
On Portfolios for Backtracking Search in the Presence of Deadlines

Huayue Wu and Peter van Beek
School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

{hwu, vanbeek}@uwaterloo.ca

Abstract

Constraint satisfaction and propositional satisfiability
problems are often solved using backtracking search. Pre-
vious studies have shown that portfolios of backtracking
algorithms—a selection of one or more algorithms plus a
schedule for executing the algorithms—can dramatically
improve performance on some instances. In this paper, we
consider a setting that often arises in practice where the in-
stances to be solved arise over time, the instances all belong
to some class of problem instances, and a limit or deadline
is placed on the computational resources that the backtrack-
ing algorithm can consume in solving any instance. For
such a scenario, we present a simple scheme for learning
a good portfolio of backtracking algorithms from a small
sample of instances. We demonstrate the effectiveness of
our approach through an extensive empirical evaluation on
a real-world instruction scheduling testbed.

1. Introduction

Constraint satisfaction and propositional satisfiability
problems are often solved using backtracking search. In
this paper, we consider a setting where the instances to be
solved arise over time, the instances all belong to some class
of problem instances, and a limit or deadline is placed on
the computational resources that the backtracking algorithm
can consume in solving any instance. Such a setting of-
ten arises in practice. For example, a common scenario in
scheduling and rostering is that at regular intervals on the
calendar a similar scheduling problem must be solved and a
schedule is useful only if it is found within some deadline.
For a further example, in our evaluation testbed of instruc-
tion scheduling, thousands of instances arise each time a
compiler is invoked on some software project and a limit
needs to be placed on the time given for solving each in-
stance in order to keep the total compile time to an accept-
able level.

Since the first formal statements of backtracking algo-
rithms over 40 years ago [3, 7], many techniques for im-
proving the efficiency of a backtracking search algorithm
have been suggested and evaluated (see, e.g., [26]). Un-
fortunately, even with these improvements, any given back-
tracking algorithm can still be quite brittle, performing well
on some instances but poorly on other seemingly simi-
lar instances. To reduce the brittleness or variability in
performance of any single algorithm, portfolios of mul-
tiple algorithms have been proposed and shown to dra-
matically improve performance on some instances (e.g.,
[10, 14, 17, 23]).

Given a set of possible backtracking algorithms {A1,
A2, . . . } and a time deadline d, a portfolio P for a single
processor is a finite sequence of pairs,

P = [(Ak1 , t1), (Ak2 , t2), . . . , (Akm
, tm)] ,

where each Aki
is a backtracking algorithm, each ti is a

positive integer, and Σm
i=1ti = d. To apply a portfolio to

an instance, algorithm Ak1 is run for t1 steps. If no solu-
tion is found within t1 steps, algorithm Ak1 is terminated
and algorithm Ak2 is run for t2 steps, and so on until ei-
ther a solution is found or the sequence is exhausted as the
time deadline d has been reached. A fixed cutoff portfolio
is a portfolio where all of the ti’s are equal. An algorithm
selection portfolio is a portfolio where,

P = [(A, d)] ;

i.e., a single algorithm is selected and run until either a so-
lution is found or the deadline is reached. A restart strategy
portfolio is a portfolio where,

P = [(A, t1), (A, t2), . . . , (A, tm)] ;

i.e., the same algorithm is continually restarted until either
a solution is found or the deadline is reached [10, 14, 23].
Of course, for a restart strategy to make sense, A must be a
non-deterministic algorithm. The usual method for random-
izing a backtracking algorithm is to randomize the variable
or value ordering heuristic (e.g., [11, 14]).



A portfolio can be either instance-based in that it is in-
tended or tailored to be used on a specific instance, or it can
be class-based in that the same portfolio is intended to be
used on any instance from a problem class. The question
that we address in this paper is, given a class of problem
instances and a deadline d, can we learn a good class-based
portfolio from a small representative sample of instances?

We present a simple scheme for learning a good portfo-
lio of backtracking algorithms in the presence of deadlines.
In contrast to previous work, where the differences in the
possible backtracking algorithms {A1, A2, . . . } often in-
volves the variable ordering heuristic, we create variability
in solving performance by increasing levels of constraint
propagation from light-weight to heavy-weight.

The learning is done in an offline manner from a training
set and the portfolio that is learned is then used on unknown
instances in the future when the application is deployed.
The portfolios that we learn only allow the sequential appli-
cation of algorithms rather than running algorithms concur-
rently and they do not allow the execution of an algorithm
to be suspended and later resumed; i.e., in our portfolios an
algorithm is terminated if it fails to find a solution within the
specified number of time steps. Because of the presence of
a deadline and because we focus on simpler portfolios, we
can systematically and efficiently search for a portfolio that
has a low cost on the training set. One key to the success of
our approach is that we find a portfolio which is robust on
the training set in that it gives the lowest cost and is furthest
away from any portfolio which leads to poorer results.

We demonstrate the effectiveness of our approach
through an extensive empirical evaluation on a real-world
instruction scheduling testbed. The portfolio is learned
from a small training set and then evaluated on a large test
set to estimate its performance on unknown instances in the
future. We show that on our testbed, the class-based port-
folio that is learned can significantly outperform a restart
strategy portfolio which uses an oracle to always select the
best restart cutoff for each instance, and can approach the
performance of an algorithm selection portfolio which uses
an oracle to always select the best algorithm for each in-
stance. In practice, any algorithm selection method at the
instance-level cannot be perfect. Once an algorithm selec-
tion method makes even a very small percentage of mis-
takes, the portfolio learned by our methodology exceeds the
performance of the algorithm selection method.

2. Related work

In this section, we discuss related work on portfolios. We
categorize previous work into general portfolios, algorithm
selection portfolios, and restart strategy portfolios. Our fo-
cus is on single processor portfolios of backtracking algo-
rithms.

2.1. General portfolios

Huberman, Lukose, and Hogg [17] may have been the
first to coin the term portfolios of algorithms, drawing an
analogy to financial portfolios. They consider portfolios of
multiple copies of a single backtracking algorithm with a
randomized variable ordering and show that one can trade-
off performance and risk on a given instance. Their work is
important for introducing and giving a preliminary demon-
stration of the effectiveness of the portfolio approach.

Gomes and Selman [8, 9] perform an extensive empirical
validation of the portfolio approach for portfolios of multi-
ple backtracking algorithms that differ in their randomized
variable ordering. Their work clearly demonstrates that a
portfolio approach can give important performance gains
in the (usual) case where no single backtracking algorithm
dominates across all instances. Gomes and Selman pro-
vide several general guidelines for designing portfolios, but
a more practical approach for doing so is left as an open
question [9, p. 44].

Lagoudakis and Littman [19] present a method for con-
structing a portfolio of backtracking algorithms (each with a
different variable ordering heuristic) using techniques from
reinforcement learning. However, in an empirical evalua-
tion, the performance of the learned portfolio was often not
better than the best algorithms by themselves.

Finkelstein, Markovitch, and Rivlin [4] present a pro-
cedure for constructing class-based single processor port-
folios. Their method requires a performance profile for
each possible algorithm which specifies the probability that
a solution will be found by the algorithm as a function of
time. Given these performance profiles, the construction of
a portfolio is formulated as an optimization problem and
solved by branch-and-bound search. Their method is ele-
gant but suffers from a high computational cost. As well,
the method has only been evaluated under the assumption
that the instances are homogeneous and it is unclear how
their method would perform under heterogeneous instances.
For example, in their experiments on Latin square comple-
tion, profiles were constructed from 50,000 instances and
all instances were of the same size and contained the same
number of pre-assigned squares. In contrast, our approach
has a relatively low computational cost and we demonstrate
its applicability in scenarios where the problem class con-
tains heterogeneous instances.

Gagliolo and Schmidhuber [5] also consider class-based
single processor portfolios. In their method, all algorithms
are run in a time-sharing fashion and the allocation of time
to each algorithm is dynamically updated as instances are
solved. However, their proposal relies on estimates of the
time still needed by a backtracking algorithm to complete—
a difficult task as the performance of backtracking algo-
rithms can be very unpredictable.



2.2. Algorithm selection portfolios

Lobjois and Lemaı̂tre [22] examine instance-based al-
gorithm selection in the setting of branch-and-bound algo-
rithms for optimization problems. Carchrae and Beck [2]
argue for a “low-knowledge” approach that does not require
expertise in the problem structure and in the algorithms
in order to devise features for building predictive models.
They show good success with features that are common
to all optimization problems. The techniques developed in
these papers are specific to optimization problems and do
not carry over in any straight-forward manner to our con-
text of constraint and propositional satisfiability.

Leyton-Brown et al. [20, 21] propose a methodology for
instance-based algorithm selection in the setting of back-
tracking algorithms. Their methodology requires gathering
performance profiles for each algorithm in the set of possi-
ble backtracking algorithms by applying the algorithm to a
large collection of instances. Features of the problem struc-
ture and of algorithm performance are then identified and
regression techniques are used to learn a function of the
features to predict the running time (see also [16]). Once
one can predict the running time of each algorithm on an
instance, one can then choose the best algorithm for that
instance. Guerri and Milano [13], in followup work, use
decision trees to select between two algorithms and report a
90% selection accuracy.

In our work we show that the class-based general port-
folio that is learned by our methodology can approach the
performance of a perfect instance-based algorithm selection
portfolio. And if an algorithm selection method makes even
a small percentage of mistakes—as it would in practice—
our learned portfolio would outperform the algorithm se-
lection portfolio.

2.3. Restart strategy portfolios

Luby, Sinclair, and Zuckerman [23] examine restart
strategies in the more general setting of Las Vegas algo-
rithms. A Las Vegas algorithm is a randomized algorithm
that always gives the correct answer when it terminates,
however the running time of the algorithm varies from one
run to another and can be modeled as a random variable.
Let f(t) be the probability that a backtracking algorithm
A applied to instance x stops after taking exactly t steps;
f(t) is referred to as the runtime distribution of algorithm
A on instance x. Luby, Sinclair, and Zuckerman show that,
given full knowledge of the runtime distribution of an in-
stance, the optimal restart strategy for that instance is given
by [(A, t), (A, t), . . .], for some fixed cutoff t.

Of course, the runtime distribution of an instance is not
known in practice. As a result, there have been various pro-
posals for learning portfolios that may be sub-optimal but

still have good performance (e.g., [6, 18, 25]). As well,
there have been extensive empirical evaluations of restart
strategy portfolios for backtracking algorithms with vari-
ous randomized heuristics (e.g., [11, 12, 15]). Interestingly,
Gomes and Selman [9] conclude from their experiments on
general portfolios of backtracking algorithms that, if only a
single processor is available, using a restart strategy is often
the best portfolio.

However, in our work we show that in the presence of
deadlines the class-based general portfolio that is learned by
our methodology can significantly outperform the optimal
instance-based restart strategy portfolio. In other words,
one portfolio applied to every instance can perform better
than the case where one is assumed to know the runtime
distribution of each instance and is permitted to pick the
optimal restart strategy portfolio for each instance.

3. Portfolio design

In this section, we present our simple methodology for
learning a good portfolio in the presence of deadlines. We
are considering a scenario where instances from a problem
class are to be solved over time and we are to learn a good
class-based portfolio in an offline manner.

Step 1: Construct possible backtracking algorithms. To
begin, we must decide on the possible backtracking algo-
rithms {A1, A2, . . . } from which to construct a portfolio.
In previous work, the possible backtracking algorithms of-
ten differ only in their variable ordering heuristic. How-
ever, weakening or changing the variable ordering heuris-
tic sometimes leads to dominated algorithms (algorithms
which have poorer performance across all or almost all in-
stances) and does not always lead to an increase in variabil-
ity of problem solving performance (where different algo-
rithms perform well on different instances). This is partic-
ularly true in cases where the variable ordering has been
carefully crafted, as is often done in real applications. It
is the variability in algorithm performance across instances
which a portfolio can take advantage of in order to improve
on individual algorithms. In our work, we propose to create
variability in performance by increasing the level of con-
straint propagation from light-weight to heavy-weight prop-
agation. Constraint propagation is the active use of the con-
straints to prune parts of the search space (see, e.g., [1, 26]).
The technique is general in the sense that any backtrack-
ing algorithm that incorporates a base level of constraint
propagation (which all successful backtracking algorithms
do) can easily be modified to incorporate a higher level of
constraint propagation through the use of a technique called
singleton consistency where the base constraint propagator
is repeatedly called [1]. As well, constraint programming
systems and libraries invariably have options for specifying
the level of propagation enforced on individual constraints.



Step 2: Construct training and test set. We next con-
struct (as in machine learning) a representative sample for
learning the portfolio (a training set) and a representative
sample for estimating how well the portfolio would work
when deployed (a test set). Each possible backtracking al-
gorithm is run on each instance in the training and test sets
and the performance data is collected. The algorithms are
run with the same deadline or limit on CPU time as will be
used when the portfolio is deployed.

Step 3. Simulate possible portfolios on training set. We
next systematically step through the possible portfolios at
an appropriate level of abstraction and simulate each portfo-
lio on the training set and record its performance. To reduce
the computation, the portfolios that we learn are restricted
to only allow the sequential application of algorithms rather
than running algorithms concurrently and they do not al-
low the execution of an algorithm to be suspended and later
resumed; i.e., in our portfolios an algorithm is terminated
if it fails to find a solution within the specified number of
time steps. As well, we further restrict the portfolios by
mandating that the algorithms can appear in the portfolio
only in order of increasing level of propagation. Because of
the presence of a deadline and because we focus on simpler
portfolios, this step can be done efficiently. For example,
in our experiments, if the deadline was 10 minutes and we
examined portfolios in units of 1 second, it took approxi-
mately 9.0 seconds of CPU time to examine all of the pos-
sible portfolios.

Note that in the methodology of Finkelstein, Markovitch,
and Rivlin [4], this step would be omitted as the perfor-
mance data from Step 2 would be summarized in a perfor-
mance profile and used to select a best portfolio. However,
this summary step, while perhaps more elegant than a brute-
force approach, loses information and may not be applica-
ble in the case of heterogeneous instances. To see this, sup-
pose that two algorithms have identical performance pro-
files but (a) the algorithms’ performance on instances is
completely uncorrelated and (b) their performance is com-
pletely correlated. Finkelstein et al.’s approach would deter-
mine the same portfolio in both cases, whereas our approach
would not.

As well, note that if our performance measure is the
number of instances that are solved by a portfolio, restrict-
ing the portfolios in the way we have done provably has
no affect. However, if our performance measure is the to-
tal runtime needed to apply the portfolio to each instance,
restricting the portfolios may have an affect; i.e., there can
exist a lower cost suspend-and-resume portfolio or a lower
cost portfolio where the algorithms are applied in a different
order. However, on our testbed, we found that the restric-
tions had only a minimal impact on the cost.

Step 4. Select best portfolio. We next select the best port-
folio by choosing the portfolio that minimizes the perfor-

mance measure on all of the instances in the training set and
is furthest away in distance from any portfolio with poorer
results. The aim of this criteria is to find a low-cost and ro-
bust portfolio and it is one of the keys to the success of our
approach. More precisely, the lowest cost portfolios on the
training set are bounded by a region (the coordinates of the
region are the time limits allotted to each algorithm in the
portfolio) and we are finding the centroid of the region. The
centroid is easily determined given the performance of the
possible portfolios recorded in Step 3.

Step 5. Evaluate selected portfolio on the test set. The
performance of the portfolio on the test set gives an estimate
for how well the portfolio would work when deployed and
applied to unknown instances from the same problem class.

4. Experimental evaluation

In this section, we present the results of an empirical
evaluation of our approach. We performed two sets of ex-
periments. In the first set of experiments, we consider learn-
ing a good portfolio when the performance measure is the
number of instances which are not solved. In the second set
of experiments, we consider learning a good portfolio when
the performance measure is the expected time to solve the
instances. We begin by presenting the experimental setup
that is in common to the two sets of experiments, followed
by the results of the experiments themselves.

4.1. Experimental setup

We used instruction scheduling problems for multiple-
issue pipelined processors in our experiments. Multiple-
issue and pipelining are two techniques for performing in-
structions in parallel and processors which use these tech-
niques are now standard in desktop and laptop machines.
In such processors, there are multiple functional units and
multiple instructions can be issued (begin execution) in
each clock cycle. Examples of functional units include
arithmetic-logic units (ALUs), floating-point units, mem-
ory or load/store units which perform address computations
and accesses to the memory hierarchy, and branch units
which execute branch and call instructions. On such pro-
cessors, the order that the instructions are scheduled can
significantly impact performance and instruction schedul-
ing is one of the most important steps in improving the per-
formance of object code produced by a compiler. The task
is to find a minimal length schedule for a basic block—a
straight-line sequence of code with a single entry point and
a single exit point—subject to precedence, latency, and re-
source constraints.

We formulated a constraint programming model for the
instruction scheduling problem and solved instances using
backtracking search. In constraint programming, a problem



Table 1. Portfolios used in experimental evaluation.
P1(i) =

[
(Arand

i , t∗), . . . , (Arand
i , t∗)

]
,

i = 1, 2, or 3.
Gold standard for restart strategies applied to algorithm Arand

i . For a given
instance, choose the fixed cutoff t∗ ∈ {1, 2, . . .} that is optimal for that in-
stance and Arand

i (i.e., the optimal fixed cutoff for the runtime distribution
for the algorithm applied to the instance) and then apply the restart strategy
to Arand

i until a solution is found or the deadline d is reached.

P2(i) =
[
(Arand

i , d)
]
, i = 1, 2, or 3. Execute algorithm Arand

i until a solution is found or the deadline d is reached.

P3(i) =
[
(Adet

i , d)
]
, i = 1, 2, or 3. Execute algorithm Adet

i until a solution is found or the deadline d is reached.

P4 =
[
(Adet , d)

]
Gold standard for algorithm selection at the instance level. For a given in-
stance, choose the best deterministic algorithm Adet ∈ {Adet

1 ,Adet
2 ,Adet

3 }
for that instance and execute the algorithm until a solution is found or the
deadline d is reached.

P5 =
[
(Adet

1 , t1), (Adet
2 , t2), (Adet

3 , t3)
]

Portfolio learned from the training set using the proposed methodology (see
Section 3).

is modeled by specifying constraints on an acceptable solu-
tion, where a constraint is simply a relation among several
unknowns or variables, each taking a value in a given do-
main. In our model, there is a variable for each instruction,
the domains of the variables are the time cycles in which
the instruction could be scheduled, and the constraints con-
sist of linear inequalities, global cardinality constraints, and
other specialized constraints. For example, the global car-
dinality constraints ensure that the number of instructions
of each type issued at each clock cycle does not exceed the
number of functional units of that type. The scheduler was
able to solve almost all of the basic blocks that we found
in practice, including basic blocks with up to 2600 instruc-
tions. We refer the reader to [24] for further details on the
problem, the model, and the backtracking algorithm. The
point we wish to emphasize here is that, prior to our ex-
amination of portfolios, considerable effort went into im-
proving the constraint programming model, the backtrack-
ing algorithm, and the variable order heuristic to reduce the
number of unsolved instances and to reduce the computa-
tion time.

For our experiments, we used scheduling instances that
arise from the SPEC 2000 and MediaBench benchmark
suites, two standard real-world benchmarks in compiler re-
search. These benchmark suites consist of source code for
software packages that are chosen to be representative of
a variety of programming languages and types of applica-
tions. We had available to us a total of 6,377 hard schedul-
ing instances from 28 different software packages. For our
sample of instances, or training set, we used all 927 of
the hard scheduling instances from the galgel, gap, mpeg,
and jpeg software packages. We chose these four software
packages for two reasons. First, the instances give approxi-

mately fifteen percent of the scheduling instances and, sec-
ond, these software packages provide a good cross section
of the data as they include both integer and floating point
instructions as well as a variety of programming languages
and types of applications. For our test set, we used the re-
maining 5,450 hard scheduling instances. Our training and
test sets are heterogeneous as the instances arise from differ-
ent software applications and different high-level program-
ming languages, and the sizes of the instances range from
as few as five instructions to as many as 2,598 instructions.

For our experiments, we used a deterministic backtrack-
ing algorithm capable of performing three levels of con-
straint propagation:

Level = 1 bounds consistency,
Level = 2 singleton bounds consistency, and
Level = 3 singleton bounds consistency to a depth

of two.

We chose bounds consistency—instead of the more usual
arc consistency—as in our problem it is equivalent but more
efficient. In bounds consistency, one ensures that each up-
per and lower bound of the domain of a variable is consis-
tent with each constraint. In singleton bounds consistency,
one temporarily assigns a value to a variable and then per-
forms bounds consistency. In singleton bounds consistency
to a depth of two, one temporarily assigns a value to a vari-
able and then performs singleton consistency. In each, if the
value is found to be inconsistent it is not part of any solution
and can be removed from the domain of the variable.

In order to study restart strategy portfolios, we random-
ized the backtracking algorithm by having the variable or-
dering heuristic randomly picked a variable from the top
5 variables (or fewer, if there were fewer variables left).



Table 2. Expected number of scheduling instances in the test set not solved within a deadline d—one
second, ten seconds, one minute, ten minutes, one hour, and ten hours, respectively—for various
portfolios of algorithms.

Randomized Deterministic
d P1(1) P1(2) P1(3) P2(1) P2(2) P2(3) P3(1) P3(2) P3(3) P4 P5

1s 158.6 120.7 823.5 223.5 124.3 823.6 201 128 824 64 74
10s 135.3 59.1 364.8 210.9 65.5 364.9 195 64 368 32 46
1m 124.6 35.0 158.7 201.9 42.5 158.8 188 40 161 18 30
10m 118.6 25.7 84.3 193.2 33.9 85.0 175 32 87 16 17
1h 171 31 53 15 15

10h 157 31 27 14 14

Table 3. Percentage increase in the expected number of scheduling instances in the test set not
solved within a deadline d relative to the gold standard portfolio P4, for various portfolios of algo-
rithms.

Randomized Deterministic
d P1(1) P1(2) P1(3) P2(1) P2(2) P2(3) P3(1) P3(2) P3(3) P4 P5

1s 147.8% 88.6% 1186.7% 249.2% 94.2% 1186.9% 214.1% 100.0% 1187.5% 0% 15.6%
10s 322.8% 84.7% 1040.0% 559.1% 104.7% 1040.3% 509.4% 100.0% 1050.0% 0% 43.8%
1m 592.2% 94.4% 781.7% 1021.7% 136.1% 782.2% 944.4% 122.2% 794.4% 0% 66.7%
10m 641.3% 60.6% 426.9% 1107.5% 111.9% 431.3% 993.8% 100.0% 443.8% 0% 6.3%
1h 1040.0% 106.7% 253.3% 0% 0.0%
10h 1021.4% 121.4% 92.9% 0% 0.0%

This gave a total of six distinct backtracking algorithms As
i ,

where i = 1, 2, 3 indicates the level of constraint propaga-
tion and s ∈ {det , rand} indicates whether the algorithm is
deterministic or has been randomized.

We ran each of the six algorithms on each instance in the
training and test sets and recorded the performance data. If
the algorithm was randomized, we collected 1000 samples
of its runtime distribution by each time running the random-
ized backtracking algorithm on the instance with a differ-
ent random seed and recording the amount of time taken
in seconds. The samples are censored in that we ran the
backtracking algorithm with a timeout mechanism; if the
instance was not solved within the deadline, the backtrack-
ing algorithm was terminated and the maximum amount of
time was recorded. The empirical runtime distributions and
performance data were then used to learn and test various
portfolios. The portfolios that we examined in the experi-
ments are summarized in Table 1. When portfolios involved
randomized algorithms, the statistics that we report are the
average over 10,000 experiments.

All of the runtime experiments were performed on a

cluster which consists of 768 machines running Linux, each
with 4 GB of RAM and four 2.2 GHz processors.

4.2. Experiment 1

In our first set of experiments, we determined whether
the portfolio learned using our methodology is effective at
reducing the number of problems which are not solved in
the presence of various deadlines. We used deadlines of
one second, ten seconds, one minute, ten minutes, one hour,
and ten hours, respectively. Table 2 summarizes the results.
Table 3 presents the same information except now stated in
terms of percentage change. Because of the high number
of samples needed for the randomized algorithms to ensure
significance (1000 samples) and the associated high compu-
tational cost, we did not collect runtime distributions for the
larger timeouts (one hour and ten hours) and thus some of
the entries for the portfolios of randomized algorithms were
not determined and are left blank in the tables.

On this testbed, portfolio P5—the portfolio learned by
our approach—-performs well. It is interesting to note that



Table 4. Total time (sec.) for all of the scheduling instances in the test set, where each instance was
either solved within the deadline d or the deadline was reached, for various portfolios of algorithms.

Randomized Deterministic
d P1(1) P1(2) P1(3) P3(1) P3(2) P3(3) P4 P5

1s 188.2 227.8 1,197.7 223.7 217.6 1,133.4 91.5 121.4
10s 1,455.9 922.1 5,598.5 2,003.7 968.8 5,594.5 481.7 712.2
1m 8,362.3 3,006.3 16,561.6 11,635.0 3,370.8 16,706.0 1,694.6 2,269.9
10m 73,723.3 17,845.9 72,956.9 109,493.6 21,483.0 73,323.5 10,524.8 16,458.3
1h 625,797.8 115,461.0 263,237.5 55,878.5 82,841.8
10h 5,848,373.4 1,119,861.0 1,329,250.2 510,022.7 565,111.7

Table 5. Percentage increase in the total time (sec.) for all of the scheduling instances in the test set
relative to the gold standard portfolio P4, for various portfolios of algorithms.

Randomized Deterministic
d P1(1) P1(2) P1(3) P3(1) P3(2) P3(3) P4 P5

1s 105.7% 149.0% 1,209.0% 144.5% 137.8% 1,138.7% 0.0% 32.7%
10s 202.2% 91.4% 1,062.2% 316.0% 101.1% 1,061.4% 0.0% 47.9%
1m 393.5% 77.4% 877.3% 586.6% 98.9% 885.8% 0.0% 33.9%
10m 600.5% 69.6% 593.2% 940.3% 104.1% 596.7% 0.0% 56.4%
1h 1,019.9% 106.6% 371.1% 0.0% 48.3%
10h 1,046.7% 119.6% 160.6% 0.0% 10.8%

the performance of the class-based portfolio P5 is superior
to the performance of the gold standard restart strategy port-
folios P1(i), i = 1, 2, or 3, even though the gold standard
restart strategies were computed by determining for each
instance and algorithm the optimal fixed cutoff for the run-
time distribution for the algorithm applied to the instance.
As well, the performance of P5 is superior to the portfolios
which contain a single algorithm. Even though there is one
dominant algorithm among the deterministic algorithms (al-
gorithm Adet

2 as used in portfolio P3(2)) a portfolio of mul-
tiple algorithms can take advantage of the variability in per-
formance of the algorithms across instances to improve the
performance measure. Finally, it is interesting to note that
the performance of the class-based portfolio P5 approaches
the performance of the gold standard algorithm selection
portfolio which always selects the best algorithm for each
instance. This is especially true for the larger deadlines.
Of course, no algorithm selection method will be perfect.
For example, Guerri and Milano [13] report a 90% selection
accuracy when selecting between just two algorithms. We
experimented with having the algorithm selection method
make mistakes: with some small probability p the method
does not select the best algorithm for an instance. Depend-
ing on the deadline, if the probability of a mistake is greater

than from 1% to 6%, portfolio P5 would outperform the al-
gorithm selection portfolio.

4.3. Experiment 2

In our second set of experiments, we determined whether
the portfolio learned using our methodology is effective at
reducing the expected time to solve the instances in the pres-
ence of various deadlines. We used the same deadlines as
in Experiment 1. Table 4 summarizes the results. Table 5
presents the same information except now stated in terms of
percentage change.

On this testbed, portfolio P5—the portfolio learned by
our approach—-again performs well. The performance of
the class-based portfolio P5 is superior to the performance
of the gold standard restart strategy portfolios, and superior
to the portfolios which contain a single algorithm. Also,
under this performance measure too, the performance of
the class-based portfolio P5 approaches the performance of
the gold standard algorithm selection portfolio. We again
experimented with having the algorithm selection method
make mistakes: with some small probability p the method
does not select the best algorithm for an instance. Depend-
ing on the deadline, if the probability of a mistake is greater



than from 3% to 8%, portfolio P5 would outperform the al-
gorithm selection portfolio.

5. Conclusions

We presented an approach for learning good class-based
portfolios of backtracking algorithms in the commonly oc-
curring scenario where instances from a problem class are to
be solved over time and a deadline is placed on the compu-
tational resources that the backtracking algorithm can con-
sume in solving any instance. Our approach has a relatively
low computational cost and is applicable in scenarios where
the problem class contains heterogeneous instances. We
demonstrated the effectiveness of our approach through an
extensive empirical evaluation on a real-world scheduling
testbed. On our testbed, the portfolio that is learned by our
methodology outperforms the best possible (but unobtain-
able in practice) restart strategy portfolio and approaches
the performance of the best possible (but again unobtain-
able in practice) algorithm selection portfolio.

Acknowledgments.

This work was made possible by the facilities of the
Shared Hierarchical Academic Research Computing Net-
work (SHARCNET).

References

[1] C. Bessiere. Constraint propagation. In F. Rossi, P. van
Beek, and T. Walsh, editors, Handbook of Constraint Pro-
gramming, chapter 3. Elsevier, 2006.

[2] T. Carchrae and J. C. Beck. Applying machine learning to
low-knowledge control of optimization algorithms. Compu-
tational Intelligence, 21:372–387, 2005.

[3] M. Davis, G. Logemann, and D. Loveland. A machine pro-
gram for theorem-proving. Comm. ACM, 5:394–397, 1962.

[4] L. Finkelstein, S. Markovitch, and E. Rivlin. Optimal sched-
ules for parallelizing anytime algorithms: The case of shared
resources. J. of AI Research, 19:73–138, 2003.

[5] M. Gagliolo and J. Schmidhuber. Learning dynamic algo-
rithm portfolios. Annals of Math. and AI, 47:295–328, 2006.

[6] M. Gagliolo and J. Schmidhuber. Learning restarts strate-
gies. In Proc. of the 20th Int’l Joint Conf. on AI, pages 792–
797, Hyderabad, India, 2007.

[7] S. Golomb and L. Baumert. Backtrack programming. J.
ACM, 12:516–524, 1965.

[8] C. Gomes and B. Selman. Algorithm portfolio design: The-
ory vs. practice. In Proc. of the 13th Annual Conf. on Uncer-
tainty in AI (UAI-97), pages 190–197, Providence, RI, 1997.

[9] C. Gomes and B. Selman. Algorithm portfolios. Artif. In-
tell., 126:43–62, 2001.

[10] C. Gomes, B. Selman, and N. Crato. Heavy-tailed distribu-
tions in combinatorial search. In Proc. of the Third Int’l
Conf. on Principles and Practice of Constraint Program-
ming, pages 121–135, Linz, Austria, 1997.

[11] C. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed
phenomena in satisfiability and constraint satisfaction prob-
lems. J. of Automated Reasoning, 24:67–100, 2000.

[12] C. Gomes, B. Selman, and H. Kautz. Boosting combinato-
rial search through randomization. In Proc. of the Fifteenth
National Conf. on AI, pages 431–437, Madison, Wisconsin,
1998.

[13] A. Guerri and M. Milano. Learning techniques for automatic
algorithm portfolio selection. In Proc. of the 16th European
Conf. on AI, pages 475–479, Valencia, Spain, 2004.

[14] W. D. Harvey. Nonsystematic backtracking search. PhD
thesis, Stanford University, 1995.

[15] T. Hogg and C. P. Williams. Expected gains from paralleliz-
ing constraint solving for hard problems. In Proc. of the
Twelfth National Conf. on AI, pages 331–336, Seattle, 1994.

[16] E. Horvitz, Y. Ruan, C. Gomes, H. Kautz, B. Selman, and
M. Chickering. A Bayesian approach to tackling hard com-
putational problems. In UAI-2001, pages 235–244, 2001.

[17] B. A. Huberman, R. M. Lukose, and T. Hogg. An economics
approach to hard computational problems. Science, 275:51–
54, 1997.

[18] H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman.
Dynamic restart policies. In Proc. of the Eighteenth National
Conf. on AI, pages 674–681, Edmonton, 2002.

[19] M. G. Lagoudakis and M. L. Littman. Learning to select
branching rules in the DPLL procedure for satisfiability,
2001.

[20] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden,
and Y. Shoham. Learning the empirical hardness of opti-
mization problems: The case of combinatorial auctions. In
Proc. of the Eighth Int’l Conf. on Principles and Practice
of Constraint Programming, pages 556–572, Ithaca, New
York, 2002.

[21] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden,
and Y. Shoham. Boosting as a metaphor for algorithm de-
sign. In Proc. of the Ninth Int’l Conf. on Principles and
Practice of Constraint Programming, pages 899–903, Kin-
sale, Ireland, 2003.

[22] L. Lobjois and M. Lemaitre. Branch and bound algorithm
selection by performance prediction. In Proc. of the Fif-
teenth National Conf. on AI, pages 353–358, Madison, Wis-
consin, 1998.

[23] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup
of Las Vegas algorithms. Information Processing Letters,
47:173–180, 1993.

[24] A. M. Malik, J. McInnes, and P. van Beek. Optimal basic
block instruction scheduling for multiple-issue processors
using constraint programming. In Proc. of the 18th IEEE
Int’l Conf. on Tools with AI, pages 279–287, Washington,
DC, 2006.

[25] Y. Ruan, E. Horvitz, and H. Kautz. Restart policies with de-
pendence among runs: A dynamic programming approach.
In Proc. of the Eighth Int’l Conf. on Principles and Practice
of Constraint Programming, pages 573–586, Ithaca, New
York, 2002.

[26] P. van Beek. Backtracking search algorithms. In F. Rossi,
P. van Beek, and T. Walsh, editors, Handbook of Constraint
Programming, chapter 4. Elsevier, 2006.


