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Abstract. Constraint satisfaction and propositional satisfiability prob-
lems are often solved using backtracking search. Previous studies have
shown that a technique called randomization and restarts can dramat-
ically improve the performance of a backtracking algorithm on some
instances. We consider the commonly occurring scenario where one is to
solve an ensemble of instances using a backtracking algorithm and wish
to learn a good restart strategy for the ensemble. In contrast to much
previous work, our focus is on universal strategies. We contribute to the
theoretical understanding of universal strategies and demonstrate both
analytically and empirically the pitfalls of non-universal strategies. We
also propose a simple approach for learning good universal restart strate-
gies and demonstrate the effectiveness and robustness of our approach
through an extensive empirical evaluation on a real-world testbed.

1 Introduction

Constraint satisfaction and propositional satisfiability problems are often solved
using backtracking search. It has been widely observed that backtracking algo-
rithms can be brittle on some instances. Seemingly small changes to a variable
or value ordering heuristic, such as a change in the ordering of tie-breaking
schemes, can lead to great differences in running time. An explanation for this
phenomenon is that ordering heuristics make mistakes. Depending on the number
of mistakes and how early in the search the mistakes are made (and therefore how
costly they may be to correct), there can be a large variability in performance
between different heuristics. A technique called randomization and restarts has
been proposed for taking advantage of this variability [1–4].

A restart strategy (t1, t2, t3, ...) is an infinite sequence where each ti is either a
positive integer or infinity. The idea is that a randomized backtracking algorithm
is run for t1 steps. If no solution is found within that cutoff, the algorithm is
run for t2 steps, and so on. The usual method for randomizing a backtracking
algorithm is to randomize the variable or value ordering heuristics (e.g., [2, 4]).

Luby, Sinclair, and Zuckerman [1] examine restart strategies in the more
general setting of Las Vegas algorithms. A Las Vegas algorithm is a randomized
algorithm that always gives the correct answer when it terminates, however the
running time of the algorithm varies from one run to another and can be modeled
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as a random variable. Let f(t) be the probability that a backtracking algorithm
A applied to instance x stops after taking exactly t steps; f(t) is referred to
as the runtime distribution of algorithm A on instance x. Luby, Sinclair, and
Zuckerman [1] show that, given full knowledge of the runtime distribution of an
instance, the optimal strategy for that instance is given by (t∗, t∗, t∗, . . .), for
some fixed cutoff t∗. Of course, the runtime distribution of an instance is not
known in practice.

A fixed cutoff strategy is an example of a non-universal strategy: designed
to work on a particular instance—or, more precisely, a particular runtime dis-
tribution. When applied to another instance for which it was not designed, non-
universal strategies are open to catastrophic failure, where the strategy provably
will fail on the instance no matter how much time is alloted to the backtracking
search. The failure is due to all cutoffs being too small, before there is suffi-
cient probability of solving the instance. To avoid failure, such restart strategies
are sometimes set with cutoffs much too high with a serious consequent hit in
performance (see, e.g., Huang [5] and references therein).

In contrast to non-universal strategies, universal strategies are designed to be
used on any instance. Luby, Sinclair, and Zuckerman [1] were the first to propose
a universal strategy (hereafter, the Luby strategy). The Luby strategy is given by
(1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, . . .) and grows linearly (each ti is bounded
above by (i+1)/2). Walsh [6] proposes the universal strategy (1, r, r2, . . .), where
the restart values are geometrically increasing. In practice, it has been found that
a geometric factor in the range 1 < r < 2 often works well on both SAT and
CSP instances [6, 7].

We consider a setting where an ensemble or sequence of instances are to
be solved over time. Such a setting often arises in practice. For example, a
common scenario in scheduling and rostering is that at regular intervals on the
calendar a similar scheduling problem must be solved. For a further example,
in our evaluation testbed of instruction scheduling, thousands of instances arise
each time a compiler is invoked on some software project. In such a setting, the
question we address is whether we can learn a good restart strategy in an offline
manner from a small sample of the instances. In contrast to previous work, our
focus is on learning good universal strategies.

In this paper, we make the following three contributions. First, we demon-
strate both analytically and empirically the pitfalls of non-universal strategies,
as learned by previously proposed approaches.

Second, we examine the worst-case performance of the universal strategies.
The Luby universal strategy is known to be within a log factor of optimal in
the worst-case [1]. However, bounds on the worst-case performance of the Walsh
universal strategy are not known. We show that the performance of the Walsh
strategy is not bounded with respect to the optimal value in the worst-case.
The proof of the theorem provides some intuition behind good choices for the
geometric factor that have previously been determined empirically. We also prove
that the Walsh strategy guarantees a performance improvement under certain
conditions.
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Finally, we examine the practical performance of the universal strategies.
Previous empirical evaluations have reported that the Luby universal strategy
can perform poorly in practice (e.g., [4, 8–10]) and the Walsh strategy has not
been thoroughly evaluated empirically. We show that the performance of the
universal strategies can sometimes be considerably improved by parameterizing
the strategies and estimating the optimal settings for these parameters from
a small sample of instances. The two parameters that we consider are a scale
parameter s and a geometric factor parameter r. The Walsh strategy already
contains the geometric factor. Luby, Sinclair, and Zuckerman [1, p.179] note
that a geometric factor can also be incorporated into their universal strategy.
For example, the first few terms of the Luby strategy with a geometric factor of
3 are given by, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 9, . . . . The scale parameter, as the
name suggests, scales, or multiplies, each cutoff in a restart strategy. For exam-
ple, the first few terms of a scaled Walsh strategy are given by (s, sr, sr2, . . .),
for some given scale s and geometric factor r. Parameterizing the strategies im-
proves performance while retaining any optimality and worst-case guarantees.
We demonstrate the effectiveness and robustness of our approach through an
extensive empirical evaluation on a real-world testbed of instruction scheduling
problems.

2 Related Work

In this section, we relate our work to previously proposed methodologies for
learning good restart strategies for an ensemble of instances. In each methodol-
ogy, one begins by choosing a sample of instances from the ensemble.

Restart strategies are often informally chosen using trial-and-error methods
where one runs experiments on a sample of instances in order to find good
strategies (e.g., [4, 11]). Zhan [7] performs extensive experiments to evaluate
which geometric factor r for the universal strategies works best across problem
classes. In preliminary work, we suggested that the universal strategies could
be further parameterized using a scale factor s and that the parameters could
be tuned to improve performance [12]. Independently, Eén and Sörensson [13]
incorporates a scaled (s = 150) Walsh strategy into their SAT solver, but they
offer no justification for the choice of value. More recently, Huang [5] extensively
compares fixed cutoff restart strategies with particular scaled Luby and Walsh
strategies on SAT benchmarks in the context of conflict clause learning. Huang
notes that none of the strategies evaluated was consistently best across all bench-
mark families, which suggests that adapting a strategy to a benchmark family
is important.

More formal methods for choosing good restart strategies have also been pro-
posed. Ó Nualláin, de Rijke, and van Benthem [14] consider the case where an
ensemble consists of instances drawn from two known runtime distributions—a
runtime distribution for satisfiable instances and one for unsatisfiable—but the
runtime distribution for any given instance is unknown. They sketch how esti-
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mates of these runtime distributions can be used to derive good restart strategies.
However, the work is preliminary and no experimental results are reported.

Kautz et al. [8, 9] consider the case where an ensemble consists of instances
drawn from n different runtime distributions. They show that with this addi-
tional information, one can use dynamic programming to derive good restart
strategies and that these restart strategies can be further improved by incorpo-
rating observations from during the search process itself. However, their approach
is developed and experimentally evaluated in a scenario where a new instance is
chosen each time the backtracking algorithm is restarted. Unfortunately, this is
not a realistic scenario. In practice, one is interested in solving each instance in
the ensemble, not just any instance.

Ruan, Horvitz, and Kautz [10] determine a good restart strategy as follows.
One first empirically constructs the runtime distributions for each of the in-
stances in the sample. The instances are then clustered such that the runtime
distributions of the instances in a cluster have low variability. Each cluster of
runtime distributions yields a sub-ensemble runtime distribution which is the
normalized sum of the runtime distributions of the instances it contains. These
sub-ensemble runtime distributions are then used to construct a single, final
strategy using dynamic programming. However, the resulting learned strategies
are non-universal and thus are open to catastrophic failure.

Gagliolo and Schmidhuber [15] propose learning a good restart strategy on-
line as instances of the ensemble are solved. The restart strategy learned is an
interleaving of the Luby universal strategy and a fixed cutoff. In essence, the
fixed cutoff is determined by constructing a single runtime distribution from the
samples seen so far, and choosing a restart strategy that minimizes the expected
runtime on that runtime distribution. Because of the interleaved Luby strategy,
the learned strategy is not open to catastrophic failure. However, we argue (see
subsequent sections) that the fixed cutoff learned in this approach may not be
useful in many practical settings.

3 Theoretical Results

In this section we contribute to the theoretical understanding of the universal
restart strategies. For universal strategies there are two worst-case bounds of
interest: worst-case bounds on the expected runtime of a strategy and worst-
case bounds on the tail probability of a strategy. The tail probability is the
probability that the strategy runs for more than t steps, for some t.

3.1 Bounds on Expected Runtime

Luby, Sinclair, and Zuckerman [1] show that, for any runtime distribution, the
Luby strategy is within a log factor of the optimal fixed cutoff strategy for that
distribution. They also show that, given no knowledge of the runtime distribu-
tion, no universal strategy can have a better bound than being within a log
factor of optimal. The question we address is, how far can the Walsh strategy
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be from the optimal fixed cutoff strategy for a runtime distribution? Does it
attain the best-possible log factor bound and, if not, can it be bound by some
other polynomial or exponential function? Unfortunately, the answer is no to
all of these questions. The first notable property we establish is that the Walsh
strategy, although it appears to work well in practice, unfortunately comes with
no formal guarantee on its worst-case performance as it can be unbounded worse
than the optimal fixed cutoff strategy.

Theorem 1. The expected runtime of a Walsh strategy of the form, (1, r, r2, . . .),
r > 1, can be unbounded worse than that of the optimal fixed cutoff strategy.

Proof. The proof is constructive; given a Walsh strategy, we give a method for
constructing a runtime distribution such that the expected runtime of the Walsh
strategy on the runtime distribution is unbounded. Let A be the algorithm being
applied by the strategy. For any given Walsh strategy of the form (1, r, r2, . . .),
r > 1, define a runtime probability distribution for A as follows,1

f(t) =




1
l t = 1
1 − 1

l t = ∞
0 otherwise

where l = r/(r−1). Note that the optimal strategy for this runtime distribution
is the fixed cutoff strategy (1, 1, 1, . . .) with expected runtime l. The expected
runtime E[T ] of the Walsh strategy is given by,
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Thus the expected runtime E[T ] is unbounded with respect to that of the optimal
fixed cutoff strategy. ��
1 Note that the condition t = ∞ in the runtime probability distribution simplifies the

proof. However, for real CSP and SAT instances there always exists a t for which
P (T ≤ t) = 1; i.e. the runtime distributions are finite as a backtracking algorithm
will always (eventually) terminate. At the expense of complicating the proof, the
condition t = ∞ can also be formulated as t = rk and it can be shown that the
Walsh strategy can be exponentially worse than the optimal fixed cutoff strategy.
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The proof of the theorem provides some practical guidance for selecting a
value for the geometric factor r. Values in the range 1 < r < 2 are safer, and the
smaller the probability of a short run, the closer the geometric factor r must be
to 1, or the strategy may not converge.

3.2 Bounds on Tail Probability

Recall that the tail probability of an algorithm A on some instance is the prob-
ability that the algorithm runs for more than t steps on that instance, for some
t. Similarly, the tail probability of a restart strategy on some instance is the
probability that the strategy runs for more than t steps. Luby, Sinclair, and
Zuckerman [1] show that, no matter what the runtime distribution of the orig-
inal algorithm A, if we apply A using the Luby strategy, the tail probability of
the restart strategy decays superpolynomially as a function of t (i.e., faster than
polynomially). Here we establish a more restricted result for the Walsh strategy
by focusing on heavy-tailed probability distributions of the Pareto-Lévy form.
Gomes et al. [3, 4] show that this family of distributions can be a good fit to the
runtime distributions of backtracking algorithms with randomized heuristics in
the cases where restarts improve performance the most. In Pareto distributions,
the tail probability has the form,

P [T > t] ∼ Ct−α, where α > 0, C > 0.

In contrast to the classic exponentially decaying tail, a heavy-tailed distribution
is one where the tail probability decays polynomially. In terms of a backtracking
algorithm, a heavy-tail model implies that there is a significant probability that
the backtracking search will run for a long time, and the longer the backtracking
search has been running, the longer additional time it can be expected to run.

Theorem 2. If the runtime distribution of the original algorithm A is a heavy-
tailed probability distribution of the Pareto-Lévy form and A is applied using a
Walsh strategy of the form, (1, r, r2, . . .), r > 1, the tail probability of the restart
strategy decays superpolynomially.

Proof. Let F (t) = 1 − Ct−α be the cumulative distribution of the runtime of
algorithm A; i.e., the probability that A stops after taking t or fewer steps. The
idea is to first bound the tail probability of the restart strategy from above by
a piecewise linear function which is further bounded by a smooth function that
decays faster than heavy tail. Let it = argmaxi(ri ≤ t) = �logr t�.

P [T > t] ≤ P [T > rit ]

=
it∏

l=0

(
1 − F

(
rl
))

= C�logr t�+1 r−α
P�logr t�

l=0 l
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Since
∑�logr t�

l=0 l = 1
2 (1 + �logr t�)�logr t� ≥ 1

2 (1 + (logr t − 1))(logr t − 1) =
1
2 (log2

r t − logr t), together with the fact that r > 1, we have,

P [T > t] ≤ C�logr t�+1 r−
α
2 (log2

r t−logr t)

= C�logr t�+1 t−
α
2 (logr t−1)

In the case where C < 1, we have,

P [T > t] ≤ C logr t t−
α
2 (logr t−1)

= t−
α
2 logr t+R

where R = α
2 + logr C. In the case where C ≥ 1, we have,

P [T > t] ≤ C logr t+1 t−
α
2 (logr t−1)

= Ct−
α
2 logr t+R

The basic form of the tail probability is e− log2 t. Although slower than exponen-
tial, it no longer decays polynomially and thus is not heavy tailed. ��

A practical consequence of the theorem is that for instances for which a
Pareto distribution is a sufficiently good fit, the Walsh strategy is guaranteed to
reduce the probability of very long runs. Moreover, it is quick to check that both
the mean and the variance are finite for the cumulative distribution P [T ≤ t] =
1−e− log2 t, and thus the mean and variance of the Walsh strategy are also finite.
In contrast, the mean of the Pareto distribution is unbounded if α ≤ 1 and the
variance is unbounded if α ≤ 2. Thus, for certain settings of the parameter α
in the Pareto distribution, the Walsh strategy is guaranteed to give an expected
performance gain over not performing restarts.

4 Analytical Study

In this section we use a simple analytic example to illustrate the pitfalls of using
fixed cutoff and other non-universal strategies on an ensemble of instances. For
the purposes of this study, we assume that there is no limit on computational
resources—i.e., we wish to run the strategy on each instance in the ensemble until
a solution is found. In such a scenario, the appropriate performance measure is
the expected cost of solving the ensemble.

Consider an ensemble of n instances where the (unknown) runtime distribu-
tion of the kth instance is given by fk(t), k = 0, . . . , n − 1,

fk(t) =




p t = 10k

1 − p t = 10n

0 otherwise.

where p ≥ 1
8 (the lower bound on p is to ensure that restarts are helpful for all

possible values of n and k).
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Following Gagliolo and Schmidhuber [15], suppose that we learn a fixed cutoff
by collecting a sample of the ensemble, constructing a single runtime distribution
for the sample, and finally choosing the fixed cutoff that minimizes the expected
runtime of the strategy given the runtime distribution. In the limiting case where
the sample is the entire ensemble, the runtime distribution would be given by,

f(t) =




p/n t = 10k, k = 0, . . . , n − 1
1 − p t = 10n

0 otherwise.

It can easily be shown that (1, 1, . . . ) is the optimal fixed cutoff strategy for
the above runtime distribution. However, if we actually run the strategy on
each instance of the ensemble, the expected runtime of solving the ensemble is
unbounded (i.e., the process will not terminate). This is true for any fixed cutoff
strategy (t, t, . . . ) where t < 10n−1. Further, if we interleave the learned cutoff
with the Luby strategy, the result would only degrade the performance of the
Luby.

Following Ruan, Horvitz, and Kautz [10], suppose that we learn a cutoff
strategy by constructing a runtime distribution for each instance in the sample,
clustering the runtime distributions into a small number of classes, and learning
a restart strategy from the clustered runtime distributions. It can be shown
that, under reasonable assumptions about the method for clustering the runtime
distributions, unless the sample consists of the entire ensemble and the number
of clusters is equal to n, the expected runtime of the learned strategy on the
ensemble of instances can be unbounded.

As a point of comparison, it is easy to show that for each instance k with
runtime distribution fk(t), k = 0, . . . , n−1, the optimal restart strategy for that
instance is the fixed cutoff strategy (t∗k, t∗k, . . . ) with t∗k = 10k. For the ensemble
of n instances, if we use the optimal restart strategy for each instance (i.e., the
fixed cutoff strategy (t∗k, t∗k, . . . ) is used on instance k), the expected runtime
of solving the ensemble is (10n − 1)/(9p). Similarly, the expected runtime of the
strategy using the cutoff t = ∞ (i.e., running the backtracking algorithm to
completion on each instance) can be derived and is obviously finite. Thus, the
non-universal restart strategies learned by previous proposals can be unbounded
worse than the gold standard strategy of using the fixed cutoff t∗k and unbounded
worse than performing no restarts at all.

The universal strategies, by design, avoid this pitfall. But the question now
is, how well do they perform? For a given n and p, we can experimentally deter-
mine the expected runtime of the Luby and Walsh strategies on the ensemble of
instances, for various parameter settings. Table 1 summarizes a representative
example, the case where n = 6 and p = 1/8. Ratios less then one in the table
represent a speed-up; greater than one represent a slowdown. The default value
of the scale parameter s is 1 and the default value of the geometric parameter r
is 2 for the Luby strategy and 1.1 for the Walsh strategy.

There are two aspects of this analytic example that are worth noting. First,
the pitfall that a learned non-universal restart strategy can be arbitrarily worse
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Table 1. Ratio of expected runtime of the Luby and Walsh restart strategies over (a)
the expected runtime of the gold standard strategy t∗k, and (b) the expected runtime
when no restarts are performed.

restarts using t∗k no restarts
Parameter settings Luby Walsh Luby Walsh

Optimal 2.51 3.26 0.42 0.55
Default 14.17 3.30 2.39 0.56

than no restarting at all arose even when perfect information about the runtime
distributions was available (i.e., the sample consisted of the entire ensemble).
The pitfall is exacerbated when only estimates are available. In particular, the
pitfall would be likely to arise whenever there exist instances in the ensemble
that are inherently harder to solve than others. We would argue that these con-
ditions would often hold in practice, an assertion that our empirical study in
the next section supports. Second, the universal strategies avoid the pitfall and
offer speedups for various parameter settings. In the next section, we introduce
more realistic runtime distributions and study how robustly and accurately good
parameter settings can be estimated and just how much the parameterized uni-
versal strategies can lead to performance gains.

5 Empirical Study

In this section we present the results of an extensive empirical evaluation of our
approach on real-world scheduling instances. We performed two sets of experi-
ments. In the first set of experiments, we consider a scenario that often arises in
practice where a solution must be found within some given amount of compu-
tational resources. In these experiments we used a limit on the amount of CPU
time. In such a scenario, the appropriate performance measure is the number of
problems in the ensemble which are not solved. In the second set of experiments,
we consider a scenario where a backtracking search is run to completion. In such
a scenario, the appropriate performance measure is the expected time to solve
all of the problems in the ensemble. We begin by presenting the experimental
setup that is in common to the two sets of experiments, followed by the results
of the experiments themselves.

5.1 Experimental Setup

We used instruction scheduling problems for multiple-issue pipelined processors
in our experiments. Instruction scheduling is one of the most important steps in
improving the performance of object code produced by a compiler. The task is to
find a minimal length schedule for a basic block—a straight-line sequence of code
with a single entry point and a single exit point—subject to precedence, latency,
and resource constraints. We formulated a constraint programming model and
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solved the instances using backtracking search. In the model, there is a variable
for each instruction, the domains of the variables are the time cycles in which the
instruction could be scheduled, and the constraints consist of linear inequalities,
global cardinality constraints, and other specialized constraints. The scheduler
was able to solve almost all of the basic blocks that we found in practice, in-
cluding basic blocks with up to 2600 instructions. We refer the reader to [16]
for further details on the problem, the model, and the backtracking algorithm.
The point we wish to emphasize here is that, prior to our examination of restart
strategies, considerable effort went into improving the constraint programming
model, backtracking algorithm, and heuristics to reduce the number of unsolved
problems.

To randomize the backtracking algorithm, the dynamic variable ordering
heuristic randomly picked a variable from the top 5 variables (or fewer, if there
were fewer variables left). The backtracking algorithm is capable of performing
three levels of constraint propagation:

Level = 0 bounds consistency
Level = 1 singleton bounds consistency
Level = 2 singleton bounds consistency to a depth of two

We repeated the experiments for each level of constraint propagation. For our
experiments, we used scheduling instances that arise from the SPEC 2000 and
MediaBench benchmark suites, two standard real-world benchmarks in compiler
research. These benchmark suites consist of source code for software packages
that are chosen to be representative of a variety of programming languages and
types of applications. We had available to us a total of 6,377 hard scheduling
instances from 28 different software packages. For our sample of instances, or
training set, we used all 927 of the hard scheduling instances from the galgel,
gap, mpeg, and jpeg software packages. We chose these four software packages
for two reasons. First, the instances give approximately fifteen percent of the
scheduling instances and, second, these software packages provide a good cross
section of the data as they include both integer and floating point instructions
as well as a variety of programming languages and types of applications. For our
test set, we used the remaining 5,450 hard scheduling instances.

For each instance in the training and test sets, we collected 1000 samples
of its runtime distribution by each time running the randomized backtracking
algorithm on the instance and recording the amount of time taken in seconds.
The samples are censored in that we ran the backtracking algorithm with a
timeout mechanism; if the instance was not solved within 10 minutes, the back-
tracking algorithm was terminated and the maximum amount of 10 minutes was
recorded. (All times were recorded to 1/100 of a second, the resolution of the
system clock.) These empirical runtime distributions were then used to learn
and test the various restart strategies.

All of the runtime experiments were performed on a cluster which consists
of 768 machines running Linux, each with 4 GB of RAM and four 2.2 GHz
processors.
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Table 2. Expected number of scheduling instances in the test set not solved within
a deadline of 10 minutes, for various fixed cutoff strategies (see text); the Luby and
Walsh strategies with default, estimated, and optimal parameter settings; and various
levels of constraint propagation.

Fixed cutoff Luby Walsh

Level t∗k t̂single t = 10m def. est. opt. def. est. opt.

0 118.6 233.0 193.2 124.1 125.2 123.0 141.2 140.1 140.0
1 25.7 637.0 33.9 37.6 28.4 28.4 34.5 27.9 27.8
2 84.3 2,056.0 85.0 187.0 85.0 85.0 166.1 85.0 85.0

Table 3. Percentage increase in the expected number of scheduling instances in the
test set not solved relative to the gold standard t∗k, for various restart strategies and
levels of constraint propagation.

Fixed cutoff Luby Walsh

Level t∗k t̂single t = 10m def. est. opt. def. est. opt.

0 0.0% 96.5% 62.9% 4.6% 5.6% 3.7% 19.0% 18.1% 18.0%
1 0.0% 2,378.6% 31.9% 46.3% 10.5% 10.5% 34.2% 8.6% 8.2%
2 0.0% 2,338.9% 0.8% 121.8% 0.8% 0.8% 97.0% 0.8% 0.8%

Max 0.0% 2,378.6% 62.9% 121.8% 10.5% 10.5% 97.0% 18.1% 18.0%

5.2 Experiment 1

In our first set of experiments, we set a time limit of 10 minutes per instance
and determined whether learning good parameter settings from a training set
can reduce the number of problems in the test set which are not solved.

To learn good parameter settings for the Luby and Walsh strategies, we dis-
cretized the scale s into orders of magnitude, 10−1, . . . , 105, and the geometric r
into 2, 3, . . . , 10 (Luby) and 1.1, 1.2, . . . , 2 (Walsh). The best parameter settings
were then estimated by choosing the values that minimized the expected number
of instances not solved for the training set. The strategies with the estimated
parameter settings were then evaluated on the test set. Table 2 summarizes the
results. Table 3 presents the same information except now stated in terms of
percentage change. For comparison purposes, we show the results for three fixed
cutoff strategies: (i) the gold standard strategy t∗k where, for each instance k
in the test set, the optimal fixed cutoff strategy for that instance is used; (ii)
the fixed cutoff strategy t̂single that would be learned from the training set by
the method of Gagliolo and Schmidhuber [15]; and (iii) the fixed cutoff strategy
where the cutoff is set equal to the deadline of 10 minutes; i.e., there are no
restarts.

It can be seen that on this testbed the fixed cutoff strategy t̂single performs
poorly. Parameterizing the universal strategies and estimating good parameter
settings can give quite reasonable performance improvements over the default
or unparameterized universal strategies in some cases. Further, the parameter



12 Huayue Wu and Peter van Beek

 0

 10

 20

 30

 40

 50

 60

 1  2  3  4
av

er
ag

e 
pe

rc
en

ta
ge

 in
cr

ea
se

distance

Luby, geometric
Walsh, geometric
Luby, scale
Walsh, scale

Fig. 1. Average (over all levels of constraint propagation) percentage increase in the ex-
pected number of instances not solved in the test set relative to the optimal parameter
settings, for various distances.

settings estimated from the training set lead to performance that approaches
that of the optimal parameter settings (the parameter settings that, among all
possible parameter settings, lead to the best performance on the test set). As
well, it is worth noting that in some cases the default parameter settings lead to
worse performance than when there are no restarts.

We also measured the robustness of our approach for learning good universal
restart strategies by performing a sensitivity analysis. To be broadly useful,
our approach should not rely on extremely accurate estimates of the optimal
settings of the parameters. Rather, there should be a wide range of values for the
parameters that are effective and small changes in the accuracy of the estimates
should give small changes in the overall performance of the strategy.

To measure the robustness, we began with the optimal parameter settings
and systematically introduced inaccuracies in the parameters and observed the
effect on performance. For each parameter setting that was a given distance
from the optimal setting, we determined the percentage increase in the number
of problems that could not be solved. For example, for a distance of 1, scale
parameters that were one order of magnitude smaller and larger than the optimal
setting were tested. The results are summarized in Figure 1. It can be seen that
on this testbed: (i) the setting of the scale parameter is the most important for
both the Luby and the Walsh strategies, (ii) estimates of the scale parameter
that are off by one or two orders of magnitude are still effective, and (iii) the
Walsh strategy is somewhat more robust than the Luby.

5.3 Experiment 2

In our second set of experiments, we removed the time limit and determined
whether learning good parameter settings from a training set can reduce the time
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Table 4. Expected time (days:hours:minutes) to solve all of the scheduling instances in
the test set, for various fixed cutoff strategies (see text); the Luby and Walsh strategies
with default, estimated, and optimal parameter settings; and various levels of constraint
propagation.

Fixed cutoff Luby Walsh

Level t∗k t̂single t = ∞ def. est. opt. def. est. opt.

0 4:13:54 ∞ 295:07:03 62:13:07 7:14:29 7:14:29 17:17:19 7:03:53 7:03:53
1 1:00:22 ∞ 53:11:59 13:23:17 1:08:12 1:08:12 3:16:35 1:06:17 1:06:17
2 3:11:46 ∞ 122:23:52 49:18:45 3:23:00 3:23:00 13:22:30 3:17:04 3:17:04

Table 5. Percentage increase in the expected time to solve all of the scheduling in-
stances in the test set relative to the gold standard t∗k, for various restart strategies
and levels of constraint propagation.

Fixed cutoff Luby Walsh

Level t∗k t̂single t = ∞ def. est. opt. def. est. opt.

0 0.0% ∞ 6,348.4% 1265.8% 66.1% 66.1% 287.0% 56.4% 56.4%
1 0.0% ∞ 5,169.1% 1275.9% 32.2% 32.2% 263.6% 24.3% 24.3%
2 0.0% ∞ 3,423.8% 1326.3% 13.4% 13.4% 299.3% 6.3% 6.3%

Max 0.0% ∞ 6,348.4% 1326.3% 66.1% 66.1% 299.3% 56.4% 56.4%

needed to solve all of the problems in the test set. Recall that in the runtime dis-
tributions that we gathered, the samples were censored in that the backtracking
algorithm was terminated if an instance was not solved within 10 minutes. In
this experiment we wished to run the backtracking algorithm to completion. It
proved infeasible to actually do this on our benchmark instances—the instances
that we let run without a timeout ran for days without terminating—and so we
took a compromise approach as follows.

Gomes et al. [4] show that Pareto distributions of the form F (t) = 1 − Ct−α

are a good fit to runtime distributions that arise from backtracking algorithms
with randomized heuristics when applied to a diverse set of problems. In our
experimental runtime data, we replaced the timeouts by values sampled from
the tail of a Pareto distribution with C = 1 and α = 0.5. With these choices for
C and α, of the instances that previously had timed out, approximately 59.2%
of the instances are now “solved” within one hour, 91.9% are solved within one
day, 98.9% are solved within one month, and all are solved within one year.

To learn good parameter settings for the Luby and Walsh strategies, we
discretized the scale s into orders of magnitude, 10−1, . . . , 107, and the geometric
r into 2, 3, . . . , 10 (Luby) and 1.1, 1.2, . . . , 2 (Walsh). The best parameter
settings were then estimated by choosing the values that minimized the time to
solve all of the instances in the training set. The strategies with the estimated
parameter settings were then evaluated on the test set. Table 4 summarizes the
results. Table 5 presents the same information except now stated in terms of
percentage change.
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It can be seen that on this testbed parameterizing the universal strategies
and estimating good parameter settings gives performance improvements over
the default universal strategies in all cases (ranging from a minimum reduction
of from 3 days down to 1 day to a maximum reduction of from 62 days down to 7
days). Further, the estimated parameter settings are accurate—in each case the
estimated parameter settings turned out to be the optimal parameter settings.
As well, we note that with just the default parameters, the Walsh strategy is
much better than the Luby strategy. However, once we estimate and use good
parameter settings, the Luby and Walsh strategies achieve quite comparable
performance.

5.4 Discussion

We conclude this section with a discussion relating our experimental results
with previous theoretical results, as at first glance it may appear that there
is a conflict. Recall that Luby, Sinclair, and Zuckerman [1] show that, for any
runtime distribution, the Luby strategy with default parameter settings is within
a log factor of the optimal fixed cutoff strategy for that distribution. This may
appear to contradict the experimental results that we report for the default
Luby strategy. However, the theoretical result hides constant factors, which can
be important in practice. The constant factors can in fact be large as one moves
from the theoretician’s time step to a more practical proxy such as clock time
or number of backtracks. As well, we note that the optimality result does not
hold in the case where limits are placed on computational resources, such as a
deadline [17].

Recall also that Luby, Sinclair, and Zuckerman [1] show that, given no knowl-
edge of the runtime distribution, no universal strategy can have a better bound
than being within a log factor of optimal. This may appear to contradict the
experimental results that we report for the universal strategies with estimated
parameter settings. However, we note that the result does not hold in the case
where we are allowed to sample from the ensemble—as we do here—and learn
about the runtime distribution. As well, the theoretical result is a worst-case
analysis and the proof relies on a pathological distribution which may not arise
in practice.

6 Conclusions

We presented a theoretical worst-case analysis of the Walsh universal strategy.
The analysis provides some insights into suitable ranges in practice for the ge-
ometric parameter of the strategy. We also presented an approach for learning
good universal restart strategies in the commonly occurring scenario where an
ensemble of instances is to be solved. We demonstrated the effectiveness and
robustness of our approach through an extensive empirical evaluation on a real-
world testbed. Together these results increase our theoretical understanding of
universal restart strategies and increase their applicability in practice.
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