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ABSTRACT

Focus stacking, or all-in-focus imaging, is a technique for
achieving larger depth of field in an image by fusing images
acquired at different focusing distances. Minimizing the set
of images to fuse, while ensuring that the resulting fused im-
age is all-in-focus, is important in order to avoid long image
acquisition and post-processing times. Recently, an end-to-
end system for focus stacking has been proposed that auto-
matically selects images to acquire. The system is adaptive to
the scene being imaged and shows excellent performance on
a mobile device, where the lens has a short focal length and
fixed aperture, and few images need to be selected. However,
with longer focal lengths, variable apertures, and more se-
lected images (as exists with other cameras, notably DSLRs),
classification and algorithmic inaccuracies become apparent.
In this paper, we propose improvements to previous work that
remove these limitations, and show on eight real scenes that
overall our techniques lead to improved accuracy while re-
ducing the number of required images.

Index Terms— Focus stacking, increased depth of field,
computational photography

1. INTRODUCTION

Focus stacking combines several images captured at differ-
ent focusing distances into a single image to produce a larger
depth of field. It is useful when the camera is unable to ac-
quire an all-in-focus image or when the quality of an all-in-
focus image would be degraded because the narrow aperture
results in a shutter speed too slow to freeze motion. The mo-
tivations for obtaining an all-in-focus image range from the
aesthetic to the practical: architectural, interior, and macro
photography, as well as pattern recognition and object detec-
tion [2, 3].

An essential part of focus stacking is selecting the set of
images to be fused. The set must be small, in order to de-
crease capture and fusion times, but must result in an all-in-
focus image. Time between image captures can be on the
order of seconds, so even gradual motion can impact quality.
However, in contrast to a wide literature on combining a set
of images into a single image (see, e.g., [4—6]), image selec-
tion has not received much attention. The simple approach of
moving the lens a uniform step-size and acquiring an image at

each step leads to sets which contain images with nothing in
focus or redundant images. Hasinoff et al. [7-9] considered
the problem of quickly selecting the set of images to cover a
given depth of field. However, their analysis neglects camera
overhead, image post-processing, and ranges without objects.

Vaquero et al. [1] presented an end-to-end system that
adaptively selects a minimal set of high-resolution images to
acquire by processing a stream of low-resolution ones (which
can be acquired quickly). It had the camera display a final all-
in-focus image, allowing the photographer to verify the final
result in the field (see Fig. 1). Their system showed excellent
performance on a mobile device, where the lens has a short
focal length and a fixed aperture.

Unfortunately, as we show, their techniques which work
well for mobile devices do not necessarily generalize well to
DSLRs, which feature lenses with longer focal lengths and
variable apertures, and so require many more images for fo-
cus stacking. We propose improvements to the work of Va-
quero et al. [1] which afford increased performance on non-
mobile devices. Our improvements make use of shape from
focus techniques (see, e.g., [2, 10, 11]), supervised machine
learning techniques (see, e.g., [12, 13]), and standard depth of
field equations to improve on previous inefficiencies. Empir-
ically, on eight real scenes and various aperture settings, our
techniques lead to an overall improved accuracy while signif-
icantly reducing the cardinality of the selected set of images.

2. OUR PROPOSALS

We first summarize Vaquero et al.’s [1] system (see Fig. 1),
then describe our proposed improvements.
Vaquero et al.’s [1] approach proceeds as follows:

Step 1. Capture a stack of low-resolution images p =
0,...,n — 1 by sweeping the lens slowly enough that the
depths of field for adjacent images overlap.

Step 2. Overlay a grid on each image and calculate a focus
measure ¢, ;(p) for each cell (4, j) in the grid for each image
(see Fig. 2). A focus measure maps an image to a value that
represents its degree of focus (see, e.g., [14-16]). Let f(z,y)
be the luminance at pixel (x,y) in an image. Here, the focus
measure for a cell of size w x h pixels is given by:
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Fig. 1. Pipeline for Vaquero et al.’s [1] end-to-end system for image set selection and fusion for an all-in-focus image.

Then, classify each cell (¢, 7) in the grid as foreground iff the
standard deviation of its focus measures across all images is
above a given threshold ¢; (see Alg. 1, Line 4). Ignore back-
ground cells in Step 3.
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Fig. 2. Focus measures constructed for two cells from the
example scene shown in Fig. 1; (left) cell with a well-defined
peak; (right) cell where reliability of the peak is less clear.

Step 3. A key insight of Vaquero et al. [1] is that the prob-
lem of selecting the final set of images to fuse into a single
all-in-focus image can be mapped to a set covering problem.
Let A be an m x n (0-1)-matrix. A row ¢ of A is covered
by a column j if the corresponding matrix entry a;; is equal
to one. The set covering problem is to find a subset of the
columns C C {1,...,n} that minimizes the cardinality of C'
such that every row is covered; i.e., for every i € {1,...,m}
there exists a j € C such that a;; = 1. They setup a set cov-
ering instance where the rows are the foreground cells, the
columns represent the images, and an entry is 1 if and only
if the cell is in-focus in that image (based on whether ¢; ;(p)
was within some threshold ¢ of the maximum value of that
cell; see Lines 5-12 in Alg. 1). In general, solving set cov-
ering is NP-hard [17], however, due to the consecutive ones
property present in focus stacking, selection can be computed
linearly in the number of images [18].

Steps 4 & 5. Acquire high-resolution images at the specified
lens positions of the set covering instance and fuse them into
a single all-in-focus image.

The issue arises in Steps 2 & 3 of their pipeline, where
due to hand-crafted heuristics using ¢ and ¢,, some cells are
incorrectly classified into foreground, background, in-focus,
and out-of focus, and slightly incorrect peaks are found. We
now describe improvements to address these problems.

Algorithm 1: Vaquero et al. [1] hand-crafted heuristic.

input : Focus measure ¢; ;(p), for each cell (4, j) and
p=0,...,n — 1; thresholds t; and ¢,
output: Set covering instance as an m X n (0,1)-matrix

A= lag,y

1 k<0

2 foreach cell (7, j) do

3 o=std{¢;j(p) | p=0,...,n—1};

4 if 0 > t; then

5 app < 0,p=0,...,n—1;

6 M = argmax {¢;;(p)};

p=0,...,n—1

7 A, M < 1;

8 p—M-—-1;

9 while ¢i7j(M) — d)i,j (p) < to and Ak p+1 = 1
do app+— Lip+p—1;;

10 p<+ M+1,

11 while ¢; ; (M) — ¢; ;j(p) <tz and arp—1 =1
do app, +— Lip+—p+1;;

12 k+—k+1,

2.1. Constructing an explicit depth map

Rather than classify a cell as foreground or background (Step
2, Line 4 in Alg. 1) we construct an explicit depth map us-
ing shape from focus techniques [2, 10, 11] and use super-
vised machine learning to construct a classifier that predicts
whether a depth estimation is reliable or unreliable. An exam-
ple of an unreliable depth estimate is a plain white wall that
lacks contrast or texture. Note that Vaquero et al. [1] implic-
itly construct a depth map and classify estimates (into what
they call foreground and background) by using the standard
deviation of focus measures for a cell.

To construct a depth map, we used the standard method
where the lens position of the focus measure peak in a cell
across all images is the estimate of the depth of the scene
at that cell. The maps were improved by smoothing the fo-
cus measures for a cell to reduce depth estimate noise, and
finding the peak of the smoothed focus measures. Smoothing



consisted of summing the measures of the cell under consid-
eration and eight adjacent cells (or fewer at boundaries).

We constructed the classifier for depth estimation relia-
bility by training a decision tree [19] based on 60 features of
each cell, one of which was the standard deviation used by
Vaquero et al. [1], to create a more robust classification.

2.2. Classifying in-focus and out-of-focus

Once the depth estimate for a cell has been computed and
classified as reliable, the next step is to determine which lens
positions around the peak are in acceptable focus. Vaquero
et al. [1] used a simple heuristic where consecutive lens po-
sitions whose focus measure was within some tolerance to
of the peak were deemed to be in acceptable focus (Step 3,
Lines 9 & 11 in Alg. 1). However, while intuitive, this heuris-
tic relies on two assumptions that do not hold in general.

First, the heuristic assumes that a focus measure close to
the peak in absolute terms is also in acceptable focus. How-
ever, focus curves often have distinguished peaks but small
absolute heights. In these cases, reasonable tolerance values
inaccurately deem most or all of the lens positions as in-focus.
Second, the heuristic assumes that the aperture at which low-
resolution images are acquired from the live preview stream is
the same as the aperture at which high-resolution images will
be acquired. However, to improve the accuracy of focusing
and to maintain a fast shutter speed (approximately twice the
video frame rate), in live preview mode the camera opens the
aperture as wide as possible given the brightness of the scene.
Typically, this can be as different as a wide aperture of f/1.4
versus a narrower aperture of f/8.0, and any depth of field
estimate from the wide aperture would not be accurate for the
narrower aperture.

Rather than estimate depth of field from the focus mea-
sures we propose to instead use standard depth of field equa-
tions to predict in-focus and out-of-focus,

h = 72+fa dnear = d(h — f> 3 dfar = d(h — f);
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where a is the aperture, c is the circle of confusion, d is the
distance to the subject, f is the focal length of the lens, A is the
hyperfocal distance, and all calculations are in millimeters.
The circle of confusion is the diameter of the largest blur spot
indistinguishable from a focused point source of light [20],
and has established values for most contexts.

After computing a distance interval [dyeqr, dfar], repre-
senting a depth of field in millimeters, that would lead to in-
focus objects, one must compute an acceptable lens interval,
representing starting and ending lens positions. This is accu-
rately done by determining which lens positions correspond
to the distance markings on a lens, and interpolating between
these lens positions to determine the remaining ones. Interpo-
lation uses the difference in reciprocals of the distances times
the proportion of the distance between lens positions.

2.3. Robust selection of images via set covering

To improve image selection (Step 3) robustness, we use the
explicitly constructed depth map to augment the set cover-
ing instance as follows. Let L be the set of peaks classified
as reliable in the depth map. For each consecutive sequence
of lens positions p;, Pi+1,- - -, Pi+k in L, such that p;_; and
Pi+k+1 do not occur in L, the lens positions p;—; and p;4x+1
are added to L. The augmented set L is then used to construct
the set covering instance, where each element of L is a row in
the set covering matrix. This augmentation smooths the dis-
crete nature of dividing an image into a grid, which addresses
problems like dramatic depth changes between adjacent cells
of continuous objects (such as a book angled sharply away).
Smoothing makes image selection more accurate while occa-
sionally modestly increasing the number of images selected.

3. EXPERIMENTAL EVALUATION

In this section, we perform a comparative evaluation of our
improvements with the baseline Vaquero et al. [1] approach’.

3.1. Experimental methodology

Image sets. We acquired eight benchmark image sets using a
camera remote control application we implemented. A Canon
EOS 550D/Rebel T2i camera was tethered to a computer via
a USB cable and controlled by software, which makes use of
the Canon SDK (Version 2.11). The Canon SDK does not
expose functionality for sweeping the lens (Step 1, Fig. 1) so
we simulated the effect by stepping the lens through the pos-
sible lens positions and acquiring a 1056 x 704 low resolution
image from the live preview stream at each step. For evalua-
tion, 5184 x 3456 high resolution images were also acquired
at each lens position.

Decision tree training. We constructed labeled training
data by consensus for the depth estimation reliability deci-
sion tree classifier by overlaying a grid on the low resolu-
tion images and visually inspecting each cell to determine
the peak focus position (or no valid peak if the cell lacked
contrast or had multiple peaks, as would occur with a blank
wall or multiple occluding objects). The decision tree itself
considered about 60 features based on properties of the fo-
cus measure curves and depth maps. One feature—kurtosis,
a statistical measure based on the fourth moment of the fo-
cus measures—was the most predictive feature by far, clearly
dominating standard deviation used by Vaquero et al.’s [1] ap-
proach. To learn the decision tree, we used Weka’s J48 [21].
We experimented with parameters that led to complex trees,
but reasonable settings led to trees with a single node: kurto-
sis. For the experiments reported here we favored simplicity
at the expense of some accuracy.

IThe implementation and data are available at:
uwaterloo.ca/~vanbeek

https://cs.



Table 1. Number of images selected (m) and accuracy (acc.) of our method and Vaquero et al.’s [1] method compared to the
minimum possible number of images needed (gold), for various benchmarks, grid sizes, and apertures. The coins and flowers
benchmarks were acquired with a 200mm lens; the remaining benchmarks were acquired with a 50mm lens.

wide Our Vaquero narrow Our Vaquero
grid size | benchmark || aper. | gold m acc. m acc. aper. | gold | m acc. m acc.
backyard f/14 31 30 975 21 809 || f/8.0 5 5 992 11 100.0
bars f/14 12 13 985 8 800 | f/80 2 3 100.0 4 883
books f/14 72 81  96.0 34 557 | f/8.0 11| 11 99.0 16 89.8
building f/2.0 14 14 100.0 16 100.0 || f/8.0 2 2 100.0 7 100.0
16 x 24 | cans f/1.4 19 34 971 5 169 || f/8.0 5 5 995 4 677
coins /2.8 16 18 100.0 16 93.6 | f/80 16 | 18 100.0 9 592
flowers f/2.8 30 33 717 22 386 | f/80 14 | 16 898 10 486
trail f/4.0 5 5 100.0 10 100.0 || f/8.0 3 3 99.1 4 100.0
average 249|285 951 | 165  70.7 74179 980 | 81 81.7
backyard f/14 33 35 100.0 37 99.7 || f/8.0 5 5 100.0 31 100.0
bars f/14 12 18 100.0 44 100.0 || f/8.0 2 3 100.0 20 100.0
books f/14 87 95 100.0 76 90.8 || f/8.0 11| 12 100.0 41 100.0
building /2.0 15 15 100.0 16 100.0 || f/8.0 3 3 100.0 16 100.0
32 x 48 | cans f/1.4 18 34 100.0 84 100.0 || f/8.0 4 5 100.0 9 100.0
coins f/2.8 16 18 100.0 26 100.0 || f/8.0 16 | 18 100.0 18 100.0
flowers f/2.8 35 41 912 | 163 793 || f/8.0 15| 19 96.1 9% 934
trail f/4.0 5 6 100.0 21 100.0 || f/8.0 3 3 996 21 100.0
average 27.6 | 328 989 | 584  96.2 74 185 995|315 992

Parameter selection: t, and to. Vaquero et al.’s approach
requires settings for the thresholds ¢; and ¢o (Lines 4,9 & 11
in Alg. 1). For a fair comparison, we choose the optimal val-
ues. Threshold ¢; was set to the value that best fit all the above
training data. Threshold ¢, was set by iteratively running our
evaluation searching for the optimal accuracy or, within accu-
racy, the lowest number of images.

Performance evaluation. We compare the approaches us-
ing two performance measures: (i) number of images selected
and (ii) accuracy as measured by the percentage of cells in a
grid that are in focus. To compare against the minimal num-
ber of images needed and to determine the accuracy of the two
approaches, we constructed a gold standard depth map for a
scene using the set of high resolution images for the scene.
We used an adaptation of 8-fold cross-validation to obtain re-
liable estimates of the performance of our approach (see [22],
pp- 161-205), where for each of the eight benchmarks in turn,
we trained on the other seven and tested on that benchmark.
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Fig. 3. All-in-focus images obtained by fusing selected high
resolution images using f /8.0 aperture and 32 x 48 grid.
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3.2. Experimental results

Table 1 summarizes the results of empirical evaluation. On
these benchmarks, our method is more accurate than Vaquero
et al.’s [1] for the coarser grid, and has comparable accuracy
with many fewer images on the finer grid. For the most im-
portant case, a 32 x 48 grid and narrow aperture, both meth-
ods have excellent accuracy. However, our approach is close
to the minimum possible number of images and a significant
reduction over the number of images selected by Vaquero et
al’s [1] method with an average of 4.5 times fewer images,
which would significantly reduce image acquisition time (the
time between image captures often exceeds two seconds). Se-
lection algorithm running time remained negligible. We also
compared the post-processing image fusion times. In Photo-
shop CS5 our improvements reduced post-processing times
by up to ten times. For example, for a 32 x 48 grid and a nar-
row aperture, the times (mm:ss) for fusing the images selected
using our improvements ranged from 0:30 to 3:00 compared
to 1:30 to 31:00 for the images selected by Vaquero et al.’s [1]
approach.

4. CONCLUSION

We propose enhancements to a proposal by Vaquero et al. [1]
that improves their image selection on cameras with variable
apertures and lenses with longer focal lengths. Our approach
maintains equivalent or better accuracy, while significantly re-
ducing the cardinality of the selected set of images.
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