, in followup work, use decision trees to
select between two algorithms and report a 90% selection accuracy.

In our work we show that the class-based general portfolio that is learned by our
methodology can approach the performance of a perfect instance-based algorithm selec-
tion portfolio. And if an algorithm selection method makes even a small percentage of
mistakes—as it would in practice—our learned portfolio can significantly outperform the
algorithm selection portfolio.

3.3. Restart strategy portfolios

Luby, Sinclair, and Zuckerman 30 examine restart strategies in the more general setting
of Las Vegas algorithms. A Las Vegas algorithm is a randomized algorithm that always
gives the correct answer when it terminates, however the running time of the algorithm
varies from one run to another and can be modeled as a random variable. Let f(t) be the
probability that a backtracking algorithm A applied to instance x stops after taking exactly
t steps; f(t) is referred to as the runtime distribution of algorithm A on instance x. Luby,
Sinclair, and Zuckerman show that, given full knowledge of the runtime distribution of an
instance, the optimal restart strategy for that instance is given by [(A, t), (A, t), . . .], for
some fixed cutoff t.

Of course, the runtime distribution of an instance is not known in practice. As a re-
sult, there have been various proposals for learning portfolios that may be sub-optimal but
still have good performance (e.g., 9,23,33,35,38). For example, Streeter, Golovin, and Smith
35 present an online technique for constructing a single restart strategy for an ensemble
of instances; i.e., a class-based restart strategy. However, we show that our methodology
constructs portfolios that significantly outperform the single restart strategy that would be
constructed by Streeter et al.’s method. We do so indirectly by showing in our experiments
that our portfolios outperform optimal instance-based restart strategies. Then, since optimal
instance-based restart strategies significantly outperform class-based restart strategies, our
claim follows.

As well, there have been extensive empirical evaluations of restart strategy portfolios
for backtracking algorithms with various randomized heuristics (e.g., 16,17,20). Interest-
ingly, Gomes and Selman 14 conclude from their experiments on general portfolios of
backtracking algorithms that, if only a single processor is available, using a restart strat-
egy is often the best portfolio.

However, in our work we show that in the presence of deadlines the class-based gen-
eral portfolio that is learned by our methodology can significantly outperform the optimal
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instance-based restart strategy portfolio. In other words, one portfolio applied to every in-
stance can perform better than the case where one is assumed to know the runtime distribu-
tion of each instance and is permitted to pick the optimal restart strategy portfolio for each
instance.

4. Portfolio design

In this section, we present our simple methodology for learning a good portfolio in the
presence of deadlines. We are considering a scenario where instances from a problem class
are to be solved over time and we are to learn a good class-based portfolio in an offline
manner.

Step 1: Construct possible backtracking algorithms. To begin, we must decide on the
possible backtracking algorithms {A1, A2, . . .} from which to construct a portfolio. In
previous work, the possible backtracking algorithms often differ only in their variable or-
dering heuristic. However, weakening or changing the variable ordering heuristic some-
times leads to dominated algorithms (algorithms which have poorer performance across all
or almost all instances) and does not always lead to an increase in variability of problem
solving performance (where different algorithms perform well on different instances). This
is particularly true in cases where the variable ordering heuristic has been carefully crafted,
as is often done in real applications. It is the variability in algorithm performance across
instances which a portfolio can take advantage of in order to improve on individual algo-
rithms. In our work, we propose to create variability in performance by increasing the level
of constraint propagation from light-weight to heavy-weight propagation. Of course, just as
weakening the variable ordering heuristic can lead to dominated algorithms, increasing the
level of constraint propagation can also do so. However, we found that on the benchmark
instances that we experimented with no algorithm dominated; each algorithm was best over
a significantly-sized set of instances.

The technique of creating variability by increasing levels of constraint propagation is
general in the sense that any backtracking algorithm that incorporates a base level of con-
straint propagation (which all successful backtracking algorithms do) can easily be modi-
fied to incorporate a higher level of constraint propagation through the use of a technique
called singleton consistency where the base constraint propagator is repeatedly called (see
Section 2). As well, constraint programming systems and libraries invariably have options
for specifying the level of propagation enforced on individual constraints.

Step 2: Construct training and test set. We next construct (as in machine learning) a
representative sample for learning the portfolio (a training set) and a representative sample
for estimating how well the portfolio would work when deployed (a test set). Each possible
backtracking algorithm is run on each instance in the training and test sets and the perfor-
mance data is collected. The algorithms are run with the same deadline or limit on CPU
time as will be used when the portfolio is deployed.

Example 4.1. To illustrate the methodology, suppose that in Step 1 we have decided on
constructing a portfolio of three algorithms A1, A2, and A3, where the algorithms are
ordered by increasing level of constraint propagation. Table 1 shows performance data for
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Table 1. Example data for a training set and test set for three algorithms A1,
A2, and A3, where the deadline is 600s.

training set
instance A1 A2 A3

train1 1 5 31
train2 91 1 1
train3 1 188 600
train4 600 10 73
train5 1 6 25
train6 1 1 15
train7 600 600 2
train8 1 14 97

test set
instance A1 A2 A3

test1 1 7 40
test2 1 1 50
test3 1 1 7
test4 1 3 14
test5 600 600 600
test6 600 1 5
test7 1 10 67
test8 1 443 600

hypothetical training and test sets when the algorithms are run on the instances with the
deadline or limit on CPU time of 600 seconds (Step 2 of the methodology). Each entry in
the table is the result of applying an algorithm on an instance: the number of seconds taken
to solve the instance or the deadline, if no solution was found within the allotted time.

Step 3. Simulate possible portfolios on training set. We next systematically step through
the possible portfolios at an appropriate level of abstraction and simulate each portfolio
on the training set and record its performance. To reduce the computation, the portfolios
that we learn are restricted to only allow the sequential application of algorithms rather
than running algorithms concurrently and they do not allow the execution of an algorithm
to be suspended and later resumed; i.e., in our portfolios an algorithm is terminated if
it fails to find a solution within the specified number of time steps. As well, we further
restrict the portfolios by mandating that the algorithms can appear in the portfolio only in
order of increasing level of propagation. This last restriction may not be needed in every
domain; the goal of the restriction is simply to reduce the number of possible portfolios that
need to be examined. We also remark that another ordering, such as by decreasing level of
propagation, could be a better restriction to impose and that deciding this would require
some experimentation when applying the method to a new problem class.

Because of the presence of a deadline and because we focus on simpler portfolios, sys-
tematically stepping through the possible portfolios can be done efficiently. For example,
in our experiments, if the deadline was 10 minutes and we examined portfolios in units of
1 second, it took approximately 9.0 seconds of CPU time to examine all of the possible
portfolios.

Note that in the methodology of Finkelstein, Markovitch, and Rivlin 7, this step would
be omitted as the performance data from Step 2 would be summarized in a performance
profile and used to select a best portfolio. However, this summary step, while perhaps more
elegant than a brute-force approach, loses information and may not be applicable in the
case of heterogeneous instances. To see this, suppose that two algorithms have identical
performance profiles but (a) the algorithms’ performance on instances is completely un-
correlated and (b) their performance is completely correlated. Finkelstein et al.’s approach
would determine the same portfolio in both cases, whereas our approach would not.

As well, note that if our performance measure is the number of instances that are solved
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by a portfolio, restricting the portfolios in the way we have done provably has no affect.
However, if our performance measure is the total runtime needed to apply the portfolio to
each instance, restricting the portfolios may have an affect; i.e., there can exist a lower cost
suspend-and-resume portfolio or a lower cost portfolio where the algorithms are applied in
a different order. However, on our testbed, we found that the restrictions had only a minimal
impact on the cost.

Example 4.2. Continuing with Example 4.1, suppose that in Step 3 we decide to examine
portfolios in units of 5 seconds. We next simulate the possible portfolios of the form (A 1,
A2, A3), where the total time allocated to the three algorithms is equal to the deadline of
600 seconds; i.e., (0, 0, 600), (0, 5, 595), (0, 10, 590), . . . , (600, 0, 0).

Step 4. Select best portfolio. We next select the best portfolio by choosing the portfolio
that minimizes the performance measure on all of the instances in the training set and is
furthest away in distance from any portfolio with poorer results. The aim of this criteria
is to find a low-cost and robust portfolio and it is one of the keys to the success of our
approach. More precisely, the lowest cost portfolios on the training set are bounded by a
region (the coordinates of the region are the time limits allotted to each algorithm in the
portfolio) and we are finding the centroid of the region. The centroid is easily determined
given the performance of the possible portfolios recorded in Step 3.

Step 5. Evaluate selected portfolio on the test set. The performance of the portfolio on
the test set gives an estimate for how well the portfolio would work when deployed and
applied to unknown instances from the same problem class.

Example 4.3. Continuing with Example 4.2, suppose that in Step 4 we wish to learn a
good portfolio when the performance measure—the value that we wish to minimize—is the
number of instances which are not solved. There are many portfolios which minimize the
number of instances in the training set that are not solved. For example, the portfolio (10,
585, 5) solves all of the instances in the training set; i.e., run algorithm A 1 for 10 seconds
or until a solution is found, if no solution is found run algorithmA 2 for 585 seconds, and so
on. However, this portfolio is not robust as it is close in distance to a portfolio, (10, 590, 0),
with poorer results. The distance is measured by the number of times that one can move±5
(the level of abstraction we have chosen for our portfolios) from one of the entries in the
portfolio to another, while ensuring that no entry becomes less than zero or greater than the
deadline. The best portfolio, the one that is furthest away from any portfolio with poorer
results, is (5, 190, 405). When this portfolio is applied to the test set (Step 5), the number
of instances in the test set not solved is one.

Alternatively, suppose that in Step 4 the performance measure is the time to solve all of
the instances. The (unique) portfolio that minimizes the time to solve all of the instances in
the training set is (5, 10, 585). When this portfolio is applied to the test set, the total time
for all instances in the test set is 612 seconds. It turns out that this is optimal as no other
portfolio does better on the test set.
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5. Experimental evaluation

In this section, we present the results of an empirical evaluation of our approach. In our
empirical evaluation we used two testbeds: quasigroup completion problems and real-world
instruction scheduling problems. For each testbed, we performed two sets of experiments.
In the first set of experiments, we consider learning a good portfolio when the performance
measure is the number of instances which are not solved. In the second set of experiments,
we consider learning a good portfolio when the performance measure is the expected time
to solve the instances. For each testbed, we begin by presenting the experimental setup that
is in common to the two sets of experiments, followed by the results of the experiments
themselves.

Table 2. Portfolios used in experimental evaluation.

P1(i) =
ˆ
(Arand

i , t∗), . . . , (Arand
i , t∗)

˜
,

i = 1, 2, or 3.
Gold standard for restart strategies applied to algorithm Arand

i .
For a given instance, choose the fixed cutoff t∗ ∈ {1, 2, . . .} that
is optimal for that instance and Arand

i (i.e., the optimal fixed cut-
off for the runtime distribution for the algorithm applied to the
instance) and then apply the restart strategy to Arand

i until a solu-
tion is found or the deadline d is reached.

P2(i) =
ˆ
(Arand

i , d)
˜
, i = 1, 2, or 3. Execute algorithm Arand

i until a solution is found or the deadline
d is reached.

P3(i) =
ˆ
(Adet

i , d)
˜
, i = 1, 2, or 3. Execute algorithm Adet

i until a solution is found or the deadline
d is reached.

P4 =
ˆ
(Adet , d)

˜
Gold standard for algorithm selection at the instance level. For a
given instance, choose the best deterministic algorithm Adet ∈
{Adet

1 ,Adet
2 ,Adet

3 } for that instance and execute the algorithm
until a solution is found or the deadline d is reached.

P5 =
ˆ
(Adet

1 , t1), (Adet
2 , t2), (Adet

3 , t3)
˜

Portfolio learned from the training set using the proposed method-
ology (see Section 4).

Let As
i be a backtracking algorithm, where i = 1, 2, . . . indicates the level of constraint

propagation used by the algorithm and s ∈ {det , rand} indicates whether the algorithm
is the deterministic or the randomized version of the algorithm. As explained in more de-
tail below when we describe the experiments in each of the testbeds, we randomized a
backtracking algorithm by randomizing the variable ordering heuristic. The notation for
specifying the portfolios that we examined in the experiments is summarized in Table 2.

In all of our experiments, if the algorithm was randomized, we collected 1000 samples
of its runtime distribution on each instance in the testbed by each time running the random-
ized backtracking algorithm on the instance with a different random seed and recording the
amount of time taken in seconds. The samples are censored in that we ran the backtracking
algorithm with a timeout mechanism; if the instance was not solved within the deadline,
the backtracking algorithm was terminated and the maximum amount of time was recorded.
The empirical runtime distributions and performance data were then used to learn and test
various portfolios. When a portfolio included randomized algorithms, the statistics that we
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report are the average over 10,000 trials.
All of the runtime experiments were performed on a cluster which consists of 768

machines running Linux, each with 4 GB of RAM and four 2.2 GHz processors.

5.1. Quasigroup Completion

We first report on our experiments using quasigroup completion problems 13. A Latin
square is an n × n table filled with n different symbols such that each symbol occurs
exactly once in each row and once in each column. In the quasigroup completion problem,
we are given a partially filled n × n table and asked whether the remaining entries can be
filled in such that the table is a Latin square. The quasigroup completion problem is known
to be NP-complete.

For our experiments, we used 1000 randomly generated balanced quasigroup comple-
tion instances with n = 31 and each instance had 391 unfilled entries. The instances were
generated using LSENCODE 11 and were encoded as a propositional satisfiability problem in
conjunctive normal form. The parameters were chosen to give difficult instances and there
are both satisfiable and unsatisfiable instances. The sizes of the instances range from 1,691
to 2,104 variables and from 11,757 to 16,354 clauses. We used 10-fold cross-validation to
divide the data into training set and test set (see, e.g., 37). In 10-fold cross-validation, the
data set (the 1000 instances) is partitioned into 10 equal-sized subsamples. Then, for each
k = 1, . . . , 10, we reserve the kth subsample to be used as a test set to evaluate the learned
portfolio and the other k − 1 subsamples are used as the training set from which to learn
the portfolio. The average of the 10 test results are then reported.

For our experiments, we used two separate deterministic backtracking algorithmsA det
i ,

i = 1 or 2, capable of performing distinct levels of constraint propagation:

i = 1 SATZ solver 27,28, performs unit propagation, and
i = 2 2CLS+EQ solver 1,2, performs extended binary clause reasoning.

Unit propagation is standard in satisfiability solvers (see Section 2). In extended binary
clause reasoning, at each node in the search tree the backtracking algorithm also performs
reasoning (resolution) on binary clauses (clauses with two literals) rather than just unit
clauses.

To study restart strategy portfolios, the backtracking algorithms were randomized by
having the variable ordering heuristic score the variable choices and then randomly pick
a variable from among all the variables that are within a factor of 0.4 of the best scoring
variable. This gave a total of four distinct backtracking algorithms A s

i , where i = 1 or 2
indicates the level of constraint propagation and s ∈ {det , rand} indicates whether the
algorithm is deterministic or has been randomized.

We ran each of the four algorithms on each quasigroup instance in the training and test
sets and recorded the performance data.
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Table 3. Expected number of quasigroup instances in the test set not solved within
a deadline d—one second, ten seconds, one minute, ten minutes, one hour, and ten
hours, respectively—for various portfolios of algorithms.

Randomized Deterministic
d P1(1) P1(2) P2(1) P2(2) P3(1) P3(2) P4 P5

1s 74.7 83.8 78.6 84.4 76.3 84.8 68.1 70.5
10s 39.5 74.9 52.9 77.3 49.0 77.3 39.8 41.5
1m 27.1 53.7 36.1 60.7 32.4 56.9 22.6 24.7
10m 25.7 21.1 28.3 31.7 27.4 29.9 16.5 17.8
1h 26.9 17.6 14.5 14.9
10h 26.9 12.6 12.3 12.6

Table 4. Percentage increase in the expected number of quasigroup instances in the test
set not solved within a deadline d relative to the gold standard portfolio P4, for various
portfolios of algorithms.

Randomized Deterministic
d P1(1) P1(2) P2(1) P2(2) P3(1) P3(2) P4 P5

1s 9.7% 23.1% 15.4% 23.9% 12.0% 24.5% 0% 3.5%
10s −0.8% 88.2% 32.9% 94.2% 23.1% 94.2% 0% 4.3%
1m 19.9% 137.6% 59.7% 168.6% 43.4% 151.8% 0% 9.3%
10m 55.8% 27.9% 71.5% 92.1% 66.1% 81.2% 0% 7.9%
1h 85.5% 21.4% 0% 2.8%
10h 118.7% 2.4% 0% 2.4%

Quasigroup completion: Experiment 1

In our first set of experiments for quasigroup instances, we determined whether the portfo-
lio learned using our methodology is effective at reducing the number of problems which
are not solved in the presence of various deadlines. We used deadlines of one second, ten
seconds, one minute, ten minutes, one hour, and ten hours, respectively. Table 3 summarizes
the results. Table 4 presents the same information except now stated in terms of percentage
change. Because of the high number of samples needed for the randomized algorithms to
ensure significance (1000 samples) and the associated high computational cost, we did not
collect runtime distributions for the larger timeouts (one hour and ten hours) and thus some
of the entries for the portfolios of randomized algorithms were not determined and are left
blank in the tables.

On this testbed, portfolio P5—the portfolio learned by our approach—-performs well.
It is interesting to note that the performance of the class-based portfolio P 5 is superior or
close in performance to the gold standard restart strategy portfolios P 1(i), i = 1 or 2, even
though the gold standard restart strategies were computed by determining for each instance
and algorithm the optimal fixed cutoff for the runtime distribution for the algorithm applied
to the instance. As well, the performance of P5 is superior to the portfolios which contain
just the individual algorithms, P3(i), i = 1 or 2.

Finally, it is interesting to note that the performance of the class-based portfolio P 5

approaches the performance of the gold standard algorithm selection portfolio P 4 which
perfectly selects the best algorithm for each instance. Of course, no algorithm selection
method will be perfect in practice. Xu et al. 39 report a 62% selection accuracy when se-
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lecting between three backtracking solvers on quasigroup instances. We experimented with
having the algorithm selection method make mistakes: with some small probability p the
method does not select the best algorithm for an instance. The results are quantified in Fig-
ure 1(a). Depending on the deadline, if the probability of a mistake is greater than from
3% to 10%, portfolio P5 would outperform the algorithm selection portfolio. As one ex-
ample, consider the case where the deadline is 10m. If the probability of a mistake is zero,
portfolio P5 gives an increase of 7.9% in the expected number of instances not solved.
However, once the probability of a mistake is greater than 0.06, portfolio P 5 outperforms
the algorithm selection portfolio until when the probability of a mistake is 0.20 (a reason-
able expectation in practice) portfolio P5 gives a 16.4% improvement. As well, we note
that the algorithm selection method, as exemplified by Xu et al.’s 39 approach, is difficult
to apply in practice as it requires the user to develop an empirical hardness model—a task
that requires expertise—whereas our approach is light weight.

Quasigroup completion: Experiment 2

In our second set of experiments for quasigroup instances, we determined whether the port-
folio learned using our methodology is effective at reducing the expected time to solve the
instances in the presence of various deadlines. We used the same deadlines as in Experi-
ment 1. Table 5 summarizes the results. Table 6 presents the same information except now
stated in terms of percentage change.

On this testbed, portfolio P5—the portfolio learned by our approach—-again performs
well. The performance of the class-based portfolio P5 approaches the performance of the
gold standard restart strategy portfolios, and is superior to the portfolios which contain a
single algorithm. Also, under this performance measure too, the performance of the class-
based portfolio P5 approaches the performance of the gold standard algorithm selection
portfolio. We again experimented with having the algorithm selection method make mis-
takes: with some small probability p the method does not select the best algorithm for an
instance. The results are quantified in Figure 1(b). Depending on the deadline, if the prob-
ability of a mistake is greater than from 3% to 34%, portfolio P 5 would outperform the
gold standard algorithm selection portfolio P4. As one example, if the deadline is 10m, P5

is 18.5% slower when the probability of a mistake p is zero, roughly equal in performance
when p = 0.11 and 11.2% faster when p = 0.20 (a reasonable expectation in practice).

5.2. Instruction Scheduling

We next report on our experiments using instruction scheduling problems for multiple-
issue pipelined processors. Multiple-issue and pipelining are two techniques for perform-
ing instructions in parallel and processors which use these techniques are now standard
in desktop and laptop machines. In such processors, there are multiple functional units
and multiple instructions can be issued (begin execution) in each clock cycle. Examples
of functional units include arithmetic-logic units (ALUs), floating-point units, memory or
load/store units which perform address computations and accesses to the memory hier-
archy, and branch units which execute branch and call instructions. On such processors,
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Table 5. Total time (sec.) for all of the quasigroup instances in the test set, where
each instance was either solved within the deadline d or the deadline was reached, for
various portfolios of algorithms.

Randomized Deterministic
d P1(1) P1(2) P3(1) P3(2) P4 P5

1s 83.2 85.8 82.8 86.3 75.7 81.6
10s 538.3 794.2 610.6 810.8 524.3 593.8
1m 2,050.2 3,926.1 2,463.8 4,069.5 1,890.8 2,275.1
10m 16,040.6 20,245.7 17,836.6 24,412.6 11,509.3 13,636.9
1h 99,074.1 88,104.5 57,624.8 64,322.8
10h 970,634.1 529,334.7 477,404.2 491,088.2

Table 6. Percentage increase in the total time (sec.) for all of the
quasigroup instances in the test set relative to the gold standard port-
folio P4, for various portfolios of algorithms.

Randomized Deterministic
d P1(1) P1(2) P3(1) P3(2) P4 P5

1s 9.9% 13.3% 9.4% 14.0% 0% 7.8%
10s 2.7% 51.5% 16.5% 54.6% 0% 13.3%
1m 8.4% 107.6% 30.3% 115.2% 0% 20.3%
10m 39.4% 75.9% 55.0% 112.1% 0% 18.5%
1h 71.9% 52.9% 0% 11.6%
10h 103.3% 10.9% 0% 2.9%

the order that the instructions are scheduled can significantly impact performance and in-
struction scheduling is one of the most important steps in improving the performance of
object code produced by a compiler. The task is to find a minimal length schedule for a
basic block—a straight-line sequence of code with a single entry point and a single exit
point—subject to precedence, latency, and resource constraints. The instruction scheduling
problem is known to be NP-complete.

We formulated a constraint programming model for the instruction scheduling problem
and solved instances using backtracking search. In constraint programming, a problem is
modeled by specifying constraints on an acceptable solution, where a constraint is simply
a relation among several unknowns or variables, each taking a value in a given domain (see
Section 2). In our model, there is a variable for each instruction, the domains of the variables
are the time cycles in which the instruction could be scheduled, and the constraints consist
of linear inequalities, global cardinality constraints, and other specialized constraints. For
example, the global cardinality constraints ensure that the number of instructions of each
type issued at each clock cycle does not exceed the number of functional units of that type.
The scheduler was able to solve almost all of the basic blocks that we found in practice,
including basic blocks with up to 2600 instructions. We refer the reader to 31 for further
details on the problem, the model, and the backtracking algorithm. The point we wish to
emphasize here is that, prior to our examination of portfolios, considerable effort went
into improving the constraint programming model, the backtracking algorithm, and the
variable ordering heuristic to reduce the number of unsolved instances and to reduce the
computation time.
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For our experiments, we used scheduling instances that arise from the SPEC 2000 and
MediaBench benchmark suites, two standard real-world benchmarks in compiler research.
These benchmark suites consist of source code for software packages that are chosen to be
representative of a variety of programming languages and types of applications. We had
available to us a total of 6,377 hard scheduling instances from 28 different software pack-
ages. For our sample of instances, or training set, we used all 927 of the hard scheduling
instances from the galgel, gap, mpeg, and jpeg software packages. We chose these four
software packages for two reasons. First, the instances give approximately fifteen percent
of the scheduling instances and, second, these software packages provide a good cross sec-
tion of the data as they include both integer and floating point instructions as well as a
variety of programming languages and types of applications. For our test set, we used the
remaining 5,450 hard scheduling instances. Our training and test sets are heterogeneous as
the instances arise from different software applications and different high-level program-
ming languages, and the sizes of the instances range from as few as five instructions to as
many as 2,598 instructions.

For our experiments, we used a deterministic backtracking algorithm A det
i capable of

performing three levels of constraint propagation:

i = 1 bounds consistency,
i = 2 singleton bounds consistency, and
i = 3 singleton bounds consistency to a depth of two.

See Section 2 for an explanation and examples of the three levels of constraint propaga-
tion. We chose bounds consistency—instead of the more usual arc consistency—as in our
problem it is equivalent but more efficient (see 34).

To study restart strategy portfolios, the backtracking algorithms were randomized by
having the variable ordering heuristic randomly pick a variable from the top five variables
(or fewer, if there were fewer variables left). This gave a total of six distinct backtracking
algorithms As

i , where i = 1, 2, 3 indicates the level of constraint propagation and s ∈
{det , rand} indicates whether the algorithm is deterministic or has been randomized.

We ran each of the six algorithms on each instruction scheduling instance in the training
and test sets and recorded the performance data.

Instruction scheduling: Experiment 1

In our first set of experiments for instruction scheduling instances, we determined whether
the portfolio learned using our methodology is effective at reducing the number of problems
which are not solved in the presence of various deadlines. We used the same deadlines as
in our experiments with quasigroup instances. Table 7 summarizes the results. Table 8
presents the same information except now stated in terms of percentage change. As in our
experiments with quasigroup instances, because of the high computational cost, we did not
collect runtime distributions for the larger timeouts and thus some of the entries for the
portfolios of randomized algorithms were not determined and are left blank in the tables.

On this testbed, portfolio P5—the portfolio learned by our approach—-performs well.
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Table 7. Expected number of scheduling instances in the test set not solved within a deadline d—one sec-
ond, ten seconds, one minute, ten minutes, one hour, and ten hours, respectively—for various portfolios of
algorithms.

Randomized Deterministic
d P1(1) P1(2) P1(3) P2(1) P2(2) P2(3) P3(1) P3(2) P3(3) P4 P5

1s 158.6 120.7 823.5 223.5 124.3 823.6 201 128 824 64 74
10s 135.3 59.1 364.8 210.9 65.5 364.9 195 64 368 32 46
1m 124.6 35.0 158.7 201.9 42.5 158.8 188 40 161 18 30
10m 118.6 25.7 84.3 193.2 33.9 85.0 175 32 87 16 17
1h 171 31 53 15 15
10h 157 31 27 14 14

Table 8. Percentage increase in the expected number of scheduling instances in the test set not solved within a
deadline d relative to the gold standard portfolio P4, for various portfolios of algorithms.

Randomized Deterministic
d P1(1) P1(2) P1(3) P2(1) P2(2) P2(3) P3(1) P3(2) P3(3) P4 P5

1s 148% 89% 1187% 249% 94% 1187% 214% 100% 1188% 0% 16%
10s 323% 85% 1040% 559% 105% 1040% 509% 100% 1050% 0% 44%
1m 592% 94% 782% 1022% 136% 782% 944% 122% 794% 0% 67%
10m 641% 61% 427% 1108% 112% 431% 994% 100% 444% 0% 6%
1h 1040% 107% 253% 0% 0%
10h 1021% 121% 93% 0% 0%

The class-based portfolio P5 is superior to the performance of the gold standard restart
strategy portfolios P1(i), i = 1, 2, or 3, even though the gold standard restart strategies
were computed by determining for each instance and algorithm the optimal fixed cutoff for
the runtime distribution for the algorithm applied to the instance. As well, the performance
of P5 is superior to the portfolios which contain a single algorithm. Even though there is
one dominant algorithm among the deterministic algorithms (algorithm A det

2 as used in
portfolio P3(2)) a portfolio of multiple algorithms can take advantage of the variability
in performance of the algorithms across instances to improve the performance measure.
Finally, the class-based portfolio P5 approaches the performance of the gold standard al-
gorithm selection portfolio P4 which perfectly selects the best algorithm for each instance.
This is especially true for the larger deadlines. However, it is clear that no algorithm selec-
tion method will be perfect. Guerri and Milano 18 report a 90% selection accuracy when
selecting between just two algorithms when solving a constraint satisfaction problem for
combinatorial auctions. We again experimentedwith having the algorithm selection method
make mistakes: with some small probability p the method does not select the best algorithm
for an instance. The results are quantified in Figure 1(c). Depending on the deadline, if the
probability of a mistake is greater than from 1% to 8%, portfolio P 5 would outperform the
gold standard algorithm selection portfolio P4. As one example, consider the case where
the deadline is 10m. If the probability of a mistake is zero, portfolio P 5 gives an increase
of 6% in the expected number of instances not solved. However, once the probability of a
mistake is greater than zero, portfolio P5 outperforms the algorithm selection portfolio un-
til when the probability of a mistake is 0.20 (a reasonable expectation in practice) portfolio
P5 gives a 58% improvement.
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Table 9. Total time (sec.) for all of the scheduling instances in the test set, where each instance was either
solved within the deadline d or the deadline was reached, for various portfolios of algorithms.

Randomized Deterministic
d P1(1) P1(2) P1(3) P3(1) P3(2) P3(3) P4 P5

1s 188.2 227.8 1,197.7 223.7 217.6 1,133.4 91.5 121.4
10s 1,455.9 922.1 5,598.5 2,003.7 968.8 5,594.5 481.7 712.2
1m 8,362.3 3,006.3 16,561.6 11,635.0 3,370.8 16,706.0 1,694.6 2,269.9
10m 73,723.3 17,845.9 72,956.9 109,493.6 21,483.0 73,323.5 10,524.8 16,458.3
1h 625,797.8 115,461.0 263,237.5 55,878.5 82,841.8
10h 5,848,373.4 1,119,861.0 1,329,250.2 510,022.7 565,111.7

Table 10. Percentage increase in the total time (sec.) for all of the scheduling instances in the test
set relative to the gold standard portfolio P4, for various portfolios of algorithms.

Randomized Deterministic
d P1(1) P1(2) P1(3) P3(1) P3(2) P3(3) P4 P5

1s 105.7% 149.0% 1,209.0% 144.5% 137.8% 1,138.7% 0.0% 32.7%
10s 202.2% 91.4% 1,062.2% 316.0% 101.1% 1,061.4% 0.0% 47.9%
1m 393.5% 77.4% 877.3% 586.6% 98.9% 885.8% 0.0% 33.9%
10m 600.5% 69.6% 593.2% 940.3% 104.1% 596.7% 0.0% 56.4%
1h 1,019.9% 106.6% 371.1% 0.0% 48.3%
10h 1,046.7% 119.6% 160.6% 0.0% 10.8%

Instruction scheduling: Experiment 2

In our second set of experiments for instruction scheduling instances, we determined
whether the portfolio learned using our methodology is effective at reducing the expected
time to solve the instances in the presence of various deadlines. We used the same deadlines
as in Experiment 1. Table 9 summarizes the results. Table 10 presents the same information
except now stated in terms of percentage change.

On this testbed, portfolio P5—the portfolio learned by our approach—-again performs
well. The performance of the class-based portfolio P5 is superior to the performance of
the gold standard restart strategy portfolios, and superior to the portfolios which contain a
single algorithm. Also, under this performance measure too, the performance of the class-
based portfolio P5 approaches the performance of the gold standard algorithm selection
portfolio P4. We again experimented with having the algorithm selection method make
mistakes: with some small probability p the method does not select the best algorithm for
an instance. The results are quantified in Figure 1(d). Depending on the deadline, if the
probability of a mistake is greater than from 2% to 7%, portfolio P 5 would outperform the
gold standard algorithm selection portfolio. As one example, if the deadline is 10m, P 5 is
56.4% slower when the probability of a mistake p is zero, roughly equal in performance
when p = 0.07 and 41.0% faster when p = 0.20 (a reasonable expectation in practice).

6. Conclusions

We presented an approach for learning good class-based portfolios of backtracking algo-
rithms in the commonly occurring scenario where instances from a problem class are to
be solved over time and a deadline is placed on the computational resources that the back-
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Figure 1. Comparison of portfolio P5—the portfolio learned by our approach—with portfolio P4—the algo-
rithm selection portfolio—when the algorithm selection method makes a mistake with probability p: (a) percent-
age increase in the expected number of quasigroup instances in the test set not solved; (b) percentage increase in
the total time for all of the quasigroup instances in the test set; (c) percentage increase in the expected number of
scheduling instances in the test set not solved; (d) percentage increase in the total time for all of the scheduling
instances in the test set.

tracking algorithm can consume in solving any instance. Our approach has a relatively low
computational cost and is applicable in scenarios where the problem class contains hetero-
geneous instances. We demonstrated the effectiveness of our approach through an exten-
sive empirical evaluation on quasigroup completion problems and a real-world scheduling
testbed. On our testbeds, the portfolio that is learned by our methodology outperforms the
best possible (but unobtainable in practice) restart strategy portfolio and approaches the
performance of the best possible (but again unobtainable in practice) algorithm selection
portfolio.
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