International Journal on Artificial Intelligence Tools © World Scientific Publishing Company # OPTIMAL BASIC BLOCK INSTRUCTION SCHEDULING FOR MULTIPLE-ISSUE PROCESSORS USING CONSTRAINT PROGRAMMING #### Abid M. Malik School of Computer Science, University of Waterloo Waterloo, Ontario, Canada ammalik@cs.uwaterloo.ca #### Jim McInnes IBM Canada Toronto Lab Toronto, Ontario, Canada jimm@ca.ibm.com #### Peter van Beek School of Computer Science, University of Waterloo Waterloo, Ontario, Canada vanbeek@cs.uwaterloo.ca Instruction scheduling is one of the most important steps for improving the performance of object code produced by a compiler. A fundamental problem that arises in instruction scheduling is to find a minimum length schedule for a basic block—a straight-line sequence of code with a single entry point and a single exit point—subject to precedence, latency, and resource constraints. Solving the problem exactly is NP-complete, and heuristic approaches are currently used in most compilers. In contrast, we present a scheduler that finds provably *optimal* schedules for basic blocks using techniques from constraint programming. In developing our optimal scheduler, the key to scaling up to large, real problems was in the development of preprocessing techniques for improving the constraint model. We experimentally evaluated our optimal scheduler on the SPEC 2000 integer and floating point benchmarks. On this benchmark suite, the optimal scheduler was very robust—all but a handful of the hundreds of thousands of basic blocks in our benchmark suite were solved optimally within a reasonable time limit—and scaled to the largest basic blocks, including basic blocks with up to 2600 instructions. This compares favorably to the best previous exact approaches. ## 1. Introduction Modern architectures are pipelined and can issue multiple instructions per clock cycle. On such processors, the order in which the instructions are scheduled can significantly impact performance. A fundamental problem that arises in instruction scheduling is to find a minimum length schedule for a basic block—a straight-line sequence of code with a single entry point and a single exit point—subject to precedence, latency, and resource constraints. Basic block instruction scheduling for realistic multiple-issue processors is NP-complete ¹, and most compilers use a heuristic approach—a fast method that sometimes #### 2 A.M. Malik, J. McInnes, P. van Beek Figure 1. Dependency DAG and two possible schedules. gives sub-optimal solutions—rather than an exact approach to basic-block scheduling (e.g., see 2,3). Although heuristic approaches have the advantage that they are fast, a basic block scheduler which finds provably optimal schedules may be useful where longer compile times are tolerable, such as when compiling for software libraries, digital signal processing, or embedded applications 2 . Previous work on optimal basic block schedulers has taken several approaches, including: branch-and-bound enumeration ^{4,5,6}, dynamic programming ⁷, integer linear programming ^{8,9,10}, and constraint programming ^{11,12}. With the exception of ^{6,12,10}, to which we do detailed comparisons later in the paper, these previous approaches have only been evaluated on a few problems with the sizes of the problems ranging between 10 and 50 instructions. Further, their experimental results suggest that none of them would scale up beyond problems of this size. A major challenge when developing an exact approach to an NP-complete problem is to develop a solver that scales and is robust in that it rarely fails to find a solution in a timely manner on a wide selection of real problems. In this paper, we present a constraint programming approach to instruction scheduling for multiple-issue processors that is robust and optimal. In a constraint programming approach, a problem is modeled by stating constraints on acceptable solutions, where a constraint is simply a relation among several unknowns or variables, each taking a value in a given domain. The constraint model is then usually solved using a backtracking search. The novelty of our approach is in the extensive computational effort put into a preprocessing stage in order to improve the constraint model and thus reduce the effort needed in backtracking search. We experimentally evaluated our optimal scheduler on the SPEC 2000 integer and floating point benchmarks, using four different architectural models. On this benchmark suite, the optimal scheduler scaled to the largest basic blocks and was very robust. Depending on the architectural model, at most a few (between zero and 22) basic blocks out of the hundreds of thousands of basic blocks used in our experiments could not be solved within a 10-minute time bound. This represents approximately a 50-fold improvement over previous work. As well, the scheduler was able to routinely solve the largest basic blocks that we found in practice, including basic blocks with up to 2600 instructions. ## 2. Background In this section, we define the instruction scheduling problem studied in this paper followed by a brief review of the needed background from constraint programming. Throughout the paper, the number of elements in a set U is denoted by |U|, the minimum and maximum values in a finite set U of integers are denoted by $\min(U)$ and $\max(U)$, respectively, and the interval notation [a, b] is used as a shorthand for the set of integers $\{a, a+1, \ldots, b\}.$ We consider multiple-issue pipelined processors. On such processors, there are multiple functional units, and multiple instructions can be issued (begin execution) each clock cycle. Associated with each instruction is a delay or *latency* between when the instruction is issued and when the result is available for other instructions that use the result. Each instruction has a type and can only execute on a functional unit of that type. Examples of instruction types are load/store, integer, floating point, and branch. We use the standard labeled directed acyclic graph (DAG) representation of a basicblock. Each node corresponds to an instruction and there is an edge from i to j labeled with a non-negative integer l(i,j) if j must not be issued until i has executed for l(i,j) cycles. In particular, if l(i,j) = 0, j can be issued in the same cycle as i; if l(i,j) = 1, j can be issued in the next cycle after i; and if l(i,j) > 1, there must be some intervening cycles between when i is issued and when j is subsequently issued. These cycles can possibly be filled by other instructions. The critical-path distance from a node i to a node j in a DAG, denoted cp(i, j), is the maximum sum of the latencies along any path from i to j. A node i is a predecessor of a node j if there is a directed path from i to j; if the path consists of a single edge, i is also called an *immediate predecessor* of j. A node j is a *successor* of a node i if there is a directed path from i to j; if the path consists of a single edge, j is also called an *immediate* successor of i. A sink node is a node with no successors. For convenience, we assume that a fictitious sink node, hereafter called *the* sink node, is added to each DAG and that an edge is added from each node i in the DAG to the sink node, where the label on the edge is the latency of instruction i. Given a labeled dependency DAG for a basic block, a schedule for a multiple-issue processor specifies an issue or start time for each instruction or node such that the latency and resource constraints are satisfied. The length of a schedule is the number of the cycle in which the sink node is issued. The basic block instruction scheduling problem is to construct a schedule with minimum length. **Example 2.1.** Figure 1 shows a simple dependency DAG and two possible schedules for the DAG, assuming a single-issue processor that can execute all types of instructions. The schedule (b) requires four NOP instructions (null operations) because the values loaded are used by the following instructions. The better schedule (c), the optimal or minimum length schedule, requires only one NOP and completes in three fewer cycles. Constraint programming is a methodology for solving combinatorial problems, where a problem is modeled in terms of variables, values, and constraints. **Definition 2.1.** A constraint model consists of a set of n variables, $\{x_1, \ldots, x_n\}$; a finite domain $dom(x_i)$ of possible values for each variable x_i , $1 \le i \le n$; and a collection of r constraints, $\{C_1, \ldots, C_r\}$. Each constraint C_i , $1 \le i \le r$, is a constraint over some set of variables, denoted by $vars(C_i)$, that specifies the allowed combinations of values for the variables in $vars(C_i)$. A solution to a constraint model is an assignment of a value to each variable that satisfies all of the constraints. Constraint models are often solved using a backtracking algorithm. At every stage of the backtracking search, there is some current partial solution that the algorithm attempts to extend to a full solution by assigning a value to an uninstantiated variable. One of the keys behind the success of constraint programming is the idea of constraint propagation. During the backtracking search when a variable is assigned a value, the constraints are used to reduce the domains of the uninstantiated variables by ensuring that the values in their domains are "consistent" with the constraints. The form of consistency we use in our approach to the instruction scheduling problem is bounds consistency. A constraint C is bounds consistent if for each $x \in vars(C)$, the value $\min(dom(x))$ has a support in C—there exists values for each of the other variables in C such that C is satisfied— and the value $\max(dom(x))$ has a support in C. A constraint model can be made bounds consistent by repeatedly removing unsupported values from the domains of its variables. **Example 2.2.** Consider the
constraint model of the small instruction scheduling problem in Example 2.1 with variables A, ..., E, each with domain $\{1, ..., 6\}$, and the constraints, $$C_1$$: D \geq A + 3, C_3 : E \geq C + 3, C_5 : all-different(A, B, C, D, E), C_2 : D \geq B + 3, C_4 : E \geq D + 1, where constraint C_5 enforces that its arguments are pair-wise different. The constraints are not bounds consistent. For example, the minimum value 1 in the domain of D does not have a support in C_1 as there is no corresponding value for A that satisfies the constraint. Enforcing bounds consistency using constraints C_1 through C_4 reduces the domains of the variables as follows: $dom(A) = \{1,2\}, dom(B) = \{1,2\}, dom(C) = \{1,2,3\}, dom(D) = \{4,5\},$ and $dom(E) = \{5,6\}$. Subsequently enforcing bounds consistency using constraint C_5 further reduces the domain of C to be $dom(C) = \{3\}$. Now constraint C_3 is no longer bounds consistent. Re-establishing bounds consistency causes $dom(E) = \{6\}$. ### 3. Our solution In this section, we present our constraint model of the basic block instruction scheduling problem, with a focus on the preprocessing techniques we used for improving the constraint model. We model each instruction by a variable with names $1, \ldots, n$ (we use i to refer interchangeably to variable i, instruction i, and node i in the DAG). The domain of each Table 1. Notation for specifying constraints. | k_t | number of functional units of type t | |------------|---| | l(i,j) | latency on edge between nodes i and j | | cp(i,j) | critical-path distance between nodes i and j | | d(i,j) | lower bound on distance between i and j | | op(i,j,t) | set of all nodes of type t that are on some path from node i to node j . Note that $i \in op(i, j, t)$ if i is of type t . Similarly for j . These are all of the instructions of type t that must be issued with or after node i is issued and must all be issued with or before node j is issued. | | pred(i) | set of all immediate predecessors of node i | | succ(i) | set of all immediate successors of node i | | I([a,b],t) | set of all variables of type t whose domains intersect the interval $[a,b]$. These are all of the instructions of type t that may need these clock cycles to execute on functional units of type t . | variable dom(i) is a subset of $\{1, \ldots, m\}$ which are the available clock cycles. Assigning a value $d \in dom(i)$ to a variable i has the intended meaning that instruction i will be issued at clock cycle d. The domain $dom(i) = \{a, \dots, b\}$ of a variable i is represented by the endpoints of the interval [a, b]. We now specify the six types of constraints in the model: latency, resource, distance, predecessor and successor, safe pruning, and dominance constraints. Some of the notation we use is summarized in Table 1. Given a labeled dependency DAG G = (N, E), for each pair of variables i and j such that $(i, j) \in E$, latency constraints of the form $j \ge i + l(i, j)$ are added to the constraint model. For each type t of instruction/functional unit a resource constraint is needed to ensure that the number of instructions of type t issued at each clock cycle does not exceed the number of functional units of type t. Such resource constraints are a special case of a well-studied constraint called the global cardinality constraint ¹³. Note that when there is a single functional unit for some type t, the global cardinality constraint is equivalent to the well-known all-different constraint, which enforces that its arguments are pair-wise different. As is clear, for a minimal correct model of the instruction scheduling problem all that is needed are the latency and resource constraints. However, it is now well-established that adding implied (or redundant) constraints and dominance constraints to a constraint model can greatly improve the efficiency of the search for a solution (see, e.g., ¹⁴). Implied constraints are constraints which do not change the set of solutions to the constraint model. Dominance constraints do not necessarily preserve the set of solutions but do preserve at least one of the solutions. Both types of constraints can increase the amount of constraint propagation and so cause the domains of the variables to be further restricted. In our context, adding the distance, predecessor and successor, safe pruning, and dominance constraints was found to be essential in improving the efficiency of the backtracking search for a schedule—without them, only small problems could be consistently solved. For example, for a single-issue architecture (the simplest version of the problem), the minimal model without any redundant constraints and dominance constraints does not scale beyond 40 instructions. With the redundant constraints and dominance constraints, the improved model Table 2. Notation for distance constraints. - $r_1(i,j,t)$ The minimum number of cycles that must elapse before the first instruction in op(i,j,t) can be issued; i.e., $\min\{cp(i,k)\mid k\in op(i,j,t)\}$, the minimum critical-path distance from node i to any node in op(i,j,t). - $r_2(i,j,t)$ The minimum number of cycles to issue all of the instructions in op(i,j,t); i.e., $\lceil |op(i,j,t)| / k_t \rceil$, the size of the set of instructions divided by the number of functional units that can execute instructions of type t, rounded up to the next highest integer value. - $r_3(i,j,t)$ The minimum number of cycles that must elapse between when the last instruction in op(i,j,t) is is issued and node j can be issued; i.e., $\min\{cp(k,j)\mid k\in op(i,j,t)\}$, the minimum critical-path distance from any node in op(i,j,t) to node j. scales up to instances with 2600 instructions (the largest that we have found in practice) on multiple-issue architectures. Many instances of each of these four types of constraints are added in an extensive preprocessing stage. ## 3.1. Distance constraints For each pair of nodes i and j, a distance constraint of the form $j \ge i + d(i,j)$ is considered for addition to the constraint model. A distance constraint is added if it is an improvement over the critical-path distance; i.e., d(i,j) > cp(i,j). (If the distance is not greater than the critical-path distance, adding the constraint will have no effect as the latency constraints will derive a stronger result.) The distance constraints are lower bounds on the number of cycles that must elapse between when i is scheduled and j is scheduled. Although syntactically identical to latency constraints and hence propagated in the same manner, the distance constraints are conceptually distinct and are key factors in effectively reducing the size of the search space. The distance constraints differ in that they take into account the architecture's resource constraints and can be much stronger than critical-path distances. In what follows, we are interested in subgraphs called regions ¹⁰, which are induced from a given dependency DAG. Basic blocks typically contain many such regions embedded within them, with larger blocks containing many thousands. **Definition 3.1.** (**Region** ¹⁰) A pair of nodes i, j in a DAG define a *region* if there is more than one path between i and j and there does not exist a node k distinct from i and j such that every path between i and j goes through k. Given a region defined by nodes i and j, we wish to add a distance constraint $j \ge i + d(i,j)$, for some integer value d(i,j). Following 10 , if the region is small enough, we solve the region exactly (in isolation) and determine the optimal value for d(i,j). To solve a region in isolation, we use the same constraint solver as for an entire basic block. For larger regions, we estimate the value, ensuring that our estimate is always less than or equal to the optimal value. We found that a threshold of 25 nodes worked well in practice; for regions larger than this the distance was estimated. Consider the notation shown in Table 2. For larger regions, initially we estimate d(i, j) using, $$d(i,j) = \max_{t} \{ r_1(i,j,t) + r_2(i,j,t) + r_3(i,j,t) - 1 \},$$ where we are finding the maximum over all instruction types t. Note that the nodes that are on a path from node i to node j can be determined quickly given the critical-path distances between all pairs of nodes, since a node k is on a path from i to j iff $cp(i,k) \geq 0$ and $cp(k,j) \geq 0$. The estimate of the distance can sometimes be improved by "removing" a small number of nodes (between one and three nodes) from op(i, j, t). This was done whenever removing these nodes led to an increase in the value of d(i, j); i.e., the decrease in $r_2(i, j, t)$ was more than offset by the increase in $r_1(i, j, t) + r_3(i, j, t)$. The estimate is a generalization and improvement over the distance constraints presented in 12, to handle multiple-issue, multiple types of instructions, and zero latency edges. Figure 2. Adding distance constraints. **Example 3.1.** Consider the dependency DAG shown in Figure 2 where the clear nodes are of one instruction type and the shaded (yellow) nodes are of a different instruction type. Assume there is a single functional unit for each type of instruction. For the region defined by A and F, the initial estimate of the distance is d(A, F) = 4. Similarly, for the region defined by A and G, the initial estimate of the distance is d(A, G) = 5. The estimate of the distance d(A, G) can be improved to d(A, G) = 6 by "removing" node G from $op(A,G,\mathrm{shaded})$. The distance constraints $F \geq A+4$ and $G \geq A+6$ would be added to the constraint model, as both d(A, F) and
d(A, G) are improvements over the critical-path distances between those nodes. #### 3.2. Predecessor and successor constraints For each node i which has more than one immediate predecessor, a single predecessor constraint of the following form is added, $$\min(dom(i)) \ge \min\{\min(dom(k)) \mid k \in P\}$$ 8 A.M. Malik, J. McInnes, P. van Beek $$+ \lceil |P|/k_t \rceil - 1 + \min\{l(k,i) \mid k \in P\}$$ for every type t and every subset P of pred(i, t) where $|P| > k_t$, where the operator $\lceil x \rceil$ returns the smallest integral value not less than x. It can be seen that a predecessor constraint can be propagated in $O(|pred(i)|^2)$ time by first sorting the predecessors of i by increasing lower bounds and then stepping through the lower bounds, each time finding the minimum latency among the remaining predecessors. A symmetric version, called successor constraints, for the immediate successors of a node is given by, $$\max(dom(i)) \le \max\{\max(dom(k)) \mid k \in P\}$$ $$-\lceil |P|/k_t \rceil + 1$$ $$-\min\{l(i,k) \mid k \in P\},$$ for every type t and every subset P of succ(i, t) where $|P| > k_t$. The predecessor and successor constraints are propagated in a preprocessing stage and also during search. They can be viewed as an adaptation of edge-finding rules (see ¹⁵) and are an easy generalization of the similarly named constraints presented in ¹² to handle multiple-issue and multiple types of instructions. **Example 3.2.** Consider the partial DAG shown in Figure 3, where the domains of the variables are as shown. Assume there is a single functional unit for each type of instruction. Propagating the predecessor constraint associated with node E improves the lower bound of the variable. The earliest that the set $P = \{C, D\}$ of immediate predecessors of node E can be scheduled is cycle 8, and, therefore, cycle 9 is the earliest that the last of its predecessors could be scheduled. Therefore, the earliest that E can be scheduled is cycle 11. Figure 3. Improving the lower bound of a variable using a predecessor constraint. ## 3.3. Safe pruning constraint Given a constraint model, we say that it is *safe* to add a constraint to a constraint model whenever it is the case that, if there was a solution to the constraint model before adding the constraint, there is still a solution after adding the constraint. Adding safe pruning constraints is based on the following theorem. **Theorem 3.1.** Suppose that all of the latency and resource constraints have been propagated. If there exists an interval [a, b] such that, - (i) for all $i \in I([a, b], t)$, $\min(dom(i)) = a$, - (ii) for all $i \in I([a,b],t)$, for all $k \in pred(i)$, $\max(dom(k)) + l(k,i) \le$ $\min(dom(i)),$ - (iii) $|I([a,b],t)| \leq (b-a+1) \times k_t$, then it is safe to prune the upper bounds of the variables $i \in I([a, b], t)$ as follows, $$\max(dom(i)) = \min(\max(dom(i)), b).$$ **Proof.** Suppose there was a solution to the constraint model before pruning. Call this the original solution. There are two cases. - 1. Suppose that in the original solution each variable in I([a, b], t) is assigned a value from its domain that is less than or equal to b. Clearly this is still a solution after pruning. - 2. Suppose that in the original solution there exist variables in I([a,b],t) that have been assigned values from their domains that are greater than b. We will show that each of these variables can be given a consistent value from [a, b]. Latency constraints. We show that any value in [a, b] satisfies the latency constraints. Let i be any variable that has been reassigned a value. Let k be an immediate predecessor of i and consider the latency constraint $k + l(k, i) \le i$. Lowering the value of i cannot violate the constraint since $\max(dom(k)) + l(k, i) \le$ $\min(dom(i))$ (by condition (ii)) and we assumed that the latency constraints have been propagated. Thus, any value in the domain of i will satisfy this constraint. Let k be an immediate successor of i and consider the latency constraint $i+l(i,k) \leq k$. Lowering the value of i cannot violate this constraint. Resource constraints. We show that it is possible to reassign values to these variables from [a, b] and satisfy the relevant resource constraint. Condition (i) implies that before pruning there is no variable i of type t such that $\min(dom(i)) < a$ and $a < \max(dom(i))$; i.e., before pruning there is no variable whose domain intersects both [c, a-1] and [a, d] where $c < a \le d \le b$. We also know that after pruning there is no variable whose domain intersects both [c, b] and [b+1, d]where $a \le c \le b < d$. This means that we can look at the resource constraint over the variables in I([a,b]) in isolation; the values assigned to the variables in this set cannot impact the values that variables outside of this set can be assigned. Condition (iii) ensures there are enough values so that all of the variables in I([a,b],t)can be assigned a value such that the resource constraint is satisfied. **Corollary 3.1.** Suppose that all of the latency and resource constraints have been propagated. If there exists an interval [a, b] such that, - (i) for all $i \in I([a, b], t)$, $\max(dom(i)) = b$, - (ii) for all $i \in I([a,b],t)$, for all $k \in succ(i)$, $\max(dom(i)) + l(i,k) \le \min(dom(k))$, - (iii) $|I([a,b],t)| \leq (b-a+1) \times k_t$, then it is safe to prune the lower bounds of the variables $i \in I([a,b],t)$ as follows, $$\min(dom(i)) = \max(\min(dom(i)), a).$$ **Example 3.3.** Consider the partial DAG shown in Figure 4, where the domains of the variables are as shown. Assume there is a single functional unit for each type of instruction. The safe pruning constraint can be applied iteratively as follows. First, the interval [2,2], where $I([2,2], {\rm clear}) = \{B\}$, satisfies the theorem. Hence, node B can have its domain pruned to [2,2]. Second, the interval [3,3], where $I([3,4], {\rm clear}) = \{C\}$, now satisfies the theorem. Hence, node C can have its domain pruned to [3,3]. Third, the interval [3,4], where $I([3,4], {\rm shaded}) = \{D, E\}$, also now satisfies the theorem. Hence, nodes D and E can have their domains pruned to [3,4]. Figure 4. Improving bounds of variables using safe pruning constraints. # 3.4. Dominance constraints Heffernan and Wilken ⁶ present a set of graph transformations for dependency DAGs for basic blocks and show that optimally scheduling the transformed DAGs using branch-and-bound enumeration is faster and more robust. The DAG transformations reduce the search space while preserving optimality. We found that adaptations of these transformations also worked well in our constraint programming approach. In our context, the transformations add simple constraints to the model of the form $i \ge j$, which we call dominance constraints. In what follows, we are interested in pairs of disjoint, isomorphic subgraphs A and B induced from a given dependency DAG. Subgraphs A and B are isomorphic if there is a Figure 5. Adding dominance constraints. mapping from the node set of A to the node set of B such that A and B are identical (identical instruction types, edges, and latencies on the edges). Adding dominance constraints, when it is safe to do so, is based on the following theorem by Heffernan and Wilken ⁶. **Theorem 3.2.** Let A and B be isomorphic subgraphs with node sets $V(A) = \{a_1, \dots, a_r\}$ and $V(B) = \{b_1, \dots, b_r\}$. If, (i) a_i is neither a predecessor or a successor of b_i , $1 \le i \le r$, (ii) for all $k \in pred(a_i)$ such that $k \notin V(A)$, $l(k, a_i) \leq cp(k, b_i)$, $1 \leq i \leq r$, (iii) for all $k \in succ(b_i)$ such that $k \notin V(B)$, $l(b_i, k) \leq cp(a_i, k)$, $1 \leq i \leq r$, and (iv) for any edge $(b_i, a_j), l(b_i, a_j) \le cp(a_i, b_j)$, then adding the constraints $a_i \le b_i, 1 \le i \le r$, is safe. **Example 3.4.** Consider the DAG shown in Figure 5a. Dominance constraints can be added iteratively as follows. First, the subgraphs with nodes $V(A) = \{B, D\}$ and $V(B) = \{C, D\}$ E} are isomorphic and satisfy the conditions of the theorem. Hence, the constraints B < C and D E can be added to the model. Adding these constraints updates the critical path distances. In particular, cp(D, E) was $-\infty$ and is now 0. Second, the subgraphs with nodes $V(A) = \{F\}$ and $V(B) = \{E\}$ are isomorphic and now satisfy the conditions of the theorem. Hence, the constraint $F \leq E$ can be added to the model. Heffernan and Wilken ⁶ find isomorphic subgraphs that satisfy the theorem using a backtracking search with a time cutoff. In our work, we find isomorphic subgraphs by focusing on regions (see Definition 3.1) and using a heuristic test. Focusing on regions appears to find the "right" constraints to add to the constraint model, and using the heuristic greatly speeds up the computation. Given a region defined by nodes i and j, we conceptually remove the source node iand the sink node j of the region and perform a depth-first search to find the separate components or subgraphs of the region. We then check whether pairs of components are isomorphic and satisfy the conditions of the theorem (or can be made to do so by dropping a few nodes). We focus on separate components of regions as during the backtracking search for a solution, often both orderings of these components must be tried to verify that there is no solution. Thus, the dominance constraints, by establishing an ordering on the variables between these components, can greatly reduce the search space. Testing subgraph isomorphism is NP-complete in general. Here, a fast heuristic test is used to determine whether two components are isomorphic. The nodes in each component are independently sorted based on features of the nodes, and the order of the nodes constitutes a potential isomorphism mapping, which is then verified. Observe that whenever the heuristic (sort) test returns true, the pair of
subgraphs is isomorphic, and that sometimes the heuristic returns false even though there exists a true mapping. However, experimental evidence suggests that the heuristic works well. Consider the following sets S_1 and S_2 , where $S_1 \subseteq S_2$. Construct the first set S_1 as follows. For all pairs of components, add only those pairs to S_1 that pass the heuristic test. This gives some of the pairs of components that are isomorphic (although it may miss some); i.e., S_1 is a subset of the set of all isomorphic pairs of components. Construct the second set S_2 as follows. For all pairs of components, add only those pairs to S_2 that have the same numbers of instructions of each instruction type. This gives the pairs of components that are *potentially* isomorphic (although some may not be); i.e., S_2 is a superset of the set of all isomorphic pairs of components. We found that the difference $S_2 - S_1$ was most often empty and always small, thus providing evidence that the heuristic test catches almost all isomorphic pairs of components. A special case of the theorem was found to occur often in practice. Consider the DAG shown in Figure 5b where the region defined by A and H contains many nodes all of the same type and all at the same latencies. All of these nodes are symmetric and the dominance constraints that would be added are equivalent to so-called symmetry-breaking constraints 16 . We recognize this special case as follows. For each instruction type t, we sort the variables by their lower bounds, and then step through all instructions with the same lower bound and check if the pairs of nodes satisfy the theorem. If so, dominance constraints are added. Overall, we found that our techniques often discovered many pairs of components within a basic block that satisfied the theorem, sometimes with several hundred nodes each. We also found that the dominance constraints that were added greatly improved the efficiency of the backtracking search for a schedule. ## 3.5. Solving an instance Solving an instance of an instruction scheduling problem proceeds as follows. We first construct the constraint model and use the constraints to establish the lower bounds of the variables and a lower bound on the length m of an optimal schedule. Given m, the upper bounds of the variables are similarly established and the constraint model is passed to the backtracking algorithm. The backtracking search interleaves constraint propagation with branching on variables. During constraint propagation, bounds consistency (and sometimes other forms of consistency) are enforced on the constraints until no further changes result. To enforce bounds consistency on the global cardinality constraints, we used the efficient algorithm presented in ¹⁷. A dynamic variable ordering is used to select the next variable to instantiate. Given a selected variable x, the backtracking search first branches on x assigned to $\min(dom(x))$, then on x assigned to $\min(dom(x)) + 1$, and so on, until either a solution is found or the domain of x is exhausted. If no solution is found, a length m schedule does not exist and the value of m is incremented, the bounds of the variables are re-established using the new value of m, and the new constraint model is passed to the backtracking algorithm. This is repeated, each time incrementing m until a solution is found, an upper bound on the length of an optimal schedule is reached, or a time limit is exceeded. An upper bound on the length of an optimal schedule is established by running a list-scheduling algorithm using a critical-path heuristic (see the next section; the upper bound on the length of an optimal schedule only needs to be determined once at the start). If a solution is found or the upper bound on the length of an optimal schedule is reached, a provably optimal solution has been found. If, instead, the time limit is exceeded, we proceed to phase two of the solution process. In phase two, the level of constraint propagation during backtracking search is increased to a variation of singleton consistency ¹⁸. In singleton consistency, a variable is temporarily instantiated to a single value and the constraint model is tested for consistency. If the consistency test fails, the value can be removed from the domain of the variable. In our work, we iteratively instantiated and tested the consistency of the lower and upper bounds of the domains of the variables. The consistency test consisted of enforcing bounds consistency on the constraints. We found that singleton consistency sometimes dramatically reduced the domains of the variables during search. As well, when testing the consistency of the bounds, we record the number of changes that are made during the bounds consistency propagation. This information is used in phase two to select the next variable to branch on. The goal is to branch on a variable that causes the most reductions in the domains of the other variables. As for phase one, if a solution is found or the upper bound on the length of a schedule is reached, a provably optimal solution has been found. In phase three, the level of constraint propagation during backtracking search is increased once again to perform singleton consistency to a depth of two. Each variable is temporarily instantiated to a single value and we test whether the constraint model is singleton consistent. This level of propagation is expensive and is viable only for smaller but difficult basic blocks. In our experiments, we found that the following scheme worked best for stepping through the phases. First, if the basic block contains 300 or fewer instructions, phase one is allocated 5 seconds, phase two is allocated 15 seconds, and the remaining time is allocated to phase three. Second, if the basic blocks contains more than 300 instructions, phase one is allocated 5 seconds and the remaining time is allocated to phase two. ## 4. Experimental evaluation In this section, we describe the experimental evaluation of our optimal basic block scheduler. The constraint programming model was implemented and evaluated on all of the basic blocks from the SPEC 2000 integer and floating point benchmarks^a. The benchmarks were compiled using IBM's Tobey compiler ¹⁹ targeted towards the IBM® PowerPC® processor, and the basic blocks were captured as they were passed to Tobey's instruction scheduler. The basic blocks contain four types of instructions: branch, load/store, integer, and floating point. The range of the latencies is: all 1 for branch instructions, 1–12 for load/store instructions, 1–37 for integer instructions, and 1–38 for floating point instructions. The compilations were done using Tobey's highest level of optimization, which includes aggressive optimization techniques such as software pipelining and loop unrolling. The Tobey compiler performs instruction scheduling before global register allocation and once again afterward. The following table shows the four architectural models we used in our evaluation. We assumed that all functional units were fully pipelined and that the issue width of the processor was equal to the number of functional units. 1-issue processor executes all types of instructions. 2-issue processor with one floating point functional unit and one functional unit that can execute integer, load/store, and branch instructions. 4-issue processor with one functional unit for each type of instruction. 6-issue processor with the following functional units: two integer, one floating point, two load/store, and one branch. The optimal constraint programming scheduler was compared experimentally with list scheduling, the most popular heuristic method for scheduling basic blocks in compilers ². List scheduling is a greedy algorithm which uses a heuristic for which instruction to schedule next. Following Muchnick ³, our heuristic used critical-path distance as the primary feature and earliest start time as a tie-breaker. Although a popular heuristic, the primary reason for adopting this heuristic is that critical-path heuristics were also used in previous work ^{6,12,10}, thus allowing a fairly direct comparison of previous experimental results with our experimental results. The results are broken down into whether the instruction scheduling is being done before or after global register allocation. Table 3 shows the number of basic blocks where the optimal scheduler failed to complete within the given time limit of 10 minutes^b. Table 4 and 5 show the number of basic blocks in the SPEC 2000 benchmark suite where the optimal scheduler found a shorter schedule than the heuristic scheduler. Table 3. Number of basic blocks where the optimal scheduler failed to complete within a time limit of 10 minutes, for various issue widths. | | 1-issue | 2-issue | 4-issue | 6-issue | |----------------------------|---------|---------|---------|---------| | Before register allocation | 0 | 22 | 16 | 11 | | After register allocation | 2 | 3 | 3 | 3 | ahttp://www.spec.org ^b All of the experiments were run on a 2.40 GHz Intel® Pentium® 4 processor with 1 GB of main memory. Table 4. Basic block instruction scheduling before register allocation. Number of basic blocks where the optimal scheduler found an improved schedule (imp.) and percentage of basic blocks with improved schedules (%), for ranges of basic block sizes and various issue widths | | | 1-issue 2-i | | 2-is | sue | ie 4-issue | | 6-issue | | |----------|---------|-------------|-----|-------|------|------------|------|---------|------| | range | #blocks | imp. | % | imp. | % | imp. | % | imp. | % | | 3–5 | 90,169 | 202 | 0.2 | 210 | 0.2 | 109 | 0.1 | 0 | 0.0 | | 6-10 | 45,366 | 376 | 0.8 | 440 | 1.0 | 313 | 0.7 | 17 | 0.0 | | 11-20 | 20,477 | 331 | 1.6 | 384 | 1.9 | 477 | 2.3 | 156 | 0.8 | | 21-30 | 5,381 | 200 | 3.7 | 233 | 4.3 | 271 | 5.0 | 107 | 2.0 | | 31-50 | 3,930 | 176 | 4.5 | 261 | 6.6 | 315 | 8.0 | 134 | 3.4 | | 51-100 | 2,390 | 164 | 6.9
 251 | 10.5 | 273 | 11.4 | 103 | 4.3 | | 101-250 | 1,131 | 60 | 5.3 | 109 | 9.6 | 112 | 9.9 | 69 | 6.1 | | 251-2600 | 155 | 7 | 4.5 | 17 | 11.0 | 26 | 16.8 | 26 | 16.8 | | Total | 168,999 | 1,516 | 0.9 | 1,905 | 1.1 | 1,896 | 1.1 | 612 | 0.4 | Table 5. Basic block instruction scheduling after register allocation. Number of basic blocks where the optimal scheduler found an improved schedule (imp.) and percentage of basic blocks with improved schedules (%), for ranges of basic block sizes and various issue widths. | | | 1-issue | | 2-issue | | 4-issue | | 6-issue | | |----------|---------|---------|------|---------|------|---------|------|---------|------| | range | #blocks | imp. | % | imp. | % | imp. | % | imp. | % | | 3–5 | 88,887 | 136 | 0.2 | 140 | 0.2 | 73 | 0.1 | 0 | 0.0 | | 6-10 | 48,700 | 428 | 0.9 | 467 | 1.0 | 423 | 0.9 | 52 | 0.1 | | 11-20 | 26,025 | 787 | 3.0 | 842 | 3.2 | 1,146 | 4.4 | 378 | 1.5 | | 21-30 | 8,530 | 419 | 4.9 | 548 | 6.4 | 691 | 8.1 | 477 | 5.6 | | 31-50 | 5,830 | 452 | 7.8 | 592 | 10.2 | 698 | 12.0 | 481 | 8.3 | | 51-100 | 3,279 | 372 | 11.3 | 539 | 16.4 | 642 | 19.6 | 435 | 13.3 | | 101-250 | 1,658 | 210 | 12.7 | 387 | 23.3 | 379 | 22.9 | 263 | 15.9 | | 251-2600 | 203 | 63 | 31.0 | 78 | 38.4 | 83 | 40.9 | 61 | 30.0 | | Total | 183,112 | 2,867 | 1.6 | 3,593 | 2.0 | 4,135 | 2.3 | 2,147 | 1.2 | It can be seen that the optimal scheduler is robust in that it almost always completed within the given time limit. Although not shown in the tables, this remains true even if the time limit is decreased from 10 minutes to 100 seconds. (At most 13 additional failures resulted for each issue width when scheduling before register allocation and at most 8 additional failures when scheduling after register allocation.) To systematically study the scaling behavior of the optimal scheduler, we report the results broken down by increasing size ranges of the basic blocks. For reference, the number of basic blocks in each size range is also given. It can be seen that the optimal scheduler scales well, finding improved solutions for large basic blocks. Not surprisingly, as the basic block size increases, the heuristic method has more opportunities to make a mistake and the fraction of basic blocks improved by the optimal scheduler increases. For the largest basic blocks, up to 40.9% of the schedules are improved by the optimal scheduler. Depending on the architectural model, the optimal scheduler took between 1:48:49 (hh:mm:ss) and 2:05:55 to schedule all of the basic blocks in the entire SPEC benchmark. The SPEC benchmark consists of 26 different software projects. The maximum amount of time taken scheduling the basic blocks in any individual project was 49:31 (mm:ss). Table 6. Basic block instruction scheduling *before* register allocation. Average and maximum percentage improvements in schedule length of optimal schedule over schedule found by critical-path heuristic, for ranges of block sizes and various issue widths. The average is over *only* the basic blocks where the optimal scheduler found an improved schedule. | | 1-i | ssue | 2-issue | | 4-issue | | 6-issue | | |----------|--------|--------|---------|--------|---------|--------|---------|--------| | range | ave. % | max. % | | 3–5 | 14.3 | 16.7 | 14.5 | 25.0 | 13.9 | 20.0 | | 0.0 | | 6-10 | 8.3 | 16.7 | 8.8 | 23.1 | 10.3 | 25.0 | 15.0 | 25.0 | | 11-20 | 5.6 | 17.6 | 6.2 | 17.6 | 7.6 | 22.2 | 8.4 | 14.3 | | 21-30 | 3.8 | 11.5 | 4.4 | 15.8 | 5.9 | 22.2 | 5.5 | 10.0 | | 31-50 | 2.6 | 13.5 | 3.3 | 20.0 | 4.2 | 21.4 | 3.7 | 17.6 | | 51-100 | 2.0 | 8.2 | 2.7 | 16.7 | 2.8 | 28.0 | 3.8 | 22.2 | | 101-250 | 1.6 | 8.8 | 3.6 | 21.4 | 3.9 | 21.6 | 3.2 | 24.4 | | 251-2600 | 0.3 | 0.7 | 3.4 | 14.9 | 2.9 | 14.0 | 1.2 | 2.9 | | Overall | 6.3 | 17.6 | 6.4 | 25.0 | 6.6 | 28.0 | 5.4 | 25.0 | Table 7. Basic block instruction scheduling *after* register allocation. Average and maximum percentage improvements in schedule length of optimal schedule over schedule found by critical-path heuristic, for ranges of block sizes and various issue widths. The average is over *only* the basic blocks where the optimal scheduler found an improved schedule. | | 1-i | ssue | 2-i | 2-issue 4-issue 6-iss | | 4-issue | | ssue | |----------|--------|--------|--------|-----------------------|--------|---------|--------|--------| | range | ave. % | max. % | | 3–5 | 13.7 | 16.7 | 13.9 | 25.0 | 12.6 | 20.0 | | 0.0 | | 6-10 | 7.9 | 15.4 | 8.2 | 16.7 | 9.3 | 25.0 | 12.0 | 25.0 | | 11-20 | 5.0 | 14.3 | 5.2 | 21.4 | 7.0 | 27.3 | 8.0 | 20.0 | | 21-30 | 3.3 | 12.0 | 4.0 | 16.0 | 5.0 | 17.6 | 5.7 | 15.0 | | 31-50 | 2.5 | 11.1 | 3.5 | 20.0 | 4.0 | 24.2 | 4.2 | 17.6 | | 51-100 | 1.8 | 9.4 | 2.6 | 12.5 | 2.7 | 14.6 | 2.7 | 17.1 | | 101-250 | 1.2 | 7.9 | 1.7 | 10.8 | 1.5 | 13.1 | 1.7 | 10.6 | | 251-2600 | 0.2 | 0.9 | 0.7 | 4.1 | 0.5 | 3.4 | 0.6 | 4.7 | | Overall | 4.4 | 16.7 | 4.6 | 25.0 | 5.2 | 27.3 | 4.7 | 25.0 | While such long compile times would not be tolerable in everyday use, these times are well within acceptable limits when compiling for software libraries, embedded applications, or final release builds. We note that adding the implied distance constraints and the safe pruning and dominance constraints were critical to achieving this performance. Without these constraints, many individual basic blocks could *not* be solved within the amount of time that we can now solve the entire ensemble of basic blocks. Wilken, Liu, and Heffernan ¹⁰ and van Beek and Wilken ¹² present experimental results for a 1-issue processor. Note that, although both of these solvers could solve all of the basic blocks in the SPEC95 floating point benchmarks in seconds, when the solver in ¹² was applied to the current test suite of basic blocks, hundreds of problems could not be solved. We speculate that the current test suite contains more difficult problems for the following three reasons. First, the current test suite contains longer and more varied latencies (in ¹⁰, the latencies were uniformly 1 for integer instructions, 2 for floating point instructions, and 3 for memory instructions). Second, the current test suite contains shorter latencies (our DAGs contain many latency 0 edges, which are used to capture anti-dependencies and output dependencies between two instructions). Third, the current test suite contains many larger basic blocks (previous work used the GCC compiler and the largest DAG was approximately 1000 instructions). Heffernan and Wilken ⁶ were the first to present experimental results on solving large basic blocks targeted towards a multiple-issue processor. Their test suite contains the basic blocks from the SPEC 2000 floating point benchmarks (with the Fortran90 benchmarks omitted) and are from after register allocation. They report the number of basic blocks where their optimal scheduler failed to complete within a time limit of 100 seconds. In their worst case, a 2-issue processor model, their optimal solver failed on over 200 basic blocks. If we restrict our experimental results to the same benchmarks and the same time limit, our optimal solver failed on only 4 basic blocks, a 50-fold improvement. Table 6 and 7 summarize the percentage improvements in schedule length of the optimal schedule over the schedule found by a list scheduling algorithm using the critical-path heuristic. Again the results are broken down into whether the instruction scheduling is being done before or after global register allocation. Somewhat surprising is that on some size ranges the optimal scheduler can find substantial improvements, as measured by the maximum improvement. In other words, critical-path list scheduling, a commonly used heuristic method, sometimes finds schedules that are very sub-optimal. ## 5. Conclusion We presented a constraint programming approach to basic block instruction scheduling for multiple-issue processors that is optimal yet robust on large, real problems. The key to scaling up to large, real problems was in the development of preprocessing techniques for improving the constraint model. We performed an extensive experimental evaluation and demonstrated that our approach compares favorably to the best previous exact approaches. The scheduler rarely failed to find a solution within relatively short time bounds, and was able to routinely solve the largest basic blocks that we found in practice, including basic blocks with up to 2600 instructions. ## Acknowledgments This research was supported by an IBM Center for Advanced Studies (CAS) Fellowship, an NSERC Postgraduate Scholarship, and an NSERC CRD Grant. We thank Mike Chase, Claude-Guy Quimper, Tyrel Russell, John Tromp, Kent Wilken, and Huayue Wu for helpful discussions and contributions to the implementation of the constraint programming model. #### **Trademarks** IBM and PowerPC are registered trademarks of International Business Machines Corporation in the United States, other countries, or both. Intel and Pentium are trademarks or registered trademarks of Intel Corporation or its sub- sidiaries in the United States and other countries. Other company, product, or service names may be trademarks or service marks of others. # **Bibliography** - J. Hennessy and T. Gross. Postpass code optimization of pipeline constraints. ACM Transactions on Programming Languages and Systems, 5(3):422–448, 1983. - R. Govindarajan. Instruction scheduling. In Y. N. Srikant and P. Shankar, editors, *The Compiler Design Handbook*, pages 631–687. CRC Press, 2003. - 3. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997. - 4. H.-C. Chou and C.-P. Chung. An optimal instruction scheduler for superscalar processors. *IEEE Transactions on Parallel and Distributed Systems*, 6(3):303–313, 1995. - S. Haga and R. Barua. EPIC instruction scheduling based on optimal approaches. In Workshop on Explicitly Parallel Instruction Computing Arch. and Compiler Tech., 2001. - M. Heffernan and K. Wilken. Data-dependency graph transformations for
instruction scheduling. *Journal of Scheduling*, 8:427–451, 2005. - C. W. Kessler. Scheduling expression DAGs for minimal register need. Computer Languages, 24(1):33–53, 1998. - 8. S. Arya. An optimal instruction-scheduling model for a class of vector processors. *IEEE Transactions on Computers*, C-34(11):981–995, 1985. - C.-M. Chang, C.-M. Chen, and C.-T. King. Using integer programming for instruction scheduling and register allocation in multi-issue processors. *Computers and Mathematics with Applications*, 34(9):1–14, 1997. - K. Wilken, J. Liu, and M. Heffernan. Optimal instruction scheduling using integer programming. In *Proc. of the Conf. on Programming Language Design and Implementation*, pages 121–133, 2000. - 11. M. A. Ertl and A. Krall. Optimal instruction scheduling using constraint logic programming. In *Proc. of 3rd International Symposium on Programming Language Implementation and Logic Programming*, pages 75–86, 1991. - 12. P. van Beek and K. Wilken. Fast optimal instruction scheduling for single-issue processors with arbitrary latencies. In *Proc. of the 7th International Conf. on Principles and Practice of Constraint Programming*, pages 625–639, 2001. - 13. J.-C. Régin. Generalized arc consistency for global cardinality constraint. In *Proc. of the 13th National Conf. on Artificial Intelligence*, pages 209–215, 1996. - B. M. Smith. Modelling. In F. Rossi, P. van Beek, and T. Walsh, editors, *Handbook of Constraint Programming*, Chapter 11. Elsevier, 2006. - 15. P. Baptiste, C. Le Pape, and W. Nuijten. *Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems*. Kluwer, 2001. - 16. J. M. Crawford, M. L. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates for search problems. In *Proc. of the 5th International Conf. on Principles of Knowledge Representation and Reasoning*, pages 148–159, 1996. - C.-G. Quimper, P. van Beek, A. López-Ortiz, A. Golynski, and S. B. Sadjad. An efficient bounds consistency algorithm for the global cardinality constraint. In *Proceedings of the Ninth International Conference on Principles and Practice of Constraint Programming*, pages 600–614, Kinsale, Ireland, 2003. - 18. R. Debruyne and C. Bessière. Domain filtering consistencies. *J. Artificial Intelligence Research*, 14:205–230, 2001. - R. J. Blainey. Instruction scheduling in the TOBEY compiler. *IBM J. Res. Develop.*, 38(5):577–593, 1994.