Journal of Heuristics manuscript No.
(will be inserted by the editor)

An autofocus heuristic for digital cameras based on
supervised machine learning

Hashim Mir - Peter Xu - Rudi Chen -
Peter van Beek

Received: date / Accepted: date

Abstract Digital cameras are equipped with passive autofocus mechanisms where
a lens is focused using only the camera’s optical system and an algorithm for con-
trolling the lens. The speed and accuracy of the autofocus algorithm are crucial to
user satisfaction. In this paper, we address the problems of identifying the global op-
timum and significant local optima (or peaks) when focusing an image. We show that
supervised machine learning techniques can be used to construct a passive autofocus
heuristic for these problems that out-performs an existing hand-crafted heuristic and
other baseline methods. In our approach, training and test data were produced using
an offline simulation on a suite of 25 benchmarks and correctly labeled in a semi-
automated manner. A decision tree learning algorithm was then used to induce an
autofocus heuristic from the data. The automatically constructed machine-learning-
based (ml-based) heuristic was compared against a previously proposed hand-crafted
heuristic for autofocusing and other baseline methods. In our experiments, the ml-
based heuristic had improved speed—reducing the number of iterations needed to
focus by 37.9% on average in common photography settings and 22.9% on average
in a more difficult focus stacking setting—while maintaining accuracy.

Keywords Autofocus - Live preview - Digital camera - Machine learning

1 Introduction

Modern digital cameras are equipped with one or more passive autofocus mecha-
nisms. In passive autofocus mechanisms, a lens is focused using only the camera’s

Hashim Mir, Peter Xu, Rudi Chen, and Peter van Beek
Cheriton School of Computer Science

University of Waterloo, Waterloo, Canada
Corresponding author: Peter van Beek

Tel: 519-888-4567, x35344

Fax: 519-885-1208

E-mail: vanbeek @uwaterloo.ca

optical system and an algorithm for controlling the lens. Passive autofocus mech-
anisms come in two basic kinds: contrast-detection and phase-detection. Contrast-
detection autofocus is the most common—being standard in a wide range of cam-
eras from mobile phones cameras, to point-and-shoots, to high-end DSLRs—whereas
currently only high-end DSLRs also come equipped with phase-detection autofo-
cus. Phase-detection is faster and better able to track subject movement, whereas
contrast-detection is less expensive in monetary terms and can be more accurate (Ci-
cala, 2012). Our concern here is with contrast-detection autofocus.

In this paper, we address the problems of identifying the global optimum and sig-
nificant local optima (or peaks) when focusing an image. The problems are important
in focus stacking (see, for example, (Vaquero et al, 2011)), where a set of images is
acquired and then merged in post processing in order to achieve a final image that is
all-in-focus. We show that machine learning can be used to semi-automate the con-
struction of heuristics for these problems. Our approach uses supervised learning. In
supervised learning, one learns from training examples that are labeled with the cor-
rect answers. More precisely, each training example consists of a vector of feature
values and the correct classification or correct answer for that example. In our ap-
proach, training and test data were produced using an offline simulation on a suite
of 25 benchmarks, and correctly labeled in a semi-automated manner. Once the data
was gathered, a decision tree learning algorithm (Quinlan, 1993) was used to induce
a heuristic from the data. In a decision tree the internal nodes of the tree are labeled
with features, the edges to the children of a node are labeled with the possible values
of the feature, and the leaves of the tree are labeled with a classification. To classify
a new example, one starts at the root and repeatedly tests the feature at a node and
follows the appropriate branch until a leaf is reached. The label of the leaf is the
predicted classification of the new example.

Once learned, the decision tree heuristic was compared against a previously pro-
posed hand-crafted heuristic and other baseline methods by incorporating the heuris-
tics into a sweep focusing algorithm and applying the algorithm on benchmark suites
of images. On these benchmark suites, the automatically constructed decision tree
heuristic had improved speed—reducing the number of iterations needed to focus by
37.9% on average in common photography settings and 22.9% on average in a more
difficult focus stacking setting—while maintaining accuracy.

2 Background

In this section, we review the necessary background in contrast-detection autofocus,
focus measures, and focus search algorithms.

2.1 Focus measures

Contrast-detection autofocus makes use of a focus measure that maps an image to

a value that represents the degree of focus of the image. Many focus measures have
been proposed and evaluated in the literature (see, e.g., (Groen et al, 1985; Subbarao

3.5e+006

3e+006

2.5e+006

2e+006

focus measure

1.5e+006

1e+006

500000

0O 20 40 60 80 100
lens position
(@)

(b) (©)

Fig. 1 (a) Focus measures of images at each of the 167 lens positions (Canon 50 mm lens) for an example
scene using the squared gradient focus measure. The two (blue) vertical bars identify peaks in the focus
measure and correspond to the two images: (b) flower in focus, and (c) fern and grasses in focus.

and Tyan, 1998)). In our work, we make use of an effective focus measure called the
squared gradient (Mir et al, 2014; Santos et al, 1997). Let f(x,y) be the luminance
or grayscale at pixel (x,y) in an image of size M x N pixels. The value ¢(p) of the
squared gradient focus measure for an image acquired when the lens is at position p

is then given by,
M—1N-2

o)=Y Y (fley+1)—flxy)
x=0 y=0

Kehtarnavaz and Oh (2003) used the squared gradient in developing a hand-crafted
heuristic for focusing and to have the fairest comparison by holding the focus measure
constant we chose the same focus measure. However, other effective focus measures,
such as those based on the second derivative, could also have been chosen.

Following Kehtarnavaz and Oh (2003), in our work we assume that the region of
interest (ROI) is the entire image. In practice, a user can either (i) specify the ROI
by moving a rectangle over the desired part of the image when the camera is in live
preview mode, or (ii) have the camera automatically determine the object or region

of interest to bring into focus (e.g., using face or object recognition (Lee et al, 2008;
Rahman and Kehtarnavaz, 2008)). Our proposals are easily adapted to the case where
the ROl is an arbitrary sub-area of an image.

2.2 Search algorithms

A contrast-detection autofocus algorithm iteratively moves the lens searching for a
lens position that brings the image into best focus according to the focus measure.
Lenses are moved by step motors that can be positioned at discrete positions. The
images are acquired from the same stream of images that is displayed in the camera’s
live preview mode. (In live preview mode, the camera displays images streamed from
the sensor at video frame rates; e.g., 24 frames per second on many Canon cameras.)
Figure 1 shows the focus measures of the images acquired at all of the possible lens
positions (Canon 50 mm lens) for an example scene.

Given a set of lens positions {a,a+1,...,b} from near focus to far focus, three
autofocus search problems can be defined. The first search problem is to find the lens
position that corresponds to the image with the nearest peak in the focus measure,
where nearest can be either defined relative to the camera (i.e., nearest to a) or to the
current position of the lens. The second search problem is to find the lens position that
corresponds to the image with the maximum or highest peak in the focus measure. A
third search problem, related to finding the highest peak, is to find all lens positions
that correspond to a peak in the focus measure. In general, autofocus based on nearest
peak may be preferred over that based on highest peak, as finding the nearest peak can
be less costly than finding the highest peak and foreground elements are the subject
in many common photography settings. However, a deficiency of autofocus based
on nearest peak is that it can settle on bringing inconsequential objects into focus,
whereas that based on highest peak can be more likely to bring the dominant object
into focus or to bring most of the region of interest into focus. As well, finding the
highest peak can be useful in situations where the focus measure is noisy and thus
has false peaks (for example, in low light situations). Finally, the problem of finding
all peaks is important in focus stacking (Vaquero et al, 2011), where a set of images
is acquired and then merged in post processing in order to achieve a final image that
is all-in-focus.

In this paper, we present a heuristic algorithm that identifies all lens positions p €
{a,a+1,...,b} such that the focus measure ¢ (p) is a peak (a significant local optima)
and also finds the highest peak (the global optimum). At each iteration, step motors
can be moved a single step or larger steps. For example, in the Canon DSLR cameras,
the largest step size corresponds to eight single steps. Each step, small or large, is
followed by a latency that can be tens of milliseconds. As well, step motors can
suffer from backlash where the lens (or the software controlling the lens) loses track
of the lens position when changing the direction of the lens movement (Kehtarnavaz
and Oh, 2003; Morgan-Mar and Arnison, 2013). Thus, two desirable features of a
search algorithm are that it (i) takes as large of steps as possible and (ii) minimizes
changes in direction. The goal is to focus as quickly as possible without sacrificing
accuracy.

Determining the maximum of a function over an interval that can be evaluated at
discrete points can be solved using two generic search algorithms that are often used
as points of comparison: Global search and Fibonacci search (we review autofocus-
specific search algorithms in the next section). The Global search algorithm simply
steps through all possible lens positions. Although impractically slow, the algorithm
is guaranteed to find all peaks and to find the maximum value of the focus measure.
The Fibonacci search algorithm (Kiefer, 1953), in a manner similar to binary search,
narrows at each iteration the interval in which the peak can lie. Fibonacci search is a
special case of Golden Section search (Kiefer, 1953), where the function is restricted
to being evaluated over only integer positions. Fibonacci search is guaranteed to find
the maximum in the fewest number of iterations if the function is unimodal; i.e.,
has a single peak over the interval. Unfortunately, the assumption of unimodality
often does not always hold in our setting and even when it does hold, the back-
and-forth movement of the algorithm is undesirable because of backlash and power
consumption.

3 Related Work

The problem of designing search algorithms for passive contrast-based autofocusing
has been quite well-studied in the literature. However, the majority of the work has
been on finding the nearest peak and there has been little work on finding the highest
peak or on identifying all peaks.

3.1 Finding nearest peak

He, Zhou, and Hong (2003) propose a coarse-to-fine search, where initially the search
algorithm takes coarse or large steps until a nearest peak is found (the value of the fo-
cus measure is decreasing) and then reverses direction and takes fine steps to narrow
down the location of the peak. The idea of a coarse-to-fine search has been influ-
ential in subsequent work, including the present work. We perform an experimental
comparison against He et al.’s search algorithm in Section 5.

Li (2005) proposes an algorithm that trades off accuracy for speed by only using
a medium-sized search step to find the nearest peak. The algorithm is suited for mo-
bile phone and compact cameras with a fast aperture (low f-number), where there
is a large depth-of-field and the lens is relatively easy to focus as there are several
indistinguishable (to the human eye) focus positions.

Chen, Hong, and Chuang (2006) propose an algorithm that iteratively samples
the focus measures at various lens positions, fits an equation to predict the location
of the nearest peak, takes coarse steps to be near the predicted peak, and finally takes
fine steps within a bisection search algorithm to find the peak.

Supervised machine learning approaches to finding the nearest peak have also
been proposed. Chen, Hwang, and Chen (2010) propose an algorithm that uses a
self-organizing neural network to predict the location of the nearest peak based on
sampling the focus measure at three places. Their approach is one of the first to be

based on supervised machine learning techniques. Han, Kim, Lee, and Ko (2011) also
use a supervised machine learning technique, a variation of 1-nearest neighbor, to
predict the location of the nearest peak based on sampling the focus measure at three
places. While these approaches are specific to the problem of finding the nearest peak,
we adapt some of their features in our supervised learning approach to the problems
of finding the highest peak and all peaks.

Zografos, Lenz, and Felsberg (2013) present a framework for low-level image
processing based on processing images with simple difference-based filters and fitting
a 2-parameter Weibull distribution to the filtered output. Important tasks, including
auto focusing, can then be solved by formulating an appropriate cost function and
solving a constrained optimization problem over the Weibull manifold.

3.2 Finding highest peak and all peaks

Kehtarnavaz and Oh (2003) develop a rule-based autofocus algorithm to find the high-
est peak and all peaks over an interval by performing a full sweep (see Algorithm 1).
The hand-crafted rules predict whether to move the lens a coarse, medium, or fine
step at each iteration as it sweeps the lens from near focus to far focus (Lines 1-16
in Algorithm 1). The goal of the heuristic is to move the lens larger steps but without
missing any peaks in the focus measure. In our approach we use machine learning to
devise a heuristic to determine the step size to move the lens. We perform a detailed
experimental comparison of the rule-based algorithm to our machine-learning-based
algorithm in Section 5. As well, as noted in Section 2.2, the Global search algorithm
can be used to find all peaks and the Fibonacci search algorithm can be used to find
the highest peak—provided the function is unimodal over the lens positions—and we
also compare against these baseline methods in Section 5.

4 Learning to Focus

In this section, we describe the methodology we followed to automatically construct
a search heuristic for autofocusing by applying techniques from supervised machine
learning. We explain the construction of the initial set of features (Section 4.1), the
collection of the data (Section 4.2), the use of the data to filter and rank the features
to find the most important features (Section 4.3), and the use of the data and the
important features to learn a simple heuristic for use within an iterative focusing
algorithm (Section 4.4).

4.1 Feature construction

A critical factor in the success of a supervised learning approach is whether the fea-
tures recorded in each example are adequate to distinguish all of the different cases.
We began with sixty features that were felt to be promising. The features are all
functions of the current value of the focus measure and previous values of the focus
measure. The sixty features were a mixture of generalizations of previously proposed

Algorithm 1: Kehtarnavaz and Oh (2003) rule-based search algorithm for
finding a maximum of a focus measure ¢(p) over a set of focus positions
pef{a,a+1,...,b}.

input : Function ¢(p) and interval [a,b]

output: Return maximum of ¢ (p) over p € {a,a+1,...,b}

k < 0; down + 0;

Feurrent < 05 Fygax < 0

pa

while p < b do
Fprevious <= Fcurrent

Feurrent < ¢([7);
if kK <5 then

| stepSize < Initial;
else

if FCurrent < 0.25- FMax then
| stepSize < Coarse; down < 0;
else
DF — FCurrent - FPrevious;
if Dr > 0.25- FPrevious then
| stepSize < Fine; down < 0;
else if stepSize = Fine and Dy > 0 then
| down < 0;
else if Dy < 0 then
if stepSize = Fine then down < down + 1,
if down = 3 then stepSize <— Mid;down < 0;

[R N T St S

[T
2 W R = S

else
|_ stepSize < Mid; down < 0,

SR
a »n

if Feurrent > Fuax then Fax < Feurrent’
k< k+1;
B | p < p-+stepSize; move the lens stepSize forward;

features and novel features. For previously proposed features, we generalized some of
the features used in Kehtarnavaz and Oh’s (2003) hand-crafted heuristic for choosing
the next step size and He, Zhou, and Hong’s (2003) ratio feature for deciding when
to reverse the search direction.

We also created many novel features for autofocusing. A more accurate clas-
sifier can often be achieved by synthesizing new features from existing basic fea-
tures, where here the basic features are the raw values of the focus measures. We
constructed novel features by applying simple functions or combinations of simple
functions to basic features. Examples of simple functions include comparison of two
features, the ratio of two features, and the log of the difference of two features. Ta-
ble 1 shows the full set of features that we considered. All of the features are Boolean
valued except for the feature downhillCount, which is four-valued.

4.2 Data collection

In addition to the choice of distinguishing features (see Section 4.1 above), a second
critical factor in the success of a supervised learning approach is whether the data

Table 1 The full set of sixty features considered in the machine learning approach. Feyrrents Fprevious, and
Fprevious2 are the values of the focus measure of the image at the current lens position, and at earlier lens
positions, respectively; down is the number of consecutive decreasing steps including the most recent step;
and up is the number of consecutive increasing steps.

Feurrent _> =1 15 y:8

ratio(x,y)
FPreuous
FP
ratiol (x,y) revious , o x=2,...,12, y=8
urrmt

downSlope(x,y)
FPrel vious /FCurrmt y

upSlope(x,y)

(FPreHousZ /FPrewuu.v > f

Feurrent Fprevious N f) ox=2 10, y=4

FPI‘GHOMS/FPYel ious2 y
downTrend = (FCurrent < Fprevious and Fppeyious < FPreviuu.vZ)

upTrend = (FCurrent > Fprevious and Fppeyious > FPreviuu.vZ)
downOrFlatTrend = (Fcyrrens < (1.005 % Fpyeyious) and
FPrevious < (1005 * FPreviousZ))
upOrFlatTrend = (Fcyprent > (1.005 % Fpyevious) and

FPrevious > (1005 * FPreviousZ))

a ifdown <1
if =2
downhillCount = b 1 down
¢ ifdown=3
d ifdown>4
uphillCount = (up > 1)

diff X
Di = .
log Uf(xmy) (log(FPreviuus) ~ y

if Fy Current < Fprevious

where diff = .
10g(Feurrent — Fprevious) if Feurrent > Fprevious

is representative of what will be seen in practice. The experimental methodology for
gathering representative data consisted of three stages. All implementations were in
C++ running under Windows 7'.

In the first stage, we implemented a camera remote control application whereby a
camera is tethered to a computer via a USB cable and controlled by the software run-
ning on the computer. Our remote control application makes use of the Canon SDK
(Version 2.11) and can control and replicate the basic functionality of the camera
such as setting the aperture, displaying the live preview stream, and controlling the
focus position of the lens. Using the remote control software, we gathered 25 sets of
benchmark images that covered a range of common photography settings including
landscapes, closeups, interiors, and still lifes, as well as various lighting conditions
including daylight, shade, cloudy, and lowlight. Each of the sets of benchmark images
contains either 167 (when using a S0 mm lens) or 231 (when using a 200 mm lens)

! The software and data are available at: https://cs.uwaterloo.ca/~vanbeek/research.

Fine

step size

Coarse

! ! !

0O 20 40 60 80 100 120 140 160

lens position

Fig. 2 Focus measures of images at each of the 167 lens positions for an example scene labeled with the
best next step to take (a Fine step, or a Coarse step) when sweeping the lens from near to far (left to right
in graph).

jpeg images, one for each focus position of the lens. The jpeg images are captured
from the live preview stream once the lens is moved from one position to the next.
The camera used in our experiments was a Canon EOS 550D/Rebel T2i.

In the second stage, we obtained the focus measurements and the correct labels
for each focus position within each benchmark. In supervised learning, each instance
in the data is a vector of feature values and the correct classification or label for that
instance. In our approach, the class label is either “Fine”, a single step of the lens,
or “Coarse”, a large step of the lens corresponding to eight single steps. We restrict
the class labels to just two step sizes as these were the only two step sizes available
on both the lenses used in our experimental setup. Given a benchmark set of images,
the squared gradient focus measure was applied to each jpeg image in the benchmark
(see Figure 2 for an example). Each focus measurement was then labeled with either
Coarse or Fine, depending on what was judged to be the best stepsize at that point
if one were performing a sweep from near focus to far focus. For example, for the
example focus measurement graph shown in Figure 2, if the current lens position is
anywhere from position 3086, the best stepsize to take would be a Coarse step (in
order to step quickly through the lens positions), and from positions 87—113 the best
stepsize would be a Fine step (in order not to miss the peak). The focus measurements
were labeled in a semi-automated manner where an automatically generated labeling
was then refined by hand to remove any anomalies due to noise.

In the third and final stage, we generated the actual machine learning data using
a forward simulation of a sweep autofocusing algorithm. The input to the simulation
was a set of labeled focus measurements for a benchmark. The algorithm starts at
near focus and at each lens position until it reaches far focus it does the following: (i)
outputs the values of the full set of sixty features (see Table 1) using the current values

10

st —> Comse)

Fig. 3 State diagram illustrating the control algorithm. In the initial state, the lens is in the near focus
position and the autofocus algorithm takes a Coarse step. The autofocus algorithm continues to take Coarse
steps or Fine steps, and transitions between Coarse and Fine Steps until the lens reaches the far focus
position.

of Feurrents Frreviouss Fprevious2» down, and up; (ii) outputs the class label associated
with that lens position; and (iii) steps forward the distance specified by the class
label.

Several key techniques allowed us to greatly improve the quality of our data and
the resulting efficiency and accuracy of our approach.

1. We separated the problem of learning a single heuristic for predicting the next
stepsize into the problem of learning two heuristics: a heuristic for when the aut-
ofocus algorithm should transition from taking Fine steps to taking Coarse steps
(i.e., predicting the next stepsize when the last step taken was a Fine step), and
a heuristic for when to transition from taking Coarse steps to taking Fine steps
(i.e., predicting the next stepsize when the last step taken was a Coarse step). The
control algorithm is illustrated in Figure 3. In essence, we have replaced a single
heuristic for predicting Fine step vs Coarse step with two heuristics: the first for
predicting Coarse step vs not Coarse step and the second for predicting Fine step
vs not Fine step. Separating into two heuristics allows each hypothesis (heuristic)
to cover the structure of and to be specialists for each problem independently,
resulting in more accurate classification overall (see Alpaydin, 2010, pp. 32-34)

2. We added noise to the forward simulation. With some small probability p (in our
experiments we used p = 0.10), the simulation will make a mistake either by
taking a Coarse step, when the best stepsize would have been a Fine step, or vice-
versa. The simulation is then repeated 10 times for each benchmark. We found
that without the added noise, the heuristics that were learned were brittle: once
a mistake was made, they did not recover. With the added noise, the heuristics
robustly recover from mistakes.

3. We balanced the data sets. A data set is balanced if the frequency of the classes is
approximately equal. Imbalanced data sets can lead to poor predictive accuracy.
In our case, the initial data was quite imbalanced. Consider the case where the
forward simulation of the autofocus algorithm is taking Coarse steps and we are
learning when to transition from taking Coarse steps to taking Fine steps. Most of
the time the best next step is to continue to take Coarse steps, and only quite rarely
to transition to Fine steps. To balance the data sets, we used the simple but effec-
tive technique of duplicating the instances from the minority class (Van Hulse
et al, 2007).

We obtained a total of 22,794 and 36,580 instances for learning a heuristic when
the last step taken was a Fine step and a Coarse step, respectively.

11

4.3 Feature selection

Once the data was collected but prior to actually learning the heuristics, the next step
that we performed was feature selection. The goal of feature selection is to select only
the most important features for constructing good heuristics. The selected features are
then retained in the data and subsequently passed to the learning algorithm and the
features identified as irrelevant or redundant are deleted. There are two significant
motivations for performing this preprocessing step: the efficiency of the learning pro-
cess can be improved and the quality of the heuristic that is learned can be improved
(many learning methods, decision tree learning included, do poorly in the presence
of redundant or irrelevant features (see Witten and Frank, 2000, pp. 231-232)).

Many feature selection methods have been developed (see, for example, Guyon
and Elisseeff (2003) and the references therein). To perform feature selection, we
used the Weka (Version 3.6.9) open source machine learning software (Hall et al,
2009). In particular, we used Weka’s best first search with the default parameters,
a greedy hill-climbing method augmented with limited backtracking that searches
forward starting from the empty set of features and adds features as long as the feature
evaluator indicates improvement. The feature evaluator we used evaluates a set of
features by (i) constructing a decision tree classifier using the subset of features, (ii)
using 10-fold cross-validation (see Hastie et al, 2009, pp. 241-249) to estimate the
accuracy of the decision tree classifier, and (iii) finally using the accuracy estimate as
a figure of merit for the subset of features. For the construction of the decision tree
classifier, we used the default settings with the exception that we set the minimum
number of training instances at a leaf to 256 since, as noted in Section 4.2, lots of
data was available.

Table 2 The features selected for learning a heuristic when the last step taken was a Fine step and when
the last step taken was a Coarse step.

last step | features

Fine ratio(8,8)

Coarse ratio(10,8) ratio(11,8) ratiol (9,8)
downSlope(9,8) upSlope(8,4) upTrend logDiff (6,8)

Table 2 shows the features that remained after selection. All of these features
appeared in all 10 of the cross validation tests, an indication of their robustness. For
the heuristic that predicts Fine step vs not Fine step, a single feature based on upward
slope is enough of a signal to indicate the impending presence of a peak. For the
heuristic that predicts Coarse step vs not Coarse step, a more elaborate set of features
are needed to identify the cases where (i) there is a long gentle upward or downward
trend in the focus measure and (ii) a peak has just been passed and there is a rapid
descent.

12

Algorithm 2: Machine-learning-based search algorithm for finding a maximum
of a focus measure ¢ (p) over a set of focus positions p € {a,a+1,...,b}.

input : Function ¢(p) and interval [a,b]
output: Return maximum of ¢ (p) over p € {a,a+1,...,b}
lastStep <— Coarse;

A Feurren < 9(a);
FMaX <~ FCurrent; FPreviuusZ — FCurrent; FPreviou.\ — FCurrent;

B p < a+ Coarse; move the lens Coarse steps forward;
while p < b do

F Previous2 <~ Fpreviouss
Fprevious <= Feurrent’
A Feurvent < ¢([7);
if lastStep = Fine then
1 if ratio(8,8) = 0 then stepSize < Coarse;
2 if ratio(8,8) = 1 then stepSize < Fine;
if lastStep = Coarse then
3 if ratio(10,8) = 0 then
4 if downSlope(9,8) = 0 then stepSize < Coarse;
5 if downSlope(9,8) = 1 then
6 if ratiol (9,8) = 0 then
7 if logDiff (6,8) =0 then
8 if upSlope(8,4) = 0 then stepSize < Coarse;
9 L if upSlope(8,4) = 1 then stepSize < Fine;
10 if logDiff (6,8) = 1 then
1 if upTrend = 0 then stepSize < Fine;
12 L if upTrend = 1 then stepSize < Coarse;
13 if ratiol (9,8) = 1 then stepSize <+ Coarse;
14 if ratio(10,8) = 1 then
15 if downSlope(9,8) = 0 then
16 if ratio(11,8) = 0 then stepSize < Coarse;
17 if ratio(11,8) = 1 then stepSize < Fine;
18 if downSlope(9,8) = 1 then stepSize < Fine;
if Feurrent > Fuax then Fuax < Feurrents
lastStep < stepSize;
B p < p+ stepSize; move the lens stepSize forward,

4.4 Classifier selection

The next step is to actually learn the heuristics from the data, where the data contains
only the features that passed the selection step (see Table 2). To learn a classifier, we
used Weka’s (Hall et al, 2009) J48 implementation of Quinlan’s C4.5 decision tree al-
gorithm (Quinlan, 1993). We chose decision tree classifiers for learning the heuristics
over other possible machine learning techniques because they are accurate, easy to
understand, and efficient to evaluate. The software was run with the default parameter
settings, with the exception that we again (as in feature selection) set the minimum
number of instances at a leaf to 256 since lots of data was available and it resulted in
much simpler trees. Algorithm 2 shows the final decision trees in algorithmic form, as
would be incorporated into a sweep autofocus routine of a camera. Lines 1-2 corre-

13

spond to the heuristic learned when the last step taken was a Fine step, and Lines 3—18
correspond to the heuristic learned when the last step was a Coarse step. The autofo-
cus algorithm accepts an interval [a,a+ 1,...,b] over which to search, where a is the
starting lens position, and returns the position of the maximum focus measure over
the interval.

5 Experimental Evaluation

In this section, we empirically evaluate the effectiveness of our machine-learning-
based (ml-based) heuristics. We compare against He et al.’s (2003) hill-climbing al-
gorithm, the Fibonacci search algorithm, the Global search algorithm, and Kehtar-
navaz and Oh’s (2003) rule-based heuristic. Recall that the Global search algorithm
can be used to find all peaks and the hill-climbing and Fibonacci search algorithms
can be used to find the highest peak—provided the function is unimodal over the lens
positions. Both Kehtarnavaz and Oh’s rule-based heuristic and our ml-based heuris-
tics were incorporated into a sweep focusing algorithm for finding the highest peak
over the full range of lens positions for a lens (see Algorithms 1 & 2, respectively).
Following Kehtarnavaz and Oh (2003), in Algorithm 1 we used the squared gradient
focus measure and we used 1, 3, and 10 steps for the Fine, Mid, and Coarse stepsizes,
respectively. In our Algorithm 2 we used the squared gradient focus measure and we
used 1 and 8 for the Fine and Coarse stepsizes, respectively, as these correspond to
the stepsizes for Canon cameras.

We compare the algorithms on speed and accuracy using the following perfor-
mance measures.

e [terations. The number of focusing iterations is important as it is directly related
to focusing time (Kehtarnavaz and Oh, 2003). Each iteration of an autofocus al-
gorithm involves: (i) computing the focus measure for an image acquired at the
current lens position (Lines A in Algorithms 1 & 2), (ii) determining which di-
rection and how far to move the lens (the heuristics shown as Lines 1-16 in Al-
gorithm 1 and Lines 1-18 in Algorithm 2), and (iii) sending a control signal to
the step motor to move the lens (Lines B in Algorithms 1 & 2). Sending a control
signal to the step motor causes a starting and ending delay and a waiting time to
stabilize and synchronize with the focus control hardware (Kehtarnavaz and Oh,
2003). The computation time for the heuristics (measured in tens of microsec-
onds) is dwarfed in comparison with the total time needed to compute the focus
measure of an image and especially by the total time needed to move and stabilize
the lens (measured in tens of milliseconds).

e Steps. The number of steps that the step motor moves the lens is important as
it is directly related to power consumption (Kehtarnavaz and Oh, 2003). As an
example, each time the step motor moves the lens a Coarse step in Algorithm 2,
8 steps are added to the total number of steps.

o Peaks found. Recall that our goal is to identify both the highest peak and all sig-
nificant peaks in the focus measure across the lens positions. Thus, we compare
the algorithms on (i) whether the algorithm found the lens position corresponding
to the highest peak in the focus measure, and (ii) whether the algorithm found all

14

of the significant peaks in the focus measure. The hill-climbing and Fibonacci
algorithms return a single lens location, so there is no ambiguity over whether
these algorithms found the highest peak or a significant peak. For Kehtarnavaz
and Oh’s rule-based and our ml-based heuristics, an algorithm was only consid-
ered to have found a peak if the lens arrived at that position during the course of
the algorithm while taking a Fine step.

We test the algorithms on two benchmark suites.

1. The original benchmark suite that corresponds to common photography settings
and was used in learning the heuristics. In this benchmark suite there are a total
of 4,303 images (23 of the benchmarks have 167 images; two of the benchmarks
have 231 images).

2. A holdout benchmark suite from a challenging focus stacking setting, where the
images were chosen to give rise to more difficult multi-modal focus measures. In
this benchmark suite there are a total of 1,456 images (6 of the benchmarks have
167 images; two of the benchmarks have 227 images). These benchmarks were
not used in learning the heuristics.

As the original benchmark suite was used in learning the heuristics, we use the
following adaptation of simple resampling to obtain reliable estimates of the per-
formance of the heuristics on common photography settings when incorporated into
Algorithm 2 (see Japkowicz and Shah, 2011, pp. 161-205). For each of the 25 bench-
marks in turn, we performed the following: (i) set aside the current benchmark, call
it the fest benchmark; (ii) collect the machine learning data (as in Section 4.2), but
using only the remaining 24 benchmarks, omitting the test benchmark; (iii) perform
feature selection (as in Section 4.3), but again using only the data that omits the test
benchmark; (iv) learn the heuristics (as in Section 4.4), but again using only the data
and features selected using the machine learning data that omits the test benchmark;
(v) incorporate the learned heuristics into the sweep autofocusing algorithm (i.e., re-
place Lines 1-2 and Lines 3-18 in Algorithm 2 with the newly learned heuristics);
and (vi) run Algorithm 2 with the newly learned heuristics on the test benchmark and
record the performance measures (see Table 3). It is important to note that each time
we perform the above, we are learning the heuristics from one set of benchmarks, fix-
ing the heuristics, incorporating the heuristics into the autofocusing algorithm, and
evaluating the autofocusing algorithm on a different benchmark not used in learning
the heuristics. Note as well that, following best practice, we perform a nested feature
selection using only the data that excludes the test benchmark (see Hastie et al, 2009,
pp. 241-249).

As the focus stacking benchmark suite was not used in learning, we run Algo-
rithm 2 directly on each test benchmark with no modifications and record the perfor-
mance measures.

Table 3 summarizes the results of the empirical evaluation on the benchmark
suite for common photography settings. On these benchmarks, the Fibonacci (Kiefer,
1953) and hill-climbing (He et al, 2003) algorithms were both fast but inaccurate, of-
ten missing the highest peak and one time not finding any peak (due to small amounts
of noise in the focus measurements). The rule-based algorithm (Kehtarnavaz and Oh,

15

Table 3 Number of focusing iterations (iter.) and number of steps (step) taken by Fibonacci (Kiefer,
1953), hill-climbing (He et al, 2003), rule-based (Kehtarnavaz and Oh, 2003), and machine-learning-based
focusing algorithms using the squared-gradient focus measure. Also shown are the peaks found in the form
x/y, where x is the number of peaks found and y is the total number of peaks. A red (dark) entry indicates
that an algorithm did not find the lens position for which the focus measure was at a maximum. A yellow
(light) entry highlights that an algorithm did not find all peaks in the focus measure. Global search takes
167 iterations and steps on each benchmark, except for the benchmarks cat and moon, where it takes 231
iterations and steps. The last column shows the speedup in iterations of the proposed machine-learning-
based algorithm over the previous rule-based algorithm.

test Fibonacci hill-climb rule-based ml-based

benchmark | iter. step | iter. step | iter. step peak | iter. step peak speedup
backyard 12 176 26 166 75 162 1/1 54 165 1/1 28.0%
bench 12 171 28 168 70 163 1/1 31 163 1/1 55.7%
book 12 226 15 43 41 165 1/1 35 160 1/1 14.6%
bridge 12 166 26 173 75 166 1/1 46 164 1/1 38.7%
building! 12 166 26 173 67 166 1/1 39 164 1/1 41.8%
building2 12 166 27 174 66 165 1/1 24 163 1/1 63.6%
building3 12 166 28 175 67 164 1/1 30 162 1/1 55.2%
cat 13 283 71 227 212 43 224 212 39.4%
cupl 12 226 62 158 1/1 36 161 1/1 41.9%
cup2 59 159 172 32 164 172 45.8%
cup3 64 163 172 34 166 172 46.9%
cup4 67 166 3/3 36 161 3/3 46.3%
fabric 57 161 1/1 34 159 1/1 40.4%
flower 12 212 66 159 2/2 41 166 2/2 37.9%
interior] 74 166 11 | 55 159 11 25.7%
interior2 12 223 23 77 162 3/4 46 164 3/4 40.3%
lamp 12 267 20 72 165 3/4 42 160 4/4 41.7%
landscapel 78 165 1/1 52 163 1/1 33.3%
landscape?2 75 166 1/1 46 164 1/1 38.7%
landscape3 71 166 1/1 41 166 1/1 42.3%
moon 13 288 87 228 1/1 38 226 1/1 56.3%
screen 12 226 43 164 172 62 166 2/2 —44.2%
snails 12 221 57 159 1/1 37 162 1/1 35.1%
stillLife 12 184 27 153 64 163 1/1 37 162 1/1 42.2%
vase 19 96 52 157 1/1 31 163 1/1 40.4%

2003) always found the highest peak and missed a lesser peak on five of the bench-
marks (for two of those peaks, the algorithm was only off by 1 and 2 lens positions,
respectively). Our ml-based algorithm also always found the highest peak and missed
a lesser peak on only three of the benchmarks. Thus, our ml-based heuristic is some-
what more accurate than the rule-based heuristic. However, the main advantage of
our ml-based heuristic is in speed: it is faster on 24 of the benchmarks and in the one
case where it is slower, it is more accurate. The ml-based heuristic is 37.9% faster
on average over all 25 benchmarks and 41.3% faster on average if one excludes the
benchmark where it is more accurate.

Table 4 summarizes the results of the empirical evaluation on the holdout bench-
mark suite from the focus stacking setting. On these benchmarks, the rule-based al-
gorithm (Kehtarnavaz and Oh, 2003) always found the highest peak and missed a
total of seven lesser peaks. Our ml-based algorithm missed finding the highest peak

16

Table 4 Number of focusing iterations (iter.) and number of steps (step) taken by rule-based (Kehtarnavaz
and Oh, 2003) and machine-learning-based focusing algorithms using the squared-gradient focus measure
on difficult focus stacking benchmarks.

test rule-based ml-based

benchmark iter. step peak | iter. step peak speedup
garden 71 162 2/2 54 165 2/2 23.9%
bars 74 166 2/2 64 161 2/2 13.5%
books+chairs 67 161 2/6 49 160 4/6 26.9%
backpack 77 164 12 39 164 12 49.4%
cans 69 158 3/3 47 165 3/3 31.9%
coins 65 222 12 39 220 40.0%
gerbers 42 220 2/3 46 220 3/3 —9.5%
trail 70 164 2/2 65 162 2/2 7.1%

on one benchmark and missed a total of three lesser peaks. In each case that a peak
was missed, it was missed by enough lens positions to fall outside of “acceptable
focus”; i.e., the region or object in the image corresponding to the peak was visibly
out-of-focus when the corresponding image was inspected. Once again our ml-based
heuristic has the advantage in speed with an average of 22.9% fewer iterations.

The question arises as to how the current proposal compares to autofocusing on
commercially available cameras. Fortunately, the question can be partially answered
albeit indirectly. Gamadia and Kehtarnavaz (2009) present a real-time implementa-
tion of a modification of the rule-based algorithm on a Texas Instruments DM350
processor, where the rule-based algorithm has been modified to stop at the nearest
peak (Peddigari et al, 2005). As is the case with the camera’s autofocus algorithm
running on the camera’s on-board processor, the DM350 processor then controls the
lens directly with no communication delays. In Gamadia and Kehtarnavaz’s (2005)
experimental evaluation, it is shown that the real-time implementation of the rule-
based algorithm is able to perform nearest peak autofocusing faster than commercial
cameras. Speed-ups of from 27.6% to 84.0% are reported for five common point-
and-shoot commercial cameras and both wide and zoom modes (see Gamadia and
Kehtarnavaz, 2009, Table 2). Thus, given that our algorithm performs between one-
fifth and one-third fewer iterations on average than the rule-based algorithm, there
is good reason to believe that our proposal will be faster still than these commercial
cameras. Note that the time taken to calculate the next step to take (the computa-
tion of the heuristics) is negligible, taking on the order of 45 microseconds and 70
microseconds for Algorithm 1 and Algorithm 2, respectively. Thus, even though our
heuristic is slightly more time consuming to compute, the time taken to compute the
heuristics is dwarfed by the time taken to compute the focus measure and control the
lens and it is the reduction in these calls that leads to time savings.

6 Conclusion
The speed and accuracy of a digital camera’s contrast-based autofocus algorithm are

crucial to user satisfaction. Previous work has proposed a hand-crafted rule-based
autofocus heuristic to find the peak focus (Kehtarnavaz and Oh, 2003). We showed

17

that supervised machine learning techniques can be used to construct heuristics that
out-perform a hand-crafted heuristic and other baseline methods. We gathered an
extensive set of benchmark images that covered a range of common photography
settings. Offline simulation was then used to construct the machine learning data and
decision tree heuristics were induced from the data. In our experiments, the machine-
learning-based algorithm was significantly faster—reducing the number of iterations
needed to focus by 37.9% on average in common photography settings and 22.9% on
average in a more difficult focus stacking setting—while maintaining accuracy.

Acknowledgements This work was supported in part by a University of Waterloo President’s Scholarship
of Distinction, an NSERC USRA award, and an NSERC Discovery Grant.

References

Alpaydin E (2010) Introduction to Machine Learning, 2nd edn. The MIT Press

Chen C, Hong C, Chuang H (2006) Efficient auto-focus algorithm utilizing discrete
difference equation prediction model for digital still cameras. IEEE Trans Con-
sum Electron 52:1135-1143

Chen CY, Hwang RC, Chen YJ (2010) A passive auto-focus camera control system.
Applied Soft Computing 10:296-303

Cicala R (2012) Autofocus reality. http://www.lensrentals.com/blog/2012/07, Ac-
cessed April 5, 2014

Gamadia M, Kehtarnavaz N (2009) Real-time implementation of single-shot passive
auto focus on DM350 digital camera processor. In: Real-Time Image and Video
Processing (SPIE Vol. 7244)

Groen F, Young I, Ligthart G (1985) A comparison of different focus functions for
use in autofocus algorithms. Cytometry 6:81-91

Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J of
Machine Learning Research 3:1157-1182

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The
WEKA data mining software: An update. SIGKDD Explorations 11

Han JW, Kim JH, Lee HT, Ko SJ (2011) A novel training based auto-focus for mobile-
phone cameras. IEEE Trans Consum Electron 57:232-238

Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning: Data
mining, Inference and Prediction, 2nd edn. Springer

He J, Zhou R, Hong Z (2003) Modified fast climbing search auto-focus algorithm
with adaptive step size searching technique for digital camera. IEEE Trans Con-
sum Electron 49:257-262

Japkowicz N, Shah M (2011) Evaluating Learning Algorithms: A Classification Per-
spective. Cambridge University Press

Kehtarnavaz N, Oh HJ (2003) Development and real-time implementation of a rule-
based auto-focus algorithm. Real-Time Imaging 9:197-203

Kiefer J (1953) Sequential minimax search for a maximum. Proc American Mathe-
matical Society Fibonacci algorithm; see also Donald E. Knuth, ”The Art of Com-
puter Programming (2nd edition)”, vol. 3, p. 418

18

Lee SY, Kumar Y, Cho JM, Lee SW, Kim SW (2008) Enhanced autofocus algorithm
using robust focus measure and fuzzy reasoning. IEEE Trans Circuits Syst Video
Tech 18:1237-1246

Li J (2005) Autofocus searching algorithm considering human visual system limita-
tions. Optical Engineering 44:113,201-4

Mir H, Xu P, van Beek P (2014) An extensive empirical evaluation of focus measures
for digital photography. In: Proc. SPIE 9023, Digital Photography X

Morgan-Mar D, Arnison MR (2013) Focus finding using scale invariant patterns. In:
Proc. SPIE 8660, Digital Photography IX

Peddigari V, Gamadia M, Kehtarnavaz N (2005) Real-time implementation issues in
passive automatic focusing for digital still cameras. Journal of Imaging Science
and Technology 49:114-123

Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann

Rahman M, Kehtarnavaz N (2008) Real-time face-priority auto focus for digital and
cell-phone cameras. IEEE Trans Consum Electron 54:1506-1513

Santos A, Ortiz de Solérzano C, Vaquero JJ, Pefia JM, Malpica N, del Pozo F (1997)
Evaluation of autofocus functions in molecular cytogenetic analysis. Journal of
Microscopy 188:264-272

Subbarao M, Tyan JK (1998) Selecting the optimal focus measure for autofocusing
and depth-from-focus. IEEE Trans Pattern Anal Mach Intell 20:864—-870

Van Hulse J, Khoshgoftaar TM, Napolitano A (2007) Experimental perspectives on
learning from imbalanced data. In: Proc. of the 24th International Conference on
Machine Learning, pp 935-942

Vaquero D, Gelfand N, Tico M, Pulli K, Turk M (2011) Generalized autofocus. In:
IEEE Workshop on Applications of Computer Vision

Witten IH, Frank E (2000) Data Mining. Morgan Kaufmann

Zografos V, Lenz R, Felsberg M (2013) The Weibull manifold in low-level image
processing: An application to automatic image focusing. Image and Vision Com-
puting 31:401-417

