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Abstract—Some of the core attributes of sports are supposed
to be integrity, honesty and sportsmanship. However, there have
been numerous cases where individual athletes and teams have
thrown games and colluded to manipulate sports competitions.
Much of the previous work has focused on proving that some
types of competitions are computationally hard to manipulate
and thus possibly resistant to manipulation. In contrast, in this
paper we focus on detecting patterns of manipulations in sports
competitions by coalitions of teams. We show that it is possible
to successfully detect certain patterns of manipulations in cups
and round robins, two of the most common types of sports
competitions. The practical benefit of our approach is a tool that
can be used by competition organizers to highlight suspicious play
within the competition and so aid in the detection of cheating
coalitions.

I. INTRODUCTION

It is well known that manipulation occurs in sports. Cheat-

ing has been found in sports ranging from soccer to sumo

wrestling and lawn bowling [1]–[3]. One method to prevent

or impede the manipulation of sports competitions is to use

a competition type that is more resistant to manipulation. As

a result, much previous work in the study of manipulations

in sports and related work in social choice theory on the

manipulation of elections has focused on proving that some

types of competitions are computationally difficult or impos-

sible to manipulate (e.g., [4]–[9]). Unfortunately, two of the

most common types of sports competitions, cups and round

robins, are not resistant to manipulation as it is known that

for both, finding a minimal strategy for a coalition of teams

to manipulate the competition is computationally easy [10].

Another method to prevent or impede the manipulation of

sports competitions is to develop robust detection techniques.

Previous work in the detection of manipulation in sports

has focused on identifying the rigging of individual matches

or events within a match [1], [2]. Such detection is often

done through an analysis of betting and financial records

[2]. However, cheating is known to extend beyond single

teams throwing individual matches to coalitions of teams

manipulating multiple matches in order to manipulate the

placement of certain teams in a competition. As just one

example, the 1971–72 Bundesliga scandal in German soccer

involved 52 players, nine teams, and the manipulation of 18

matches with the goal of attaining the promotion or avoiding

the relegation of certain teams [3].

In this paper, we address—to the best of our knowledge,

for the first time—the problem of developing automated tools

for detecting coalitions of teams manipulating the winner of

a competition. In a competition, a certain number of games

have unexpected results and are known as upsets. If a coalition

was manipulating the competition, the resulting manipulations

could easily be mistaken for genuine upsets. However, the

specific pattern of results should reflect the coalitions plan

to change the winner of the competition using as few extra

manipulations as possible, as each manipulation increases the

risk of detection. It is this strategic behavior by a coalition

that we aim to detect.

We formalize the notion of strategic behavior and provide

algorithms, for both cup and round robin competitions, for

detecting such coalitions from the upsets identified once the

games have been played. We experimentally evaluate our

proposals on real and randomly generated sport competition

instances. On these benchmarks, our techniques accurately

detect the difference between instances where an embedded

coalition was manipulating the result and where upsets were

occurring only at random. In cases where there was a ma-

nipulating coalition, we show that one can almost always

quickly identify the cheating coalition, while in the case where

there was no manipulating coalition, often no (or only a few

easily dismissed) false positives are generated. The practical

benefit of our approach is to provide the organizers of cup

and round robin competitions with a useful tool to identify

when suspicious patterns of behavior have occurred. Our

approach does not provide a proof of dishonest behavior but

rather provides organizers with a significant starting point to

investigate possible corruption in a competition.

II. BACKGROUND

Two of the most common ways of organizing a competition

among a set of teams are cups and round robins. In what

follows, let T denote a set of teams of size m, where the

names of the teams are t1, t2, . . . , tm.

In a cup competition, the final winner is determined by a

tree-like structure called a competition tree. For simplicity, we

assume that the number of teams in a cup is a power of 2 and

thus the competition tree is a complete binary tree. The leaves

of the tree are labeled with the names of the teams, called

the seeding of the competition. Each internal node of the tree
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Fig. 1. The result of the cup if t13 and t16 manipulate the competition and
all other matches happen as expected. Grey nodes indicate upsets.

represents a match (or game) between its two child nodes. A

round of a cup is defined to be all of the matches that occur

at an equal height k, 1 ≤ k ≤ log2 m, from the leaves of the

competition tree.

In a round robin competition, each team plays every other

team a given number of times. We restrict ourselves to single

round robin competition using the simple win-loss scoring

model. In a single round robin competition, each team plays

every other team exactly once. A round of a round robin is

defined to be all the matches that occur at the same time in

the schedule. If m is even, the minimal number of rounds is

m−1 where each team plays exactly once per round and there

are m/2 matches per round.

A tournament graph is a directed graph G = (T, E), where

T is the set of teams and the underlying undirected graph is a

complete graph. A directed edge (ti, tj) ∈ E represents that ti
would be the expected winner in any fair match between team

ti and team tj . An upset is a match where team ti was expected

to win over team tj according to the tournament graph, but

team tj won against team ti in the actual competition. A team

ti is said to have caused an upset if they lost a match that

they were expected to win.

Definition 1 (Upset): Let G = (T, E) be a tournament

graph. An upset is a pair (tj , ti) where (ti, tj) ∈ E but tj
won against ti in some round of the actual competition. Let

U denote the set of all upsets that occurred in the competition,

let Uk denote only those upsets that occurred at round k, 1 ≤
k ≤ log

2
m, of the competition, and let Uk

S , S ⊆ T , denote

only those upsets that occurred at round k that were caused

by a team in S; i.e., Uk
S = {(tj , ti) | (tj , ti) ∈ Uk ∧ ti ∈ S}.

III. STRATEGICALLY OPTIMAL COALITIONS

Our focus is on a particular subset of upsets that are caused

by a coalition. A coalition is a set of teams S, S ⊆ T , which

conspires to manipulate the competition such that their chosen

team wins the competition. A manipulation is an upset (tj , ti),
either executed or planned, that is intentional; i.e., team ti ∈ S
threw the match or planned to throw the match.

We assume that coalitions have formed prior to the start

of the competition as there is a lack of opportunity to do so

during the competition. Our approach is designed for posthoc

analysis. Thus, the winner of each match and the final winner

of the competition are known1. We assume that some matches

are then labeled as upsets and that the tournament graph is

known. The labeling of upsets and the tournament graph could

come, for example, from experts who knew the outcomes of

the matches as well as the relative strengths of teams and

historically how well teams have played against each other.
Let tw denote the final winner of the competition. At each

round of the competition, if tw wins the competition as a

result of manipulation by a coalition of teams, the coalition

must have formulated a strategy to guarantee that tw wins.

The strategy may need to change from one round to the next

as the outcomes of many of the games will not be under the

coalition’s control and there may be upsets caused by teams

that are not in the coalition. A key point is that there is a strong

incentive for a coalition to reduce the number of manipulated

matches, as each manipulation increases the risk of detection

while providing no benefit.
Definition 2 (Optimal Manipulation Strategy): Given a

coalition S, a distinguished team tw, and the results of past

rounds 1, . . . , k−1 of the competition, a manipulation strategy

for S in round k is a set of manipulations that if executed

ensures tw wins the competition under the assumption that the

matches not manipulated occur as expected in the tournament

graph. A manipulation strategy for S in round k is optimal if

there exists no strategy for S with fewer manipulations.
Example 1: Consider a 16 team cup where, if the outcomes

of the matches follow the tournament graph (not shown), t9
will win the cup by defeating t1 in the final. Suppose that the

coalition of t13 and t16 would like t1 to win the cup. The

coalition needs to defeat t9 to make t1 the winner but only

t14 can defeat t9. Therefore, an optimal manipulation strategy

for S = {t13, t16} in round 1 is given by,
t13 throws match to t14 in round 1,

t16 throws match to t14 in round 2.

If t13 then throws the match to t14 in round 1 and no other

upsets occur in that round, an optimal manipulation strategy

for round 2 involves just advancing the plan. If t16 then throws

the match to t14 in round 2 and no further upsets occur in the

competition, t14 defeats t9 in round 3 and t1 wins the cup by

defeating t14 in the final (see Figure 1).
Our goal is to recognize coalitions that may have manipu-

lated the competition to have their team win. It is not possible

to know the coalitions or their manipulation strategies but it

is sometimes possible to recognize such coalitions through

partial observation of their strategic behavior.
Definition 3 (Strategically Optimal Coalition): A coalition

S is a strategic coalition if for each round k, 1 ≤ k ≤ log2 m,

the set of upsets Uk
S contains all and only the manipulations

that would have been executed in round k in an optimal

manipulation strategy for S in that round. A coalition S is

a strategically optimal coalition if no proper subset of S is a

strategic coalition.

1In the case of round robins, a set of teams may be tied and the eventual
winner of the competition is decided by some tie-breaking criteria, which is
not discussed further in this paper.
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Fig. 2. The result of the cup if t13 and t16 work in a strategically optimal
manner and there are additional upsets caused by non-coalition members.
Grey nodes are upsets.

Example 2: Consider once again Example 1, where the

coalition S = {t13, t16} would like t1 to win the cup. The

optimal manipulation strategy for S in round 1 remains the

same and suppose that t13 then throws the match to t14 but

that there are also additional upsets in round 1 involving

teams outside of the coalition (see Figure 2). Their original

strategy no longer ensures that t1 wins the cup because t11
will defeat both t14 and t1 but would lose to t16 according

to the tournament graph. The coalition must now reformulate

their strategy by having t16 beat t14, t11 and then ultimately

lose to t1. The revised strategy for round 2 is given by,

t16 throws match to t1 in round 4.

Assuming no further unexpected upsets, the strategy carries

over to subsequent rounds and t1 wins the cup.

The definition of a strategically optimal coalition can be

relaxed by introducing a parameter l and requiring that a

manipulation strategy for a coalition S be within l manip-

ulations of optimal in each round of the competition. This

allows coalitions members to be involved in upsets that are

not manipulations. We discuss this further below when we

present our algorithms.

IV. DETECTING MANIPULATIONS IN CUP COMPETITIONS

In this section, we present algorithms for identifying strate-

gically optimal coalitions within cup competition results.

Algorithm STRATEGICCOALITION verifies that a coalition

S is a strategically optimal coalition. At each round k, 1 ≤
k ≤ log

2
m, the set of upsets Uk

S attributed to S must be part

of an optimal manipulation strategy. The minimal number of

manipulations needed to ensure that tw is a winner for a given

set S is denoted ak. The routine MINNEEDED (not shown) for

determining the minimal number of manipulations needed to

establish tr as the winner is as specified in [10, pp. 32–33].

Fixing Uk
S as played, the minimal number of manipulations

possible for rounds k+1, . . . , log2 m, denoted ck, can similarly

be determined. If, for every round k, ak =
∣

∣Uk
S

∣

∣ + ck then S
is a strategically optimal coalition since the coalition never

uses more than a minimal number of manipulations given the

known upsets. Note that the parameter l which relaxes the

definition of strategically optimal can be incorporated easily

Algorithm:STRATEGICCOALITION(C, tr, S, U )

input : A competition tree C, a team tr to establish as

the winner of the sub-tree, a coalition S, and the

upsets U that occurred in the competition.

output: Returns true if S is a strategically optimal

coalition; false otherwise.

Upsets← {};
for k ← 1, . . . , log2 m− 1 do

ak ← MINNEEDED(C, k, tr, S, Upsets);

if k = 1 ∧ ak 6= |S| then return false;

ck ← MINNEEDED(C, k, tr, S, Upsets ∪ Uk
S );

if ak <
∣

∣Uk
S

∣

∣ + ck then
return false;

Upsets← Upsets ∪ Uk;

return true;

into this test. In the algorithm, if a coalition can no longer

generate any manipulation strategy to make tr the winner, ak

and ck are undefined. To avoid complicating the algorithm,

these cases are not shown but it should be assumed that the

algorithm returns false.

Lemma 1: Determining if a coalition S is strategically

optimal can be computed in O(m2 log
2
m) time.

Algorithm FINDALL can be used to determine all strategi-

cally optimal coalitions that ensure that a given team wins

a cup competition. It returns NULL if there are no such

coalitions; otherwise it returns the set of strategically opti-

mal coalitions (possibly returning just the empty coalition to

indicate that no manipulations are necessary). The algorithm

is specified in a recursive, top-down manner. The initial call to

the algorithm is FINDALL(C, tw ), where tw is the final winner

of the competition and C is the cup competition. The algorithm

generates all strategically optimal coalitions for sub-trees and

then merges them together, pruning as they are constructed.

The algorithm does this by generating optimal manipulation

strategies. Pruning is then based on a coalition not establishing

the team tw (it does not achieve its goal) or it uses too many

manipulations to establish the team tw (it is not optimal).

Two optimizations of the algorithm are included in the

implementation used in our experiments but are not shown.

First, memoization is used to avoid recomputing recursive

calls. Second, decomposition is used to speed up the com-

putation as it can be observed that each problem can be

decomposed into log
2
m separate sub-problems or sub-trees,

where m is the number of teams in the competition. The

result is that algorithm FINDALL is efficient in practice for

the sizes of competitions that occur in practice. However, the

computational complexity of the algorithm and whether there

exists an algorithm with an improved worst-case complexity

remain open questions.

V. DETECTING MANIPULATIONS IN ROUND ROBINS

In this section, we present algorithms for identifying strate-

gically optimal coalitions within single round robin competi-

tion results.



Algorithm:FINDALL(C, tr )

input : A competition tree C and a team tr to establish

as the winner. Assumes that tw, the final winner

of the competition, is available.

output: Returns the set of all strategically optimal

coalitions that can ensure tr wins the subtree C;

returns NULL if there are no such coalitions.

if C consists of a single team then
if T contains tr then return {};
else return NULL;

else
Let Cr be the subtree of C that contains team tr and

let Co be the other subtree;

Sr ← FINDALL(Cr , tr);

if Sr = NULL then return NULL;

So ← NULL;

foreach tk ∈ Co do
Stemp ← FINDALL(Co, tk);

if Stemp = NULL then return NULL;

if tr is not expected to win against tk then
add tk to each coalition in the set of

coalitions Stemp;

add the coalitions in Stemp to So;

remove from So any coalition that is a superset

of another coalition in So;

Stemp ← Sr × So;

if tr = tw then // tw is to win the subtree C
foreach S ∈ Stemp do

if ¬STRATEGICCOALITION(C, tr, S) then
prune S from Stemp;

return Stemp;

In round robins, there are two types of manipulations—

we refer to them as simple and complex, respectively—that a

coalition can perform to change the result of the competition.

In simple manipulations, a coalition member loses its games

directly to the desired winner tw. In complex manipulations,

coalition members lose games amongst themselves so that tw
needs to win fewer games in order to win the competition. We

assume that a coalition member will always manipulate any

game they play against tw so that tw wins unless tw is already

expected to win the competition.

We first consider strategies that consist of only simple

manipulations. The goal of any such coalition is to lose

enough games to tw so that tw earns more victories than

the expected winner. In this context, a strategically optimal

coalition would be a coalition that always manipulates games

against tw when tw is not expected to win and does nothing

otherwise. Given this goal, let ww be the number of victories

needed; i.e., the difference between the expected number of

victories of the expected winner and the expected victories of

tw. There are two parts to determining the set of strategically

optimal coalitions which only perform simple manipulations:

Algorithm:POSSIBLEMEMBERS(R, G, tw)

input : A round robin competition R and a team tw
that wins the competition.

output: Returns all the possible coalition members that

act optimally to establish tw as winner.

A ← {tj | (tj , tw) an upset and tj won no extra games};
B ← {tj | tj defeated tw and tj won no extra games};
foreach round r of the season do

Identify whether tw is expected winner in round r;

Remove all teams from A that played tw in round r
where tw was expected to win in round r;

Remove all teams from B that played tw in round r
where tw was not expected to win in round r;

return A and B;

(1) identify all the possible coalition members and (2) generate

all the coalitions from the possible members.

Algorithm POSSIBLEMEMBERS shows the steps for iden-

tifying all the possible members. The algorithm (implicitly)

removes all teams that lost to tw as expected and all teams

that won games they were not expected to win (since coalition

members should not have won extra games by manipulation).

The remaining teams are broken into two sets: (A) those teams

that actually lost to tw and (B) those teams that actually

defeated tw. A team tj ∈ A is optimal iff tw is not expected

to win the competition when playing tj and a team in B
is optimal iff tw is expected to win. The teams that are not

optimal are pruned from the sets of A and B.

Lemma 2: Algorithm POSSIBLEMEMBERS computes the

set of possible coalition members in O(m3) time.

The set of teams A and B are then used to generate

coalitions that could optimally manipulate the competition. For

a coalition to be strategically optimal, the coalition must be of

size ww and, for each round, there must always be enough

possible coalition members to ensure that tw becomes the

winner. Any subset of teams of size ww from the set A ∪ B
that satisfies the constraints is a strategically optimal coalition

which only uses simple manipulations. By checking teams in

A ∪ B which have won up to l extra games (instead of no

extra games) and creating coalitions such that the total number

of extra games is less than or equal to l, it is possible to

incrementally relax the restriction that teams must not have

won extra games as coalition members.

We next consider strategies that consist of both single and

complex manipulations. Unlike manipulation strategies where

only losses to tw occur, coalitions that must self-sacrifice

themselves would manipulate other games. In this case, all

teams that earn extra victories and are part of the coalition

must have earned the extra points from coalition members.

Given a Boolean variable si which is true if ti is a member

of the coalition and the set of teams Li that lose to ti when

they should have won, constraint (C2) can be derived.

The set of teams A and B can be calculated using Algorithm

POSSIBLEMEMBERS, except that no check must be made

to ensure they won no extra games. An additional set C is



defined that includes teams that were expected to lose to tw
and did lose to tw while only receiving wins when tw is

not the expected winner. Since a coalition could effectively

achieve their goal by only manipulating games against tw,

there must be at most ww − 1 members from A
⋃

B for

complex manipulations to be necessary. Let u be the number

of teams from A
⋃

B belonging to the coalition such that

0 ≤ u < ww. Given a value of victories that tw could

achieve, u, there is a specific set of top teams, TTu, that

must lose at most ww−u games intentionally. Since any team

can be upset, a minimal manipulation strategy is one where

the coalition only manipulates a minimal number of games

between themselves and do not earn any wins from teams not

in the coalition.

Since each TTu set can be determined in isolation, the

goal is to extend the set, if necessary, so that the coalition

can achieve the goal but never manipulates more games than

necessary amongst themselves. After identifying the set of

teams that form the sets A, B, and C, all valid sets must

be generated. The following constraint satisfaction problem is

used to find all possible coalitions from A, B and C given

the external constraints. Constraint (C1) ensures the coalition

only attempts to have tw earn enough games for TTu to be

valid. Constraint (C2) is the extra constraint described above

that enforces that teams that are upset by coalition members

are coalition members themselves. Constraint (C3) states that

teams that are not a member of the possible sets of teams are

not part of any coalition. Constraint (C4) ensures that all the

teams in the TTu set under consideration are members of the

coalition.

C1:
(
∑

ti∈A∪B si

)

= u C3: ∀ti /∈A∪B∪C ¬si

C2: ∀ti∈T si ⇒
∧

sj∈Li
sj C4: ∀ti∈TTu

si

Given the set of possible coalitions generated by solving the

constraint satisfaction problem, it must be ensured that only a

minimum number of manipulations are used in each round to

ensure the coalition is strategically optimal. Using the mini-

mum cost feasible flow technique described in [10] for finding

minimal manipulations in round robins, it is determined if

a smaller set of teams could have manipulated the result at

the start of the competition. If so, the possible coalition is

discarded. Next, the remaining coalitions are checked to ensure

that the manipulations used in any given round are minimal

by calculating the before and after cost of using the actual

manipulations, which should be the same for every round.

Any possible coalition that has a minimal number of members

and uses as few manipulations as possible in each round

is strategically optimal. To check for coalitions which may

have won a limited number of extra games, constraint (C2) is

modified to not include up to l members of Li and the minimal

number of manipulations calculated must not differ by more

than l additional wins.

VI. EXPERIMENTAL EVALUATION

In this section, we present the results of an empirical

evaluation of the effectiveness of our algorithms for detecting

manipulations in cup and round robin competitions.

For cup competitions, we evaluated our proposals on ran-

domly generated instances based on the NCAA Division I

Basketball Championship and on real instances from Grand

Slam tennis2. The random instances are realistic in that they

follow closely the structure of the NCAA Championship:

teams are ranked and seeded using pools of 16 teams and

the best-plays-worst paradigm, and tournament graphs and

upsets are generated according to a distribution that was

estimated from 25 past championships (1985-2009). For our

experiments, we generated 1000 instances with random upsets

and a further 1000 instances where a manipulating coalition

was embedded in the competition. To generate a strategically

optimal coalition, a team is randomly selected to be manip-

ulated. An initial coalition is created by finding the minimal

set of teams needed to make the selected team the winner

of the competition. The diversity of the types of coalitions

produced is then increased by randomly removing teams from

the initial coalition and adding a new, viable set of teams in

their place. This process is repeated recursively until no more

substitutions are possible. Upsets are added randomly along

with the manipulations of the coalitions, while maintaining

the property that there remained at least one feasible plan for

the coalition in each round.

On these cup benchmarks, the accuracy of our method is

high (see Table I). For instances where there was no manipulat-

ing coalition, often no false positives are generated (from 47%

to 87% of the time, depending on the size of the competition)

or the number of spurious coalitions is small (from 100%

having four or fewer to 95% having 12 or fewer, depending

on the size of the competition). The spurious coalitions are

also easy to dismiss as they involve highly ranked teams

being upset by other highly ranked teams and so lack any

“surprise”. For instances where there was a manipulating

coalition, there were sometimes many false positives (hundreds

or even thousands for the largest competitions). To deal with

this problem, we propose an intuitive heuristic for sorting the

coalitions. For each coalition, we define its “surprise factor”

by calculating for each upset the distance between the ranks

of the two teams, where of course the greater the distance the

greater the surprise factor. As shown in Table I, using this

heuristic the organizers could look at less than 20 coalitions

and be quite confident that a coalition would be found, if

it existed. The correct coalition would be detected from the

spurious coalitions by examining, for example, tapes of the

games or other external evidence that the teams were working

together.

The second data set for cup competitions consisted of 40

Grand Slam Tennis events from 2001 to 2010. Upsets were

recorded if the winner of the match was eight positions lower

in ranking, where the rank was calculated by the seed value

2In both sports, there is a strong economic incentive to coalitional cheating.
In NCAA basketball just reaching the “Final Four” has significant economic
benefits [11] and in US Open Grand Slam tennis manipulating a single player
into the quarter finals results in a payoff of $100,000 and the payoff doubles
at each subsequent round.



TABLE I
Cup. EFFECT OF COMPETITION SIZE ON ACCURACY OF DETECTING A

MANIPULATING COALITION; AND PERCENTAGE OF TIMES A

MANIPULATING COALITION WAS FOUND IN THE FIRST n SORTED

COALITIONS, WHERE n = 1, 10, AND 20.

Size Accuracy Top 1 Top 10 Top 20

16 76.7 77.7% 100.0% 100.0%

32 81.2 67.8% 100.0% 100.0%

64 85.4 61.3% 99.4% 99.9%

128 89.4 49.1% 94.5% 98.4%

256 93.5 31.7% 78.1% 87.0%

TABLE II
Round robin. EFFECT OF COMPETITION SIZE ON ACCURACY OF

DETECTING A MANIPULATING COALITION AND THE NUMBER OF

COALITIONS GENERATED ([MIN–MAX]:AVERAGE).

Accuracy Number

Size Simple Complex Simple Complex

6 88.5 98.2 [1–10]:1.6 [1–3]:1.2

12 97.5 100.0 [1–7]:1.6 [1–1]:1.0

18 99.5 98.0 [1–12]:2.0 [1–2]:1.1

24 99.5 100.0 [1–17]:2.2 [1–21]:1.5

30 99.0 100.0 [1–35]:2.1 [1–39]:1.9

36 99.5 100.0 [1–16]:1.6 [1–22]:2.7

40 99.5 100.0 [1–21]:1.5 [1–15]:2.2

assigned to the top 32 players and the World Ranking for the

remaining 96 players. (A difference of eight is comparable

to the definition of an upset in the NCAA tournaments as

there would be eight pools of 16 in a competition with 128

opponents.) The tournament graph was constructed by gener-

ating an edge between two players ti and tj if ti has a better

rank than tj or if ti actually defeated tj in the competition

and was within eight positions of tj . Each competition was

tested to determine if the winners from the fourth round and

onwards were due to coalitional manipulation. The results

showed little evidence of coalitional manipulation. While some

small coalitions were found, they consisted of top players

being upset and allowing for the next strongest player to win

and so lacked any “surprise”.

For round robin competitions, we evaluated our proposals

on 100 randomly generated instances without coalitions, 100

instances with coalitions embedded that only use manipu-

lations against tw (simple), and 100 instances where top

teams lose games to ensure that tw wins (complex). The

instances were generated as follows. First, a set of round

robin schedules was generated from a canonical schedule

described by de Werra [12] with the teams permuted to

generate different schedules. Problems were generated for

round robins of even size from 4 to 40. Forty was chosen

as the maximum as it was larger than the number of teams

in most professional sports leagues. Tournament graphs were

generated as described for cup competitions. On these round

robin benchmarks, the accuracy of our method is again high

(see Table II). Unlike cup competitions, spurious coalitions are

rarely generated and fewer spurious coalitions are generated

than for cup competitions (see Table II). As a result, sorting

based on a heuristic appears to be unnecessary.

VII. CONCLUSION AND FUTURE WORK

Previous work on manipulation in elections and sporting

competitions has focused on proving that some types of

competitions are computationally hard to manipulate and thus

possibly resistant to manipulation. In contrast, we examined

the problem from the perspective of detecting cheating. We

described a reasonable set of behaviors of a coalition of teams

desiring to manipulate a competition and showed that the re-

sulting pattern of manipulations could be successfully detected

in both cup and round robin competitions. We experimentally

evaluated our proposals on both real and randomly generated

instances. On these benchmarks, our techniques almost always

accurately identified whether cheating was occurring and al-

lowed the quick identification of the cheating coalition.
Our results constitute a step towards developing auto-

mated tools for detecting teams colluding to manipulate the

winner of a competition. Below we describe two ways of

further advancing this work. First, in this paper we have

assumed that a coalition uses a deterministic model of the

competition (i.e., a tournament graph) when planning their

cheating. An alternative is a probabilistic model M , where

an entry M(ti, tj) = pij represents that team ti would be

the expected winner in any fair match between team ti and

tj with probability pij . Open problems would then be how

can teams manipulate a competition within the probabilistic

model and how can automated tools be designed to recognize

such manipulation. Second, the method for identify cheating

competitions should take into account a cost-benefit analysis

as a way of distinguishing likely coalitions from unlikely

coalitions. For example, if the teams that allegedly were part

of the coalitions lost more money collectively than was gained

by manipulation then that manipulation strategy is unlikely.
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